
Published in Special Issue on Advances in Information Engineering, Engineering Letters, 13, (2), pages 185-194, 2006. 

1 

 
Abstract—Researchers have shown a considerable amount of 

interest in the control of pneumatic drives over the past decade, 
for two main reasons, firstly, the response of the system is very 
slow and it is difficult to attain set points due to hysteresis and 
secondly, the dynamic model of the system is highly non-linear, 
which greatly complicates controller design and development. To 
address these problems, two streams of research effort have 
evolved and these are: (i) using conventional methods to develop a 
modelling and control strategy, (ii) adopting a strategy that does 
not require mathematical model of the system. This paper 
presents an investigation into the modelling and control of an air 
motor incorporating a pneumatic equivalent of the electric 
H-bridge. The pneumatic H-bridge has been devised for speed 
and direction control of the motor. The system characteristics are 
divided into three regions, namely low speed, medium speed and 
high speed. The system is highly nonlinear in the low speed region, 
for which neuro-modelling, simulation and control strategies are 
developed.  
 

Index Terms—Modelling, neural networks, pneumatic motor, 
simulation.  
 

I. INTRODUCTION 

 Industrial processes, in general, require objects to be moved, 
manipulated or subjected to some force. The use of electrical 
equipment, such as DC motors, or mechanical equipment via 
devices driven by air (pneumatics) or liquid (hydraulics) 
normally achieves these tasks. Air motors are compact, 
lightweight sources of smooth vibration-less power. They start 
and stop almost instantly, and are not affected by continuous 
stalling or overload, and thus are suitable for intermittent 
operation. Air motors are relatively cheap, easy to maintain, 
and have the versatility of variable speed, high starting torque, 
are intrinsically safe in hazardous areas, and can operate in 
exceptionally bad environments. Detailed literature on the 
advantages of air motors over electric motors can be found in 

 
Manuscript received April 11, 2006.  
 
R. Marumo was with the University of Sheffield. Department of Automatic 

Control and Systems Engineering. Sheffield. England. U.K. He is now with 
University of Botswana. Department of Mechanical Engineering. Private Bag 
UB0061. Gaborone. Tel: +267 3554307/4206. Fax: +267 3952309 

e-mail: marumorr@mopipi.ub.bw 
 
M.O. Tokhi is with the University of Sheffield. Department of Automatic 

Control and Systems Engineering. Sheffield. England. U.K. 
 
 

[1-3]. Since air motors do not require electric power, they can 
be used in volatile atmospheres. ��Air motors generally have 
high power density, so a smaller air motor can deliver the same 
power as its electrical counterpart. ��Unlike electric motors, 
many air motors can operate without the need for auxiliary 
speed reducers. Overloads that exceed stall torque generally 
cause no harm to air motors. With electric motors, overloads 
can trip circuit breakers, so an operator must reset them before 
restarting the equipment. In contrast to electric motors, which 
utilise expensive and complicated speed controls, speed of an 
air motor can be regulated through simple flow control valves. 
The motor torque can vary simply by regulating the input 
pressure. Air motors do not need magnetic starters, overload 
protection, or the host of other support components required by 
electric motors, and air motors generate much less heat than 
electric motors.  
 

A. Related work 

Many attempts have been made to introduce simplified 
models in order to construct a model-based air motor controller 
[4]. A common method has been to approximate non-linear 
dynamics of the air motor into linear (ideal) models assumed to 
have sufficiently small uncertainty [5]. Studies on modelling of 
pneumatic systems, especially locally linearised modelling, can 
be found in the literature [6]. Linear and nonlinear dynamic 
models of an pneumatic actuator form the platform and 
launching pad points of the motion control algorithms of the air 
motor system in this study [7]. There are numerous researchers 
who have focused their efforts on different issues of modelling 
of pneumatic servo systems. The issues include but are not 
limited to the following: � Air flow: a normal pneumatic valve 
does not behave like a simple nozzle. The mathematical model 
of the valve airflow must be produced specifying the flow 
capacity of the pneumatic fluid power valves. Valve modelling: 
there is little work found in the literature on this topic. The 
valve’s input/output behaviour has significant influence on the 
servo control system. Analysis of pneumatic valve model 
parameters reveals that, the valve model contains two friction 
parts, namely static part and dynamic part. Friction parameters 
may be identified using evolutionary strategies [8, 9]. This 
paper addresses modelling, simulation and control of an air 
motor using neural networks. The rest of the paper is structured 
as follows: Section 2 provides a brief description of the 
experimental set up utilised in this study. Section 3 briefly 
describes the modelling approach. Section 4 discusses the 

Modelling, simulation and proportional integral 
control of a pneumatic motor  

R. Marumo and M.O. Tokhi 



Marumo R and Tokhi MO (2006) 
 

2 

 

design and implementation of a PI control strategy for the air 
motor, and the paper is concluded in Section 5.  

B.  System set up 

The control system for the air motor is shown schematically 
in Fig. 1. The personal computer (PC) with auxiliary hardware 
is used to source out and read all plant devices. All electrical 
devices are externally powered. Coding the control algorithm is 
straightforward. However, it is always advisable to consider 
factors such as realisation, actuator nonlinearities and 
computational delay to minimise controller sensitivity to errors. 

The motor speed is measured by a shaft encoder, which 
represents the measured speed in terms of frequency. The 
frequency to voltage (F2V) converter transforms the frequency 
from the shaft encoder to a voltage in the range 0-5 V. This 
analogue voltage is then converted into binary form by an A/D 
converter, which the computer can then read. The control 
algorithm uses this measured speed along with other variables 
to generate a control signal. A D/A converter convert the 
control signal from binary into analogue voltage. This analogue 
voltage when applied to the pressure control valve (PCV) either 
increases or decreases the air pressure to the motor, thus 
controlling the speed of the motor. 
 

   
Computer   

  (with control    
algorithm    
implementation)   

    
D/A   

    

A/D   F2V   
    

PCV   
    

Air   
    Filter   

    
Pressure   

    Regulator   
  

Motor   
    

Key:       
Air line         

Electrical s ignal    
    

A/D:   Analogue to Digital   
D/A:   Digital to Analogue   
F2V:   Frequency to Voltage   
PCV:   Pressure Control Valve   

0 - 5 V 

Shaft Encoder 

0-15.5 kHz 

Exhaust 

0  – 10 V   

Input 
Air pressure 
from  
Compressor 
(bar) 

  
  Output 

Speed 
(RPM) 

 

Figure 1 Schematic of an air motor system 

II. SYSTEM IDENTIFICATION 

System identification is one of the most fundamental 
requirements for many engineering and scientific applications. 
The objective of system identification is to find exact or 
approximate models of dynamic systems based on observed 
input and output data. Well developed techniques exist for 
parameter estimation of linear models and 
linear-in-the-parameters nonlinear models. Techniques for 
selection of structure and for non-linear-in-the-parameters 
estimation are still the subject of ongoing research. These input 
and output data can be obtained through experimental work, 
simulation or directly collected from the plant. The procedure 
for identifying a dynamic system consists of the basic steps as 
shown in Fig. 2. 

 
Once a model of the physical system is obtained, it can be 

used for solving various problems such as, to control the 

physical system or to predict its behaviour under different 
operating conditions. A number of techniques have been 
devised by many researchers to determine models that best 
describe input / output behaviour of a system. 

In many cases when it is difficult to obtain a model structure 
for a system with traditional system identification techniques, 
intelligent techniques are desired that can describe the system 
in the best possible way [10]. The air motor system 
incorporates a pneumatic H-bridge. The pneumatic H-bridge 
has been devised for speed and direction control of the motor.  
The main objective of this paper is to carry out modelling of the 
air motor using neural networks. The input (u) is the voltage 
signal initiated by compressed air while the output (y) is the 
rotor speed. A set of data is collected and divided into two 
halves, one set for training and the other for testing. It is 
important to use the test data for validation to ensure that the 
neural network model does replicate the input/output dynamic 
behaviour of the air motor system in general than memorise a 
specific data set. 

 
DATA FROM PLANT/ 

SIMULATION 

SELECTION OF MODEL  
STRUCTURE 

MODEL ESTIMATION 

MODEL VALIDATION 

Accepted 

Not accepted 

Accepted 

Not accepted 

 

Figure 2 System identification procedures 

 
A black box identification approach was adopted for 

modelling the system. This involved several tests using data 
obtained from a speed of 0 to 380 rev/min, termed the low 
speed region. There are a number of nonlinear models that are 
potentially suited to this problem. In this investigation, a neural 
network with input data structure of nonlinear autoregressive 
model with exogenous inputs (NARX) type, which provides a 
concise representation of a wide class of non-linear systems, is 
employed. The NARX model is also referred to in the literature 
by various other names such as one-step-ahead predictor or as 



Marumo R and Tokhi MO (2006) 
 

3 

 

series-parallel model. 

A. Parametric identification techniques 

The air motor system falls into the class of many real world 
processes that are not amenable to mathematical modelling 
because of the following: 

i. The process is too complex to represent mathematically 
ii. Process model is difficult and expensive to evaluate 
iii. There are uncertainties in process operation 
iv. The process is non-linear, distributed, incomplete and 

stochastic in nature 
The need to cope with significant un-modelled and 

unanticipated changes in the plant further complicates the 
control objectives. This will involve the use of advanced 
decision-making processes to generate control actions so that a 
certain level of performance is achieved and maintained even 
though there are drastic changes in the operating conditions. 
Given their inherent ability to approximate any non-linear 
continuous function without requiring any priori knowledge, 
neural networks (NNs) are remarkable choice, particularly for 
systems with un-modelled dynamics. Modelling of systems 
with non-linearities and little physical insight such as 
pneumatic drives is a domain of black box modeling, 
constituting universal approximating capabilities such as NN 
models. Models of dynamic systems are used for various 
purposes such as analysis, fault diagnostic and controller 
design. 

Processes with complex non-linear characteristics, friction 
and or uncertainty in parameters make theoretical modelling 
difficult and sometimes even impractical. The theoretical 
approach applies fundamental interaction. A fundamental 
interaction is a mechanism by which particles interact with each 
other, and which cannot be explained by another more 
fundamental interaction. It results in a model description in 
terms of linear and/or non-linear differential equations, in 
general. For many technical plants physical knowledge is not 
sufficient for a successful theoretical or semi-physical 
modelling [11]. This is the case in pneumatic drives. 

The system considered in this paper is a rotary vane air motor 
equipped with two servo-valves. Nonlinearities resulting from 
friction and thermodynamic laws concerning the state of the air 
are difficult to handle as analytical description and parameters 
are unknown. Theoretical modelling is not suitable for this 
approach [12]. The approach used here, is the full experimental 
technique called identification. Identification means computing 
the parameters of a given model structure assessing 
input/output data of the system considered. Various model 
structures are known. In general, linear models are easy to 
handle but will not yield satisfactory performance if the model 
validity is not restricted to small deviations from fixed 
operating point. Non-linear conventional methods such as state 
polynomial, e.g. bilinear or quadratic, require apriori 
knowledge for the choice of an appropriate model structure. In 
case of uncertain nonlinearities a mismatch between the 
nonlinearities of the model and process may result in large 
deviation between predictions and true values. In contrast, NN 

models present a rather general and flexible approach. They 
describe the input/output behaviour of the system using a set of 
weights. Such models can be interpreted as a weighted 
combination of several local models resulting in a non-linear 
global model. Hence the mismatch between the nonlinearities 
of local models and process is less significant compared with 
single non-linear model. Therefore, NN modelling has been 
applied especially to modelling tasks with uncertain 
nonlinearities, uncertain parameters and or high complexity.  

B. Non-parametric identification techniques 

Various modelling techniques can be used with neural 
networks to identify nonlinear dynamic systems. Nonlinear 
autoregressive moving average process with exogenous input 
(NARMAX) model (also known as error model) is one of them. 
Literature has revealed that, if the plant input and output data 
are available, the NARMAX model is a suitable choice for 
modelling nonlinear systems with suitable neuro-learning 
algorithms. The NARMAX model is mathematically expressed 
as: 

 

y

u e

ŷ(t) = f [(y(t - 1),y(t - 2), , y(t - n ),  u(t - 1), u(t - 2),

              , u(t n ), e(t 1), e(t 2), ,e(t n )] e(t)    



 
  (1) 

 
where:  ŷ t ,  tu  and  e t  represent the output vector 

determined by the past values of the system input and output, 

input vector and noise respectively, y un , n , and en  represent 

associated maximum lags respectively, f ( )  represents the 

system mapping constructed with an NN such as multi-layered 
perceptron (MLP) together with appropriate activation function 
and learning algorithm. 

If the model is good enough to identify the system without 
including the noise term, then it can be represented as NARX 
model and expressed as:  

 

y

u

ŷ(t) = f [(y(t - 1),y(t - 2), , y(t - n ),

                              u(t - 1), u(t - 2), , u(t n )] e(t) 




  (2) 

 
Fig. 3 gives a graphical representation of the NARX model 

identification structure using NNs.  
 

 

  
  

+   
    

-   
    

)   t   (   e   
       Process 

(air motor) 

MLP 

    
Neural 

    Network 

    Model 

   
    
     

    

)   t   (   y   
    

Training 
 Mechanism 
 

      t      
    

      t   y   ˆ   
    

z   - 1 
  

z - n 

  
z - n 

    z - 1 

u(t) 

  

Disturbance /noise Input air 
pressure 

 

Figure 3 NARX Model identification structure 



Marumo R and Tokhi MO (2006) 
 

4 

 

 

C. Model validation 

A common measure of predictive accuracy of model used in 
system identification is to compute the one-step-ahead (OSA) 
prediction of the system output. From the model shown in Fig. 
3, this can be expressed as: 

 

u yŷ(t) = f(u(t), u(t-1), ,u(t-n ), y(t-1), ,y(t-n ))    (3) 

 
where: f ( )  represents a nonlinear function, u and y are the 

input and output samples respectively. The residual or error 
between the output and its prediction is given by: 
 

ˆ(t) = y(t) - y(t)   (4) 

 

Often ŷ(t) will be a relatively good prediction of y(t)  over the 

estimation set, even if the model is biased, because the model 
was estimated by minimising the prediction errors. Another 
method to evaluate the predictive capability of the fitted model 
is to compute the model predicted output (MPO). This can be 
expressed as: 
 

d u d d yˆ ˆ ˆy (t) = f(u(t), u(t-1), ,u(t-n ), y (t-1) ,y (t-n ))    (5) 

 

dˆ(t) = y(t) - y (t)d   (6) 

 
If only lagged inputs are used to assign network input nodes, 
then: 
 

dˆ ˆ y(t) = y (t)   (7) 

 
The implication that if the fitted model behaves well for OSA 
and MPO does not necessarily imply that the model is 
unbiased. The prediction over a different set of data often 
reveals that the model could be significantly biased. One way to 
overcome this problem is by splitting the data set into two sets, 
estimation set and test set. The first half (estimation set) is used 
to train the NN and the output computed. The NN usually 
tracks the system output well and converges to a suitable error 
minimum. New inputs (test set) are presented to the trained NN 
and the predicted output is observed. If the fitted model is 
correct, then the network will predict well for the prediction 
(test) set. In this case the model will have captured the 
underlying dynamics of the system. If both OSA and MPO of a 
fitted model are good over the estimation and prediction data 
sets, then most likely the model is unbiased. A more convincing 
method of model validation is to use correlation tests. If a 
model is adequate then the prediction error ε(t)  should be 

unpredictable from (uncorrelated with) all linear and nonlinear 
combinations of past inputs and outputs. This can be tested by 
means of the following correlation functions [13]: 
 

( ) E[ (t ) (t)] ( )            (8) 

 

u ( ) E[u(t ) (t)] 0              (9) 

 

2

2 2

u
( ) E[(u (t ) u (t)) (t)] 0    


           (10) 

 

2 2

2 2 2

u
( ) E[(u (t ) u (t)) (t)] 0    


           (11) 

 

(u ) ( ) E[( (t) (t 1 ) u(t 1 )] 0    0                  (12) 

 
where 

u ( )   indicates the cross-correlation function between 

u(t)  and (t) , and u(t) (t 1)u(t 1)      is an impulse 

function.  All five tests defined in equations (8) to (12) should 
be satisfied if the u( ) ’s and y( ) ’s are used as network input 

nodes. In practice normalized, correlations are computed. In 
general, if the correlation functions in equations (8) to (12) are 
within the 95% confidence intervals, 1.96 N , where, N is 

the total number of data points, the model is regarded as 
satisfactory. 

III. NEURAL NETWORK TRAINING 

In this section neuro approaches for modelling the air motor are 
presented.  Artificial NNs were first studied by a desire to 
understand and imitate the function of the human brain [14]. It 
has been recognised since early days that NNs offer a number 
of potential benefits for applications in the field of control 
engineering, particularly in modelling nonlinear systems. Some 
appealing features of NNs are: their ability to learn through 
examples; they do not require a priori knowledge and can 
approximate any arbitrary nonlinear continuous function well 
[9]. Many kinds of NNs have been proposed, developed and 
currently extensively used from varying standpoints. Amongst 
the most popular NNs are the multilayered perceptron (MLP), 
Elman recurrent network (ENN), radial basis function (RBF), 
Hopfield, cellular and adaptive resonance theory networks. In 
this investigation, MLP and ENN are used to model the air 
motor system. Artificial networks used in this study have been 
chosen after a series of simulations, experimentation and 
information from related work (literature review). It was found 
that they give better results. MLP and ENN give good results 
and faster convergence. 
 

A. MLP network 

Multi-layered perceptron NNs are extensively used in 
numerous applications including pattern recognition, 
prediction and control. An MLP is capable of forming arbitrary 
decision boundaries and representing Boolean functions [15]. 
The network can be made up of any number of layers with 
reasonable number of neurons in each layer, based on the 
nature of application. The layer, to which the input data is 
supplied, is called the input layer and the layer from which the 
output is taken is called the output layer. All other intermediate 
layers are called hidden layers. Layers are fully interconnected 
which means that each processing unit (neuron) is connected to 
every neuron in the previous and succeeding layers. However, 
the neurons in the same layer are not connected to each other. A 
neuron performs two functions of combining and activation. 



Marumo R and Tokhi MO (2006) 
 

5 

 

Different types of function such as threshold, piecewise linear, 
sigmoid, tan sigmoid and Gaussian are used for activation. The 
most common learning algorithm used with MLP is the back 
propagation. The NN training may get stuck in a shallow local 
minimum with standard back propagation. In order to avoid 
entering the local minimum, the learning parameters, number 
of hidden neurons or initial values of the connecting weights 
could be changed. Also using Levenberg-Marquardt, which is a 
modified version of standard back propagation, can solve the 
shallow local minimum problem associated with standard back 
propagation. 
 

B.  Levenberg-Marquadt 

While back propagation is a steepest descent algorithm, 
Levenberg-Marquardt algorithm is an approximation to 
Newton’s method. Consider a function, 
 

   
N

2
j

j 1

x e x


     (13) 

 
and assume that it is required to minimise with respect to 
parameter vector x . Then according to Gauss-Newton method 

the update would be: 
 

       1
x J x J x J x e x

        (14) 

 
where  J x is the Jacobian matrix. The Levenberg-Marquardt 

modification to the Gauss-Newton method is, 
 

       
1

x J x J x I J x e x
        (15) 

 
The parameter   is multiplied by some factor    whenever a 

step would result in an increase in  x . When a step reduces 

 x ,    is divided by   . Note that when   is large the 

algorithm becomes steepest descent 
1

with step 
 
  

while for 

infinitesimal   the algorithm becomes Gauss-Newton [16]. 

The Levenberg-Marquardt algorithm can be considered a trust 
region modification of the Jacobian matrix. For NN mapping 
problem the terms in the Jacobian matrix can be computed by a 
simple modification to the back propagation algorithm [17]. 

A neuro-model was set up with 15 hidden layer neurons with 
tansig activation function and a single saturated linear function 
in the output layer. The network training was carried out 
off-line using the Levenberg-Marquadt optimisation. The 
network used was of the prediction error type, so the algorithm 
essentially seeks to minimize the prediction error over the 
training data set. The network contained the following 
parameters: 
• Levenberg-Marquardt back propagation training rule 
• 15 hidden neurons 
• Number of delayed plant input = 2 

• Number of  delayed plant output = 2 
• Variable learning rate (‘traingda’ & ‘traingd’) 
• logarithmic tang-sigmoid transfer function, tansig for the 

hidden neurons outputs 
• Purelin linear transfer function for the output neuron 
• Epochs  (number of training data that NN has never seen 

during plant identification) = 500 
• Maximum reference input value (upper bound on the 

random reference input training) = 5 
• Minimum reference input value (lower bound on the random 

reference input training) = -5 
• Maximum interval value (maximum interval over which the 

random reference input will remain constant) = 5 seconds 
• Minimum interval value (maximum interval over which the 

random reference input will remain constant)= 1second 
• Number of segments (segments the training data will be 

divided into) = 10 
• Epochs (number of iterations per training segment) = 30 
 
The system was excited with a pseudo random binary sequence 
(PRBS) signal, and the input/output data was recorded and used 
to train the network. Fig. 4 shows the algorithm convergence 
and fig. 5 the NN output tracking the plant output. It was noted 
that the fitted model behaved well for OSA and MPO. 
However, this does not necessarily guarantee that the model is 
unbiased. The prediction over a different set of data has to be 
carried out to ensure that the model could not be significantly 
biased. To overcome this problem, the best approach is to split 
the data into two sets, namely, estimation set and test set 
(prediction set). One half is used to train the NN and the output 
computed. This would reveal if the NN tracks the system output 
well i.e. converged to a suitable error minimum. Then, new 
inputs (another half that the NN has never seen) are presented 
to the trained NN and the predicted output observed. If the 
fitted model is correct, i.e. correct assignment of lagged   input 
and output then the network will predict well for the prediction 
set. 

 

0 10 20 30 40 50 60 70 80

10
-0.5

10
-0.4

Number o f epochs

M
ea

n
 s

qu
a

re
d

 e
rr

o
r

error goal =  0.01

M odel FS D =  700

P lant FS D =  700

A c c urac y  =  100 %

 

Figure 4 Mean square error 

 



Marumo R and Tokhi MO (2006) 
 

6 

 

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

8 0 0

S
p

ee
d 

(R
P

M
)

N u m b e r  o f  e p o c h s

p la n t

m o d e l

 

Figure 5 Actual and predicted output 

 

Table 1 Model training results 

Error 

type 

NN type 

ENN MLP RBF 

ITAE -158.6550x10  -158.9858x10  
-158.9725x10  

IAE -158.5250x10  -158.8850x10  
-158.8850x10  

ISE -158.3250x10  -158.8255x10  
-158.7850x10  

SSE -158.4550x10  -158.7350x10  
-158.8756x10  

MSE -158.2250x10  -158.6723x10  
-158.7122x10  

 
The model training results are shown in Table 1, where ITAE 

is the integral of time multiplied by absolute square error, IAE 
is the integral of absolute magnitude of the error, ISE is the 
integral of the square error, SSE is the sum square error and 
MSE is the mean square error. 

Validation and cross validation consist of applying the 
training and test data to the neural identification model in order 
to see how closely it fits the experimental data from the air 
motor in each case. Figs. 6-10 show the five model validity 
correlation tests described by equations (8) to (12) for the 
developed NN model. It is important to note that only the first 
few lags are significant. Each lag in Fig. 6 is equivalent to a 
sample period, which was set to 0.55 seconds. It is noted that an 
adequate model fit was achieved. 

-400 -300 -200 -100 0 100 200 300 400

-1

-0.5

0

0.5

1

lags  

Figure 6 Auto-correlation of residuals 

-400 -300 -200 -100 0 100 200 300 400
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

lags  

Figure 7 Cross-correlation of residuals and input 

 

-400 -300 -200 -100 0 100 200 300 400
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

lags  

Figure 8 Cross-correlation of residuals and input square 

-400 -300 -200 -100 0 100 200 300 400
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

lags  

Figure 9 Cross correlation of residuals square and input square 

 

-400 -300 -200 -100 0 100 200 300 400
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

lags  

Figure 10 Cross-correlation of residuals and (input*residuals) 

 



Marumo R and Tokhi MO (2006) 
 

7 

 

C.  Elman neural network 

Elman’s network is a partially recurrent NN. The connections 
are mainly feed-forward but also include a set of carefully 
chosen connections that let the network remember cues from 
the recent past. As the feedback connections are fixed, 
back-propagation can be used for training of the feed-forward 
connections. Early NN research in language learning showed 
that, the network was both able to handle large amounts of data 
and provided evidence that abstract knowledge could emerge 
from statistical properties of a representative population of data 
and simple NN learning rule [18, 19]. The network is able to 
recognise sequences and also to produce short continuations of 
known sequences. Generalisation to new data sets arises from 
the spatial nature of the internal representation used by the 
network, allowing the new data sets to be encoded close to data 
sets that have already been learned in the hidden unit space of 
the network. The results are counter to the argument that 
learning algorithms based on weight adaptation after each data 
representation, cannot in principle extract symbolic knowledge 
from positive examples as prescribed by prevailing human 
linguistic and evolutionary psychology. This study has shown 
that Elman’s network can learn to mimic an existing finite state 
automation where different states of hidden units will represent 
the internal states of the automaton. Fig.11 shows the structure 
of Elman network used for training in this study. 
 

 

IW1.1 

b1 

 

P 

R1x1 
S1xR1 

1
R1 

S1x1 S1 

n1 

S1x1 

S1x1 

a1(k) = y 

Input Recurrent tansig layer Output purelin layer 

a1(k) = purelin(WL1.1a1(k) = b1) 

T
D
L 

 

Figure 11 Elman NN architecture 

 
The symbols in Fig. 11 have the following definitions: 

PR represents an R 2 matrix defining the minimum and 
maximum values of R inputs 

TDL represents tapped delay lines 
IW represents the new input weight matrix 
Q represents the number of neurons in the layer 
LW represents the new Q R   weight matrix 

b represents a new Q 1  bias vector 

n represents the number of network layers 
y represents the network output 
 

The generalisation capability of the Elman recurrent network 
is demonstrated in Fig. 12. In this case the network had 500 
training epochs and 15 neurons in the recurrent layer. It is noted 
from the difference between neurons output error signal and the 
target output signals how well the NN generalises. 
Unfortunately, it is difficult to know off hand how large a 
network should be for a specific application [20]. 

Generalisation can be improved by other methods such as 
neuron regularisation and early stopping. The training strategy 
was implemented as follows: The entire input data set was 
presented to the network. Its outputs were calculated and 
compared with the target data to generate an error output.  For 
each time step, the error was back propagated to find the 
gradients of errors for each weight and bias. The gradient was 
then used to update the weights with the back propagation 
training function chosen by the user. 

 

0   50 100 200 250 300 400 450 500
0.8

1

1.2

1.4

1.6
Testing NNs Generalization

T
a

rg
e

t -
 -

  O
u

tp
u

t -
+

-
0   50 100 200 250 300 400 450 500

-0.5

0

0.5

Data points

E
rr

o
r

Error Signal

Original error Generalised error

X

X

 

Figure 12 NNs showing generalisation capability 

Table 2 Model training results 

Error 

type 

NN type 

 ENN MLP 

ITAE -158.6550x10  -158.9858x10  

IAE -158.5250x10  -158.8850x10  

ISE -158.3250x10  -158.8255x10  

SSE -158.4550x10  -158.7350x10  

MSE -158.2250x10  -158.6723x10  

 
A summary of the results obtained after training the NN 

models is as shown in Table 2, where ITAE is the integral of 
time multiplied by absolute square error, IAE is the integral of 
absolute magnitude of the error, ISE is the integral of the square 
error, SSE is the sum square error and MSE is the mean square 
error. 
 

D.  Adaptive Neuro-Fuzzy Inference System 

In this section an adaptive neuro-fuzzy inference system 
(ANFIS) is utilised for modelling the system. This constitutes 
an NN architecture with fuzzy inference mechanism for 
processing the input data to the NN. As mentioned earlier, 
hardware-based velocity acquisition methods do not yet exist as 
high-volume products and high order differential equations 



Marumo R and Tokhi MO (2006) 
 

8 

 

representing the dynamics of low speeds inhibit their analytical 
modelling. A natural alternative is to directly differentiate the 
existing velocity signal from a tachometer or optical pulse 
encoder output using the back-difference approximation: 
 

     1

s

v k v k
v k

T

 

 

   (16) 

 
where:  v k  represents the measured speed and Ts the 

sampling period. The back-propagation (BP) NN with the 
multi-perceptron structure is the most widely applied network 
model, due to its simple structure and computational algorithm 
with universal capability [21]. It has been proved that a BP NN 
can approximate any nonlinear function arbitrarily well [22]. A 
simplified BP NN with three layers, namely input, hidden and 

output layers is illustrated in Fig. 13. where       1 2, ,k k k
Mx x x  

and       1 2, ,k k k
Ly y y  represent the input and output of the 

network at iteration k , M  and L  represent number of input 
and output nodes respectively. The learning algorithm of the 
BP NN utilises the well known gradient descent principle: 
 

     1k k kw w w      (17) 
 

 
 

 

k
k

k

E
w

w
 

  


  (18) 

 

where  kE  represents the sum squared error of the BP NN, 
which is usually defined as a quadratic function: 
 

      2
1

1

2

L
k kk

i i
i

E Y y


    (19) 

 
 

 Input Layer 

 k
ix  

 k
Mx  

 k
iy  

 k
My  

Hidden Layer Output 
Layer 

 

Figure 13 A three-layer neural network 

 
The main drawback of the BP NN is the black box structure 

as well as slow convergence. Jang proposed a fuzzy NN model 
ANFIS [23, 24], the conceptual structure of which is shown in 
Fig. 14. Generally structure identification constitutes two 
problems. Firstly, to find input variables from a number of 
input candidates by a heuristic method based on experience 

and/or common sense knowledge. Secondly, to find 
input-output relations in the form of if-then rules. In a fuzzy 
model, the structure identification of this kind is stated in a 
different way. A fuzzy model consists of a number of if-then 
rules. The number of rules, N, in a fuzzy model corresponds to 
the order of the model in a conventional method. There are two 
parts in an if-then rule: the antecedent part and consequent part. 
The antecedent of a fuzzy rule defines a local fuzzy region, 
while the consequent describes the behaviour within the region 
via various constituents. The Takagi-Sugeno & Kang (TSK) 
model structure strategy with linear function as consequent and 
a non-linear function estimator was selected by fuzzy rules. The 
antecedents are similar to the Mamdani fuzzy system and the 
consequents can be any. Fig. 14 shows a schematic 
representation of such a network with three inputs, one output 
and three rules. The rules are in the following form: 
 
R1: if x is A1 and y is B1 and z is C1 then f1 
R2: if x is A2 and y is B2 and z is C2 then f2 
R3: if x is A3 and y is B3 and z is C3 then f3 
 
where ( A1, A2…An, B1, B2…Bn, C1, C2… Cn ) represent the 
input fuzzy sets (i.e. low, medium and high speed data 
respectively) and (f1, f2…fn) represent the output fuzzy sets. 
The nodes in the first layer compute the membership degree of 
the inputs in the antecedent fuzzy sets. The product nodes   in 
the second layer represent the antecedent conjunction operator. 
In the consequent part, the fuzzy mean, the normalization node 
N and the summation operator are realised. By using smooth 
antecedent membership functions, such as the Gaussian 
functions, the following relationship can be applied: 
 

2
j ij

ij j ij ij
ij

x c )
uA (x ;c , ) exp ( )

2

 
     

  (20) 

 
The cij and  ij  parameters can be adjusted by gradient-descent 
learning algorithms, such as back-propagation. This allows for 
a fine-tuning of fuzzy model to the available data for 
optimisation and prediction accuracy. The fuzzy output can be 
expressed as: 
 

1 1 2 2 3 3
1 1 2 2 3 3

1 2 3

w f +w f +w f
f = w f +w f +w f

w +w +w
   (21) 

 
where 1f , 2f  and 3f  are the outputs of the three sub-models,  

for the low speed, medium speed and high speed, of the air 
motor respectively. 
 



Marumo R and Tokhi MO (2006) 
 

9 

 

 

A1 

A2 

f1  N 

x  y  z 

x 

B1 

B2 

f2  N 

x  y  z 

y 

C1 

C2 

f3  N 

x  y  z 

z 

w1 

w2 

w3 

1w  

2w  

3w  

+ 
f 

1 1fw  

2 2fw  

3 3fw  

 

Figure 14 TSK-ANFIS structure 

 
For training purposes, the input patterns (collected data) 

were normalized to unit length to ensure they fell within the 
required range of -1 to 1. Each network was trained on the 
profile of a normal event data set, split into training, 
verification and test set, to allow precise network prediction 
accuracy. Subsequently the networks were given a series of 
dataset that they had never seen before, to determine their 
arbitrary pattern generalisation and their ability to track the 
desired output. The first layer was designed to receive a set of 
input data for the first 500 data points (training data). The 
second layer received inputs ranging from 501 to 1000 data 
points (testing data). The first layer had tangsig output in the 
hidden layer and the second layer had a logsig transfer function 
in the hidden layer output. 
 

  0  50 100 150 200 250 300
-2

-1

0

1

2

O
u

tp
u

t -
 T

a
rg

e
t -

+
-

Output and Target (NN) Signals

  0 100 200 300 400 500 600
-1

-0.5

0

0.5

1

Data points

E
rr

o
r

Error Signals

(a) Original error

(b) Learned error

 

Figure 15 Adaptation using ANFIS 

 
Fig. 15 shows the prediction capability of the ANFIS 

network in representing the system output. In this exercise a 
sampling interval of 55 milliseconds was selected. The input 
was chosen to be a PRBS shifting between -850 and -650 
counts. These limits define boundaries of low speed region. 
Parameters of ANFIS network were: number of data points, 
500; type of membership function, Gbell; number of 
membership functions 20 and number of epochs were up to 
500. 
 

IV.  PI CONTROL OF THE AIR MOTOR 

In this section a preliminary design of a PI controller for the air 
motor at low speed region is considered. The approach is 
adopted for more sophisticated control strategies in the future. 
Fig. 16 shows the control structure utilised, where for reasons 
of simplicity, the ANFIS model of the air motor developed in 
the previous section is used as a test bed simulating the system 
in the low-speed region. 
 

PI – ANFIS 
Controller 

PCV 

 

 

dH (s)  E(s)  U(s)  

aH (s)  

+ 
- 

ck  

e  

e  

Output 
Speed 

Set point 

 

Figure 16 PI-ANFIS control system scheme 

 
In Fig. 16, no mathematical model for the air motor system is 

available. The input-output data of the system is measured and 
the error and change in error derived, from which the integral 
sum of error obtained: 
 

   d ae k H H k    (22) 

 

     1e k e k e k      (23) 

 

   
1

k

i

e k e i


    (24) 

 
where: dH  represents the desired speed,  e  represents the 

error, e  represents the change in error and e  represents 

the sum error of speed. 
Fig. 17 shows the step response of the system and 

corresponding control signal achieved with and without 
anti-windup action. It is observed that the overshoot magnitude 
for the without anti-windup is 44%, the overshoot magnitude 
for ‘with anti-wind up’ is 11%. It is noted that response 
overshoot reduces significantly with anti-windup action. 

0 2 4 6 8 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Time (sec)

O
ut

pu
t

With anti-windup

Without anti-windup

 

Figure 17 System response 

 



Marumo R and Tokhi MO (2006) 
 

10 

 

As depicted in Fig. 18, in case of ‘without anti-wind up, a 
limit of 33% was imposed in the control signal. When an 
integral action is used in a system with saturation the 
phenomenon of wind up will happen. When the integrator 
output is greater than the saturation level, then the system 
output is also limited and the error signal that is driving the 
controller cannot reduce. The integrator thinks it needs to do 
more and continues for a long time and cause the controller to 
behave badly. Thus, precautions have to be taken to limit the 
control signal so that the actuator is not damaged. 
 

V.  CONCLUSION 

In this paper, nonlinear neuro-modelling approaches and a 
preliminary control system design for the low-speed region of 
an air motor have been presented. Three types of neural 
networks, namely, MLP with Levenberg-Marquardt back 
propagation, Elman network and ANFIS have been used to 
model the system. The developed models have been validated 
with various tests including OSA, MPO, estimation and test 
sets and correlation tests. Good dynamic prediction capability 
has been demonstrated with each of these model types, 
demonstrating the suitability of neural networks in modelling 
the air motor in the low speed region. 

A preliminary design of a PI controller for the system has 
been carried out and tested within a simulation environment of 
the system. It has been demonstrated that the system can be 
controlled well within this speed region. However, precaution 
has to be taken against control signal not to go excessively 
high. The control approach adopted will be used for design of 
more sophisticated controllers in the future. 

0 2 4 6 8 10
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Time (sec)

C
on

tr
ol

With anti-windup

Without anti-windup

 

Figure 18 Control signal 

 

REFERENCES 

[1] Automation air motors, Air motor flow control 
system–development project (Automation Air motors Ltd., 
Barnsley, UK, 1998) 

[2]  A.L. Hitchcox, Performance insurance for air motors, 
Hydraulics & Pneumatics, 1995, 48, (10), pp. 63-68 

[3]  J. Mahanay, Gerotor air motor: new motion for low-speed 
output, Machine Design, 1986, 58, (3), pp. 75-77 

[4] J.-S. R., Jang, C.-T. Sun, and E. Mizutani, Neuro-Fuzzy 
and Soft Computing, Prentice Hall, Upper Saddle River, 
NJ., 1997. 

[5] M .O., Tokhi, I. N. Reynolds and M. Brisland, Real-time 
control of a radial piston air motor. IFAC World Congress, 
Barcelona, 21 – 26 July 2002. 

[6] R. Marumo and M.O. Tokhi, Modelling and Control of a 
Pneumatic Motor, Proceedings of the First African Control 
Conference, December, Cape Town, South Africa pp. 
100-112, 2003. 

[7]  R. Marumo and M.O. Tokhi, Modelling and Simulation of 
an Air Motor using Elman Neural Networks, Proceedings 
of the Fourth IASTED International Conference on 
Modelling, Simulation, and Optimization, August, Kauai, 
Hawaii, USA pp. 160-164, 2004. 

[8] M. Sorli and S. Parstorelli, Performance of a pneumatic 
force controlling servo system: influence of valves 
conductance. Robotic and autonomous systems, 30, p 
283-300, 2000. 

[9] S.H. Choi, C.O. Lee and H.S. Cho, Friction compensation 
control of an electro pneumatic servo valve by using an 
evolutionary algorithm, Proc. of the Institute of 
Mechanical engineers, part I: Journal of systems and 
control engineering, vol. 214, No. 3, p 173-184, 200 

[10]  S.V.T Elanayar., and C.S. Yung, Radial basis function 
neural networks for approximation and estimation of 
non-linear stochastic dynamic systems. The IEEE 
Transaction on Neural networks, 1994, 5, (4), pp. 594-603 

[11]  R.W. Simnett, and E. Anderson, Air motor drives for 
small pumps, Chemical Engineering, 1983, 90, (25), pp. 
73-75 

[12]  M. O. Tokhi, M. AL-Miskiry, and M. Brisland, Real-time 
control of air motors using a pneumatic H-bridge, Control 
Engineering Practice, 2001, 9, (4), pp. 449–457 

[13]  S.A Billings, & W. Voon, Correlation-based model 
validity tests for nonlinear models. International Journal of 
Control 44, 1986, 235-244 

[14] M. L. Minsky, and S. Papert, Perceptrons, Cambridge, 
1969, MA: MIT Press 

[15] K. Hornik, M. Stinchmbe, and H. White, Multilayer feed 
forward networks are universal approximators, Neural 
Networks, 1989, 2, pp. 359-366 

[16] M. O. Tokhi, M.H Shaheed and H. Poerwanto, Dynamic 
modelling of a flexible manipulator using multi-layered 
perceptron neural networks. Asia/Pacific International 
Congress on Engineering Computational Modelling and 
Signal Processing, Bandung, Indonesia, 24-26 November, 
1999, pp. 185-194 

[17] R Battiti, First and second order methods for learning: 
between steepest descent and Newton’s method, Neural 
computation, 1992, 4, (2), pp141-166 

[18] M. T. Hagan, M. B. Menhaj, Training feed forward 
networks with Marquardt algorithm. The IEEE Trans. on 
Neural Networks, 1994, 5, (6), pp. 989-993 

[19] S.J. Hanson and J. Kegl, A connectionist network that 
learns natural language grammar from exposure to natural 
languages sentences, in Proceedings of the 9th annual 
conference on cognitive science, Seattle, WA, 1987 



Marumo R and Tokhi MO (2006) 
 

11 

 

[20] J Elman, Finding structures in time, Cognitive science, 14, 
1990, pp. 179-211 

[21] H. Demuth and M. Baele Neural networks toolbox user’s 
guide v.4 (The Math Works, Inc. 2000) 

[22] S. Haykin, Neural Networks, a Comprehensive Foundation 
2nd edition (upper Saddle River, NJ: Prentice-Hall), 1999 

[23] J.S.R., Jang, C. T. Sun and E. Mizutani, Neuro-fuzzy and 
soft computing; a computational approach to learning and 
machine intelligence. Upper Sadle River: Prentice –Hall, 
1997 

[24]  J.S.R., Jang, and C. T. Sun, “ANFIS: 
Adaptive-network-based fuzzy inference systems”. IEEE 
Transactions on Systems, Man & Cybenetics, 1993, 23(3), 
pp. 665-685 

 
 
 
 


