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Abstract

In [5] Pfurner, Schröcker and Husty introduced a mapping from P7 to the Study quadric.
In [9], it was shown that this map could be thought of as the composition of an extended
version of the inverse Cayley map based on the 6×6 adjoint representation of the group, and
the Cayley map itself. Here, the analogous map using the Cayley map based on the standard
4×4 representation of SE(3) is studied. It is shown that mapping a general line in P7 results
in a motion with cubic trajectories. A different view of the map is then studied. A birational
map between the Study quadric and the variety defined by the adjoint representation of the
group is given. The new map is then the composition of the map from the Study quadric,
extended to all P7, with the map from the P17 back to the Study quadric. The effect of the
new map on symmetric subspaces of SE(3) is also considered. Lastly, an example is given
showing how the interpolation techniques can be extended to point constraints. That is,
where a point on the body is required to pass through a sequence of successive points in
space.

1 Introduction

Pfurner, Schröcker and Husty,[5], introduced an explicit rational map from the projective space
P7 to the Study quadric Qs. The Study quadric is a non-singular quadric hypersurface in P7.
Points of this quadric (with the exception of those in a single generator 3-plane) are in 1-to-1
correspondence with the elements of the group of proper isometries of R3—the group of rigid-
body displacements in space; SE(3). Motivating this work was the wish to produce a simple
method to interpolate rigid-body motions. From knot point in the group a rational interpolation
is constructed and then mapped to Qs to give a rational rigid-body motion. In [9], it was shown
that this map is closely connected to the Cayley map associated to the adjoint representation
of SE(3). The inverse of the Cayley map extends to all P7 then Pfurner, Schröcker and Husty’s
map (PSH map) is the composition of this extended map, with the Cayley map from the Lie
algebra of the group to the group itself.

Here another such map is introduced. This map is based on the Cayley map of the 4 × 4
standard representation of SE(3). Generally, the new map produces motions of lower degree
than the PSH map. In particular the map of a general line in P7 is conic in the Study quadric.
This conic represents a rigid-body motion with cubic trajectories, a motion previously studied
by Wunderlich [10].

A different view of the PSH map is given in [6]. There the map is thought of as a composition
of maps between the Study quadric and the variety determined by the standard 4×4 homogeneous
representation of SE(3). The map from the Study quadric extends simply to a map from all
P7 to the representation of the group, and hence the composition maps from P7 to the Study
quadric. Here, it is shown that the new map can be viewed in a similar way but using the adjoint

1



representation of the group. To do this the maps between the Study quadric and the variety
determined by the representation are found.

In [9] it was noted that the algebraic symmetric subspaces of SE(3) are either linear subspaces
in Qs or the intersection of Qs with some linear subspace of P7. In [9] it was also noted that the
PSH map preserves these linear subspaces. So the PSH map can be used to interpolate motions
in symmetric subspaces of the group without change. Here, the effect of the new map is also
considered.

Finally an example is given showing how the interpolation technique can be extended to
interpolation of point data. In some situations a point on the body is required to pass through
successive points in space, the orientation of the body being irrelevant at these knot points. In
the Study quadric the set of all displacements which move a particular point to another given
point form a 3-plane generator of the quadric. Extra information is required to find a unique
group element on this 3-plane.

First some notation will be set up.

2 Maps from P7 to the Study Quadric

A general dual quaternion is given by,

g = (a0 + a1i+ a2j + a3k) + ε(c0 + c1i+ c2j + c3k) (1)

where i, j and k are the unit quaternion generators and ε is the dual unit which commutes with
the quaternions and squares to zero, ε2 = 0.

A rigid-body displacement is given by a dual quaternion with elements satisfying the equation,

a0c0 + a1c1 + a2c2 + a3c3 = 0. (2)

Taking (a0 : a1 : a2 : a3 : c0 : c1 : c2 : c3) as real homogeneous coordinates in a P7, the above
quadratic equation determines the Study quadric QS . Elements of this projective quadric (with
the exception of the points on the 3-plane A∞ determined by a0 = a1 = a2 = a3 = 0), are in
1-to-1 correspondence with elements of the group of rigid-body displacements, SE(3).

2.1 The PSH Map

The map given in [5] takes an arbitrary point of P7 to QS in P7, so let us write the coordinates
in the first P7 as āi and c̄i, now the map can be written as,

a0 = ā0(ā · ā), c0 = c̄0(ā · ā)− ā0(ā · c̄),
a1 = ā1(ā · ā), c1 = c̄1(ā · ā)− ā1(ā · c̄),
a2 = ā2(ā · ā), c2 = c̄2(ā · ā)− ā2(ā · c̄),
a3 = ā3(ā · ā), c3 = c̄3(ā · ā)− ā3(ā · c̄).

(3)

where ā · ā = ā20 + ā21 + ā22 + ā23 and ā · c̄ = ā0c̄0 + ā1c̄1 + ā2c̄2 + ā3c̄3. It is straightforward to
check that the image of this map satisfies the equation defining the Study quadric and hence the
image of the map is indeed QS .

2.2 The New Map

Taking the homogeneous coordinates of P7 as (ā0 : ā1 : ā2 : ā3 : c̄0 : c̄1 : c̄2 : c̄3) and the
coordinates of the Study quadric as (a0 : a1 : a2 : a3 : c0 : c1 : c2 : c3) the new map can be
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written explicitly as,

a0 = ā20, c0 = −(ā1c̄1 + ā2c̄2 + ā3c̄3),
a1 = ā0ā1, c1 = ā0c̄1,
a2 = ā0ā2, c2 = ā0c̄2,
a3 = ā0ā3, c3 = ā0c̄3.

(4)

Clearly this map takes points in P7 to points on the Study quadric. Notice that it is only
quadratic in the homogeneous coordinates of P7 while the PSH map (3) is cubic.

The map has an exceptional set, that is a set of points in P7 not mapped to any point. This
consists of the intersection of the Study quadric Qs, with its tangent hyperplane at the point ε,
that is the point (0 : 0 : 0 : 0 : 1 : 0 : 0 : 0). The hyperplane has the equation ā0 = 0 and hence
the intersection with Qs is a quadric cone in this P6 with equation ā1c̄1 + ā2c̄2 + ā3c̄3 = 0. The
vertex of the cone is the point ε. This cone can also be described as the set of π-screws, that
is rotations of π radians about lines in space composed with an arbitrary translations along the
line.

Fibres of the map are lines through the point ε. Suppose that g is a point in Qs then the line
g + λε clearly maps to g. Note also that points on the tangent hyperplane to ε, away from the
exceptional set, are mapped to ε.

2.3 The 4× 4 Cayley map

In [7] Cayley maps were found for both the standard 4× 4 representation of SE(3) and the 6× 6
adjoint representation of the group. In [9] it was shown that the PSH map can be thought of as
the inverse 6× 6 Cayley map extended to all of P7 composed with the Cayley map back to the
Study quadric. Here the analogous compositions using the 4× 4 Cayley map will be studied.

Both of these maps can be turned into birational maps between the Study quadric and P6.
That is, the Cayley map and its inverse can be viewed as a birational transformation between
the six-dimensional projective space P6 and the Study quadric in P7. To see this, introduce a
homogenising variable w0 so the homogeneous coordinates for the P6 will be (w0 : w1 : w2 : w3 :
u1 : u2 : u3) and the coordinates in the P7 will be (a0 : a1 : a2 : a3 : c0 : c1 : c2 : c3) as above.

The Cayley map is a map from twists to group elements. If a general twist is written as the
dual quaternion,

s = (w1i+ w2j + w3k) + ε(u1i+ u2j + u3k),

then the 4× 4 Cayley map can be written as a polynomial,

Cay4(s) =
1

2
√
w2

0 + |w|2
(
(2w2

0 + |w|2) + 2w0s+ s2
)
,

where the variable w0 has been incorporated to render the equation homogeneous. Explicitly
this is,

a0 = w2
0, c0 = −(w1u1 + w2u2 + w3u3),

a1 = w0w1, c1 = w0u1,
a2 = w0w2, c2 = w0u2,
a3 = w0w3, c3 = w0u3.

Note that, the normalising factor, 1/2
√
w2

0 + |w|2, can be cancelled since the coordinates are
homogeneous. So the Cayley map is a quadratic transformation.
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The inverse map, Cay−14 is given by a cubic polynomial,

Cay−14 (g) =
1

2a0(a20 + a21 + a22 + a23)

(
g3 − 4a0g

2 +(
4a20 + 3(a20 + a21 + a22 + a23)

)
g − 4a0(a20 + a21 + a22 + a23)

)
.

If we assign w0 = 2a0(a20+a21+a22+a23), the common denominator, then the other coordinates
of s = Cay−14 (g) are given by expanding the polynomial in g and simplifying using the relation
a0c0 + a1c1 + a2c2 + a3c3 = 0 defining the Study quadric. After cancelling the common factor,
2(a20 + a21 + a22 + a23), the result is,

w0 = a0
w1 = a1 u1 = c1
w2 = a2 u2 = c2
w3 = a3 u3 = c3

So this is, in fact, a linear projection, and is clearly the inverse to the Cayley map above. The
centre of this linear projection is just the point (0 : 0 : 0 : 0 : 1 : 0 : 0 : 0) which, as a dual
quaternion is simply ε. This simple projection clearly extends to the whole of P7. The extended

map will be written, C̃ay
−1
4 .

From this it is clear that the new map, described above, is the composition Cay4 ◦ C̃ay
−1
4 .

2.4 The Image of a General Line

Other lines in P7 map to conics in the Study quadric. These lines meet Qs in two points, together
with ε this forms a plane meeting Qs in a conic curve. This curve through ε must be the image
of the line.

For example, suppose the line meets the Study quadric at the identity, the point 1, and the
screw displacement,

g = (c+ sk) + ε(−pθ
2
s+

pθ

2
ck)

where c = cos(θ/2) and s = sin(θ/2) are constants. This displacement has pitch p and its screw
axis is the z-axis. The line joining these points will have coordinates,

ā0 = λ+ µc, c̄0 = −µpθ2 s,
ā1 = 0, c1 = 0,

ā2 = 0, c̄2 = 0,

ā3 = µs, c̄3 = µpθ2 c,

where λ and µ are the homogeneous parameters of the line. The image of this line under the
new map is then,

a0 = (λ+ µc)2, c0 = −µ2 pθ
2 cs,

a1 = 0, c1 = 0,

a2 = 0, c2 = 0,

a3 = (λ+ µc)µs, c3 = (λ+ µc)µpθ2 c.

An affine transformation of the parameters is useful here: let α = λ + µc and β = µs. With
these parameters the conic is given by,

g(α : β) = (α2 + αβk) + ε(−β2κ+ αβκk),
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Figure 1: The arrow moves according to a special Wunderlich motion about an axis. The curve
is the trajectory of the arrow’s point.

where the constant κ = pθc/2s.
Notice that the conic meets A∞, the 3-plane of non-physical displacements, in a single point

at the parameter value α = 0. Now, if 1 + ε(xi + yj + zk) is a point in space then we can find
the trajectory of the point under the action of the motion from,

W + ε(Xi+ Y j + Zk) = g(α : β)
(
w + ε(xi+ yj + zk)

)
g†(α : β). (5)

Here the homogenising variables w and W have been introduced so that the curves are now
curves in a 3-dimensional projective space P3. The superscript †, in the above is intended to
denote the conjugation:

g† = (a+ εc)† = (a− − εc−).

Substituting the rigid-body motion g(α : β) gives results which are of degree 4 in α and β, but
in each term α is a common factor and so may be cancelled. The results are cubic trajectories,

X = α(α2 − β2)x− 2α2βy,
Y = 2α2βx+ α(α2 − β2)y,
Z = α(α2 + β2)z + 2β(α2 + β2)κ,
W = α(α2 + β2)w.

So, the motion must be a special type of Wunderlich motion. In fact we may reparameterise the
curve again, so that α = cos(φ/2) and β = sin(φ/2), then the curve can be written as an affine
curve,

X = x cosφ− y sinφ,
Y = x sinφ+ y cosφ,
Z = z + 2κ tan(φ/2).

Note that this result is quite general, any line meeting the Study quadric in two places can be left-
translated so that one of the intersection points coincides with the identity, then coordinates can
be chosen so that the z-axis of space coincides with the screw axis of the second displacement.
So using the new map to interpolate a motion between a pair of displacements will give this
special type of cubic motion, see figure 1.

Rigid-body motions where almost all points in space follow cubic trajectories were studied by
W. Wunderlich [10]. The general such motion was found to be given by certain quartic curves
in the Study quadric. These motions are characterised by 6 parameters. Here all but one of the
parameters is zero and the quartic degenerates to a conic, see [2].
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2.5 A Different View

In [6] Schröcker takes a different view of these maps. Rather than considering maps from P7 to
the Study quadric, he looks at a map from P7 to the projective compactification of the standard
4 × 4 representation of SE(3) in P12. An element of the group of rigid-body displacements is
given by a matrix of the form,

(
R ~t
0 ∆

)
=


r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3
0 0 0 ∆


where the components are homogeneous coordinates in a twelve dimensional projective space.
In terms of these variables the map can be written,

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 =

a20 + a21 − a22 − a23 2(a1a2 − a0a3) 2(a1a3 + a0a2)
2(a1a2 + a0a3) a20 − a21 + a22 − a23 2(a2a3 − a0a1)
2(a1a3 − a0a2) 2(a2a3 + a0a1) a20 − a21 − a22 + a23


for the rotation matrix,

~t =

t1t2
t3

 = 2

a0c1 − a1c0 + a2c3 − a3c2
a0c2 − a1c3 − a2c0 + a3c1
a0c3 + a1c2 − a2c1 − a3c0


for the translation vector and finally the homogenising variable is given by,

∆ = a20 + a21 + a22 + a23.

This map takes any point of P7 to the group. That is, whatever the values of ai and ci, so long
as not all of the ai are zero, then the image will satisfy RRT = ∆2I3 and det(R) = ∆3, with I3
the 3× 3 identity matrix.

Schröcker also considers the inverse map from P12 to the Study quadric given by,

a0 = 1
4 (∆ + r11 + r22 + r33)∆,

a1 = 1
4 (r32 − r23)∆,

a2 = 1
4 (r13 − r31)∆,

a3 = 1
4 (r21 − r12)∆,

c0 = 1
8

(
(r23 − r32)t1 + (r31 − r13)t2 + (r12 − r21)t3

)
,

c1 = 1
8

(
(∆ + r11 + r22 + r33)t1 − (r12 − r21)t2 + (r31 − r13)t3

)
,

c2 = 1
8

(
(r12 − r21)t1 + (∆ + r11 + r22 + r33)t2 − (r23 − r32)t3

)
,

c3 = 1
8

(
(r13 − r31)t1 + (r23 − r32)t2 + (∆ + r11 + r22 + r33)t3

)
.

Actually, Schröcker considers four different maps and linear combinations of the four. This
particular map is chosen here since it maps the identity matrix to the dual quaternion 1. Now
when these two maps are composed to produce a map from P7 to the Study quadric the result
is the PSH map described above. The image of a line in P12 in the Study quadric is again a
special Wunderlich motion even though the construction here is not the same as that described
in section 2.4.

Notice that, these maps between P7 and P12 were also given in [8]. Also given in this previous
work was a rational map from the Study quadric to the 6 × 6 adjoint representation of SE(3).

6



In the adjoint representation of SE(3) group elements are given by matrices of the form,

Ad(g) =

(
M 0
U M

)
where M and U are 3× 3 matrices. Taking the elements of these two matrices as homogeneous
coordinates we can see that the adjoint representation lies in a P17. The map from the Study
quadric is given by,

M = ∆I3 + 2a0A+ 2A2,

U = 2(a0C + c0A+AC + CA),

here, as before, a0, a1, a2, a3, c0, c1, c2, c3 are the coordinates in P7. Again as before, I3 is the
3× 3 identity matrix and ∆ = a20 +a21 +a22 +a23. The 3× 3 matrices A and C are anti-symmetric
matrices,

A =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 and C =

 0 −c3 c2
c3 0 −c1
−c2 c1 0

 .

It is simple to see that this map extends to all of P7 and that the image of the map lies in the
group. To show that the image of the map lies in SE(3) we need to verify that M is a multiple
of a rotation matrix and that U is the product of an anti-symmetric matrix with M . Simple
but lengthy computations, best suited to a computer algebra system, shows that MMT = ∆2I3,
det(M) = ∆3 and UMT +MUT = 0.

The inverse of this map was not found in [8]. Note that, since this is a map between projective
spaces, multiplying the coordinates by a non-zero common factor is irrelevant. Moreover, since
this is only a rational map the constant can be zero as long as it is not zero everywhere. In order
to present the map from P17 to the Study quadric in a reasonably readable form it is necessary
to introduce some intermediate variables. So let,

M = (M −MT ) and U = (U − UT ).

The map is then given by,

a0 =
(
12 det(M) + 4 Tr(M) Tr(MMT )

)(
Tr(MMT )− Tr(M2)

)
A = 4M

(
Tr(MMT )− Tr(M2)

)
Tr(MMT )

c0 = 2
(

Tr(MMT )− Tr(M2)
)

Tr(MMT ) Tr(U)

C = −4
(
M

2
U − 2M U M + U M

2)
Tr(MMT )

−M
(
2 Tr(M3) + 2 Tr(MMT ) Tr(M)− 3 Tr(M2) Tr(M) + Tr(M)3

)
Tr(U)

It is clear that this map extends to a map from all of P17 and is of degree 5 in the coordinates
of P17. It can be verified that the image of this map satisfies equation (2), so the image of the
map lies in the Study quadric.

Finally here, composing the two maps; the one from P7 to P17 with the map from P17 to the
Study quadric gives a map from P7 to the Study quadric. Up to multiplication by an overall
factor of 768 a20∆2 this is the new map given in equation (4).

3 Groups and Symmetric Spaces

In [3] Nawratil introduced an interpretation of the ambient space P7, containing the Study
quadric, as a subgroup of SE(4), the rigid-body motions in 4 dimension. This seven dimensional
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subgroup of SE(4) is an analogue of the Schönflies group in 3-dimensions. In 3D a Schönflies
subgroup preserves the orientation of a fixed 2-plane. In 4D the subgroup X4, is the group of
rigid-body displacements that maintain the orientation of a given 3-plane. It is not too difficult
to see that the subgroup is isomorphic to the semi-direct product X4 = SO(3) o R4 ⊂ SE(4).
That is the semi-direct product of the rotations preserving the 3-plane with the 4-dimensional
abelian subgroup of pure translations. Note that in 4 dimensions the axis of a rotation is a
2-plane. Further, since the action of the 3-dimensional rotation group fixes translations in one
particular direction, that is elements of SO(3) commute with translations in one direction, it can
be seen that the subgroup is also isomorphic to the direct product, X4 = SE(3)× R ⊂ SE(4).

In terms of dual quaternions, points in R4 can be written as, 1 + ε(x0 + x1i + x2j + x3k)
where (x0, x1 x2, x3) are the coordinates of the point. Now all elements of SE(3) can be written
as dual quaternions of the form,

(a0 + a1i+ a2j + a3k) + ε(c0 + c1i+ c2j + c3k) = g +
1

2
ε~tg,

where g is a non-zero quaternion, that is gg− 6= 0 and ~t is a pure quaternion, so that ~t− = −~t.
The quaternion g, represents the rotational part of the displacement and the pure quaternion ~t,
gives the translational part. It is not difficult to see that dual quaternions of this form lie on the
Study quadric since the equation for the Study quadric, (2), can be written,

ac− + ca− = 0,

where a = a0 + a1i + a2j + a3k and similarly c = c0 + c1i + c2j + c3k. Substituting a = g and
c = 1

2
~tg gives,

g(
1

2
~tg)− +

1

2
~tgg− = −1

2
gg−~t+

1

2
~tgg− = 0,

since gg− is real and so commutes with all quaternions.
The effect of such a displacement on a point in R4 can be found by extending the action given

in equation (5) above,

(g +
1

2
ε~tg)

(
1 + ε(x0 + x1i+ x2j + x3k)

)
(g − 1

2
ε~tg)−

= gg−
(

1 + ε
( 1

gg−
g(x1i+ x2j + x3k)g− + x0 + ~t

))
Notice that, the rotation does not effect coordinates in the x0 direction.

For an arbitrary dual quaternion we can assume that c is the product of two arbitrary
quaternions, c = 1

2 (t0 + ~t)g, where ~t and g are as before and t0 is a real constant. Using
this to compute the displacement of a point in R4 gives,

(g +
1

2
ε(t0 + ~t)g)

(
1 + ε(x0 + x1i+ x2j + x3k)

)
(g +

1

2
ε(t0 − ~t)g)−

= gg−
(

1 + ε
( 1

gg−
g(x1i+ x2j + x3k)g− + x0 + t0 + ~t

))
This shows that t0 gives the translation in the x0 direction and hence verifies Nawratil’s inter-
pretation of P7. The non-zero factor gg− can, of course, be cancelled since we are working in a
projective space.

Nawratil also considered what happens when a dual quaternion is subject to the PSH map.
Let ā+ εc̄ = g + 1

2ε(t0 + ~t)g. By writing g = g0 + ~g, the Gibb’s relation can be used to simplify
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computations. First ā0 = g0 and ā · ā = g20 + |~g|2. Then,

c̄ =
1

2
(t0 + ~t)(g0 + ~g) =

1

2
(t0g0 − ~t · ~g + g0~t+ t0~g + ~t× ~g).

Now ā · c̄ = (1/2)t0(g20 + |~t|2) = (1/2)t0(ā · ā). See (3) above. Hence, after cancelling the non-zero
common factor ā · ā, we have that,

PSH
(
g +

1

2
ε(t0 + ~t)g

)
= g +

1

2
ε~tg,

that is, the map simply forgets the translation perpendicular to the x1x2x3 3-plane.
Notice that, the above shows that the group of rigid body displacements in 3D can be viewed

as the quotient X4/R = SE(3). This means that the PSH map is the projection map for the
principal bundle, PSH : X4 −→ SE(3) with fibre R. Moreover the PSH map is a homomorphism
PSH : X4 −→ SE(3).

As discussed at the end of section 2.2, the fibres of the new map are lines through ε. Hence,
writing the new map as N(), it is clear that,

N
(
g +

1

2
ε(γ0 + ~tg)

)
= g +

1

2
ε~tg,

where γ0 is arbitrary. It is straightforward to show that this is not a homomorphism.

3.1 Symmetric Subspaces of SE(3)

In [9] it was shown that algebraic subgroups of SE(3) and algebraic sub-symmetric spaces of
SE(3) lie on linear spaces in P7. The spaces are either linear spaces contained in Qs or the
intersection of Qs with a linear space. For convenience, Tables 1 and 2 from [9] are reproduced
here. These give canonical forms for the subgroups and subsymmetric spaces of SE(3).

Table 1: Canonical Forms for the Connected Subgroups of SE(3). GH type denotes the class of
the screw system in the Gibson-Hunt classification of screw systems.

Dim GH type Subgroup Sub. Alg. basis Linear equations Description

1 IA (p = 0) SO(2) {i} a2 = a3 = c0 = c1 = c2 = c3 = 0 line in QS

1 IA (p 6= 0) Hp {i+ pεi} not algebraic -

1 IIB R {εi} a1 = a2 = a3 = c0 = c2 = c3 = 0 line in QS

2 IB0 SO(2)× R {i, εi} a2 = a3 = c2 = c3 = 0 3-plane

2 IIC R2 {εi, εj} a1 = a2 = a3 = c0 = c1 = 0 2-plane in QS

3 IIA (p = 0) SO(3) {i, j, k} c0 = c1 = c2 = c3 = 0 A-plane

3 IIC (p = 0) SE(2) {i, εj, εk} a2 = a3 = c0 = c1 = 0 A-plane

3 IIC (p 6= 0) Hp nR2 {i+ pεi, j, k} not algebraic -

3 IID R3 {εi, εj, εk} a1 = a2 = a3 = c0 = 0 B-plane

4 IIC SE(2)× R {i, εi, εj, εk} a2 = a3 = 0 5-plane

These linear spaces were shown to be preserved by the PSH map. This is also true for the new
map. For example, the Schönfliess subgroup lies in the intersection of Qs with a 5-plane. The
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Table 2: Canonical Forms for the Connected Symmetric Subspaces of SE(3). LTS basis denotes
a basis for the Lie triple system.

Dim GH type LTS basis Linear equations Description

2 IIA (p = 0) {i, j} a3 = c0 = c1 = c2 = c3 = 0 2-plane in QS

2 IIB (p = 0) {i, εj} a2 = a3 = c0 = c1 = c3 = 0 2-plane in QS

2 IIB (p 6= 0) {i+ pεi, εj} not algebraic -

3 IIB (p = 0) {i, j, εk} a3 = c0 = c1 = c2 = 0 B-plane

3 IC0 {i, εi, εj} a2 = a3 = c3 = 0 4-plane

4 IB0 {i, j, εi, εj} a3 = c3 = 0 5-plane

5 IIB {i, j, εi, εj, εk} a3 = 0 hyperplane

5-plane can be the one defined by a2 = a3 = 0. Under the new map any point with ā2 = ā3 = 0
will be mapped to one with,

a2 = ā0ā2 = 0 and a3 = ā0ā3 = 0

So for example, if we take a general twist from a IIB (p = 0) 3-system, s = ai+ bj + cεk the
exponential of this is,

es = cos θ +
a

θ
sin θi+

b

θ
sin θj +

c

θ
sin θεk (6)

where θ2 = a2 + b2. Clearly, whatever the values of the parameters a, b and c, the exponential
lies in the 3-plane a3 = c0 = c1 = c2 = 0. This 3-plane is a generator plane of the Study quadric.

In this way, all possible subalgebras and Lie triple systems can be examined. Tables of
canonical forms for the possible subalgebras and Lie triple systems can be found in Table 1 and
2 respectively, together with the linear equations satisfied by the subspaces they generate.

4 Interpolation through Points

A common problem in the design of mechanisms is to find a rigid-body motion that moves a
body in such a way that a point on the body coincides successively with a sequence of prescribed
points in space. The orientation of the body when the point on the body coincides with the target
points is not relevant. There are many works in the literature addressing this “body-guidance
problem”, for example [4]. Here this problem of finding a rational rigid-body motion satisfying
a number of such point constraints is considered from the viewpoint of the Study quadric.

The set of displacements that move a point ~α to a point ~β can be found as follows. First
translate ~α back to the origin, perform an arbitrary rotation a = a0 + a1i+ a2j + a3k about the
origin, finally translate the origin to ~β. The dual quaternions q representing this composition of
displacements is,

q = (1 +
1

2
ε~β)a(1− 1

2
ε~α) = a+

1

2
ε(~βa− a~α)

Hence, q = a+ εc with c = 1
2 (~βa− a~α). This shows that c can be expressed linearly in terms of
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(a) (b) (c)
Figure 2: (a) The three points for the interpolation are given by the points of the arrow, the
orientations are determined by the intersection of the point constraints with a particular 4-plane.
(b) The motion given by mapping the interpolation conic using the PSH map. (c) The same
interpolated curve but mapped to a motion using the new map.

the rotation a,
c0
c1
c2
c3

 =
1

2


0 (αx − βx) (αy − βy) (αz − βz)

(βx − αx) 0 −(αz + βz) (αy + βy)
(βy − αy) (αz + βz) 0 −(αx + βx)
(βz − αz) −(αy + βy) (αx + βx) 0



a0
a1
a2
a3

 . (7)

This matrix equation represents 4 linear equations which determine an A-plane in the Study
quadric. Note, it is straightforward to see that this 3-plane lies in the Qs since the coefficient
matrix is anti-symmetric. In P7 a 4-plane will intersect a general 3-plane, such as an A-plane, in
a unique point. Given several point constraints we can choose a 4-plane in P7 that meets each
A-plane given by a point constraint at a single point. A polynomial curve can be constructed
to pass through all of these points. Finally the interpolating curve can be mapped back to Qs
using either the PSH map or the map introduced above.

4.1 An Example

As 4-plane, suppose we choose the plane defined by the three equations a2 = a3 = c3 = 0 which
intersects the Study quadric in a 3-dimensional subsymmetric space, see table 2. In this case
it is possible to combine these three equations with the four equations for the A-plane given in
equation (7) and produce a symbolic solution for an arbitrary point constraint:

q = 2(αy + βy) + 2(βz − αz)i
+ ε
(
(αx − βx)(βz − αz) + (βx − αx)(αy + βy)i+ (β2

y + β2
z − α2

y − α2
z)j
)
.

So, q is the dual quaternion, lying on the 4-plane, which moves ~α = (αx, αy, αz)
T to ~β =

(βx, βy, βz)
T .

Suppose we try to approximate a finite screw motion see figure 2 (a), the knot points for the
interpolation are the points of the arrows. Using the result above gives three dual quaternions
on the Study quadric. The interpolating curve is a conic in P7. Figure 2 (b) shows the mapping
of the interpolating curve using the PSH map while Figure 2 (c) illustrates the result using the
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new map presented in this work. Note that, the result of using the PSH map is a motion that
has point trajectories of degree 6 whilst the point trajectories of the new map have degree 4. On
the other hand, from the diagram it can be seen that the motion given by the PSH map has a
more uniform speed over the interpolating interval than the new map. Problems can arise with
either map, if the interpolating curve in P7 meets the exceptional set of the map.

4.2 Hybrid Constraints

An advantage of this approach is that mixtures of point and pose constraints can be treated in this
framework. Here a pose condition is a specification of the position and orientation that the body
must achieve at some time. So, in a hybrid constraint problem a point on the body is required
to coincide successively with some given points but at some of these points the orientation of the
body is also specified.

For up to five pose constraints this can be solved as follows: Five general pose constraints
will define a 4-plane in P7 and hence 5 pose constraints and n general point constraints will
determine n+ 5 points in Qs. As before a polynomial curve can be interpolated using the n+ 5
points and then mapped to Qs. With fewer than five pose constraints there will be some freedom
to the choice of P4. More than five pose constraints cannot, in general, be interpolated in this
way.

5 Conclusion

An obvious question that arises from this work is: Are there any other maps from P7 to the
Study quadric? In general, Cayley maps for different representations of a group are different.
However, for some inequivalent representations the Cayley maps might be the same. For the
group SE(3) many inequivalent representations are known but only two Cayley maps. It would
be useful to know whether or not there were any others.

As pointed out in [9], the interpolation of poses in SE(3), either using the PSH map or the
new map are very similar in conception to the methods outlined in [1]. Here SE(3) is embedded
in the general affine group GA+(3), this is just the semi-direct product of GL+(3), the positive
determinant 3 × 3 matrices with R3, the translations. The projection, that maps to SE(3), is
essentially given by the polar decomposition of the 3× 3 matrix; ignoring the symmetric matrix
in the decomposition and retaining only the orthogonal part. It is not too difficult to see that
this idea could be extended to any split extension of SE(3) as long as the extension group has
a linear structure so that interpolation can be performed in the extended group.

Finally it may be possible to use these ideas for location problems. In many areas of robotics,
mobile robots, robot vision and others, a fundamental problem is to find the location of the
robot given data from sensors. The sensors may give data on the position of points, lines,
planes and sometimes coordinate frames. The problem is to find the position and orientation
of the robot from the measured data. If the sensor data is perfect, these location problems
are usually fairly simple to solve. But real data will contain errors and so the real problem
here is to produce an accurate result given noisy data. The difficulty is that there are usually
consistency conditions that data must satisfy. For example, consider trying to find the rigid-body
displacement undergone by the end-effector of a robot by measuring the positions of points on
the end-effector before and after the displacement. The pairwise distances between the points
should be the same before and after the displacement since these distances should be preserved
by a rigid-body displacement. Sensor noise and rounding errors will mean that the distances
will, almost certainly, not be the exactly the same before and after the displacement. A possible
approach is to set-up the problem as a number of linear equations in the dual quaternions. Then
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we can solve the overdetermined system of equations using pseudo-inverses or similar techniques.
Now the solution will be a dual quaternion, but not necessarily a point on the Study quadric, that
is not necessarily a rigid-body displacement. So, finally an element of SE(3) can be recovered
by mapping the point to the Study quadric.
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