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Abstract— This paper investigates the physical layer 
security (PLS) issue in reconfigurable intelligent surface (RIS) 
aided millimeter-wave rotary-wing unmanned aerial vehicle 
(UAV) communications under the presence of multiple 
eavesdroppers and imperfect channel state information (CSI). 
The goal is to maximize the worst-case secrecy energy 
efficiency (SEE) of UAV via a joint optimization of flight 
trajectory, UAV active beamforming and RIS passive 
beamforming. By interacting with the dynamically changing 
UAV environment, real-time decision making per time slot is 
possible via deep reinforcement learning (DRL). To decouple 
the continuous optimization variables, we introduce a twin-
twin-delayed deep deterministic policy gradient (TTD3) to 
maximize the expected cumulative reward, which is linked to 
SEE enhancement. Simulation results confirm that the 
proposed method achieves greater secrecy energy savings 
than the traditional twin-deep deterministic policy gradient 
DRL (TDDRL)-based method.  

Keywords— Secrecy energy efficiency, deep reinforcement 
learning, physical layer security, reconfigurable intelligent 
surface, unmanned aerial vehicle 

I. INTRODUCTION 
Deploying unmanned aerial vehicles (UAVs) either as 

flying base station or relay node are expected to be an 
integral part of beyond 5G/6G mobile networks [1]. 
Together with high altitude platform systems (HAPS) and 
satellites, UAVs can form non-terrestrial networks (NTNs), 
which has been proposed in 3rd Generation Partnership 
Project (3GPP) TR 38.821 [2]. Compared to the 
conventional 2D ground space in terrestrial networks, the 
3D positioning of UAV offers massive connectivity and 
high capacity [3]. Specifically, the high altitude of UAVs 
opens the possibility of forming more favorable Line-of-
Sight (LoS) channels. However, the open characteristic of 
the wireless links renders it vulnerable to different security 
threats, such as eavesdropping.  

Physical layer security (PLS) can secure wireless 
communications by improving the legitimate channel 
capacity while degrading the data decoding performance of 
the eavesdroppers. To this end, several techniques such as 

multiple-input multiple-output [4] and cooperative jamming 
[5] have been proposed. However, none of these works have 
considered the airborne communication platforms. Studies 
on UAV-based PLS have been presented in [6-7], aiming to 
maximize the secrecy rate via proper UAV trajectory 
design. Although these works have extracted substantial 
gains in secrecy rate, they are unable to alter the wireless 
propagation, which demands a new paradigm to 
synthetically customize the propagation environment of 
signal waveform. One solution is to adopt Reconfigurable 
Intelligent Surface (RIS), which is a programming surface 
structure that enables spectral- and energy-efficient wireless 
communications [8]. The combination of RIS and UAV has 
led to significant gains in coverage [9] and throughput [10]. 
However, their objective function is not linked with the 
secrecy rate.  

Energy efficiency is another critical performance metric 
in UAV networks due to constraints of battery life. In [11], 
the authors have proposed an energy minimization scheme 
for UAV-aided IoT system via a cooperative control of 
UAV trajectory, communication scheduling, and transmit 
power allocation. However, the presence of eavesdroppers 
has not been considered. Recognizing the importance of 
both security and energy issues, the scheme in [12] has 
maximized the worst-case secrecy energy efficiency (SEE) 
by jointly optimizing transmission power allocation and 
trajectory construction. However, the optimal solution is 
attained only if the perfect state information is known. Such 
method is referred to as traditional model-based algorithm. 
In practice, finding the proper distributions to model the 
entire UAV-aided network is non-trivial owing to the 
movement of the UAV and the end users, as well as the 
communication and processing latency.   

In the absence of complete state information, Deep 
Reinforcement Learning (DRL), which merges Deep Neural 
Networks (DNN) with Reinforcement Learning (RL), has 
emerged as a right candidate to tackle the real-time dynamic 
optimization problem [13]. Specifically, DRL can 
automatically extract features from various types of raw 
data with complex correlations via continuous interaction 
with the mobile environments. DRL can be classified into 
two main categories, first, discrete-level control such as * The first two authors contributed equally to this work. 



Deep Q Network (DQN) [14] and second, continuous-level 
control such as Deep Deterministic Policy Gradient 
(DDPG) [15] and Twin-Delayed Deep Deterministic Policy 
Gradient (TD3) [16]. In the context of UAV 
communications, the latter has been in the spotlight since 
UAV hovering control and transmit power allocation exist 
in continuous domain. In [17], the authors have proposed a 
twin-DDPG DRL (TDDRL) framework which maximizes 
the sum secrecy rate (SSR) of all authorized users by 
controlling the flight trajectory, RIS passive beamforming 
and UAV active beamforming.   

Inspired by the work in [17], this paper considers a RIS 
aided millimeter-wave rotary-wing UAV communications 
under the presence of multiple eavesdroppers and imperfect 
channel state information (CSI). Instead of solving SSR 
maximization problem, our goal is to maximize the worst-
case SEE via joint optimization of UAV flight trajectory, 
active and passive beamforming. Given the overestimation 
bias of DDPG, we introduce twin-TD3 (TTD3) to maximize 
the expected cumulative reward, which is linked to SEE 
enhancement. Simulation results validate that the proposed 
method achieves greater energy savings than the traditional 
TDDRL-based method.  

The remainder of this paper is organized as follows.  
Section II presents the system model of the RIS-aided 
mmWave UAV communication system and formulates the 
SEE optimization problem. In Section III, the TTD3 based 
algorithm is developed and explained in detail. In Section 
IV, the performance of the proposed solution is compared 
with respect to TDDRL. Concluding remarks are provided 
in Section V. 

II. SYSTEM MODEL AND PROBLEM STATEMENT 

A. System Model 
Fig. 1 depicts a DRL-empowered RIS-aided mmWave 

UAV communication framework. By creating virtual LOS, 
the RIS can improve the link security from UAV to 𝐾 users, 
accompanied by 𝑃 wiretappers. All users and wiretappers 
are assumed to have single antenna. The RIS possesses an 
uniform planar array (UPA) with 𝑀 = 𝑚!  passive 
reflective elements, while the UAV has an 𝐴 -element 
uniform linear array (ULA). We divide the entire flight 
duration 𝑇  into 𝑁  time instants evenly. Let 𝛿"  represents 
each individual time slot, such that 𝑡 = 𝑛𝛿" for 𝑛 ∈ 𝑁. The 
RIS is statically located at coordinate 𝒘# = (𝑥# , 𝑦# , 𝑧#)$. 
On the other hand, the coordinates of users and 
eavesdropper at time instant 𝑛  are represented by 𝒘% =
(𝑥%[𝑛], 𝑦%[𝑛], 𝑧%[𝑛])$, ∀𝑖 ∈ 𝐾 ∪ 𝑃. Finally, let 𝒒[𝑛] be the 
coordinates of UAV at time slot 𝑛. The UAV speed can then 
be expressed as: 

																	‖v[𝑛]‖ = <‖𝒒[𝑛] − 𝒒[𝑛 − 1]‖!	 𝛿"? 															(1) 

Let 𝒒[0] be the initial coordinates of the UAV, 𝐵 be the 
UAV’s moving boundary, and 𝐷&'(  represents the 
maximum UAV maneuvering distance at time slot 𝑛. We 
define the UAV mobility constraints as follows: 

 

𝒒[0] ≡ (0,0, 𝐻)) (2a) 
|𝑥[𝑛]|, |𝑦[𝑛]| ≤ 𝐵 (2b) 

<‖𝒒[𝑛] − 𝒒[𝑛 − 1]‖!	 	≤ 𝐷&'(  (2c) 

With flying speed ‖v[𝑛]‖, we can derive the UAV’s 
propulsion energy consumption for a rotary-wing UAV as 
follows [11]: 

𝐸*[𝑛] ≈ 𝛿" J𝑃+ +
3𝑃+‖v[𝑛]‖!

𝑈"%*!
+
1
2𝑑+𝜌𝑠𝐴,

‖v[𝑛]‖-R 

																							+	𝛿"𝑃% ST1 +
‖v[𝑛]‖.

4𝑣+.
−
‖v[𝑛]‖!

2𝑣+!
W

/
!

									(3) 

Constants 𝑃%  and 𝑃+  represent the induced power and 
blade profile power in hovering status, respectively. 𝑈"%*!  is 
the rotor blade’s tip speed, and 𝑣+ denotes the average rotor 
induced velocity in hover. Moreover, 𝑑+ is the fuselage drag 
ratio, and 𝑠 is the rotor solidity. Lastly, 𝜌 is the air density 
and 𝐴, is the rotor disc area. 

Our channel model follows the idea of 3D SV channel 
model presented in [17-18]. Let the channel gain from UAV 
to RIS, from UAV to 𝑝-th wiretapper, from UAV to 𝑘-th 
users, from RIS to 𝑘 -th users and from RIS to 𝑝 -th 
wiretappers are represented as 𝒉)	#	 ∈ ℂ1×3, 𝑯),5 ∈ ℂ3×/, 
𝒉),* ∈ ℂ3×/, 𝒉#,5 ∈ ℂ1×/, and 𝒉#,* ∈ ℂ1×/, respectively. 
The channel from UAV to users or the eavesdroppers is 
denoted by 𝜢6,% = diag^𝒉#,%7 _𝒉)# , ∀𝑖 ∈ 𝐾 ∪ 𝑃 . Similarly, 
the RIS passive beamforming matrix is defined as 𝜽 =
diag^𝛽/𝑒89! , 𝛽!𝑒89" , …𝛽3𝑒891_ , where 𝛽& ∈ [0,1] , 𝑚 =
{1,2, … ,𝑀} , 𝜃& ∈ [0,2𝜋)  shows the amplitude reflection 
and phase shift of the 𝑚 -th RIS reflection elements, 
respectively. To maximize the power of reflecting signal 
and simplify the problem, we set the value of 𝛽& = 1. The 
channel coefficients from UAV to all recipients can be 
combined as shown in Equation (4). 

Fig. 1. DRL-empowered RIS-aided mmWave UAV 
communications. 

 



𝜢6 = h𝒉),%7 +𝜓7𝑯6,%|∀%∈ 𝜅 ∪ 𝜌k (4) 

where 𝝍 is the RIS passive beamforming matrix that can 
be extracted as 𝝍 = vec(𝜽). Finally, we can express the 
signal received at the 𝑖-th user or wiretapper from the UAV 
as: 

𝑦% = ^𝒉),%7 +𝜓7𝑯6,%_𝑮𝒔 + 𝑛%, ∀%∈ 𝐾 ∪ 𝑃 (5) 

where 𝑮 ∈ ℂ3×:  and 𝒔 ∈ ℂ:×/  with 𝐸[|𝑠;|!] = 1 
indicates the beamforming matrix and transmitted symbol 
at the UAV, respectively. 𝑛% denotes the background noise 
and define as 𝑛%~𝒩(0, 𝜎;), ∀%∈ 𝐾 ∪ 𝑃. Denote 𝑔5  as the 
k-th column of 𝑮. Thus, the total attainable data rate at the 
𝑘-th user can be formulated as: 

𝑅!"[𝑛] = log# )1+
+,𝒉$.&' +𝝍'𝑯(,!,𝑔!1

2

∑ +,𝒉$,!' +𝝍'𝑯(,!,𝑔!!1
2 + 𝑛!#!!∈𝜅\!

3 (6) 

Similarly, the feasible 𝑝-eavesdropper-to-	𝑘-user rate can 
be represented as: 

𝑅-,!. [𝑛] = log# )1+
+,𝒉$,-' +𝝍'𝑯(,-,𝑔!1

#

∑ +,𝒉$,-' +𝝍'𝑯(,-,𝑔!!1
# + 𝑛-#!!∈𝜅\!

3 (7) 

According to [11], we can write the particular UAV-to-𝑘-
user secrecy rate as follows: 

𝑅5sec[𝑛] = t𝑅5=[𝑛] − max∀#
𝑅𝑝,𝑘𝑒 [𝑛]x

?
 (8) 

where [𝑗]? = max	(0, 𝑗). We suggest interested readers to 
refer to [17] for more details of the modelling. Here, the 
SEE of the system model as: 

												SEE[𝑛] =
∑ 𝑅5@AB[𝑛]:
5C/

𝐸*[𝑛]
=

SSR[𝑛]
𝐸*[𝑛]

																							(9) 

B. Problem Statement 
This paper aims to maximize the long-term SEE by 

tuning the UAV’s trajectory 𝑸 , active 𝑮  and passive 
beamforming 𝜽. The problem can be formulated as: 

 max
𝑸,𝑮,𝜽

	 ∑ SEE[𝑛]G
;C/   (10a) 

𝑠. 𝑡.  (10b) 
 Prh𝑅5@AB[𝑛] ≥ 𝑅5

@AB,"Hk ≥ 1 − 𝜌5 , ∀𝑘, ∀𝑛  (10c) 
 𝜃& ∈ [0,2𝜋),𝑚 = {1,2, … ,𝑀}  (10d) 
 Tr(𝑮𝑮7) ≤ 𝑃&'(  (10e) 

 

Constraint (10c) is to make sure that each user 𝑘 can 
perfectly extract its message at a data rate of 𝑅5

@AB,"H, with a 
probability of at least 1 − 𝜌5 . Owing to the non-convex 
characteristics of (10b), (10c), (10d) and the time-varying 
CSI, Problem (10) is intractable and time-correlated. Thus, 
we employ DRL to learn the best policy by interacting with 
the dynamically changing UAV environment. 

III. PROPOSED SOLUTION 
UAV path 𝑸 is tightly connected with a great amount of 

CSI. Hence, optimizing all the variables simultaneously is 
challenging. Inspired by [17], we construct two DRL agents 
to decouple these variables, instead of exploiting only one 
DRL agent as in most DRL-based solutions. We have used 
TD3 [16] as DRL agents. TD3 is an improvement over the 
DDPG algorithm [15], in which both are used for 
continuous control problems. TD3 uses two critics instead 
of one, to reduce the over-estimation of action values. It also 
introduces a “delayed” update for the actor network to 
improve the stability of the learning process. TD3 has been 
shown to be more efficient and robust to hyperparameter 
choices than DDPG and has been used in several recent 
works on DRL. 

At this end, we propose a Twin TD3 (TTD3) algorithm 
to solve problem (10). The first TD3 agent takes CSI as its 
input, to generate the optimal UAV active beamforming 
matrix 𝑮, and the RIS passive beamforming matrix 𝜽. On 
the other hand, the second TD3 agent is employed to obtain 
the best UAV trajectory 𝑸 based on the local information 
𝑾 . The design of the TTD3 algorithm is described as 
follows. 

A. Active and Passive Beamforming 
The first TD3 agent takes the CSI as its input, to generate 

the optimal 𝑮 and 𝜽. The problem can be formulated as a 
Markov Decision Process (MDP) with the following state, 
action and reward. 

1) State 𝑠;/ : The state for the first TD3 agent is the 
predicted comprehensive CSI from the UAV to all users 
and eavesdropper at each time slot 𝑛.  

2) Action 𝑎;/ : The TD3 agent will generate 𝑮 and 𝜽 as 
the action. To address the complex-valued input,  𝑮 =
𝑅𝑒{𝑮} + 𝐼𝑚{𝑮} and	𝜽 = 𝑅𝑒{𝜽} + 𝐼𝑚{𝜽}  are divided into 
real and imaginary part. 

3) Reward 𝑟;/: Our goal is to optimize SEE as defined 
in (9). However, in practice, we find that directly 
employing (9) as reward function may lead to poor 
convergence and performance. This is because the DRL 
agent may focus on improving SEE by simply making the 
denominator ( 𝐸*[𝑛] ) as small as possible, without 
improving the numerator (𝑅5@AB[𝑛]). This is especially true 
during the earlier phase of training, when 𝑅5@AB[𝑛] → 0 or 
𝑅5@AB[𝑛] ≤ 0 . Furthermore, the impact of 𝐸*[𝑛]  on the 
convergence depends on the expected value 𝔼^𝐸*[𝑛]_ , 
which varies based on the system model setting. Without 
loss of generality, we reformulate the reward function as 
shown below: 

𝑟;/ = tanh��𝑅5@AB[𝑛]
:

5C/

− 𝑐/𝑝& − 𝑐!𝑝, − 𝑐-𝑝I − 𝑐.𝑝A� (11) 

Similar to [17], the 𝑝& , 𝑝,  and 𝑝I  in (11) are the 
penalties when the constraints (10b), (10c), and (10e) are not 
fulfilled, respectively. On the other hand,  𝑝A is the penalty 
for high energy consumption. We formulate 𝑝A as shown in 
(12). 



𝑝A =

⎩
⎪
⎨

⎪
⎧ 0, �𝑅5@AB[𝑛]

:

5C/

< 0

0.1 ��𝑅5@AB[𝑛]
:

5C/

�𝐸*�[𝑛], �𝑅5@AB[𝑛]
:

5C/

≥ 0

 (12) 

For generalization purposes, we normalize 𝐸*[𝑛]  to 
range 0 ≤ 𝐸*[𝑛] ≤ 1 . Let normalized 𝐸*[𝑛]  denoted by 
𝐸*�[𝑛] = J#[;]MJ#,%&'

J#,%()MJ#,%&'
. Energy consumption is the lowest 

when 𝐸*�[𝑛] = 0, and highest when 𝐸*�[𝑛] = 1. Instead of 
directly setting 𝑝A = 𝐸*�[𝑛] , we set 𝑝A  to grow 
proportionally to 0.1(∑ 𝑅5@AB[𝑛]:

5C/ ). This can prevent the 
agent to blindly reduce 𝑝A  without optimizing 
∑ 𝑅5@AB[𝑛]:
5C/ . Penalty 𝑝A is small when ∑ 𝑅5@AB[𝑛]:

5C/ → 0, 
so that the agent can first focus on improving ∑ 𝑅5@AB[𝑛]:

5C/ . 
When ∑ 𝑅5@AB[𝑛]:

5C/ ≤ 0, we set 𝑝A = 0. By doing so, the 
TD3 agent can learn sufficiently to optimize 𝑮 and 𝜽 (along 
with 𝑸 by the second TD3 agent), before we start penalizing 
the agent(s) for energy consumption.  

B. UAV Trajectory 
Another TD3 agent is employed to compute the optimal 

UAV trajectory 𝑸  by taking the local information 𝑾  as 
input. Similarly, the problem can be designed as an MDP 
using the following state, action and reward. 

1) State 𝑠;! : Since we have decoupled the UAV 
trajectory from CSI, the second TD3 agent only takes the 
local information 𝑾 as input. 

2) Action 𝑎;! : At each time slot 𝑛 , the TD3 agent 
generates the flying direction 𝒅[𝑛]  in the 3D Cartesian 
dimension. Based on 𝒅[𝑛] , we can acquire the next 
coordinate of the UAV as 𝒒[𝑛] = 𝒒[𝑛 − 1] + 𝒅[𝑛]. After 
𝑁  time slots, the complete UAV trajectory can be 
expressed as 𝑸 = {𝒒[0], 𝒒[1], … , 𝒒[𝑛]}. 

3) Reward 𝑟;! : This agent shares the same reward 
function as defined in (5) since both agents have the same 
optimization objective, which is to maximimze SEE. 

IV. SIMULATION RESULTS AND DISCUSSION 
As mentioned earlier, a TTD3 algorithm comprising of 

two TD3 agents have been employed for the optimization 
problem (4). Both TD3 agents comprise of one actor and 
two critic networks, in which all networks are based on 
multi-layer perceptron (MLP). The hyperparameter for the 
TTD3 algorithm is shown in Table I. 

We set the starting positions of UAV and the two users 
as (0 m, 25 m, 50 m), (4 m, 47 m, 0 m) and (25 m, 25 m, 0 
m), respectively. The RIS and eavesdropper are fixed at (0 
m, 50 m, 12.5 m) and (47 m, -4 m, 0 m), respectively. 
Moreover, we model the two users to move uniformly in one 
direction as depicted in Fig. 2. The rest of the parameters are 
configured as 𝐷&'( = 0.25 m, 𝛿" = 0.1 s, 𝑇N = 1 s, 𝑓B =
28 GHz, 𝐶+ = 61 dB, 𝑃&'( = 30 dBm, 𝜎; = −114 dBm, 
𝜎@ = 3	dB, 𝐿 = 3 , 𝛼=, = 2.2 , 𝛼= = 3.5 , 𝛼, = 2.8 ,	𝑀 =
16 ,	 𝐴 = 4 ,	 𝐾 = 2 ,	 𝑃 = 1 ,	ΦO

3P3 ∈ {30,45,60} ,	ΦO
3PQ ∈

{5,10,15,25} ,	 ΛO3PQ ∈ {1,3,5} ,	 ΛO3P3 ∈ {5,10,15}	
(degrees),	 as	 defined	 in	 [17]. For energy-related 
 

TABLE I.  HYPERPARAMETERS FOR TTD3 

Hyperparameters Values 

TD3 Agent 1 size (actor and critics) 27 x 800 x 600 x 515 x 256 x 20 

TD3 Agent 2 size (actor and critics) 3 x 400 x 300 x 256 x 128 x 2 

Actor learning rate 0.0001 

Critic learning rate 0.001 

Number of episodes, 𝑁!" 300 

Time step, 𝑁 100 

Batch size, 𝑁# 64 

Replay memory size 30000 

Update actor interval 2 

 
parameters of the UAV, we set 𝑃+ = 580.65  W, 𝑃% =
790.6715  W, 𝑈"%* = 200  m/s, 𝑑+ = 0.3 , 𝜌 = 1.225 
kg/m3, 𝑠 = 0.05, 𝐴, = 0.79 m2 as in [11], [19].  

We compare our results with three benchmarks. 
Benchmark 1: We have implemented TDDRL algorithms 
from [17] in the system model to optimize 𝑸 , 𝑮  and 𝜽 
without energy constraint (7). Benchmark 2: We replace 
the TTDRL algorithms in Benchmark 1 with our proposed 
TTD3. Benchmark 3: Similar to Benchmark 1, we 
implement TDDRL algorithm but with energy penalty (7). 
Lastly, we compare our proposed method, which employs 
TTD3 with energy penalty. Each algorithm is evaluated in 
terms of average SSR and SEE in one complete 𝑁  time 
steps. We run the simulation from [17] for 5 testing 
episodes, and averaged out the performance of each 
benchmark as tabulated in Table II.  

A. Trajectory analysis 
For each algorithm, we plot one of the trajectories from 

the five testing episodes, in Fig. 2. In general, all trajectories 
move away from the eavesdropper. Interestingly, UAVs in 
benchmark 2 and the proposed method (both using the 
proposed TTD3) move more efficiently toward the midpoint 
of the two user’s last location. This allows the UAV to serve 
both users as fairly as possible, proving the superiority of 
TTD3 in maximizing the SSR (as shown in Table II). On the 
other hand, the UAVs in the other two benchmarks did not 
end up somewhere near the midpoint. However, they still 
achieve a considerably high average SSR, showing that 
Agent 1 successfully learns the optimal active and passive 
beamforming matrix. 

Furthermore, it is noticed that the UAV moves faster at 
each time slot 𝑛, when energy penalty 𝑝A is employed (i.e. 
Benchmark 2 and proposed method). Both algorithms have 

TABLE II.  BENCHMARKING OF SSR AND SEE 

Algorithms Average SSR 
(bits/s/Hz) 

Total Energy 
Consumption 

(kJ) 

Average SEE 
(bits/s/Hz/kJ) 

Benchmark 1 5.03 12.4 40.8 

Benchmark 2 6.05 12.7  48.2 

Benchmark 3 4.68 11.2 39.4 

Proposed method 5.39 11.2 48.4 



  
a longer travelling distance compared to Benchmark 1 and 
3 (without 𝑝A ). This is because for the given mobility 
constraint (2c), 𝐸*[𝑛] becomes smaller when the speed of 
UAV increases. This is reasonable, since it takes more 
energy to maintain the UAV in a static position, compared 
to a moving UAV (where the 𝐸*[𝑛] can be reduced by the 
forward momentum). In short, the 𝐸*[𝑛] can be reduced by 
moving faster per time slot 𝑛, which conserves energy. 

B. Average SSR and Average SEE 
In terms of average SSR, TTD3 has outperformed 

TDDRL in both with and without energy penalty settings. 
This is because TTD3 employs TD3 agent, which is superior 
to the DDPG used in TDDRL. The proposed method 
achieved the second-highest SSR, falling behind only 
Benchmark 2, which also uses the TTD3 algorithm. In 
addition, the proposed method achieves the highest SEE and 
the lowest energy consumption. The reason is that the 
energy penalty  𝑝A  penalizes the TTD3 agents for high 
energy consumption. The proposed method strikes a 
balance between optimizing SSR and minimizing energy 
consumption. Generally, methods that employ energy 
penalty 𝑝A  (Benchmark 3 and the proposed method) 
consume lesser energy as compared to those without energy 
penalty 𝑝A. Figures 3(a) and 3(b) show the average SSR and 
average SEE of each algorithm after training for 300 
episodes, respectively. Based on Figure 3, it is clear that the 
top 2 algorithms for average SSR and average SEE are the 
two variations of our proposed TTD3 (with and without 
energy penalty). 

C. Computation complexity 
TTD3 is composed of a finite number of MLPs. Let 𝐿, 

𝑛+ and 𝑛%  denote the MLP layer numbers, the input layer 
size, and the number of neurons in 𝑖-th layer, respectively. 
During training phase, the computational complexity for an 
MLP to update its weights in each step can be as 
𝑂(𝑁R(𝑛+𝑛/ + ∑ 𝑛%𝑛%?/SM/

%C/ )) [20]. In total, it takes 𝑁A*	x 𝑁 
steps for the TTD3 to complete its training. Hence, the total 
training computational complexity can be computed as 
𝑂(𝑁A*𝑁𝑁R(𝑛+𝑛/ +∑ 𝑛%𝑛%?/SM/

%C/ )). On the other hand, the 

computational complexity in online deployment mode is 
dramatically reduced to 𝑂(𝑛+𝑛/ +∑ 𝑛%𝑛%?/SM/

%C/ ) . This is 
done by cutting off the training procedure that requires 
feedforward and backpropagation of 𝑁R data points. Hence, 
the computational complexity can be retained at a 
favourable level.  

V. CONCLUSION 
In this paper, we have proposed a TTD3-based 

framework which maximizes the SEE of RIS aided 
millimeter-wave rotary-wing UAV communication system. 
Computational complexity of the proposed scheme has been 
analyzed. We showed that the reward function plays a 
crucial role in guiding the trajectory, active and passive 
beamforming towards green UAV communications. Apart 
from the SEE maximization, we also demonstrated the 
superiority of TTD3 over TDDRL in maximizing the SSR. 
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Fig. 2: The optimized trajectory by each algorithm. 
 

Fig. 3: Performance metric versus episodes. (a) Average SSR. (b) 
Average SEE. 
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