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Abstract: Energy operations and schedules are significantly impacted by load and energy forecasting 

systems. An effective system is a requirement for a sustainable and equitable environment. 

Additionally, a trustworthy forecasting management system enhances the resilience of power systems 

by cutting power and load-forecast flaws. However, due to the numerous inherent nonlinear properties 

of huge and diverse data, the classical statistical methodology cannot appropriately learn this non-

linearity in data. Energy systems can appropriately evaluate data and regulate energy consumption 

because of advanced techniques. In comparison to machine learning, deep learning techniques have 

lately been used to predict energy consumption as well as to learn long-term dependencies. In this 

work, a fusion of novel multi-directional gated recurrent unit (MD-GRU) with convolutional neural 

network (CNN) using global average pooling (GAP) as hybridization is being proposed for load and 

energy forecasting. The spatial and temporal aspects, along with the high dimensionality of the data, 

are addressed by employing the capabilities of MD-GRU and CNN integration. The obtained results 

are compared to baseline algorithms including CNN, Long Short-Term Memory (LSTM), 

Bidirectional Long Short-Term Memory (Bi-LSTM), Gated Recurrent Unit (GRU), and Bidirectional 

Gated Recurrent Unit (Bi-GRU). The experimental findings indicate that the proposed approach 

surpasses conventional approaches in terms of accuracy, Mean Absolute Percentage Error (MAPE), 

and Root Mean Square Error (RSME). 
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1. Introduction 

The energy-management functions and timing have been greatly influenced by load and power 

prediction. An effective load forecasting and energy management system is essential to a fair and 

sustainable system. Many variables, including cost, load flow and power plant demand, depend on data 

collected by the load and power forecasting system [1,2]. Large energy storage and demand fluctuations 

also require a proactive balancing of load changes and energy management systems, as shown in [3,4]. 

A reliable load and power forecasting management system help reduce power and load forecast errors, 

enhance the robustness of power systems and mitigate changes in supply and demand [5,6]. 

Conventional statistical approaches including linear regression analysis (LR) approach and 

autoregressive moving average (ARMA) methodology have been previously used in pregnancy 

prediction methods based on massive amounts of data [7,8]. However, traditional statistical techniques 

cannot adequately learn these nonlinear data or match pregnancy prediction accuracy criteria due to 

many intrinsic nonlinear properties of big data [9,10]. Modern artificial intelligence technology 

enables energy systems to analyze data and manage demand properly. Machine learning methods have 

recently been used to predict power consumption and load patterns. These approaches lead to better 

control of load and power resulting in lower energy use, longer resource life and lower processing 

costs [11–13]. 

Currently, neural networks are being used more and more to tackle complex time-series prediction 

problems as a result of their recent success in challenges associated with computer vision and image 

processing. By comparing actual usage with forecasts from the forecasting system, accuracy can be 

improved as well as money and energy savings. Scheduling and planning of power systems can be 

damaged by inaccurate load forecasting which can lead to power shortages in the market and 

eventually increase the desire to expand existing Artificial Neural Network (ANN) designs [14,15]. 

By adding more hidden layers, which may handle nonlinearities in the input and output data, the 

extension is produced. The goal is to provide a Deep Neural Network (DNN) based power load 

prediction model for power usage prediction. 

Initially, many neural networks used backpropagation techniques for short-term load forecasting 

as proposed in [16–18]. Similarly, the processing of sequence data is done in many works using a 

recurrent neural network proposed in [19–21]. Based on climatological data, a local and Global RNN 

model was developed to address the issue of long-term wind speed and energy forecasting [22,23]. 

However, during error backpropagation, the gradient descent problem still exists due to the enormous 

depth of time in the traditional Recurrent Neural Network (RNN) architecture which cannot learn the 

long-term historical data. Comparatively, long short-term memory (LSTM), an improved form of RNN 

was introduced in [24] which uses gated mechanisms to integrate short-term and long-term memory. 

Latterly, Gated Recurrent Unit (GRU), based on an optimized LSTM combines the input gate and 

forget LSTM gate into a single update gate [25,26]. Still, the GRU model is not enough, because, the 

power system additionally contains high-dimensional data such as image data, spatiotemporal matrices 

and sequence data. These optimized models are not sufficient to handle high-dimensional data 
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effectively. By contrast, a CNN is suitable for processing large amounts of high-dimensional data and 

has been successfully applied in many research works [27,28]. The CNN may record the characteristics 

of the local orientation and the non-variable features of the scale when there is a significant correlation 

between adjacent data points [29,30]. 

Accordingly, there are four categories of power load projections: long-term, medium-term, short-

term and very short-term [31–34]. The main focus should be on very short-term electrical load and 

power forecasting, which predicts future loads and may assist power system operators set up realistic 

production plans, keeping supply and demand in balance, and assuring safety while minimizing 

resource waste and electricity prices. The conventional statistical methodology was proven to be 

ineffective for learning nonlinearity due to the multiple intrinsic nonlinear features of large and diverse 

data sets. Therefore, to predict energy consumption, machine and deep learning approaches have 

recently been applied to solve issues related with large dimensionality and learning long-term 

dependencies. A novel load and energy demand predictor using a multi-directional GRU (MD-GRU) 

and CNN using different pooling schemes has been proposed in this work. To improve the extraction 

and learning features in the chronological data, the MD-GRU is used to simulate the dynamic changes 

in the historical energy sequence data. The CNN module processes spatiotemporal matrices and plots 

them into distinct vectors by taking global values rather than max or average. The model predicts the 

load of power consumption 10 minutes in advance using several statistical techniques concerning 

predicted and actual values. These predicted values can be used to make wiser judgments and enhance 

the overall effectiveness of the system. The following are the main contributions of this paper: 

1-A novel multi-directional GRU (MD-GRU) model is presented for the detection of dynamic 

changes in historical load and energy sequence data 

2-This work integrates MD-GRU and CNN having global average pooling (GAP) is used to 

estimate the load and energy demand to capture long-term dependencies. 

3-The proposed MD-GRU-CNN model is compared with the baseline models such as LSTM, 

GRU, Bi-LSTM, Bi-GRU, and CNN models 

4-The proposed model is also assessed using other metrics including mean percentage absolute 

error (MAPE), root mean square error (RMSE), and conventional assessment measures. 

The rest of the paper is structured as follows: Section 2 describes related work. Sections 3 and 4 

contain the deep learning techniques for load and energy forecasting as well as the proposed 

methodology, while Section 5 contains the experimentation. Section 6 is for discussion, and Section 7 

concludes the paper. 

2. Related work 

For the load and energy management system, there has been a major growth in the use of modern 

metering and sensors, which has greatly increased the information. A significant amount of data is 

produced, serving as a trustworthy source of information for load forecasting algorithms. There are 

parametric and non-parametric versions of these load forecasting models. While ANNs are among the 

most widely used non-parametric techniques for creating new energy demand predictions, parametric 

methodologies are based on analytical models [35,36]. There have been numerous electrical load 

forecasting models proposed in recent years using the latest deep learning techniques; some of the 

more popular models that researchers now employ are detailed in [37–39]. 

To forecast energy consumption over various time horizons, time-series approaches have been 
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frequently used. The most prevalent model is the autoregressive moving average (ARMA) model, 

which combines the moving average (MA) and autoregressive (AR) models. The AR Model relies on 

the linear regression of actual values depending on a database, while the MA Model makes utilization 

of the moving average to compute Regressions employing forecast errors for previous values [40]. 

Another study uses autoregressive integrated moving average (ARIMA) models to create novel 

forecasting systems [41]. However, there are numerous intrinsic nonlinear properties in the enormous 

data, and classic statistical approaches cannot effectively learn this nonlinear data even though these 

methods may, to some extent, estimate short-term demand. Therefore, it is exceedingly difficult for 

conventional statistical approaches to forecast load with any degree of accuracy. 

Various machine learning (ML) techniques, such as artificial neural networks fuzzy systems [42] 

and support vector machines (SVM) [43] have been effectively implemented in predicting and 

classifying issues [44–46]. The development of a system for load and energy forecasting using SVM 

and ML techniques is effective in addressing the difficulties of nonlinearity [47]. An adaptive neuro-

fuzzy inference system (ANFIS), was used in another project to create a short-term load and energy 

forecasting model [48]. The backpropagation neural network (BPNN) has also been taken into 

consideration for load forecasting as deep learning has advanced [49]. A hybrid model of BPNN and 

the multi-label algorithm based on K-nearest neighbor (KNN) and K-means was presented; however, 

because of the nature of feedforward neural networks, it is unable to effectively learn time-sequence 

data for the power system [50]. 

Recently, computer vision, natural language processing and speech recognition have all benefited 

greatly from recent advancements in neural networks, especially deep neural networks. Deep neural 

network applications for short-term load forecasting are currently a novel and widely discussed topic. 

An analysis of artificial neural networks (ANNs) for predicting short-term load is shown in [51]. 

Recurrent neural networks (RNN), convolutional neural networks (CNN), and their combination and 

long short-term memory (LSTM) are just a few of the various building blocks that have made deep 

neural networks highly adaptable and successful [52]. 

A novel approach with LSTM and genetic algorithm (GA) integration was put out in [53], and it 

produced a mean absolute percentage error with a minimal value. An innovative method for the 

planning and operation of energy generation called the Bi-GRU (gated recurrent unit) prediction 

system was created [54]. The bidirectional characteristic of GRU, in contrast to other approaches, is 

not enough to gather long-term sequential information from all areas of energy and load forecasting. 

By using positive and negative input, the bidirectional model trains the nodes to operate in forward 

and reverse modes. The advantage of the bidirectional ability to focus in both directions (forward and 

backward), as indicated is useful for extracting more information from the long-term information 

sequence, but it is insufficient for energy and load forecasting [55]. Multiple load and energy 

forecasters have been produced in which the forecaster's framework must get more intricate to produce 

forecasting accuracy. 

3. Deep learning techniques for load and energy forecasting model 

3.1. Recurrent neural network 

Sequential information use is carried out via recurrent neural networks. These networks connect 

words with particular time steps in the sequence. [56,57]. The amount of time steps determines the 
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maximum input sequence length in the final result. Figure 1 depicts the recurrent neural network’s 

architecture. 

 

Figure 1. Recurrent neural network architecture. 

The following are the sequential data as feature vectors that are provided to the recurrent neural 

network (RNN) as inputs after changing feeds: 

ℎ𝑠𝑡 = 𝑓(𝑋. 𝐼𝑡 + 𝑊m ℎ𝑠 𝑡−1 + 𝑏).        (1) 

𝑂𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑌. ℎ𝑠𝑡 
).          (2) 

The outputs can be observed in the above image by the corresponding time step, however 

depending on the task, this may not be essential. Our objective for managing the energy and load is to 

concentrate on the output. A recurrent neural network can accumulate sequential information in the 

same situation when there is no necessity for input with the appropriate time step and hidden state. 

Previously, researchers discovered that by introducing LSTM, Bi-LSTM GRU, and Bi-GRU, the 

recurrent neural network can be improved for learning long term dependencies. However, the 

bidirectionality was insufficient in the case of load and energy management to achieve the desired 

outcomes [58]. 

3.2. Long short-term Memory and bidirectional module  

Long-term dependency issues are addressed with the LSTM [59]. When a long short-term 

memory network is trained to use backpropagation with time, it can address the vanishing gradient 

problem [60]. Although LSTMs are considered to be an adequate methodology, still architecture only 

considers the past, which can sometimes result in poor performance, particularly in load and energy 

management where the future data is also crucial. With two hidden states, forward ℎ𝑠⃗⃗⃗⃗ 𝑡 and backward 

 ℎ𝑠𝑡
⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ , bidirectionality in LSTMs can capture both contexts: prior and upcoming. 

3.3. Gated recurrent unit and bidirectional module 

LSTM optimization known as the gated recurrent unit (GRU) performs better than conventional 

LSTMs. When compared to LSTMs, the gated recurrent unit (GRU) has fewer parameters since it 

consolidates the input gates and forget gates provided in [61] into only two gates. Similar to LSTMs, 
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but faster than Bi-LSTMs, is the bidirectional gated recurrent unit. The Bi-GRU unit can store 

sequences of information in both directions, such as prior and upcoming information, and have a long 

short-term memory for preserving long-term dependencies. Many models have been successful in 

terms of the informational flow relating in to both directions for load and energy management [62]. 

The output of a bidirectional recurrent module that processes sequences in opposite directions is, for 

example, the hidden state generated as: 

[ℎ𝑠1⃗⃗ ⃗⃗ ⃗⃗ ∥ ℎ𝑠1⃖⃗ ⃗⃗ ⃗⃗⃗, ℎ𝑠2
⃗⃗ ⃗⃗ ⃗⃗  ∥ ℎ𝑠2

⃖⃗ ⃗⃗ ⃗⃗⃗, . . . . . , ℎ𝑠𝑛⃗⃗ ⃗⃗ ⃗⃗  ∥ ℎ𝑠𝑛⃖⃗ ⃗⃗ ⃗⃗ ⃗].     (3) 

3.4. Convolutional neural network 

Convolutional neural networks were initially for image classification but a short while later, evolved 

into models that were used for a variety of applications. The sequential data is fed into a convolutional 

layer, which then generates various filters, learns several features, and applies these features successively 

to the various input divisions. The output is typically then aggregated to lower dimensions and routed 

into a linked layer [15]. Multiple features are used in this layer to extract local features. Figure 2 shows 

the traditional convolutional neural network architecture as it is described in [63]. 

 

Figure 2. Traditional convolutional neural network architecture. 

To choose a maximal value, the max pooling layer must first discard any other values that are not 

maximal. A concept of dropout layer normalization is essential to build a dense connection in both the 

max-pooling and convolutional layers as presented in [64]. 

The output of a convolutional layer is processed by a global average pooling layer, as a regularizer, 

replacing the fully connected layer and dropout. Further, it specifically coordinates between the 

mapping of features and classifications to examine the computational complexity and determine 

whether it is less or not. Additionally, no parameter modification is required in the global average 

pooling [65]. Each feature map's average value produces a unique value, which is then directly entered 

into the SoftMax algorithm to obtain the likelihood distribution along with confidence values for each 

class. The following expression illustrates the likelihood of appropriation: 
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4. Deep learning techniques for load and energy forecasting model 

For load and energy forecasting, deep learning techniques, particularly sequential models like 

RNN and LSTM models, are being used. Feedforward neural networks with internal memory are 

known as recurrent neural networks. The outcome of the current input depends on the computation of 

the prior inputs, as opposed to RNNs, which perform the same task for every data input. The output is 

produced, duplicated, and then distributed throughout the network. However, the issue of gradient 

vanishing and exploding prevents the typical RNN design from supporting long sequences. A modified 

version of recurrent neural networks makes it simpler to store past knowledge in memory like long 

short-term memory (LSTM) and gated recurrent units (GRUs) [66]. 

Categorical values require label encoding approaches since deep learning models are unable to 

understand them. These methods change these category values into numerical ones that are appropriate 

for deep-learning neural network models. Understanding how the extended input sequence is created, 

however, is crucial. The time period of the date, such as a certain day, month, etc., is the input data for 

energy and load management. As a result, it is necessary to transform this kind of data into a sequence 

that can be used as additional input in the architecture for load and energy forecasting. 

4.1. Multidirectional gated recurrent unit 

The fundamental principle of MD-GRU is to use as many recurrent connections as there are 

dimensions in the data to replace the one recurrent connection present in regular RNNs. The hidden 

layer of the network receives an external input and its activations from one step back along all 

dimensions at each point in the data sequence during the forward pass. This module has multiple 

dimensions that can individually scan all four directions in each column and row where hidden layers 

are calculated in the vertical and horizontal direction at every stage and added up at the end. Two 

output attribute maps are employed, one for the vertical direction and the other for the horizontal 

direction. The forward hidden states, backward hidden states, forward update gates, and backward 

update gates are the four sets of activations that the MD-GRU computes for each time step. The final 

output of the module is generated by combining these activations, which are calculated using a set of 

learned weights and biases. The current simulation makes use of the total of these output attribute maps 

as an alternative to concatenate the output feature maps as shown in Figure 3 below: 

 

Figure 3. The architecture of multi-directional gated recurrent unit (MD-GRU). 
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4.2. MD-GRU-CNN module 

A novel hybrid Multi-Directional MD-GRU-CNN is proposed by using the benefits of the 

combination of MD-GRU for the processing of time sequence data with CNN to handle high 

dimensionality of data. The spatial and temporal dependencies in the input data are intended to be 

captured by this hybrid architecture, making it particularly ideal for tasks that call for both short-term 

and long-term patterns. 

Figure 4 illustrates the proposed hybrid multidimensional MD-GRU-CNN neural network design. 

With spatiotemporal matrices gathered from the power system as inputs and sequential data based on 

time as outputs, the proposed structure can forecast the load and energy level in a relatively very short 

amount of time. The MD-GRU module aims to capture long-term dependency. The MD-GRU module 

can learn useful information by scanning each column and row independently in different directions 

in the historical data for a long period of time through the memory cell, and the forget gate will forget 

the useless information. The inputs to the MD-GRU module are time sequence data. The MD-GRU 

module has a sizable number of gated recurrent units that are connected CNNs that make use of fully 

connected layers and global average pooling. While the MD-GRU can identify temporal patterns in 

the data, such as daily or weekly cycles in energy consumption or load, the CNN can identify spatial 

aspects of the data, like patterns in the distribution of load or energy consumption throughout an area. 

Finally, by calculating the mean value of each neuron in the fully connected layers, the load-predicting 

results may be determined as shown below in the Figure 4 below: 

 

Figure 4. Proposed architecture based on hybridization of multi-directional GRU and CNN. 

5. Experimentations 

To evaluate our proposed methodologies, we run the system over the following datasets: 

5.1. Dataset descriptions 

The UCI machine learning repository is where the first dataset for the experimentation was 
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gathered [67]. The dataset contains 10,000 instances having 14 variables relating to the values of 

electricity producers, produced, price elasticity factor, the maximum value of equation root and system 

reliability as described refers to DS-1. 

The second dataset called the Almanac of Minutely Power Dataset, contains different 

measurements such as (natural gas, electricity, and water) taken by a single household of 19 devices 

over the duration of an entire year, at a resolution of one (1) minute that is then down-sampled to a 

resolution of thirty (30) minutes [68] refers to DS-2. 

The third dataset, referred to as the smart grid smart city was started in an initiative by Australian 

government [69] by collecting smart-meter data of 78,000 clients referred to as DS-3. 

5.2. Metrics used for evaluating the proposed approach 

Multiple metrics such as accuracy, precision, recall, and F1 Score are broadly applicable and 

significant for evaluating the performance of different prediction models. Additionally, the mean 

absolute percentage error (MAPE) and root mean square error (RMSE) are also added: 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝑦(𝑖)−𝑦(𝑖)
∧

𝑦(𝑖)
|

𝑛

𝑖=1

× 100%,     (5) 

𝑅𝑀𝑆𝐸 = √∑
(γ̂i−y)2

x

x

i=1
        (6) 

where n refers to samples training size 𝑦(𝑖) actual and 𝑦(𝑖)
∧

 are expected values, respectively. 

The average ratio between the error and actual values at one forecasting point is represented by the 

MAPE. The sample standard deviation of variations in predicted and actual value as RMSE. The 

performance of the model's prediction increases with decreasing MAPE and RMSE values. 

5.3. Baseline methods 

This part begins by presenting baseline methods, which consist of LSTM, bidirectional LSTM, 

GRU, bidirectional GRU, and CNN experiments with various time stamps. Then, by combining Multi-

directional GRU with CNN and examining several variations, such as MD-GRU separately and MD-

GRU-CNN, as shown in Tables 1 and 2, we demonstrate how we expand these baseline models toward 

the proposed architecture. 

Table 1. Baseline models experimented with different timestamps (2, 4, 6). 

Models Narrative 

CNN  

Baseline Methods 

with Different Time 

Stamps 

LSTM 

GRU 

Bi-LSTM 

Bi-GRU 
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Table 2. Proposed models experimented with different timestamps (4, 8, and 12). 

Models Narrative 

MD-GRU Proposed Methods with 

Different Time Stamps MD-GRU-CNN 

5.4. Experimental setup 

The purpose of the testing in this work is to show the effectiveness of the recommended procedure 

for diversifications in different datasets, in comparison with the tuning of the multiple parameters. 

During our initial testing, we checked the epoch, batch size, filter windows, MAPE, and learning rate 

to determine the optimum parameter. However, this work does not go into in-depth detail concerning 

adjusting hyperparameters. 

With a neural network, we can divide the huge dataset into smaller chunks by training with small 

batches of several training cases. Accuracy and layers are sometimes directly associated, implying that 

as the number of layers increases, so does accuracy. Most of the time, this tends to increase precision; 

but, as the number of layers increases, accuracy can substantially decline due to the "Vanishing 

Gradient Problem." [38]. Sometimes the computations also rely on how far the single hidden layer is 

expanded. For instance, if there are not enough hidden layers, the performance will suffer. The 

dimensions associated with the hidden state are taken into consideration to be 128 and one layer of 

convolution layers is used in this work along with a field size of (3, 3, and 5). 

After evaluating our model and experimenting with other window filter combinations, we found 

that seven (7) is the best alternative. Additionally, the batch size is set at 128, the learning rate is set at 

0.02 and the epochs maintain within 10 and 40 including all datasets. Dropout, however, was fixed at 

0.5 for regularization in the baseline models. Following a series of studies, it is also discovered that 

the activation function hyperbolic ReLu is perfect in the convolutional layer for the best performance. 

Lastly, MAPE 0:95 was found appropriate. 

5.5. Experimental results and analysis 

For experimentation, a diversity of evaluation techniques is utilized, including accuracy, precision, 

recall, and F1-score for both baseline and proposed models to replace the stacking of multiple 

convolutional layers as well as the problems associated with bidirectional architecture. Average MAPE 

and RMSE values were also employed to support the findings. Further, several of the most popular 

neural network models, including CNN, LSTM, Bi-LSTM, GRU and Bi-GRU models were selected 

as baseline models to assess the effectiveness and robustness of the proposed MD-GRU-CNN model. 

The features of the baseline and (proposed) MD-GRU-CNN models were acquired by learning 

the training datasets. The model was then validated using test datasets. Tables 3–6 contain the results 

considering the above evaluation metrics on multiple datasets referring to DS-1, 2, and DS-3. For 

baseline models, the most elevated accuracy is 90.99 % achieved Bi-GRU model using DS-3 can be 

seen in Figure 5. The most appropriate precision and recall also observed on similar models are 91.86% 

and 93.18% respectively as visualized in Figures 6 and 7. Whereas the F1-Score was 92.97% using 

DS-1 on the Bi-GRU model as depicted in Figure 8. 
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Table 3. Accuracy achieved on baseline models. 

Accuracy 

Models DS-1 DS-2 DS-3 

CNN 82.4 85.7 84.6 

LSTM 83.8 87.1 87.9 

GRU 86.99 88.12 88.71 

Bi-LSTM 87.8 89.27 90 

Bi-GRU 89.67 92.8 90.99 

Table 4. Precision on baseline models. 

Models DS-1 DS-2 DS-3 

CNN 83.5 88.7 85.6 

LSTM 85.8 90.21 87.9 

GRU 89.77 90.97 89.45 

Bi-LSTM 90 89.87 90.78 

Bi-GRU 91.27 89.76 91.86 

Table 5. Recall baseline models. 

Recall 

Models DS-1 DS-2 DS-3 

CNN 85.3 87.6 86.5 

LSTM 88.2 92.1 89.2 

GRU 87.87 91.75 90.25 

Bi-LSTM 92.8 90.71 90.02 

Bi-GRU 93.17 87.06 93.18 

Table 6. F1-Score on baseline models. 

F1-Score 

Models DS-1 DS-2 DS-3 

CNN 86.2 88.6 83.5 

LSTM 90.2 93.4 88.4 

GRU 89.71 92.15 91.05 

Bi-LSTM 91.99 89.84 91.72 

Bi-GRU 92.97 89.62 92.08 
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Figure 5. Accuracy on baseline models using DS-1, DS-2 and DS-3. 

 

Figure 6. Precision on baseline models using DS-1, DS-2 and DS-3. 

 

Figure 7. Recall on baseline models using DS-1, DS-2 and DS-3. 
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Figure 8. F1-Score on baseline models using DS-1, DS-2 and DS-3. 

Similarly, the average MAPE attained on the Baseline method is also presented in Tables 7– 9 using 

all three data sets (DS-1, DS-2, and DS-3) incorporating different time stamps (2, 4, and 6). 

Table 7. Average MAPE on baseline model using DS-1. 

DS-1 (Average MAPE)  

Models 2-Timestamps 4-Timestamps 6-Timestamps 

CNN 40.5 39.5 41.5 

LSTM 39.8 42.8 40.5 

GRU 38.7 40.71 40.99 

Bi-LSTM 37.8 39.1 38.99 

Bi-GRU 37.9 35.4 35.01 

Table 8. Average MAPE on baseline model using DS-2. 

DS-2 (Average MAPE)  

Models 2-Timestamps 4-Timestamps 6-Timestamps 

CNN 39.6 41.8 41.53 

LSTM 38.41 40.3 38.55 

GRU 38.34 39.91 37.56 

Bi-LSTM 37.04 38.78 36.92 

Bi-GRU 35.2 36.8 35.79 

Table 9. Average MAPE on baseline model using DS-3. 

DS-3 (Average MAPE)  

Models 2-Timestamps 4-Timestamps 6-Timestamps 

CNN 38.6 42.4 41.03 

LSTM 36.97 39.47 40.89 

GRU 37.14 39.47 37.58 

Bi-LSTM 37.04 38.14 39.87 

Bi-GRU 36.2 35.49 35.17 

86.2

90.2 89.71

91.99
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Similarly, in baseline models, the least observed MAPE value is 35.01 on Bi-GRU using DS-1, 

35.4 on 4 timestamps using DS-3, and 35.2 on DS-2 using 2 timestamps can be seen in Figures 9–11. 

By considering accuracy, precision, as well as recall and F1-score, Tables 10–13 demonstrate the 

effectiveness of the proposed models. The proposed model outperforms by achieving reliable 95.76% 

accuracy on MD-GRU and 97.85% using DS-3 compared to baseline models depicted in Figure 12. 

 

Figure 9. Average MAPE on baseline model using DS-1 with different timestamps. 

 

Figure 10. Average MAPE on baseline model using DS-2 with different timestamps. 
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Figure 11. Average MAPE on baseline model using DS-3 with different timestamps. 

 

Figure 12. Accuracy was achieved on MD-GRU and MD-GRU-CNN using DS-1, DS-2 and DS-3. 

Table 10. Accuracy achieved on proposed models using DS 1, DS-2 and DS-3. 

Accuracy  

Models DS-1 DS-2 DS-3 

MD-GRU 95.21 94.77 95.76 

MD-GRU-CNN 96.17 95.89 97.85 

Table 11. Precision on proposed models using DS-1, DS-2 and DS-3. 

Precision  

Models DS-1 DS-2 DS-3 

MD-GRU 96.11 95.83 95.61 

MD-GRU-CNN 97.27 96.99 98.55 

95.21
94.77

95.76
96.17

95.89

97.85

DS-1 DS-2 DS-3

A
cc

u
ra

cy

Proposed Models 
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Table 12. Recall on proposed models using DS-1, DS-2 and DS-3. 

Recall 

Models DS-1 DS-2 DS-3 

MD-GRU 98.1 98.73 96.17 

MD-GRU-CNN 96.83 98.99 98.45 

Table 13. F1-Score on proposed models using DS-1, DS-2 and DS-3. 

F1-Score  

Models DS-1 DS-2 DS-3 

MD-GRU 97.01 97.83 95.84 

MD-GRU-CNN 97.97 97.49 98.85 

Figure 12 illustrates how the proposed models, MD-GRU and MD-GRU-CNN, fared better in 

terms of precision than earlier neural network baseline models employing DS-2 and DS-3, obtaining 

95.83% and 98.55% higher values, respectively. On the DS-2, the greatest recall rates were 98.73% 

and 98.99%, as shown in Figures 13 and 14. Figure 15 indicates how the proposed model surpassed 

baseline models by gaining an F1-score on DS-3 that was also higher, at 98.85%. 

 

Figure 13. Precision on MD-GRU and MD-GRU-CNN using DS-1, DS-2 and DS-3. 

 

Figure 14. Recall on MD-GRU and MD-GRU-CNN using DS-1, DS-2 and DS-3. 
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Figure 15. F1-Score on proposed models using different timestamps. 

The proposed models (MD-GRU and MD-GRU-CNN) perform superior to standard architectures 

of CNN, LSTM, Bi-LSTM, GRU, and Bi-GRU (baseline), as demonstrated in the above tables. This 

is because the datasets used in this research are spatiotemporal. With the proposed hybridization 

(fusion of MD-GRU and CNN), there is no possibility of a loss of related information that usually 

occurs when flattening spatiotemporal data to dimensional and time sequence data. Resulting in the 

inability of recurrent and its variations models to learn the features effectively. 

Also, the proposed models have the lowest average MAPE values out of all the baseline models 

shown in Table 14 and Figure 16. From the three datasets, our proposed hybrid model can effectively 

learn both the time sequence and spatiotemporal data and extract additional features. For a better 

assessment, the baseline and proposed models' RMSE representations are listed in Table 15 and 

illustrated in Figure 17. As shown in the mentioned figure, though the RMSE values of the Bi-GRU 

and Bi-LSTM models are nearly identical, the Bi-GRU model surpasses the GRU and Bi-LSTM 

models. The MD-GRU model values fluctuate between CNN, GRU, Bi-LSTM and MD-GRU-CNN 

revealing that the proposed model consistently surpasses the baseline models, while MD-GRU is lower 

in performance than the MD-GRU-CNN model. 

Table 14. Average MAPE on proposed methods using DS-1, DS-2 and DS-3. 

DS-1, DS-2, DS-3 (Average MAPE)  

Models 4-Timestamps 8-Timestamps 12-Timestamps 

 

MD-GRU 

 

MD-GRU-CNN 

26.9 28.93 26.74 

25.2 26.1 25.6 

25.87 26.99 27.12 

25.11 25.07 26.21 

26.17 25.18 26 

25.09 25.9 26.14 

97.01

97.83

95.84

97.97

97.49

98.85

DS-1 DS-2 DS-3

F
1

-S
co

re

Proposed Models

MD-GRU MD-GRU-CNN
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Table 15. RMSE on baseline and proposed models using DS-1, DS-2 and DS-3. 

RMSE 

Models DS-1 DS-2 DS-3 

CNN 2134.45 2013.7 1966.75 

LSTM 1998.5 2010.6 2034.45 

GRU 1962.8 1987.44 2001.69 

Bi-LSTM 1865.7 1871.4 1885.6 

Bi-GRU 1851.4 1849.77 1880.5 

MD-GRU 1598.6 1687.5 1654.36 

MD-GRU-CNN 1418.5 1380.5 1372.96 

 

Figure 16. Average MAPE on proposed methods using DS-1, DS-2 and DS-3 with 4, 8 

and 12 timestamps. 

 

Figure 17. RMSE on baseline and proposed models using DS-1, DS-2 and DS-3 with 

different timestamps. 
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6. Discussion 

The results presented in Section IV demonstrate that the proposed methodology consistently 

outperforms many previous works. Results reveal that the combination of multi-directional gated 

recurrent unit (MD-GRU) and convolutional neural network enhances the effectiveness of deep 

learning models. As opposed to this work, which examines a single deep learning architecture across 

many diverse datasets from various sources referred to as DS-1, DS-2 and DS-3, many earlier efforts 

typically provide findings on a single dataset. Additionally, it has been established that all sequential 

models that have bidirectional behavior and multidirectional abilities dominate traditional sequential 

models including GRU and LSTM. When combining several datasets to forecast load and energy, the 

integration of MAPE and RMSE is crucial. 

Additionally, it has been found that many machine learning approaches are insufficiently 

equipped to handle categorical variables. In this scenario, the categorical values should always be 

transformed into statistical values by using a label-learning algorithm. The initial version of this study 

presented a multi-directional GRU (MD-GRU) that employs temporal GRUs to autonomously analyze 

every row and column in different positions. Through each level, hidden layers are figured out and 

added collectively. In the vertical position, two of the four temporal GRUs are employed. The use of 

Multidirectional GRUs, as depicted in Figure 2, results from the other Temporal GRUs' use in vertical 

directions. Because of the computational complexity and parameter optimizations required to learn 

long-term dependencies, other variants such as LSTM, Bi-LSTM, GRU, and Bi-GRU are insufficient. 

We conducted multiple experiments to compare the effectiveness of proposed models to baseline 

models on similar datasets as shown in the above tables using multiple evaluation metrics such as 

MAPE (Loss Function) and RMSE values. 

Secondly, the integration of two neural networks that utilize the multi-directional GRU-CNN 

model with global average pooling (GAP) proposed in this research improves the accuracy. The 

multidirectional GRU (MD-GRU) module is targeted at analyzing the time sequence data to learn long-

term dependencies, whereas CNN focuses on processing the spatiotemporal data. The convolution and 

global average pooling layer are employed effectively in this study to directly extract local features 

from spatiotemporal data and provide effective representation. 

A global average pooling layer replaces the conventional max-pooling layer that is applied to the 

output produced by a convolutional layer and also replaces the fully connected layer and dropout since 

it acts as a regularizer to test whether the computational complexity is reduced or not. Additionally, it 

precisely correlates between feature mapping and classifications. Rather than including all of the layers 

of the particular feature map, we emphasized the average value related to each feature map. By 

separating characteristics from changeable data that affect the power system, the proposed models 

quickly and correctly forecast energy and load. The MAPE and RMSE values for the MD-GRU-CNN 

model are the lowest. 

This work has the potential to be expanded in a variety of ways. For each dataset, hyperparameter 

tuning and optimization can be examined in conjunction with other parameters such as weather 

conditions, climate changes, and holidays. Simultaneously, to train the deep neural network more 

effectively as well as to shorten the model's training time new techniques other than MAPE and RSME 

are required. Finally, data augmentation in the time-series domain and advanced learning techniques 

can assist to address the issue of data limitation. 
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7. Conclusions and future work 

Accurate forecasting of energy and load is essential for improving energy systems and their 

functionality. These are now producing a large amount of data that is complex, diverse, and of a 

spatiotemporal nature as a result of digitalization. To learn long-term dependencies linked to sequential 

data, most classical and deep learning techniques fall short. We introduced two novel deep learning 

architectures based on consecutive layers that integrate multi-directional (vertical and horizontal) GRU 

with convolutional neural network employing GAP as hybridization. This fusion uses MD-GRU to 

extract feature vectorization from time sequence data, whereas CNN extracts high-dimensional data. 

Multiple datasets were used to train and test the model, and several measures including accuracy, 

precision, recall and F1-Score, were used to assess its performance. Additionally, the MD-GRU-CNN 

model produced the lowest MAPE and RMSE values across baseline models for CNN, LSTM, GRU, 

Bi-LSTM, and Bi-GRU. In the future, similar work can be used for other diverse applications such as 

image dephasing towards scenically improving the degraded visibility. 
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