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Abstract: Palmprint verification is one of the most significant and popular approaches for personal
authentication due to its high accuracy and efficiency. Using deep region of interest (ROI) and feature
extraction models for palmprint verification, a novel approach is proposed where convolutional
neural networks (CNNs) along with transfer learning are exploited. The extracted palmprint ROIs
are fed to the final verification system, which is composed of two modules. These modules are (i) a
pre-trained CNN architecture as a feature extractor and (ii) a machine learning classifier. In order
to evaluate our proposed model, we computed the intersection over union (IoU) metric for ROI
extraction along with accuracy, receiver operating characteristic (ROC) curves, and equal error rate
(EER) for the verification task.The experiments demonstrated that the ROI extraction module could
significantly find the appropriate palmprint ROIs, and the verification results were crucially precise.
This was verified by different databases and classification methods employed in our proposed model.
In comparison with other existing approaches, our model was competitive with the state-of-the-art
approaches that rely on the representation of hand-crafted descriptors. We achieved a IoU score of
93% and EER of 0.0125 using a support vector machine (SVM) classifier for the contact-based Hong
Kong Polytechnic University Palmprint (HKPU) database. It is notable that all codes are open-source
and can be accessed online.

Keywords: region of interest extraction; palm print verification; deep learning; convolutional neural
network; transfer learning; feature extraction

1. Introduction

Biometric-based authentication has been discussed in a wide range of state-of-the-art research in
the context of security applications. The increasing amount of industrial and governmental funding
on this topic makes it a rapidly growing field. There are several biometric characteristics (e.g., DNA,
face, and palmprint) that can be exploited in authentication systems [1]. Each one has its own
pros and cons, and therefore there is no single optimal characteristic that satisfies all application
requirements [2]. Consequently, based on the constraints and conditions of the operational mode,
one or more biometric characteristics can be applied. There are several advantages that make the
palmprint authentication more appropriate for real-world applications [3–6]: (i) low-cost image
acquisition devices; (ii) applicability on both low and high-resolution images; (iii) discriminative
features including ridges and creases; (iv) wide region of interest; (v) unique and reliable properties;
(vi) hardly affected by age; and (vii) the high user acceptance of palmprint.
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Among the existing approaches for palmprint verification, convolutional neural networks
(CNNs) outperform the state-of-the-art techniques. CNNs are a class of deep learning concerned
with architectures inspired by the structure and function of the brain, called artificial neural
networks. Well-known CNN architectures such as Alexnet [7], VGGNet [8], and ResNet [9] have
shown excellent performance in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
competitions [10].Although CNN-based approaches effectively represent the biometric and perceptual
features from the input data [11,12], there are some challenges in applying this concept to palmprint
verification. On one hand, the number of samples is a challenging issue in current palmprint databases
since the common CNN techniques need a large amount of input data for the training phase. On the
other hand, CNN performance strongly depends on the deep architecture. Due to these issues, using a
CNN architecture may result in overfitting in the case of small databases. It should be mentioned that
data augmentation techniques can hardly reduce overfitting because of small intra-class variability
among palmprint images.

Because it is possible to use a pre-trained CNN to solve new problems faster, a paradigm called
transfer learning has appeared [13]. Transfer learning is useful when one wants to train a CNN on
a dataset, but due to insufficient training data, it is not possible to train a full neural network on
that database. Transfer learning refers to the process of taking a pre-trained CNN, replacing the
fully connected layers (and potentially the last convolutional layer), and training those layers on the
pertinent dataset. By freezing the weights of convolutional layers, a CNN can extract discriminative
image features such as edges, and fully connected layers can take this information and use it to classify
the data in a way that is pertinent to the problem. By using this concept, we can significantly address
the challenges of CNN approaches, including high computational complexity in the training phase and
overfitting caused by small palmprint databases. The issue that still remains a challenge in palmprint
verification using CNN transfer learning is to track and detect the region of interest (ROI), which is
commonly a square region in the center of the palmprint.

1.1. Contributions

Motivated by the aforementioned considerations, we address the problem of palmprint
verification using a transfer learning approach. Our approach uses low-resolution images, and the
main contributions are summarized as follows:

• To the best of our knowledge, this is the first study that extracts palmprint ROIs by convolutional
neural networks. Lack of sample images and small intra-class variability are addressed using
transfer learning.

• We successively apply a pre-trained CNN network to extract discriminative features along with a
machine learning classifier to measure the similarity for one-to-one matching.

• We achieve an intersection over union (IoU) score of 93% for palmprint ROI extraction and equal
error rate (EER) of 0.0125 for the verification task using the support vector machine (SVM) classifier
for the contact-based Hong Kong Polytechnic University Palmprint (HKPU) database. This can be
attributed to the superiority of discriminative deeply learned features over hand-crafted features.

1.2. Paper Organization

The remainder of this paper is organized as follows. Section 2 presents a comprehensive literature
review. Section 3 presents the problem definition, related assumptions, and overviews the proposed
architecture and its main components. The preliminaries are discussed in Section 3.1, and an outline of
the proposed model for deep ROI and feature extraction is provided in Section 3.2. Sections 3.3–3.5
detail the proposed ROI extraction, feature representation, and matching modules, respectively.
The obtained results are detailed in Section 4. Finally, Section 5 concludes the paper with some
final remarks and outlines open research problems.
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2. Related Work

In the following, we briefly discuss the main literature on palmprint verification. We divide the
related works into two main categories: (i) ROI extraction and (ii) feature extraction and matching.

2.1. ROI Extraction

The ROI extraction phase plays an important role in palmprint verification, since the accuracy of
the whole process is highly dependent on ROI extraction, where several findings have been discussed
in previous work [14–25]. In [18], ROI extraction steps consist of (i) skin-color thresholding, (ii) hand
valley detection, and (iii) finding palm region. The authors used Chang and Robles’s skin-color model
in the thresholding phase. In the second and third phases, they proposed the competitive hand valley
detection (CHVD) algorithm to locate valley key-points. Thereafter, the output was exploited to locate
the ROI. ROI extraction based on skin-color segmentation is used in [19,20]. Michael et al. [19] extended
the CHVD algorithm to simultaneously track palmprint and knuckle-print ROIs. The most challenging
issue in these approaches is poor segmentation for images with a skin-colored background. To address
this problem, statistical segmentation models were employed. In this way, Reference [21] exploited
active shape model (ASM), while [22,23] proposed their methods based on the active appearance
model (AAM). These approaches suffer from the probability of important features loss due to small
extracted ROIs.

Zhang et al. [14] presented an ROI extraction technique including several steps. First, they applied
a low-pass filter to the original image. Thereafter, boundaries of the gaps between the fingers were
obtained using a boundary tracking algorithm. Finally, based on the coordinate system, a fixed-size
sub-image was extracted. Similarly, the methods of Connie [15], Han [16], and Badrinath [17] used the
finger gaps to extract the ROI. Although these methods are famous and widely used, they depend on
the gaps between the fingers as reference points to determine the coordinate system, which means that
all fingers must be spread and the hand should be facing toward the camera. To tackle this problem,
Ito et al. [24] proposed a five-step method that can be summarized as follows: (i) binarization of
the input image, (ii) combination of binarized image and edge, (iii) key point candidate detection
using the radial-distance function, (iv) optimal key-point selection, and (v) palm region extraction.
This approach suffers from the probability of important features loss due to small extracted ROIs.

2.2. Feature Extraction and Matching

So far, many approaches have been proposed for feature extraction and matching tasks that can be
categorized as hand-crafted and deep learning descriptors. Comprehensive studies of feature extraction
approaches are provided in [26–29], which are divided into three main categories: holistic-based,
local-based, and hybrid methods.

Among the available local feature-based approaches, some have been shown to perform effectively
on low-resolution palmprint images. To extract principal lines (PriLine), Malik et al. [30] applied a Radon
filter as an edge detector and provided two levels of authentication in order to increase the accuracy.
Moreover, there are some coding-based methods, including competitive code (CompCode) [31], double
orientation code (DOC) [32], and extended binary orientation co-occurrence vector (E-BOCV) [33],
where a bank of Gabor filters was applied to represent the orientation features of palmprint images.
The local line directional patterns (LLDP) [34], as a local texture descriptor, also extract the local line
directional features by convolving the line filters with a palmprint image such as local line directional
patterns-modified finite radon transform (LLDP-MFRAT) and LLDP-Gabor descriptors.

Although there are numerous studies in this field [35–49], sensitivity to illumination, distortion,
translation, and rotation variances still remains as a main challenge [6]. Furthermore, some local
feature-based descriptors in hand-crafted techniques highly depend on the input image resolution,
leading to dramatic increment in the sensor cost [28].
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Considering these issues, instead of designing algorithms for hand-crafted descriptors, which can
be very time-consuming, feature extraction can be automatically obtained by deep learning
descriptors [50]. This automatic feature mapping results in high-level features which can hardly
be obtained via hand-crafted approaches [51]. Another advantage of deep learning descriptors over
the hand-crafted ones is that they can be trained with a large number of inputs to become robust
against illumination, distortion, translation, and rotation variances. Automatic feature engineering
exploits the hierarchical architecture to effectively learn complex models that are highly appropriate
for unconstrained conditions (e.g., image background or palm position in the input image) [51].

Motivated by the aforementioned considerations, CNN as the most notable deep learning
descriptor has attracted researchers’ attention in recent years [5,52–56]. The work of Kumar and
Wang [52] explored the matching possibility of left and right palmprint images, and several algorithms
were investigated; the best results were obtained by CNN. Although they focus on an interesting
topic, their method error rate is especially high for forensic applications. The authors of [5] used
a principal component analysis network (PCANet) model [57] in feature extraction and an SVM
classifier for palmprint identification. In this way, each spectral band was represented by features
extracted by a deep learning technique. Since they used the ROI extraction method described in [14],
their approach lacks robustness against illumination, distortion, translation, and rotation variances in
input images. For the same reason, the approaches in References [53,54] are not robust against input
image deformation. Minaee et al. [55] exploited a scattering network (a convolutional network where
the architecture and filters are predefined wavelet transforms) for feature extraction, but no learning
was involved in the ROI extraction. In [56], the input images were resized into 28× 28 pixel images
without applying ROI extraction techniques, which led to missing important features.

3. Proposed Model

Here the proposed model is precisely discussed. Basic preliminary facts about the CNN
architecture used in this paper are discussed, followed by the outline of the proposed model.

3.1. Background

Chatfield et al. [58] described a fast CNN architecture inspired by AlexNet [7] model. They have
shown that reducing the number of kernels in convolutional layers in their architecture does not
impact the output performance in comparison to AlexNet. Figure 1 illustrates the aforementioned fast
CNN architecture. This architecture is comprised of eight layers, including five convolutional layers
(Conv. Layers) and three fully connected ones (FC Layers). The input image of this architecture is
224× 224× 3 and the structure of the five convolutional layers are as follows: (i) 64 kernels of size
11× 11× 3 in the first layer (Conv. 1 in Figure 1), (ii) 256 kernels of size 5× 5× 64 in the second layer
(Conv. 2), and (iii) 256 kernels of size 3× 3× 256 in the next three layers (Conv. 3, Conv. 4, and Conv. 5).
Both of the first two fully connected layers has 4096 neurons (FC6 and FC7). The last fully connected
layer, referred to as the softmax layer, has an output of 1000 dimensions (FC8).
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Figure 1. Chatfield’s fast convolutional neural network (CNN) architecture. Conv: convolutional layer;
FC: fully connected layer; st: stride; pad: padding; LRN: local response normalisation.
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3.2. Outline

The outline of the proposed model is illustrated in Figure 2, which is composed of three modules:
(i) ROI extraction module (REM), (ii) feature extraction module (FEM), and (iii) matching module (MM).
In the first module, palmprint ROIs are extracted using the bounding box concept. A pre-processing
procedure is applied to the input images. Thereafter, the location of the boxes on the palmprint
images are specified using a CNN transfer learning approach. The output of this module is palmprint
ROIs, which are the inputs of the feature extraction module. The FEM employs a pre-trained CNN
architecture to represent features. Finally, this feature vector feeds the MM as the input to perform the
verification task using a machine learning classifier.

Pre-processing Palmprint 

Localization 
Pre-processing 

Extract 4096D 

Features Classifier 

ROI  Extraction  Module (REM) Feature Representation Module (FRM) Matching Module (MM) 

Input 

Palmprint 
Palmprint 

Verification 

Figure 2. Our proposed model for palmprint verification. ROI: region of interest.

3.3. ROI Extraction Module

We propose an architecture for ROI extraction based on the one discussed in Section 3.1 by
replacing the last fully connected layer, FC8, with a four neuron-layer unit (depicted in Figure 3). Since
Chatfield’s architecture expects a fixed pixel size, a pre-processing procedure is required for input
images. In brief, REM consists of two steps: (i) pre-processing and (ii) palmprint localization. In the
following, each of these parts is discussed in detail.
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Figure 3. ROI extraction module. Bx and By: center point; By: width and Bh: high of the box containing
the palmprint ROI.

3.3.1. Pre-Processing

As the network needs inputs of 224× 224× 3 pixel size, the pre-processing step maps gray-scale
palmprint images to suitable ones to be fed into our CNN architecture. To this end, the inputs
are rescaled to square images by removing the extra pixels from both left and right sides of the
inputs. Then, these gray-scale images are converted to RGB color space by the weighted method
and are resized to 224× 224× 3 using the nearest neighbour method (nearest-neighbor interpolation,
http://en.wikipedia.org/wiki/Nearest-neighbor_interpolation). Figure 3 illustrates an example of the
final pre-processed image.

http://en.wikipedia.org/wiki/Nearest-neighbor_ interpolation
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3.3.2. Palmprint Localization

Palmprint localization is the process of finding the location of the ROI in palmprint images by
putting a bounding box or drawing a rectangle around the position of the palmprint in the images. Since
CNN-based approaches have shown encouraging performance in object localization [59], we propose
a CNN architecture for palmprint localization based on Chatfield ’s fast CNN (Section 3.1).

As shown in Figure 3, we keep the first seven layers of Chatfield’s architecture and replace the
last layer with a four neuron-layer unit that outputs a bounding box. The four numbers parameterize
the bounding box, determining the extracted palmprint ROI. In the architecture, the localization can be
specified using four parameters (bx, by), bw, and bh representing the center point, width, and height of
the box containing the palmprint ROI, respectively.

Based on the fact that there are not enough palmprint images in the available databases, we employ
the learning concept. To this end, the network weights of the first seven layers are pre-trained on
ImageNet using the Alexnet model and the final layer is trained using our database. In other words,
we freeze the parameters in all network layers, except the last one, and then we train and fine-tune
pertinent parameters associated with our bounding boxes (i.e., bx, by, bw, and bh). The palmprint ROIs
can be extracted by applying these parameters to our palmprint images.

Considering ω as the set of learning parameters and b′x(ω), b′y(ω), b′w(ω), b′h(ω) as the network
output values, we define C(ω), the cost function, as follows:

C(ω) =
1
m

m

∑
i=1

(∣∣∣bxi − b′xi
(ω)

∣∣∣+∣∣∣byi − b′yi
(ω)

∣∣∣+∣∣∣bwi − b′wi
(ω)

∣∣∣+∣∣∣bhi
− b′hi

(ω)
∣∣∣) (1)

where m is the number of samples and bxi , byi , bwi , bhi
are the target values for the ith sample. The cost

function specifies the difference between the target values and predicted ones. The objective is to
determine a set of ω minimizing C(ω).

3.4. Feature Extraction Module

The main goal of FEM, as shown in Figure 4, is to represent distinctive features of palmprint
ROIs. Because the output of REM is a 143× 143× 3 palmprint ROI but the network input should be
224× 224× 3 pixel size, a pre-processing step is expected. To do this, the images are resized based on
the network requirements.
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Figure 4. Feature extraction module.

In the next step, a pre-trained network is used for the feature extraction task. As mentioned,
before using transfer learning techniques in the feature extractor, the learning process starts based on
the weights learned from the ImageNet database. We should fine-tune these pre-learned parameters
on our pertinent database using our limited palmprint ROI images. In this way, we use a CNN
architecture similar to Figure 1, remove the last layer (FC8), and then initialize it with the learned
weights to implement parameters transfer. The advantage of this pre-trained architecture is that
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it has the superior capacity of the fully trained network. After that, we fine-tune this pre-trained
architecture by passing palmprint ROIs through the pre-trained layers. It should be noted that the
fine-tuning process is similar to the training process except that not all weight parameters should be
fine-tuned because of the lack of training data. The effective way to fine-tune the pre-trained weights
is to optimize only the last fully connected layer and keep the parameters of other layers frozen.
To fine-tune these parameters, some superior optimizers are used to adjust the pre-trained weights
automatically during training. The Adam optimizer [60] is a gradient-based first-order algorithm
used to optimize stochastic objective functions. The optimizer updates exponential moving averages
with the learning rate and the exponential decay rates β1 and β2.

In order to evaluate this module and analysis fine-tuning process, the cost function of fine-tuning
to minimize the difference between the target output and predicted output is calculated. To prevent
overfitting, we use a logistic regression algorithm, L, using the function below:

σ(z) =
1

1 + e−z (2)

So, the cost function can be expressed as below:

C(Ω) =
1
m

m

∑
i=1

(∣∣∣L(Ω′i, Ωi)
∣∣∣) (3)

where Ω is the set of parameters that needs to be optimized during the fine-tuning process, Ω′ is the
set of predicted parameters, and m is the number of samples. It should be mentioned that the output is
a fixed length 4096D vector for the different databases.

3.5. Matching Module

Two approaches are possible for the matching process: combining MM and FEM as a CNN block
or using a separate classifier like SVM, K-nearest neighbor (KNN), or random forest (RF). The main
differences between MM and REM are the number of existing samples for each class. In the REM,
all input images belong to one class (palmprint), and therefore all database images can be used
for learning of that class. On the other hand, there are several classes—one per individual—in
the matching phase. To explain further, consider n as the number of images in the pertinent
database, p as the number of individuals, and x as the number of existing samples per class. There
are n samples for each class in REM (xREM = n), while it is n/p for MM (xMM = n/p). As an
example, in the typical contact-based Hong Kong Polytechnic University Palmprint (HKPU) database
(http://www4.comp.polyu.edu.hk/~biometrics/), xREM = 7752 and xMM ≈ 20. Due to a lack of
training samples per individual, combining MM and FEM as a CNN block may lead to overfitting, even
by exploiting the transfer learning.

Based on the aforementioned considerations, we chose a separate classifier for the MM. In this
manner, three different classifiers were evaluated as the MM: support vector machines (SVMs),
K-nearest neighbor (KNN), and random forests (RFs). SVMs are supervised learning models with
associated learning algorithms that analyze data used for classification. Given a set of training
examples, each marked as belonging to one class, the SVM training algorithm builds a model that
assigns new examples to one class, making it a linear classifier. SVMs are the representation of the
examples as points in space, mapped so that the examples of the separate categories are divided by
a clear gap that is as wide as possible. At this point, new examples are then mapped into that same
space and predicted to belong to a class based on which side of the gap they fall. In more detail, SVM
constructs a set of hyperplanes in a high-dimensional space to classify the input features. The main
advantages of SVMs are [61]: (i) effective in high-dimensional spaces, (ii) effective in cases where the
number of samples is lower than the number of dimensions, (iii) efficient memory usage (because it

http://www4.comp.polyu.edu.hk/~biometrics/
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uses a subset of training points in the decision function called support vectors), and (iv) flexibility
(different Kernel functions can be used for the decision function).

KNN is a non-parametric technique that classifies new cases based on the majority vote of its
k-nearest neighbors, where the votes are considered according to the distances between testing
and training samples. RF is a meta estimator that fits a number of decision tree classifiers on
various sub-samples of the dataset and use averaging to improve the predictive accuracy and
control overfitting.

4. Experimental Results

In this section, we first explain the pertinent databases, the exploited framework, the optimizer,
and the parameters set in our experiment. Thereafter, since the output of the REM is a region in the
input image, it is evaluated via computing the IoU metric. The FEM is analyzed by the cost function,
explained in Section 3.4 during the fine-tuning process. The final output is evaluated via accuracy,
receiver operating characteristic (ROC) curves, and EER.

4.1. Settings

In this paper, we used low-resolution palmprint images including both contact-based and
contact-less databases. The typical HKPU version 2 was employed as contact-based palmprint images
and the 2D contact-free HKPU [62] and Indian Institute of Technology Delhi (IITD) Touchless Palmprint
Database [63] were used as the contact-less ones.

The typical contact-based HKPU contains 7752 gray-scale images corresponding to 193 subjects
or 386 palms. The subjects were 131 males and 62 females. The minimum number of samples
corresponding to each palm was 10, collected at two different time intervals. To have a consistent
number of samples assigned to each class, we utilized 10 samples and ignored the extra ones. Although
it is mentioned by the database owner that there are approximately 18 samples for each person, it should
be noted that the existing samples of the 150th individual are 11.

In 2D contact-free HKPU, each individual contributed five hand images in the first session,
followed by another five in the second session. The database currently has 3540 hand images.

The IITD palmprint image database includes hand images from 230 users, all the images are in
bitmap (*.bmp) format. Subjects in the database were in the age group 12–57 years. Five to six images
from each person’s palm exist in the database.

The simulation was performed in Python programming language, and the TensorFlow [64]
framework was exploited to implement the CNN methods. Based on the documentation, it is
recommended to leave the parameters of networks at their default values, except sometimes for
the learning rates. In our experiment, the Adam optimizer was exploited with the good default settings
by the tested machine learning problems, for β1 = 0.9 and β2 = 0.999 in the CNN architecture of REM
and FEM. Besides, according to the documentation, the recommended learning rates are 1, 0.01, 0.001,
and 0.0001. We used 70% of the palmprint images as the training set and the remaining as the test set
for palmprint ROI extraction.

4.2. Evaluation of ROI Extraction Module

As mentioned in Section 3.3.1, a pre-processing step is needed before extracting the bounding
boxes. Considering the contact-based HKPU database, the pre-processing step maps gray-scale
palmprint images of 384× 284 to suitable ones to be fed into our CNN architecture. To this end,
the inputs were rescaled to 284× 284 square images and thereafter were represented in RGB. Finally,
the images were resized to 224× 224× 3 as the input of the network for the ROI extraction task.

In REM, we set the learning rate in two modes: a constant value of Lr = 10−4 and an adaptive
one in which it starts with a predefined value (10−3) and decays by a factor of 0.96 during steps.
Experimental results showed the same performance for both values, therefore, we report the results of
the constant learning rate.
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4.2.1. Training Phase

In order to evaluate this module, we used the cost function described in Section 2.1. In our
experiment, the training procedure was considered to be completed after 100 epochs. Figure 5
illustrates the predicted boxes during different epochs in the training procedure.

Epoch = 2 Epoch = 6 Epoch = 30 Epoch =  80 

Figure 5. Examples of predicted ROIs for different epochs.

As can be seen, the bounding box fit the intended ROI during epochs. The learning parameters of
each epoch were supposed as the inputs of the cost function depicted in Figure 6.

Figure 6. Palmprint localization cost versus epochs.

Based on this plot, the cost of palmprint localization dramatically decreased during the early
steps while it started to become steady after approximately 100 epochs.

4.2.2. Testing Phase

In this phase, we applied the remaining images to our network as the test set. The results of the
testing phase, illustrated in Figure 7, show that REM performed very well on the test set.

Figure 7. Examples of extracted palmprint ROIs in the testing phase.
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To investigate the performance of the proposed REM, we used the IoU metric [65], which measures
the overlap between the predicted ROI and ground truth ROI or the target region. Considering
ground-truth ROIs as Rg and the corresponding predicted ROIs by our model as Rp, the IoU can be
calculated by the Formula (4):

IoU =
area(Rg ∩ Rp)
area(Rg ∪ Rp)

(4)

Figure 8 presents a visual sample of the ground-truth ROI versus the predicted ones by our
model. It should be noted that ground truth ROIs are the ones firstly produced by bounding boxes in
our own works. The final IoU score is obtained by the mean taken over all classes, and was 93% in
our experiment.

Predicted ROI 

Ground-truth ROI 
 

 

Figure 8. A visual sample of the intersection over union (IoU) metric in our proposed model.

In order to validate the effectiveness of our proposed ROI extraction model, we compared it to
the Han model [16], which performs well even under unconstrained scenes.

Figure 9 shows the learned features for the palmprint localization task in our model and the
Han method. The Han method selects Haar features in order to represent the shape features of the
hand, while our model extracts discriminative features automatically that are easier to learn than the
complicated Haar features. In our ROI extraction module, the first convolutional layer extracts basic
features like edges and lines, and other convolutional layers represent high-level features automatically.

Learned Haar features by Han method  Learned deep features by our model 

Figure 9. Comparison of learned features in our ROI extraction model with the Han method [16].
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As depicted in Figure 10, our proposed model could effectively extract the palmprint ROI using
deep features in comparison to the Han method, especially in segmenting the background from the
palmprint and keeping the important regions of the palm.

Han Method Our Model Ground Truth 

Figure 10. Comparison of extracted palmprint regions with the ground truth ROI.

4.3. Evaluation of Feature Extraction and Matching Modules

To extract palmprint ROI features, we passed palmprint ROI images, obtained by REM, through
the network and optimized the final vector of n× 4096 feature matrix, where n is the overall number
of images in each database. In other words, the values of each row in this vector correspond to the
features of each individual’s image. For example, considering n = 3480 for the contact-based HKPU
database, the first 18 images of overall 3480 images are related to the first person, the second batch
of 18 images is for the second person, and so on. A learning rate of Lr = 10−5 was fixed for the
FEM network. The cost function of the fine-tuning process in FEM is depicted for three databases in
Figure 11.

Figure 11. Fine-tuning cost versus epoch in Feature Extraction Module for contact-based Hong Kong
Polytechnic University (HKPU), 2D contact-free HKPU, and Indian Institute of Technology Delhi (IITD)
Touchless Palmprint Databases.



Appl. Sci. 2018, 8, 1210 12 of 20

As we show, the network parameters could be well optimized during the fine-tuning process.
Moreover, the cost function had the lowest value for contact-based HKPU because of more
discriminative features in the database images. To have a better perspective on the issue, we visualize
the feature vector of the FC7 layer in FEM as an image shown in Figure 12. In other words, we reshaped
the 4096D matrix into a 64× 64 image. These extracted deep features were used as the input of the
SVM classifier in the verification task.

Figure 12. Visualization of the extracted deep features for two individuals.

To evaluate the matching module, we compared the performance of different methods via
verification accuracy, ROC curves, and EER using four main concepts: true positives (TPs) (data items
correctly predicted as positive), false positives (FPs) (data items incorrectly predicted as positive), true
negatives (TNs) (data items correctly predicted as negative), and false negatives (FNs) (data items
incorrectly predicted as negative.). Furthermore, the verification performance of each classifier was
calculated by matching palmprint ROIs from two sessions. The first classifier was a linear SVM with
parameters C = 1 and max iter = 1000. We also applied KNN, which classifies feature vectors by the
number of neighbors 3 via the Minkowski metric. The last was the RF classifier, for which the number
of estimators was 200.

4.3.1. Accuracy

As mentioned, we calculated the accuracy of three classifiers for the assessment of the verification
task. The accuracy can be defined by the following formula:

Accuracy =
TP+TN

TP+FP+TN+FN
(5)

Although the main focus was on evaluating our proposed model, we also validated the verification
performance for different training sample sizes.

The impact of different classification methods is illustrated in Figures 13–15 related to the matching
stage. As can be seen in Figure 13, linear SVM outperformed other classification methods and achieved
a verification accuracy of 1 for the contact-based HKPU database. Additionally, SVM showed the best
performance in terms of verification accuracy for 2D contact-free HKPU and IITD touchless databases.

Tables 1–3 show the accuracy results obtained using SVM, KNN, and RF classifiers with the input
of extracted deep features on three databases. The overall trend shows that the larger the training
sample size, the higher the accuracy. It can be realized that the classifiers in our proposed model
required low training samples to achieve good performance.
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Figure 13. Accuracy curves of support vector machine (SVM), random forest (RF), and K-nearest
neighbour (KNN) classifiers in the contact-based Hong Kong Polytechnic University Palmprint
(HKPU) database.

Figure 14. Accuracy curves of SVM, RF, and KNN classifiers in the 2D contact-free HKPU database.

Figure 15. Accuracy curves of SVM, RF, and KNN classifiers in the IITD touchless database.
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Table 1. Verification accuracy obtained using different classifiers on the contact-based HKPU database.
MM: Matching Module.

Classifier in MM
Number of Training Samples

1 2 3 4 5 6 7

SVM 0.927 0.968 0.989 0.994 0.994 0.989 1
KNN 0.310 0.844 0.917 0.963 0.968 0.963 0.974

RF 0.718 0.836 0.924 0.955 0.959 0.931 0.963

Table 2. Verification accuracy obtained using different classifiers on the 2D contact-free HKPU database.

Classifier in MM
Number of Training Samples

1 2 3 4 5 6

SVM 0.966 0.971 0.983 0.983 0.885 0.983

KNN 0.365 0.909 0.943 0.949 0.828 0.879

RF 0.915 0.929 0.944 0.956 0.810 0.909

Table 3. Verification accuracy obtained using different classifiers on the IITD touchless database.

Classifier in MM
Number of Training Samples

1 2 3 4 5

SVM 0.834 0.878 0.969 0.947 0.969

KNN 0.27 0.63 0.760 0.773 0.84

RF 0.640 0.660 0.783 0.766 0.841

4.3.2. Receiver Operating Characteristic

The receiver operating characteristic (ROC) curve is a graphical plot of trade-off which illustrates
genuine acceptance rate (GAR) as the y coordinate versus false acceptance rate (FAR) as the x coordinate.
The equations for GAR and FAR are as follows:

GAR =
TP

TP + FN
, (6)

FAR =
FP

TP + FN
(7)

A robust way to compare the performance of different classifiers is to measure the area under
the ROC curves (AUCs). Figures 16–18 show ROC curves and AUC metric values for three databases.
As can be seen, SVM had the highest AUC value among the classifiers.
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SVM AUC = 0.999 

KNN AUC = 0.984 

RF AUC = 0.981 

Figure 16. Receiver operating characteristic (ROC) curves of our proposed model for the contact-based
HKPU database. AUC: area under the ROC curve.

SVM AUC = 0.987 

KNN AUC = 0.926 

RF AUC = 0.969 

Figure 17. ROC curves of our proposed model for the 2D contact-free HKPU database.

SVM AUC = 0.997 

KNN AUC = 0.939 

RF AUC = 0.966 

Figure 18. ROC curves of our proposed model for the IITD touchless database.
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4.3.3. Equal Error Rate

The equal error rate (EER) corresponds to the error rate for which (1- GAR) and FAR are equal.
To verify the effectiveness of our model, we compared it with the state-of-the-art hand-crafted
methods in terms of EER as the performance indicator. These methods included the principal line
(PriLine) [30], competitive code (CompCode) [31], double orientation code (DOC) [32], extended binary
orientation co-occurrence vector (E-BOCV) [33], local line directional patterns-modified finite radon
transform (LLDP-MFRAT) [34], and local line directional patterns-Gabor (LLDP-Gabor) [34] described
in Section 2.2.

Table 4 presents EER results of the aforementioned methods and our proposed model in the
verification task for the contact-based HKPU database. To avoid presenting a large table, we report only
more recent state-of-the-art methods demonstrated to outperform old ones in our results. It should be
pointed out that the verification performance of each algorithm was obtained by matching palmprints
from different sessions. In fact, the images related to the first session were used as the training set and
the images related to the second session were considered as the test set.

Table 4. Comparison with state-of-the-art methods in terms of EER value for the contact-based HKPU
database. CompCode: competitive code; DOC: double orientation code; E-BOCV: extended binary
orientation co-occurrence vector; PriLine: principal line.

Method PriLine CompCode DOC E-BOCV
Classifier in Our Proposed Model

SVM KNN RF

EER (%) 0.133 0.026 0.019 0.053 0.0125 0.0156 0.0625

We also performed verification experiments for the IITD touchless database. The EERs obtained
using different methods are summarized in Table 5. In the experimental results, the training set
included the first four images and the remaining images were utilized as the test set.

Table 5. Comparison with state-of-the-art methods in terms of EER value for the IITD touchless
database. LLPD-MRFT: local line directional patterns-modified finite radon transform.

Method CompCode DOC LLPD-MRFT LLPD-Gabor
Classifier in Our Proposed Model

SVM KNN RF

EER (%) 0.101 0.062 0.031 0.028 0.0276 0.0328 0.0889

According to Tables 4 and 5, the results corroborate that using the linear SVM classifier in our
matching module with the input of extracted deep features achieved the best performance in terms of
the EER value among the state-of-the-art methods, which can be attributed to discriminative deeply
learned features. In the other words, the CNN features extracted by our model were highly dominating
over the only line features in PriLine and the orientation-based features in coding methods, so it
can address the shortcomings of hand-crafted features. Moreover, as local feature-based methods,
hand-crafted approaches generally demand more high-resolution palmprint images and have slower
matching speed than our proposed model. Although LLPD-based methods have shown good
performance as palmprint texture descriptors, they suffer from computation complexity and slower
matching speed.

Furthermore, we can see from the comparative results that the overall EER rate for contact-based
HKPU database was higher than that of the IITD touchless database because illumination, distortion,
translation, and rotation variances in contact-less palmprint images led to less-significant features.
Since our proposed model was tested on two palmprint image databases, we are fairly confident about
the generalizability of our model.
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5. Conclusions and Future Work

In this paper, we focused on palmprint verification using deep learning approaches, where we
defined three main modules: (i) an ROI extraction module called REM, (ii) a feature extraction module
called FEM, and (iii) a matching module called MM which is a machine learning classifier. To the best
of our knowledge, this is the first study of extracting palmprint ROIs using CNN transfer learning.
For the FEM, we utilized a pre-trained network to obtain a discriminative feature vector. Moreover,
to find the best-adopted classification method with our proposed REM and FEM, we investigated
different classification methods. Experimental results showed that the linear SVM classifier had
the best performance. Additionally, the superiority of our proposed model over the state-of-the-art
hand-crafted approaches demonstrates that deeply learned features are more discriminative than
hand-crafted features.

In future work, we will collect a mobile palmprint database and apply our proposed model,
in addition to evaluating new architectures like generative adversarial networks and capsule networks
for online and reliable personal authentication.
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