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Highlights:

· A DID model was used to evaluate effectiveness of emissions trading policy.

· The study expands the application of the knowledge production function.

· Empirical results identify that the emissions trading policy achieves a emissions reduction effect.
· Findings show that emissions trading policy improves industrial green innovation efficiency.





1 Investigating the Role of Emissions Trading Policy to

2 Reduce Emissions and Improve the Efficiency of Industrial

3 Green Innovation

4 Abstract:

5 Rapid economic development usually leads to serious environmental pollution

6 problems. In order to solve the problem of pollutant emission in sustainable industrial

7 development, it is urgent to examine the implementation effect of emissions trading

8 policy (ETP) and its impact on green industrial development. This research study

9 adopts China’s ETP as a case study and selects provincial panel data from 2004 to

10 2018. We first use a non-radial, non-directed, slack-based measure-directional

11 distance function (SBM-DDF) to measure industrial green innovation efficiency.

12 Then we use a difference in differences (DID) model to empirically test the emissions

13 reduction effect of China’s policy and whether it promotes industrial green innovation.

14 Thereafter, results show that (1) the ETP reduces sulfur dioxide (SO2) emissions

15 indicating the effectiveness of the policy; (2) the policy significantly improves

16 industrial	green	innovation	efficiency,   meaning   it	promotes	the	sustainable

17 development of the economy; (3) heterogeneity analysis highlights that ETP produces

18 greater benefits for the most polluted regions of China which have more strict

19 environmental regulations. The research study examines the effect of emissions

20 trading policy implementation from a new perspective. The study also provides a

21 reference point for China to further refine its policy mechanisms and for other

22 countries to formulate suitable ETP.
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26 1 Introduction


27 Over the past few decades, the global economy has been growing rapidly,

28 however this growth has also changed the ecological environment of the planet. In

29 particular, China is now facing serious environmental problems (Ning et al., 2020).

30 Therefore, industrial development must be transformed from the traditional high

31 consumption production model (with its corresponding high levels of pollution) to a

32 more sustainable development model (Zhu et al., 2019; Chen et al., 2020). In this

33 context, green innovation is crucial to facilitate high-performance sustainable

34 economic development (Beise & Rennings, 2005; Borghesi et al., 2015). Green

35 innovation	encompasses	sustainable	innovation,	ecological	innovation,	and

36 environmental innovation. It relates to innovation activities focused on supporting

37 environmental protection and sustainable development (Rennings, 2000). Furthermore,

38 green innovation efficiency (GIE) is a reflection of the input and output efficiency (Li

39 & Zeng, 2020).	In order to control environmental pollution, emissions trading is

40 widely used in countries such as the United States, Canada, China and Japan (Calel &

41 Dechezleprêtre, 2016; L. Zhang et al., 2018; Zhou et al., 2019).

42 As a paradigm of market-based incentive regulation, emissions trading policy

43 (ETP) are of great significance for both environmental protection and sustainable

44 development (H. L. Tang et al., 2020). Indeed, US economist John Dales (1968) first

45 proposed the theory of emissions trading, which was subsequently adopted by the US

46 Environmental Protection Agency (EPA) to enable protection of the environment. In

47 this context, emissions trading generates economic incentives through market



48 mechanisms, which stimulate companies to adopt innovative technologies and

49 processes to reduce emissions and realize sustainable development (Jaraite & Maria,

50 2012; Bel & Joseph, 2018; Zhou et al., 2019). However, due to the influence of a

51 variety of factors, the issue of whether implementation of environmental regulation

52 policies can promote economic growth while protecting the environment has become

53 an important matter to be addressed. Consequently, the impact of environmental

54 regulation on green innovation has become a major concern for various scholars (Jin

55	et al., 2019; Zhang et al., 2019).

56 However, at present, the existing emissions trading policy research lacks the

57 effect evaluation from the perspective of industrial green innovation efficiency. Also,

58 the effect evaluation that is currently available mainly focuses on the environmental

59 effect evaluation with there being less consideration of economic effect evaluation

60 (Jaraite & Maria, 2012; Calel & Dechezleprêtre, 2016; Zhang et al., 2019; Xuan et al.,

61 2020). Whereas other studies examine the impact of the emissions trading system on

62 innovation patents and corporate performance (Calel & Dechezleprêtre, 2016; Marin

63 et al., 2017). In addition, there are three contradictory viewpoints on the effect

64 evaluation of the existing emissions trading policy, which are as follows: promotion

65 (L. Zhang et al., 2018; Zhu et al., 2020; Lv et al., 2020), inhibition (Feng et al., 2018;

66 K. Tang et al., 2020) and non-linearity (Wang & Shen, 2016; Li & Zeng, 2020).

67 Moreover, there has been no exploratory research into the effectiveness of ETP, and

68 no evaluation framework has been developed to determine the effectiveness of ETP

69 from the perspective of industrial green innovation efficiency.

70 Therefore, the objective of this research study is to test not only the emission

71 reduction effect of emissions trading policy but also the impact of this policy on the

72 industrial green innovation efficiency. In order to address the objective, this study



73 adopts China's emissions trading policy in 2007 and selects the inter-provincial panel

74 data from 2004 to 2018. The study also uses the difference in differences (DID)

75 model to empirically test the panel data. The study expands the application of the

76 knowledge production function (Griliches, 1979; Jaffe, 1989) and incorporates ETP

77 into an innovation input-output framework. As a consequence of the examination of

78 environmental and economic effects in this study, relevant research on emissions

79 trading theory is further enriched to verify that the emissions trading policy not only

80 has the effect of emission reduction but also promotes the industrial green innovation

81 efficiency and enriches the application of emission trading theory at the international

82 level.


83 2 Literature review


84 2.1 Emissions trading policy


85 Industrial development and the resulting economic growth invariably create

86 pollution problems (Munasinghe, 1999). In order to address the negative externality

87 of environmental pollution, many regions have adopted environmental regulation (ER)

88 (Zhao et al., 2014; Zhou et al., 2019). For example, Song, Yang, et al. (2020) test the

89 direct and the indirect impacts of environmental regulations on environmental

90 pollution. Song, Li, et al. (2020) found that the environmental policy of expanding

91 prevention and control areas can effectively improve air quality. Externality refers to

92 the external effect of an economic entity on another economic entity. Externalities can

93 be positive or negative. The Coase Theorem (Coase, 1960) provides one way of

94 solving negative externalities. According to this theorem, external economic problems

95 are caused by unclear definitions of property rights and hence negative environmental

96 externalities can be potentially eliminated through the effect of market transactions −



97 with zero transaction costs and a clear definition of property rights, the market’s

98 spontaneity will automatically adjust resources to become Pareto optimal and

99 optimally allocate resources.

100 A specific application of ER is air pollution control (Yang et al., 2016). ETP

101 have been mainly studied from three perspectives: initial allocation (Woerdman, 2000;

102 Ellerman & Buchner, 2007; Wråke et al., 2010; Betz et al., 2010), pricing (Coggins &

103 Swinton, 1996; Fischer, 2008), and implementation (Bleischwitz et al., 2007; Jaraite

104 & Maria, 2012; Shin, 2013; Marin et al., 2017). The present study focuses on the

105 latter.

106 Studies of the effects of ETP mainly focus on environmental and economic

107 aspects. Martin et al. (2015), for example, investigated the impact of the EU

108 Emissions Trading Scheme (EU ETS) from the perspectives of emission reduction,

109 innovation, competitiveness, and economic performance. The main goal of the EU

110 ETS is to reduce emissions, with a further long-term goal being to stimulate

111 innovation, and many studies have evaluated the emission reduction effect of the EU

112 ETS (Bleischwitz et al., 2007; Sandoff & Schaad, 2009; Anderson & Maria, 2011;

113 Jaraite & Maria, 2012; Zhang et al., 2019; Xuan et al., 2020; Ren et al., 2020). For

114 example, Yan et al. (2020) studied the impact of China's carbon emissions trading

115 policy on the environment and examined the collaborative governance effects of EST

116 on air pollution from three aspects, namely haze, industrial SO2 and industrial smog.

117 Other studies not only focus on the effects of the EU ETS on emission reduction,

118 but also on the performance of the overall economy. Calel and Dechezleprêtre (2016),

119 for instance, found that the EU ETS promotes an increase in low-carbon innovation

120 patent applications. Anger and Oberndorfer (2008) studied the impact of the ETS on

121 the performance of German companies and found that it had no obvious impact on



122 company incomes and employment. Whereas Marin et al. (2017) employed

123 propensity score matching (PSM) and DID to test the effect on the economic

124 performance of companies, finding that ETS can improve turnover, mark-up,

125 investment intensity, and labor productivity. Furthermore, Zhu et al. (2020) used the

126 DID method to examine the impact of carbon emissions trading policy on the green

127 development efficiency. Yang et al. (2020) found that China's carbon emissions

128 trading policy expands the scale of employment while reducing emissions, achieving

129 double dividends and the Porter effect. W. Zhang et al. (2020) studied the impact of

130 emissions trading policy on the trading market efficiency and found that this policy

131 promotes economic growth while reducing emissions. In other work, H. L. Tang et al.

132 (2020) conducted an analysis of the impact of China’s emissions trading system on

133 innovation and productivity and found that although the ETP promotes innovation, it

134 has no impact on productivity. Moreover, Shin (2013) concluded that China’s pilot

135 areas did not institutionalize SO2 emissions trading and that the overall policy was

136 unsuccessful.


137 2.2 Green innovation efficiency


138 As a consequence of increasingly severe environmental problems, green

139 innovation efficiency, which is regarded as the embodiment of innovation factors and

140 resource utilization efficiency (Du et al., 2019), has become a highly topical research

141 area. This is based on the need to take environmental factors into consideration −

142 reflecting the efficiency of green innovation input and output, and thereby effectively

143 measuring the green innovation process of industrial companies (Li & Zeng, 2020).

144 Current research in this area mainly focuses on the measurement of green

145 innovation efficiency (Cheng & Yin, 2016; Du et al., 2019; Li & Zeng, 2020) and the



146 influencing factors involved (De Vries & Withagen, 2005; Demirel & Kesidou, 2011;

147 Triguero et al., 2013; Borghesi et al., 2015).

148 In terms of the measurement method and data selection, Li and Zeng (2020) use

149 a super-slack-based model (SBM) to measure the green innovation efficiency of some

150 highly pollutant industries in China from 2011 to 2015. Du et al. (2019) examined

151 data from 2009 to 2016 and used a two-stage network DEA model to measure and

152 analyze the differences in   green innovation   efficiency of regional industrial

153 companies in 30 provinces. Cheng and Yin (2016) used the data envelopment analysis

154 (DEA) model and found that although green innovation efficiency is growing in 30

155 provinces during 2008-2013, the growth is at significantly different interregional rates.

156 J. Zhang et al. (2020) used the SBM-DDF model to calculate green innovation

157 efficiency for the city of Xi'an in China during 2003-2016. Whereas Zhu et al. (2020)

158 used the super-efficiency SBM model to measure the green development efficiency in

159 30 provinces in China.

160 Meng et al. (2016) systematically reviewed the literature on regional energy and

161 carbon emission efficiency (EE&CE) research from the aspects of application

162 attribute, variable scheme, model aspect, and analyzed the differences in the

163 calculation results of six different DEA models. Moreover, Meng et al. (2019) studied

164 the ranking reversal phenomenon of China's regional energy efficiency under

165 different DEA models (namely Radial, M-Radial, SBMT, RAM and DDF model).

166 In terms of variable index selection, Li and Zeng (2020) adopted R&D personnel,

167 R&D input and industrial energy consumption as input indexes, and the output index

168 selected effective invention patents per hundred million yuan of income and industrial

169 solid pollution utilization rate. J. Zhang et al. (2020) used labor, capital and resource

170 inputs as input indexes, output is GDP, green output, and non-expected output is SO2



171 emissions. In other work, Feng et al. (2018) primarily included the inputs of labor,

172 capital and energy. The expected output is the number of patents and sales revenue of

173 new products, while the non-expected output is the discharge of industrial waste water,

174 waste gas and solid waste. To sum up, the existing research is mainly aimed at

175 investigating 30 provinces in China and the DEA model is has been widely used,

176 where the measurement indexes are mostly input, output and non-expected output.

177 For the studies on the influencing factors, Borghesi et al. (2015) investigated the

178 link between the EU ETS and environmental innovations. De Vries and Withagen

179 (2005) studied the influence of the stringency of European SO2 emissions,

180 environmental policy, and innovativeness from 1970 to 2000, finding that strict

181 environmental policy stimulates innovation. While Demirel and Kesidou (2011) used

182 data from UK industrial companies to investigate the effect of policy and company

183 factors on different types of eco-innovations. K. Tang et al. (2020) used both a DID

184 model and a difference-in-difference-in-differences (DDD) model to test the effect of

185 command-and-control regulation on green innovation efficiency. Whereas Huang et al.

186 (2016)   studied   the   impact   of   regulators	on   green   innovation	performance.

187 Furthermore, many studies have investigated the impact of environmental regulation

188 on green innovation, which has also become a recent priority research area (Huang et

189	al., 2016; Chen et al., 2017; Wang et al., 2020).


190 2.3 Relationship between ETP and green innovation efficiency


191 There has been a large number of studies into the effect of environmental

192 regulation. Cecere and Corrocher (2016), for instance, found that strict environmental

193 regulations have a stronger influence on innovation. Other studies (Yabar et al., 2013;

194 Y. Zhang et al., 2018) found that ER can improve technological innovation. Indeed,



195 many also believe that ER can promote green innovation (De Vries & Withagen, 2005;

196 Zhao & Sun, 2016; Wang et al., 2020). At present, there are mainly three viewpoints

197 on this matter, which are inhibition, promotion and non-linearity.

198 The first view is that environmental regulations have an inhibitory effect.

199 According   to   neoclassical   economics,   environmental   regulation   can   promote

200 environmental protection but also leads to additional costs for companies, which will

201 further lead to a reduction in international competitiveness and become detrimental to

202 economic growth (Cecere & Corrocher, 2016; Xie et al., 2017). For example, You et

203 al. (2019)  found  that, under  the influence  of fiscal decentralization and political

204 competition, environmental regulation cannot promote green innovation. Feng et al.

205 (2018) concluded that ER significantly inhibits green innovation efficiency in the

206 manufacturing industry. Further, K. Tang et al. (2020) found that command-control

207 regulation can inhibit companies’ green innovation efficiency. Whereas Blind (2012)

208 argued that ER has a negative effect on innovation performance, while Shi et al. (2018)

209 found that China’s Emissions Trading Pilot significantly inhibits industrial innovation.

210 The second is view is that there is a promoting effect.	Although Porter and

211 Linde (1995) put forward an alternative view, in that legitimate and strict ER can

212 actually inspire companies to invest more in innovative activities to enhance

213 competitiveness, thus reducing the additional environmental costs of companies and

214 creating a win-win situation between the environment and the economy. Scholars

215 have found that market-based incentive regulation has a greater influence on emission

216 reduction and green innovation (Requate, 2005; van den Bergh et al., 2011). Zhao et

217 al. (2014), for instance, explored different types of environmental regulation (i.e.

218 command-control and   market-based) − proposing that market-based   incentive

219 regulation is more conducive to the transformation to a green development strategy.



220 Lv et al. (2020) identified that strict environmental regulation promotes corporate

221 innovation, whereas loose environmental regulation can reduce company innovation

222 and lead to an increase in the number of environmental related patents. L. Zhang et al.

223 (2018) found that ETP can promote companies’ green innovation. Whereas Zhu et al.

224 (2020)   found   that   China's   carbon   emissions   trading   policy   promotes   green

225 development efficiency.

226 The third view is that some scholars believe that the relationship between ER and

227 green innovation is not only a simple linear relationship, but a nonlinear relationship.

228 Li and Zeng (2020) employed regression analysis and found a U-shaped relationship

229 between environmental regulation and green innovation efficiency. Whereas Wang

230 and Shen (2016) first calculated environmental productivity through the GML index

231 and studied the impact of environmental regulations on it. The study found an

232 inverted U-shaped relationship between the two. Shen et al. (2019) studied the

233 nonlinear effects of different types of environmental regulations on environmental

234 total factor productivity (ETFP), and identified that in light-polluting industries,

235 market-incentive environmental regulations have an N-type relationship with green

236 total factor productivity. Zheng et al. (2020) also found that there is a U-shaped

237 relationship between environmental regulation and economic efficiency.


238 2.4 Knowledge gap


239 The above review of the literature reveals two clear knowledge gaps, which are

240 summarized as follows.

241 (1) There is a lack of research into industrial green innovation efficiency as a policy

242 effect.



243 Despite environmental factors having become the focus of research into

244 traditional innovation efficiency, there is still limited research into green innovation

245 efficiency. Most research into the effects of environmental regulation are focused on

246 developed countries and fails to distinguish between different forms of environmental

247 regulations. Existing research focuses on the effects of emission reduction, including

248 the economic effects represented by patents, but rarely examines the effects of

249 environmental regulation. The use of specific environmental regulations to test the

250 effect of green innovation efficiency can produce more accurate assessments, which


251 251

252 252

are helpful for enriching environmental regulation policy theory.


253 (2) There is a need for further verification of the effect of specific environmental

254 regulations.

255 The conclusions from research into the impact of environmental regulation are

256 presently mixed, since promotion, inhibition and non-linear relationships have all

257 been identified. An important issue is to understand the impact of the ETP as a typical

258 policy of market-based incentive environmental regulation. Also, there is a need to

259 further study the extent to which emissions trading policy can achieve emissions

260 reduction and promote industrial green innovation under the dual pressure of

261 economic growth and environmental protection. Further research into ETP can help to


262 262

263 263

better evaluate the effects of these policies and test Porter’s Hypothesis(Mohr, 2002).



264 3 Methodology


265 It is assumed that innovation input is the main explanatory variable of innovation

266 output in our data envelopment analysis (DEA) model. According to the production



267 function model of the R&D input and output relationship proposed by Griliches (1979)

268 and Jaffe (1989), and based on the “Cobb-Douglas” function, the regional province

269 and city innovation efficiency function are:

270	                     	(1)

271 where innovi denotes the innovation efficiency of provinces; i is a Chinese province;

272 A is the coefficient of input; inputi is the input of provincial innovation, mainly the

273 impact of innovation efficiency but including environmental regulation and specific

274 environmental policy; β is the output elasticity of the city’s innovative input. Factors

275 such as economic development level, foreign direct investment (FDI), education level,

276 industrial scale, and industrial structure are also included.


277 3.1 Difference in differences (DID)


278 According to the literature, the main method used for evaluating policy

279 effectiveness	is	regression discontinuity   (Thistlethwaite   &   Campbell,   1960),

280 instrumental variables  (Ehrlich, 1975), propensity score matching (Rosenbaum &

281 Rubin, 1983), and difference in differences (Ashenfelter & Card, 1985). Ashenfelter

282 and Card (1985) first evaluated the policy effect using the DID method. This is now

283 widely used to evaluate policy effectiveness (Yang et al., 2020; K. Tang et al., 2020)

284 by testing the effect of policy before and after the implementation of the treatment

285 group (i.e. policy adoption areas) and control group (i.e. where the policy is not

286 adopted). DID allows for, and accommodates, the existence of unobservable factors to

287 influence whether an individual accepts an intervention decision. Relaxing the

288 conditions of policy effectiveness, evaluation allows the application of policy

289 assessment to be closer to economic reality, and hence more representative (Zhang et

290	al., 2019; Yang et al., 2020).



291 DID mainly considers two dummy variables: the time variable, dt, and the policy

292 variable, du. dt = 0 when the time is before policy adoption and dt = 1 when the time

293 is after. du = 0 denotes the area where the policy is not adopted (i.e. the control group)

294 and du = 1 denotes the pilot area of the policy (i.e. treatment group). The DID model

295 is (Abadie & Cattaneo, 2018; Zhou et al., 2019):

296	                                         	(2)

297 where du*dt is the time and policy interaction term, and its coefficient β3 reflects the

298 effect of the policy. As shown in Table 1, substituting values into (1) and (2) enables

299 the result of the two differences, β3, to be obtained − the measure of the effect of the

300 policy.

301 Table 1 Parameter meaning of each variable in DID model.



The year before
the control period(dt=0)

The year after
the control period(dt=1)


Difference

Pilot areas (Treatment group, du=1 )
Non-pilot areas (Control group, du=0)

β0+β1	β0+β1+β2+β3	β2+β3

β0	β0+β2	β2

Difference	β1	β1+β3	∆∆d=β3(DID)

302 302

303 For example, DID is used here to evaluate the effectiveness of China’s ETP in

304 2007. Therefore, the pilot provinces of the policy are deemed “treatment groups”, and

305 the provinces that have not adopted the ETP are considered “control groups”. In order

306 to solve the endogeneity problem caused by missing variables, control variables based

307 on (2) are included to give

308	                                               	(3)

309 where the subscripts i and t denote the province and year respectively, and the

310 independent variable Y is the natural logarithm of the industrial SO2 emissions and



311 industrial green innovation efficiency respectively. D is the policy dummy, being 1

312 for the provinces that adopt the ETP, and 0 otherwise. T is a time dummy, being 1 for

313 the time after policy adoption (2007), and 0 otherwise. D*T is the interaction of the

314 policy variable and time variable. The purpose of coefficient β1 is to evaluate policy

315 effectiveness. An estimated result of β1>0 indicates that the ETP has a positive effect

316 on the dependent variable Y, otherwise it has a negative effect on Y. ε is the random

317 disturbance term of the model. Z is the control variable. λt is the time-fixed effect, and

318 μi is the regional fixed effect.


319 3.2 Slack-based measure-directional distance function (SBM-DDF)


320 Data envelopment analysis (DEA) can be used to calculate the efficiency of

321 multiple inputs and multiple outputs (J. Zhang et al., 2020; W. Zhang et al., 2020;

322 Meng et al., 2016). The earliest CCR model was used to determine efficiency by

323 analyzing input and output data (Charnes et al., 1978). Thereafter Banker et al. (1984)

324 proposed the classic BCC model. Radial models, such as CCR and BCC, which are

325 widely used (Meng et al., 2019).

326 Initially, the environment and resources are taken as inputs (Reinhard et al.,

327 1999). With the intensification of economic and resource conflicts, Chung et al. (1997)

328 proposed the directional distance function (DDF) model with environmental pollution

329 as an unexpected output. However, the traditional directional distance function has

330 radial and directivity of input and output, when there is excessive input or insufficient

331 output which leads to deviations from the true efficiency value.

332 In order to solve the problem of slack variables, Tone (2001) proposed a non-

333 radial, non-oriented Slacks Based Measure (SBM) model to solve the problem of

334 increasing or decreasing the proportion of input and output and it can be observed that



335 SBM and DDF models have gradually become popular with researchers (Meng et al.,

336 2016). Therefore, Fukuyama and Weber (2009) combined SBM and DDF to obtain a

337 non-radial, non-directed Slack-based measure-directional distance function (SBM-

338 DDF), which not only avoids calculation distortion but also overestimates the

339 efficiency when the DDF model has slack variables. This approach also treats

340 environmental pollution as an undesired output. which can measure efficiency more

341 realistically. Consequently, the SBM-DDF methodology has been employed to

342 measure industrial green innovation efficiency (J. Zhang et al., 2020).

343 In this research study, each province and city in China is a decision-making unit


344 344

(DMU). x is the N inputs of the decision-making unit, x=(x , …=x ) ∈R* ; y is the M

1	N	N


345

expected outputs, y=(y , …=y ) ∈R* ; b is K unexpected outputs, b=(b , …=b ) ∈

1	M	M	1	K

346 R* ; (xt , yt , bt ) is the input-output data of the ith region in period t, (gx, gy, gb) is the
K	i	i	i

347 direction vector, (sx , sy , sk ) is the slack vector of input and output. Hence, the model is
n	m	b

348  (
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∑
 
)defined as



349 349

⃗ ⃗⃗                               

 	   	∑ 

 
 (
 
 
)    	∑ 

 
 (
 
 
)   	(4)



350 350

s.t            ∑ 

                       ∑ 


 
 (
 
)       ∑                



351 351


  ≥0, ∑ 

   

   =1,    ;                  ;                         


352 In order to solve expression (4) with linear programming methods, we obtain the

353 efficiency index, measured as the inverse of green innovation efficiency − the larger

354  (
 
)the value, the lower the green innovation efficiency. When the direction vector      

355 ,   n and                                 , m, the green innovation efficiency (GIE)
 

356 is



357	⃗ ⃗⃗⃗ ⃗⃗ ⃗        ⃗ ⃗⃗	(5)


358	s.t                                                                      


359 Since the inefficiency value ⃗⃗⃗ remains between 0 and 1, the GIE value also

360 remains between 0 and 1. Therefore, the larger the value is, the larger will be green

361 innovation efficiency.


362 3.3 Variables and data


363 The effect of the ETP adoption in the year 2007 is evaluated from two

364 perspectives. The first is to test ETP effectiveness (i.e. its emissions reduction effect).

365 The second is through measuring the effect on industrial green innovation efficiency.

366 Since the ETP mostly targets industrial companies, industrial SO2 emissions is

367 adopted as the control variable.

368 The variables involved in this research include dependent variables, an

369 independent variable, and the specified control variables. The dependent variables are

370 industrial SO2 emissions and industrial green innovation efficiency. The independent

371 variable is the dummy time and policy interaction term. The control variables are

372 economic development level, foreign direct investment, education level, industrial

373 scale, and industrial structure. The selection and meaning of each variable is

374 explained below.

375 One of the dependent variables is green innovation efficiency. As mentioned

376 earlier, SBM-DDF is used to measure industrial green innovation efficiency and input

377 and output indicators are selected with reference to common practices. The data are

378 from designated industrial companiesi. The input indicators are divided into human

379 input and capital investment. Here human input (L) is represented by the full-time



380 equivalent of R&D personnel, and capital investment (K) is represented by

381 expenditure on R&D. The output indicators are divided into expected output and

382 unexpected output. Expected output is represented by the number of patent

383 applications (P) and the sales revenue of new products (G). The unexpected output is

384 industrial SO2 emissions.

385 The specific control variables are as follows:

386 (1) Economic Development Level – Gross Domestic Product (GDP). GDP affects

387 green innovation efficiency, and areas with high economic development are

388 expected to attach importance to innovation. Thus, the value is represented by the

389 natural logarithm of GDP per capita.

390 (2) Foreign Direct Investment (FDI). FDI provides improved innovative technologies

391 and resources, and the competitive effect also leads to companies paying more

392 attention to innovation. Therefore, FDI is represented by the ratio of the amount of

393 foreign investment to GDP.

394 (3) Education Level (EDU). New Economic Growth theory holds that human capital

395 is the main driving force behind economic growth. As a consequence of

396 improving the education level, it is easier to absorb new knowledge and

397 technology, which is conducive to industrial green innovation. Therefore, EDU is

398 represented by the proportion spent on education in national budget expenditure.

399 (4) Industrial Scale (IS). Green innovation efficiency can vary according to different

400 industrial scales. For example, large companies are more willing to invest more

401 resources into promoting industrial green innovation efficiency. Therefore, the

402 value is represented by the ratio of industrial gross output value to the number of

403 industrial companies.



404 (5) Industrial Structure (IS). The  emission intensity of the secondary industry is

405 higher than other industries and therefore the proportion of different (secondary or

406 primary/tertiary) industries may have different effects. The proportion of the

407 output value of the secondary industry to GDP is used to represent the value.


408 408

409 409

410 410

More details relating to all the variables are provided in Table 2.


411 Table 2 Variables definition table.



Variables
name

Variables
symbol

Variables definition		References Cheng and Yin (2016),


Input indicators

Human input	L	Full-time equivalent of
R&D personnel

Du et al. (2019), Zhu et
al. (2019), Li and Zeng (2020)
Cheng and Yin (2016),








Output indicators

Capital investment



Expected output



Unexpected output

Economic

K	Expenditure on R&D


G	Sales revenue of new products

P	Number of patent applications


E	Industrial SO2 emissions

Natural logarithm of GDP

Du et al. (2019), Zhu et al. (2019), Li and Zeng (2020)
Cheng and Yin (2016), Du et al. (2019), Wang and Shao (2019), Zhu et al. (2019)
Cheng and Yin (2016), Du et al. (2019), Zhu et al. (2019)
Cheng and Yin (2016), Du et al. (2019), Jin et al. (2019), Xie et al. (2017),
Zhu et al. (2019)

development level

GDP

per capita	Wang and Shao (2019)



Control variables

Foreign direct investment
Education


FDI

Ratio of the amount of foreign investment to GDP
The proportion spend on

Wang and Shao (2019), Zhu et al. (2019)

level	EDU
Industrial	SIZE scale

education in national
budget expenditure Ratio of the gross output value to the number of industrial companies

Jin et al. (2019)


Xie et al. (2017)

Industrial	IS	The proportion of the	Jin et al. (2019), Yang et




structure		output value of the secondary industry to the

al. (2020)

 	GDP	

412 3.4 Data selection


413 As early as 1987, there was emissions trading taking place between companies in

414 Shanghai. In 2002, the former State Environmental Protection Administration of

415 China selected seven provinces (namely Shanxi, Shandong, Jiangsu, Shanghai, Henan,

416 Liuzhou, and Tianjin) and China Huaneng to conduct pilot scale projects for SO2

417 emissions trading. In 2007, 11 provinces (namely Tianjin, Jiangsu, Hubei, Zhejiang,

418 Inner Mongolia, Hunan, Chongqing, Shanxi, Shaanxi, Henan, and Hebei) also

419 adopted pilot scale emissions trading (Shin, 2013).

420 As the ETP adopted in 2007 was more comprehensive than the 2002 version of

421 the policy, the scale and scope of emissions trading have also been expanded and

422 trading activity has become more active. The 2007 ETP is  therefore selected to

423 empirically evaluate ETP effectiveness. Due to data collection restrictions, panel data

424 is selected from a total of 30 provinces (see Table 3).

425 Table 3 Specific grouping situation.



Group		Treatment group (policy implementation)

Jiangsu, Zhejiang, Tianjin,

Control group
(policy not implemented) Liaoning, Jilin, Heilongjiang, Anhui,
Jiangxi, Fujian, Shandong,

Provinces

Hubei, Hunan, Inner Mongolia, Shanxi, Chongqing, Shaanxi, Hebei, Henan

Guangdong, Guangxi, Sichuan, Yunnan, Beijing, Shanghai, Hainan, Qinghai, Guizhou, Xinjiang, Gansu, Ningxia


426 All the data are from the China Statistical Yearbook (2005-2019) (China, 2005-

427 2019a) and China Statistical Yearbook on Science and Technology (2005-2019)

428 (China, 2005-2019b). The selected timeframe is 2004-2018. In order to eliminate

429 price fluctuations, the producer price indices for industrial products provided in the

430 China Statistical Yearbook are used to rebase the gross output value of industry to the



431 2003 level (Zhou et al., 2019). Similarly, the per capita gross regional product indices

432 are used to adjust per capita gross regional product values. Based on the exchange rate

433 provided in the China Statistical Yearbook, USD values are converted into the CNY

434 equivalent.

435 Table 4 provides descriptive statistics of the variables, including their arithmetic


436 436

437 437

means and standard deviations (SD).


438  (
Obs.
Mean
Std. dev.
Min
Max
GIE
450
0.81141
0.12435
0.52646
1
LN
 
SO
2
450
3.71414
0.94875
0.18232
5.1504
D*T
450
0.29333
0.4558
0
1
GDP
450
9.50382
0.5045
8.24748
10.8894
FDI
450
0.02629
0.01893
0.0001
0.10413
EDU
450
0.16192
0.026
0.09895
0.22217
SIZE
450
1.85657
1.07022
0.4313
5.9972
IS
450
0.44579
0.1093
0.00366
0.67232
439
)	Table 4 Descriptive statistics of specific variables. Variables		All the samples













440 4 Results


441 The effect of the ETP is evaluated through the following steps: (1) Plotting the

442 time trend of the industrial green innovation efficiency of the treatment and control

443 group, and observation of the changing trends of the two groups; (2) Empirical testing

444 using the DID model; (3) Robustness checks; and (4) Heterogeneity analysis.


445 4.1 Time trend graph of industrial green innovation efficiency


446 The difference between the two groups regarding  industrial green innovation

447 efficiency (Winsorized to eliminate the influence of outliers on the estimation results)

448 is presented visually in Fig. 1. This shows that, before 2007, the industrial green



449 innovation efficiency trends of the treatment and control groups are parallel. However,

450 after 2007, green innovation efficiency (GIE) improved for both groups of provinces,

451 but more for the treatment group, thereby suggesting a potential causal relationship

452 with the ETP adopted in 2007. However, statistical analysis is needed to determine

453 the specific effects involved.

454 << insert Fig. 1 here >>


455 4.2 Regression analysis


456 (1) ETP effectiveness

457 A two-way fixed effects model, comprising the time effect and individual effect,

458 is used to  conduct the empirical  tests (Zhang et  al.,  2019). The prerequisite for

459 studying the relationship between the ETP and industrial green innovation efficiency

460 is the ETP’s effectiveness. Firstly, according to model (3), the natural logarithm of

461 industrial SO2 emissions (LN SO2) is selected as the dependent variable.

462 Table 5 Examination of the effectiveness of emissions trading policy.

VARIABLES		(1)		(2)		(3)		(4)		(5)		(6) LN SO2	LN SO2	LN SO2	LN SO2	LN SO2	LN SO2

D*T	-0.1741***	-0.1668***	-0.1662***	-0.1757***	-0.1739***	-0.1722*** (0.0638)		(0.0636)		(0.0637)		(0.0640)		(0.0616)		(0.0617)
GDP	0.4802**	0.4954**	0.5259**	0.5845**	0.6576** (0.2345)		(0.2359)		(0.2368)		(0.2280)		(0.2547)
 (
FDI
)-0.7614	-0.7238	-2.1414*	-2.0571*
(1.1648)	(1.1642)	(1.1459)	(1.1541)
EDU	1.6049	1.8154	1.8596
(1.2383)	(1.1914)	(1.1942)
SIZE	-0.1550***	-0.1553***
(0.0267)	(0.0267)
IS	-0.1822
(0.2825)
Constant	3.8859***	-0.5717	-0.6882	-1.2137	-1.6270	-2.2348
(0.0476)	(2.1779)	(2.1867)	(2.2222)	(2.1382)	(2.3381)
Provinces
fixed effect	YES	YES	YES	YES	YES	YES
Time fixed
effect	YES	YES	YES	YES	YES	YES



	Observations
	450
	450
	450
	450
	450
	450

	R-squared
	0.7833
	0.7855
	0.7857
	0.7866
	0.8031
	0.8033

	Number of provinces
	30
	30
	30
	30
	30
	30


463 Note: Standard errors in parentheses; ***, **, * indicates statistical significance at 1%,
464 5% and 10% level, respectively; Year indicates time fixed effect, and Province
465 indicates individual fixed effect.
466 466

467 The emissions reduction effect is examined by gradually incorporating other

468 control variables into the model (namely GDP, FDI, EDU, SIZE, IS). Table 5

469 summarizes the results, showing that the significance of the coefficients and symbols

470 of the variables do not change with the addition of the control variables, thereby

471 indicating that the results are quite robust. With the gradual addition of control

472 variables (GDP, FDI, EDU, SIZE, IS), the coefficient of the interaction term becomes

473 significantly negative and is stable near -0.17.

474 (2) The ETP’s impact on industrial green innovation efficiency

475 Table 6 shows the results for the impact of the ETP on the industrial green

476 innovation efficiency model by gradually adding the control variables GDP, FDI,

477 EDU, SIZE, and IS. Again, the significance of the coefficients and symbol of the

478 variables do not change with the addition of the control variables, indicating that the

479 results are still robust. However, the interaction term is always significantly positive

480 and basically stable near 0.03.

481  (
GIE
GIE
GIE
GIE
GIE
GIE
D*T
0.0284*
0.0286*
0.0278*
0.0306*
0.0312**
0.0306**
(0.0160)
(0.0160)
(0.0158)
(0.0159)
(0.0150)
(0.0150)
0.0110
-0.0101
-0.0193
-0.0024
-0.0276
(0.0591)
(0.0585)
(0.0586)
(0.0556)
(0.0621)
1.0591***
1.0477***
0.6384**
0.6093**
(0.2887)
(0.2883)
(0.2794)
(0.2813)
-0.4848
-0.4240
-0.4393
(0.3066)
(0.2905)
(0.2910)
SIZE
-0.0448***
-0.0447***
)Table 6 Effect of Emissions Trading Policy on Industrial Green Innovation Efficiency. VARIABLES	(1)	(2)	(3)	(4)	(5)	(6)

GDP FDI EDU











 (
(0.0065)
(0.0065)
IS
0.0629
0.7146***
0.6123
0.7744
0.9331*
0.8137
(0.0688)
1.0235*
Constant
(0.0119)
(0.5485)
(0.5420)
(0.5502)
(0.5214)
(0.5698)
Provinces
YES
YES
YES
YES
YES
YES
Time fixed
YES
YES
YES
YES
YES
YES
Observations
450
450
450
450
450
450
R-squared
0.4806
0.4806
0.4974
0.5005
0.5531
0.5541
Number
 
of
30
30
30
30
30
30
)fixed effect effect


provinces482
Note: Standard errors in parentheses; ***, **, * indicates statistical significance at 1%,



483
5% and 10% level, respectively; Year indicates time fixed effect, and Province



484
indicates individual fixed effect.



485





486

4.3 Robustness checks




487

In order to ensure the robustness of the results, robustness checks have been



488
conducted according to the following three perspectives.



489
(1) “Parallel paths” assumption



490
The DID method can solve the endogeneity problem caused by the factors that



491
do not change with time, and eliminate the influence of unobserved confounding



492
factors. However, DID requires that the GIE of the two groups maintain basically



493
parallel paths before implementation of the policy, that is, the most essential condition



494
for using DID is the “parallel paths” assumption (Zhang et al., 2019). Before 2007,



495
the two groups in Figure 1 were basically parallel, and the parallel paths were initially



496
verified. On this basis, the research study introduces the parallel paths test of the



497
interaction items (D*T1, D*T2, D*T3) of the time dummy variables in the years



498
before 2007 and the policy dummy variable. If the interaction term is not significant,



499
it indicates that the two groups are not significantly different before the policy



500
implementation. Model (1) and model (2) in Table 7 are without control variables and








501 with control variables added, respectively. The results show that although the

502 interaction term D*T3 is significant, the three interaction items are still not significant.

503 Therefore, it can be observed that the empirical result conforms to the “parallel paths”

504 assumption. That is, before the implementation of emissions trading policy there is

505 not a significantly difference in the level of green innovation efficiency between the

506 two groups.

507 (2) Counterfactual test by changing the year of the treatment

508 It can be observed that other policies or influencing factors may potentially

509 impact the results of this research study. Therefore, the counterfactual test was carried

510 out by changing the policy implementation time (Jiménez & Perdiguero, 2017; Yang

511 et al., 2020). It is assumed that the policy implementation year was 2006, and the

512 sample period selected was 2004-2008. In this regard, if the result of the interaction

513 term coefficient is not significantly positive, then it is assumed that the improvement

514 of industrial green innovation efficiency is due to the emissions trading policy

515 implemented in 2007. Otherwise, it may be caused by other policies or factors. The

516 results are shown in Table 7. Model (3) assumes that the policy implementation time

517 is 2006 and does not add control variables; model (4) adds control variables based on

518 model (3). The interaction term coefficient in Table 7 is not significant, indicating that

519 the empirical result of this research is robust. That is to say, the improvement of the

520 green innovation efficiency is caused by implementation of the emissions trading

521 policy, not by other factors.

522 (3) Randomly select pilot provinces

523 In order to test whether the policy effect is caused by some unobservable factors,

524 this research study adopts a random selection of pilot provinces for the robustness test

525 (Yang et al., 2020). If the test result is not significant, it means that the main results



526 are reliable; otherwise, it indicates that there is a deviation in the regression results of

527 the study. In this research, random sampling was used to select 11 provinces among

528 30 provinces as the treatment group and the rest of the provinces as the control group.

529 Model (5) and model (6) in Table 7 are without control variables and with control

530 variables added, respectively. The analysis highlights that the interaction term

531 coefficient is not significant, indicating that the empirical result of this research is

532 robust.

533 Table 7 Robustness checks

















 (
(1)
(2)
(3)
(4)
(5)
(6)
VARIABLES
GIE
GIE
GIE
GIE
GIE
GIE
D*T1
-0.0169
-0.0148
(0.0258)
(0.0241)
D*T2
-0.0262
-0.0289
(0.0258)
(0.0241)
D*T3
-0.0422
-0.0484**
(0.0258)
(0.0243)
-0.0100
-0.0157
0.0052
0.0164
D*T
(0.0169)
(0.0168)
(0.0160)
(0.0153)
Constant
0.7208***
1.0326*
0.7146***
1.6569
0.7146***
1.0426*
(0.0152)
(0.5707)
(0.0089)
(1.5338)
(0.0120)
(0.5723)
Control
NO
YES
NO
YES
NO
YES
Provinces
YES
YES
YES
YES
YES
YES
Time fixed
YES
YES
YES
YES
YES
YES
Observations
450
450
150
150
450
450
R-squared
0.4812
0.5553
0.2640
0.3237
0.4766
0.5508
Number
 
of
30
30
30
30
30
30
)variables fixed effect effect


 (
534
Note: Standard
 
errors
 
in parentheses;
 
***, **,
 
*
 
indicates statistical significance at 1%,
535
5%
 
and
 
10%
 
level,
 
respectively.
536
537
4.4
 
Heterogeneity
 
analysis
538
Due
 
to
 
the
 
differences
 
in
 
economic
 
development
 
of
 
different
 
Chinese
 
provinces,
539
there
 
is
 
more
 
serious
 
environmental
 
pollution
 
in
 
the
 
more
 
industrialized
 
regions.
 
It
 
is
)provinces



540 expected, therefore, that environmental regulation may have a more intensive effect in

541 heavily polluted regions. Accordingly, the provinces are further divided into high and

542 low pollution regions in relation to the median pollution emissions. Models (1) and (2)

543 in Table 8 contain the results for the high and low pollution regions respectively,

544 indicating that the ETP’s effect was indeed better in high pollution regions. This is

545 obviously because local governments in high pollution regions usually pay more

546 attention to environmental treatment and are expected to adopt stricter environmental

547 regulations. Additionally, high pollution regions are comparatively more developed

548 and have higher levels of technological development, as it is also easier to promote

549 R&D activities as well as green innovation efficiency.

550 The ETP’s influence will also be related to institutional factors. This because its

551 effective adoption requires strict environmental supervision and implementation (Ren

552 et al., 2020). The different environmental regulation intensities also lead to different

553 ETP effects, the value of which is represented by the proportion of investment in the

554 treatment of industrial pollution to GDP. The median of the data is used to divide the

555 provinces into strict and tolerant environmental regulation regions. Models (3) and (4)

556 in Table 8 show the  results, which indicate that, as expected, the  ETP in strict

557 environmental regulation regions significantly improves industrial green innovation

558 efficiency.


559 559

Table 8 Heterogeneity analysis.

 (
VARIABLES
GIE
GIE
regulation
 
GIE
regulation
 
GIE
D*T
0.0402**
-0.0073
0.0332*
0.0345
(0.0185)
(0.0272)
(0.0196)
(0.0230)
Constant
0.5992
-0.4797
0.8278***
0.7849***
Control
(0.7173)
 
YES
(0.9678)
 
YES
(0.0548)
 
YES
(0.0794)
 
YES
)(1)	(2)



(3)



(4)

High pollution regions

Low pollution regions

Strict environmental

Tolerant environmental




 (
Provinces
 
fixed
YES
Time fixed
YES
YES
YES
YES
YES
YES
YES
Observations
225
225
225
225
R-squared
0.6317
0.5771
0.5657
0.6173
Number
 
of
15
15
15
15
)effect effect


provinces560
Note: Standard errors in parentheses; ***, **, * indicates statistical significance

561
at 1%, 5% and 10% level, respectively.

562



563
5 Discussion and policy implications


564

This research study has generated a number of policy implications. Firstly, this

565
research indicates that the ETP reduces industrial SO2 emissions. Hence, China’s

566
emissions trading policy is effective and achieves the desired emissions reduction

567
effect. This result is consistent with Zhang et al. (2019) and Zhou et al. (2019), where

568
both studies found the emissions reduction effect to be associated with the ETP. This

569
is because the emissions trading policy implements total quantity control, which limits

570
the emission of pollution to a certain extent so as to achieve corporate emission

571
reduction. However, Shin (2013) found that emission reductions have not been

572
achieved. This is because the emissions trading policy is still at the initial stage of

573
introduction, resulting in inactive secondary market transactions and low enthusiasm

574
for corporate participation. Therefore, ETP it cannot effectively play the role of policy.

575
Moreover, this study investigates industrial enterprises above a designated size, which

576
are the main targets of the implementation of the policy and the main goal of

577
emissions reduction. Consequently, it is easier to conclude that the implementation of

578
emissions trading policy can reduce pollution emissions. This study provides direction

579
for the government to deal with environmental pollution problems and help solve the

580
current serious environmental pollution.






581 Secondly, this study adopts the new perspective of green innovation efficiency to

582 measure the economic effects of China's emissions trading policy, and enriches the

583 application research of emissions trading theory at the international level. Multiple

584 indicators are used to measure industrial green innovation efficiency more effectively.

585 The results indicate that the ETP can improve industrial green innovation efficiency,

586 which is similar to the findings of Zhu et al. (2020) and L. Zhang et al. (2018).

587 Companies with lower levels of pollution can obtain economic benefits by

588 selling spare emissions capacity, which allows them to promote green innovation

589 strategies. Conversely, companies with higher levels of pollution need to purchase

590 spare emission capacity to meet their production emission needs. Therefore, although

591 the emissions trading policy will increase the pollution cost of enterprises in the short

592 term, in the long term, the economic compensation brought by the sale of excess

593 emission rights will stimulate enterprises to improve pollution control technologies

594 and increase the green innovation efficiency thereby offsetting the environmental

595 costs of enterprises (Ren et al., 2020). Unlike the results of K. Tang et al. (2020), this

596 is because the market-based ETP provide companies with greater flexibility in

597 reducing emissions (H. L. Tang et al., 2020; Ren et al., 2020) and the ETP’s

598 environmental costs are lower than other forms of command-control environmental

599 regulation. The research highlights that policy is not only conducive to promoting the

600 transformation and upgrading of enterprises but also helps achieve high-quality

601 economic development. It also reveals intuitively how the emissions trading policy

602 plays a long-term role in China's pollution control and economic development, and

603 provides	an	important	reference	for	the	Chinese	government	to	establish

604 environmental regulations that achieve a win-win situation for the environment and

605 the economy.



606 This research study further examines the heterogeneity in different polluted

607 regions and different environmental regulation   intensities and finds that the

608 implementation of emissions trading policy is improved in areas with high pollution

609 and strict environmental regulations. This result is consistent with the findings of

610 Cecere and Corrocher (2016). On the one hand, the stronger the implementation of

611 environmental regulations and the higher the cost of violations of the law, the lower

612 the possibility of violations of the law, and the more effective the implementation of

613 policy, as well as the realization of a win-win situation for the economy and the

614 environment. On the other hand, this is because companies that operate under more

615 strict environmental regulations tend to invest more capital in pollution-control


616 616

617 617

technologies (De Vries & Withagen, 2005).


618 The following policy implications can be drawn from the aforementioned findings:

619 (1) Acknowledge the full role of the effects of market-based policies. It can be

620 observed from this study that emissions trading policy reduces pollution

621 emissions and improves the green innovation efficiency, thereby indicating

622 that this policy can not only achieve the goal of reducing emissions but also

623 promote the green development of the Chinese economy. Therefore, all

624 government	departments	should	pay	appropriate	attention	to	the

625 implementation of this policy and acknowledge the effective role of the

626 market in environmental governance as well as continue to promote China's

627 market-oriented mechanism reform. On the one hand, it is necessary to

628 continuously adjust the policy according to the implementation effect and the

629 actual situation of the enterprise, and establish a standardized and effective

630 trading market. On the other hand, there is also a concomitant need for



631 cooperation	between	different	areas,	thereby	actively	promoting	the

632 development of cross-regional transactions, expanding the scope and scale of

633 the	adoption	of	emissions	trading	policy,	reducing	administrative

634 interventions in the market, and allowing the flexibility and effectiveness of

635 transactions (Zhou et al., 2019).

636 (2) Formulate different policies based on regional characteristics. This research

637 study finds that the implementation effect of the policy is different in the

638 different regions of China, and the implementation effect is higher in high-

639 polluting areas, thereby indicating that the market cannot take into account

640 regional differences. Therefore, when formulating policies, it is necessary for

641 the government to combine regional characteristics to achieve differentiated

642 market governance.

643 (3) Establish perfect supervision. This study finds that the policy effect is higher

644 in areas with strict environmental regulation, indicating that the effective

645 implementation of environmental regulations requires strict supervision.

646 Therefore, the government must strengthen project supervision to ensure the

647 effective implementation of emissions trading policy. First, the amount of

648 pollutant emissions of enterprises is the focus of this policy, and the

649 government should increase the monitoring of pollutant emissions by

650 enterprises to ensure the accuracy of pollution emissions monitoring. Second,

651 the government can establish a corporate credit platform to expose companies

652 that have violated regulations, and effectively supervise the behavior of

653 companies through social forces such as the media and the public.



654 6 Conclusions


655 In this study, the difference in differences (DID) method is used to test the ETP’s

656 effectiveness. Firstly, a slack-based model with directional distance function (SBM-

657 DDF) is used to measure industrial green innovation efficiency. Secondly, the DID

658 model is used to evaluate the effectiveness of the policy effects and its impact on

659 green innovation efficiency. Finally, a heterogeneity analysis is performed to analyze

660 different policy scenarios in regions with different levels of pollution and different

661 intensities of environmental regulation.

662 Further results from this research study indicate that:

663 (1)	The industrial green innovation efficiency of each province in China is

664 generally increasing year by year; the development of the industry is gradually

665 changing to incorporate both green and sustainable development.

666 (2)	In the evaluation of the emission reduction effect, the interaction term

667 coefficient is significantly negative, thereby indicating that the ETP significantly

668 reduces industrial SO2 emissions. Therefore, the policy is effective.

669 (3)	In evaluating the impact on industrial green innovation efficiency, the

670 interaction term coefficient is significantly positive, which indicates that the ETP

671 also significantly improves industrial green innovation efficiency.

672 (4)	According to the heterogeneity analysis, it is also observed that the

673 ETP significantly improves industrial green innovation efficiency in high

674 pollution regions and strict environmental regulation regions.

675 Overall, this study identifies that ETP can promote pollution reduction and green

676 innovation in developing countries, and is conducive to achieving sustainable

677 economic development. This has enabled the aim of the policy to be clarified and



678 suggestions to be provided for implementation enhancement of future policies on

679 emissions trading policy in other countries.

680 A limitation of this study is that the data involved is regional. Further research is

681 needed at the national or company levels in order to obtain more detailed results and

682 formulate more targeted policy recommendations. Another limitation  is that only

683 industrial companies are involved. Further consideration should therefore be given to

684 obtaining data from other industries and/or other types of organizations (such as

685 service companies as well as government organizations) to determine the consistency

686 of the results of this study.

687 687

688 688

689 689
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i According to the China Statistical Yearbook, the scope of industrial enterprises above a designated size are: all state-owned industrial enterprises and the non-state-owned industrial enterprises with revenue from their principal business over CNY 5 million from 2004 to 2006; all industrial enterprises with revenue from their principal business over CNY 5 million from 2007 to 2010; and all industrial enterprises with revenue from their principal business above CNY 20 million since 2011.
