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Abstract—The fabella is a sesamoid bone usually located in the
tendon of the lateral head of the gastrocnemius muscle, behind
the knee joint. Prevalence rates in human populations vary widely
with an average of 42.5% people having a fabella. Clinically, it
is associated with a number of knee ailments, most notably the
osteoarthritis of the knee and generalized knee pain (i.e., fabella
syndrome). As the function of the fabella remains unknown, the
biomechanical consequences of fabella presence/absence can only
be speculated. Successfully detecting the fabella, measuring its
size and determining its shape, are off importance for clinical
and evolutionary researchers. In this work, we compare plane
wave imaging with conventional focused imaging and evaluate
their performance for detecting and characterizing the fabella.

I. INTRODUCTION

The fabella is a sesamoid bone usually located inside the
tendon of the calf muscle behind the knee joint; specifically
inside the lateral head of the gastrocnemius muscle behind
the lateral femoral condyle as illustrated in Fig. 1. In humans,
fabellae are 3.5 times more common today than they were a
century ago [1].The presence or absence of the fabella is due
to a combination of genetic and environmental factors, and
the increase over the last century may be linked to the global
increase in nutrition, and consequently height and weight [2].
A recently published meta-analysis on fabella prevalence rate
showed that on average 42.5% of people worldwide have a
fabella [2].

The function of the fabella remains unknown, but it has
been speculated that the fabella serves as a stabilizer of the
knee [3], [4]. However, clinically the presence of fabella is
associated with several conditions and diseases. The most
common ones are the osteoarthritis and the fabella syndrome,
which is knee pain caused by the presence fabella [5], [6].
Interestingly, knees with osteoarthritis are twice as likely to
have a fabella than knees without osteoarthritis, although no
causal link has been established [7]. However, it is still not
proven that if fabella is causative of osteoarthritis or arising
from osteoarthritis [1].

The presence of fabella is usually determined through imag-
ing or dissection. Although dissection has a higher detection
rate, the burden of the surgery usually makes it impractical

Fig. 1. (Left) Anatomical illustration showing the location of the fabella.
(Right) CT scan of a human knee with fabella from [2].

to perform a large independent study on the prevalence rate
of fabella. The commonly used imaging meth-ods to detect
fabellae are X-ray, computed tomography (CT) or magnetic
resonance imaging (MRI) scans, which can have low sen-
sitivity, as fabellae can be cartilaginous/ have low density
meaning their presence is not always be detected by X-ray or
by a CT scans [8]. Scan resolution and knee position during
scan can also make it difficult to detect small fabellae n MRI
scans [9]. A study showed that over 57% of cases where
fabellae were detectable by dissection were not detectable by
radiograph due to low density or small size [10]. It is possible
to employ ultrasound imaging to monitor fabellae, but the
use of ultrasound for the detection and characterization of the
fabella is only reported in a few studies [11]–[14].

Although there has been a lot of progress in bone imaging,
most of the current research is focusing on measuring bone
cortical thickness and estimating bone parameters, such as
attenuation, bone mineral density and porosity [15]–[20]. This
research differs from the aforementioned studies as it aims
to accurately detect and calculate the dimensions of a small
sesamoid bone: the fabella. To achieve this, this study first
verifies the feasibility of using plane wave ultrasound imaging
for characterization of fabella. This study also combines two



Fig. 2. Optical image of the ex vivo swine ribs (in white) placed on an
acoustic absorber (in blue). Each ultrasound measurement was performed with
3 different swine ribs to reduce the total imaging time.

existing coherence factors to increase the beamforming per-
formance and offers other potential data processing methods.

II. MATERIALS AND METHODS

A. Experimental Setup

The imaging setup consists of a ULA-OP 256 system
and a 4 MHz 144-element linear array transducer (LA332,
Esaote, Italy) [21], [22]. Ex vivo swine bones (n = 12)
are used as model for the fabella given their similarities in
bone architecture (thin cortical shell surrounding a trabecular
interior) and similar dimensions (here, diameter = 4.2 - 8.5
mm, Fig. 2). Two different imaging modalities were used:
first, conventional linear scans with line-by-line scanning with
an aperture size of 64 elements focused at 40 mm. Second,
compounded plane wave imaging (CPWI) was performed with
an angle range of 24◦, step size 0.5◦, and at a pulse repetition
frequency of 5 kHz.

B. Data Processing

Linear scan and CPWI images were beamformed using
delay and sum beamforming. In addition to this, element
coherence factor (ECF) and angular coherence factor (ACF)
methods were implemented to improve beamforming perfor-
mance and reduce the image artefacts generated by highly
reflective bone tissue. The ECF is based on the acoustic
sub-aperture processing method, where the B-mode image
is beamformed twice by using the odd and even elements
separately and combined to extract the coherence [23]. The
ACF is based on the accumulated angle factor, which is
customized for bone surface enhancement as explained in [24].

A segmentation algorithm based on Gaussian Mixtures was
used to detect the borders of the bone tissue and the segmented
images were used to estimate bone dimensions [25]. Since
the beamforming was performed using the speed of sound in
water, the measured bone thickness were re-scaled according
to the speed of sound in swine ribs. The sound speed in
swine ribs was measured as 2217 m/s using focused waves at
the same cross section and orientation as the imaging setup.
The estimated bone dimensions from ultrasound images were
compared with the ground truth, which was measured by
callipers (precision ± 0.01 mm). The performance of each
method was evaluated by their relative error in their estimates.

III. RESULTS

Among all CPWI images (Fig. 3 A-D) the ACF and ECF
combination had the best overall performance. The delay and

Fig. 3. (A) Compounded plane wave images (CPWI) with delay and sum
(DAS) beamforming. (B) CPWI using element coherence factor (ECF). (C)
CPWI using angular coherence factor (ACF) between steering angles. (D)
CPWI using both ACF and ECF. (E) Conventional focused linear scan image.
All figures are plotted with 40 dB dynamic range.

Fig. 4. Image shows the segmentation results. The red circles highlight the
boundaries of the bone tissue identified by the segmentation algorithm. (Left)
Segmented linear scan images. (Right) Segmented compounded plane wave
images.

sum alone (Fig. 3 A) produced larger artefacts which are
visible around the lateral extremes of the ultrasound images.
The ECF method (Fig. 3 B) suppresses these artefacts at
the lateral extremes, but the artefacts between bone samples
still exist in the ultrasound images. The ACF method (Fig. 3
C) achieves a higher artefact suppression, however it may
also incorrectly cancel the echoes from the bone samples.
For example, in Fig. 3 C the intensity of the bone sample
(depth = 40 mm, lateral = 15 mm ) is partially degraded.
The ACF and ECF combination (Fig. 3 D) achieves the best
artefact suppression without sacrificing the intensity of the
bone samples. In Fig. 3 E, the linear scan method achieved
the best SNR thanks to focusing with a peak SNR of 88 dB,
where the CPWI (ACF + ECF) had a peak SNR of 67 dB.

Fig. 5. Table shows the error rate for the bone dimension estimations.



The segmentation results for the linear scan and CPWI (ACF
+ ECF), shown in Fig. 4, were compared with the ground truth
to calculate the error rate for both methods. CPWI estimated
the thickness and the width of the bone samples with a lower
error rate than linear scan as listed in Fig. 5.

Overall, CPWI (ACF + ECF) had a better performance
thanks to its wide steering range. The linear scan overestimated
the size, which can be due to the widening of the regions
outside the focal area. The most obvious difference between
both methods is that the width is overestimated from the linear
scan images and it was underestimated from the CPWI (ACF
+ ECF) image.

IV. DISCUSSION

The beamforming algorithm based on delay and sum
method may not be optimal for this study. To improve the
image quality adaptive beamforming methods can be imple-
mented. Nock et al. proposed a method to maximize the image
intensity by re-aligning the phases of received signals [26].
Rodriguez-Molares et al. developed an adaptive ultrasound
beamforming technique to image hard objects that takes into
account the physics of specular reflection [27]. Minimum
variance beamforming is another adaptive method that is
widely employed in phased array and radar applications thanks
to its high performance in the existence of uncertainties, such
as imprecise knowledge of the arrival angle [28].

A limitation of most adaptive beamforming methods is the
low performance in the presence of high speed of sound
variations, such as between bone and soft-tissue. In this case,
coherence-based methods can be used. This study already
implemented two methods based on element-to-element co-
herence and angular coherence. In addition to these, coded
excitation can be used to improve the SNR and image quality,
which has been previously demonstrated for hard-tissue [29]–
[31].

For the CPWI images, the dimension estimation had an error
over 13% in thickness measurement, which is not negligible
given that the experiments were performed under optimal
conditions. In general, it is hard to characterize objects that are
small compared to the imaging wavelength using ultrasound
imaging. The point spread function (PSF) of the imaging
system makes the objects appear larger than their actual
size. Also, the reflections from surfaces orthogonal to the
beam direction make it harder to find edges. To be able to
estimate the dimensions accurately from ultrasound images,
de-convolution, super-resolution or other filtering methods can
be implemented [32]–[34].

Due to the coronavirus pandemic, it was not possible to
repeat, refine and extend the experimental work in this study.
However, given the encouraging ex vivo results, we want to
optimize our imaging technique and start a human study to
analyze the in vivo performance of plane wave imaging for
detection and characterization of the fabella.

V. CONCLUSION

The fabella is a sesamoid bone of both clinical and evo-
lutionary significance. Although detectable by ultrasound, no

studies have utilized this technique to gather information
about this bone. Here, we use two methods of ultrasound
imaging to investigate the ability of ultrasound to detect
fabella presence/absence and quantify its dimensions. The
compounded plane wave imaging (CPWI) beamformed using
the combination of element coherence factor and angular
coherence factor achieved the best performance thanks to its
wide steering range. The linear scan overestimated the size,
which can be due to the widening of the regions outside the
focal area.
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