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Abstract
Lip‐reading is a process of interpreting speech by visually analysing lip movements.
Recent research in this area has shifted from simple word recognition to lip‐reading
sentences in the wild. This paper attempts to use phonemes as a classification schema
for lip‐reading sentences to explore an alternative schema and to enhance system per-
formance. Different classification schemas have been investigated, including character‐
based and visemes‐based schemas. The visual front‐end model of the system consists
of a Spatial‐Temporal (3D) convolution followed by a 2D ResNet. Transformers utilise
multi‐headed attention for phoneme recognition models. For the language model, a
Recurrent Neural Network is used. The performance of the proposed system has been
testified with the BBC Lip Reading Sentences 2 (LRS2) benchmark dataset. Compared
with the state‐of‐the‐art approaches in lip‐reading sentences, the proposed system has
demonstrated an improved performance by a 10% lower word error rate on average
under varying illumination ratios.
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deep learning, deep neural networks, lip‐reading, phoneme‐based lip‐reading, spatial‐temporal convolution,
transformers

1 | INTRODUCTION

In recent decades, decoding speech from visual cues imitating
the human capability to perform lip‐reading has drawn much
research attention. Speech is an audio‐visual signal consisting of
audio vocalisation and its equivalent mouth movement. Visual
Speech Recognition, also known as lip‐reading or automatic lip‐
reading, is the process of understanding speech by analysing lip
movements. Developing such systems depends on the infor-
mation provided by the context of speech and the knowledge of
the language being spoken. Accordingly, lip‐reading is consid-
ered complementary information to compensate for the lack of
audio information. Recently, the attention towards lip‐reading
has grown rapidly, given that visual information is not
affected by acoustic noise and therefore is robust in noisy en-
vironments, and has led to significant improvements in per-
formance [1, 2].

Compared to audio signals, decoding speech from visual
signals faces significant challenges due to visual ambiguity and
the absence of context. Visual ambiguity is considered one of
the main problems lip‐reading systems suffer from, which
arises at the word level due to homophemes that produce the
same or almost the same lip movement (e.g., [b], [p], and [m]).

Usually, phonemes, not characters, are considered the
standard minimum units in speech processing and are defined
as the minimum distinguishable sounds that can change the
meaning of a word [3]. In the same way, a viseme is the
minimum distinguishable speech used for analysing visual in-
formation [4].

Other challenges include poor temporal resolution, effi-
cient encoding of spatial‐temporal information, speaker de-
pendency, head pose variation with different view angles, and
illumination conditions, extracting lip's contours from different
types of background, such as static and rotating backgrounds,
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and tackling the effect of different face structures, etc. [5].
Different pronunciations exist due to different dialects of
people in different regions. Also, in reality, some people have
short lip movements compared to others. Furthermore, people
can talk from different angles towards a camera. Because of
these issues, it is essential to create more robust models [6].

With the power of Deep Learning (DL) architectures and
the availability of large‐scale databases, it is possible to shift
from the early lip‐reading systems, which addressed simple
word recognition tasks, to more realistic and complex tasks [7].
Accordingly, these DL architectures have led to current sys-
tems that target continuous lip‐reading [8, 9] and to improve
the performance of visual speech recognition in general.
However, due to the complexity of image processing and the
difficulty of training classifiers, it is difficult for traditional lip‐
reading systems to meet the requirements of real‐time appli-
cations. As a result of the advancements in lip‐reading systems,
numerous applications are conceivable, for example, resolving
multi‐talker simultaneous speech [10], developing augmented
lip views to assist people with hearing impairments [11],
dictating messages to smartphones in noisy environments [12],
transcribing and re‐dubbing silent films [8], and discriminating
between native and non‐native speakers [13].

Currently, there are two leading approaches to solving the
lip‐reading problem. The first approach handles it as a word or
phrase classification task. This approach uses video samples to
predict a word or phrase label [14]. The second is a more
recent one, which has gained its strength from the deep net-
work's capability to perform text predictions, such as complete
sentences. Accordingly, instead of predicting word labels for
solving lip‐reading problems, this approach predicts character
sequences or a viseme sequence [8, 15, 16]. As for visual
speech units, the two primary forms are phonemes and
visemes. Phonemes are strongly linked to an acoustic speech
signal [17]. A viseme, on the other hand, is the most basic
visual unit of speech, reflecting a gesture of the mouth, face,
and visible elements of the teeth and tongue, also known as
visible articulators [4]. Even though phonemes represent
distinct short sounds, some studies employ phoneme units to
increase lip‐reading accuracy [18], while others focus on
visemes. The efficacy of phoneme or viseme units in lip‐
reading systems is a point of contention.

Using phonemes for lip‐reading sentences has some ad-
vantages over other systems since it overcomes the cumulative
loss of information caused by the mapping process from
phoneme classes (the number of classes is between 45 and 53)
to viseme classes (the number of classes is between 10 and 14)
[19]. However, due to the reduction of a set of phonemes to a
set of visemes, the complexity of the pronunciation dictionary
increases due to the increasing volume of homophonic words,
and the discriminative power of the classification model is
reduced. Essentially, there is a trade‐off between unit and
model accuracy at the sentence level.

Another problem that a viseme‐based system suffers is the
large number of the proposed phoneme‐to‐visemes maps as a
phoneme is related to one viseme class but a viseme may
represent many phonemes. This cause ambiguity between

phonemes when using viseme classifiers as an illustration the
viseme class ‘FV’ can be mapped into ‘ae’ ‘eh’ ‘ay’ ‘ey’ ‘hh’
phoneme classes [20, 21]. In comparison, only two variations
of phoneme dictionaries have been used. In addition, most
English words have a one‐to‐one mapping to a word with only
a few exceptions with a one‐to‐many relationship to a set of
words. Therefore, converting recognized phonemes to words
will have less complexity and require less computational effort.

This paper uses phonemes as a classification schema for
lip‐reading sentences in the wild rather than character‐based or
visemes‐based schemas. The main aim of this research is to
explore an alternative schema and to enhance system's per-
formance. The proposed system's performance has been vali-
dated using the BBC Lip Reading Sentences 2 (LRS2)
benchmark dataset. The system displayed a 10% average
reduction in a word error rate under varying illumination ratios
compared to the state‐of‐the‐art systems in lip‐reading
sentences.

The rest of this paper is organized as follows: Section 2
provides a literature review on phoneme‐based lip‐reading
systems and discusses the different architectures used in
feature extraction, phoneme labelling, and classifiers. In addi-
tion, the relevant works on Automatic Speech Recognition
(ASR) are discussed. Section 3 discusses the methodology and
the proposed system in detail, including its pre‐processing
steps, the structure of the visual front‐end model, the
phoneme recognition model, the pronunciation dictionary
used, and the Recurrent Neural Network‐based language
model is explained. Section 4 briefly discusses the BBC Lip
Reading Sentences 2 benchmark dataset. Section 5 presents
Models comparison, which addresses the details of the state‐
of‐the‐art character‐based lip‐reading system and a viseme‐
based lip‐reading system. Section 6 presents the experimental
results and demonstrates the performance of the proposed
model with evaluation. In addition, presenting how to add
noise to testify the robustness of the proposed model, Gamma
correction has also been considered in the experiments. Finally,
concluding remarks and future work are given in Section 7.

2 | RELATED WORKS

Phonemes are mainly used with acoustic signals, considered
the main building blocks of speech. However, in scenarios
where audio signals are corrupted or unavailable, in noisy
environments, or in the case of individuals with partial or total
hearing loss, it will usually be challenging to detect audio sig-
nals. Accordingly, lip‐reading is a complementary method to
compensate for the lack of audio information. The literature
can therefore be divided into two directions. The first one is
where audio signals are absent, and only video signals are
available. The second direction is where only audio signals are
present. As phonemes have traditionally been associated with
sound or audio, research studies are rare in relation to video‐
based lip‐reading. This section reviews the literature on
video‐based phoneme recognition for lip‐reading and some of
the relevant works on Automatic Speech Recognition (ASR).
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According to Howell et al. [22], an approach was proposed
to treat visual speech as dysarthria to compensate for the gap
of having a reduced phonemic repertoire. For visual feature
extraction, the Active Appearance Model was used, the Hidden
Markov Model was utilised for phoneme recognition, and
Weighted Finite‐State Transducers were employed for word
recognition. The dataset was captured from a single female
speaker who spoke six repetitions of a set of 112 isolated
words. The word accuracy rate was 49.70%.

Noda et al. [23] were the first to apply Convolutional
Neural Networks (CNN) for feature extraction in visual speech
recognition systems and also for phoneme recognition as their
purpose was to prove whether feature extraction mechanisms
using CNN would outperform other models, which use the
classic dimensionality reduction techniques. As for identifying
isolated words, HMM was used. The dataset used contained six
different speakers pronouncing 300 Japanese words. The
average phoneme recognition rate was 58%, and the accuracy
for word recognition was 37%.

Thangthai et al. [18] compared viseme‐based and
phoneme‐based lip‐reading systems to add more evidence to
the argument that phonemes can surpass visemes lip‐reading
systems, and they suggested that phonemes are the current
optimal class labels for lip‐reading. Using the TCD‐TIMIT
corpus for sentences, Discrete Cosine Transformer and
Eigenlip for feature extraction, and Weighted‐Finite‐state
Transducer as word recogniser, the phoneme recognition ac-
curacy acquired was 33.44%. Furthermore, the word accuracy
rate was 48.74% in speaker‐dependent tests using Eigenlip
compared to 46.6% and 33.06% for viseme and word recog-
nition, respectively.

To enhance the accuracy of phoneme‐based lip‐reading
systems, Shillingford et al. [24] proposed a Deep Neural
Network and a production‐level speech decoder for both
mapping videos into a sequence of phoneme distributions and
generating the corresponding word sequences, respectively. A
Large‐Scale Visual Speech Recognition dataset was constructed
and used in the study. Spatio‐temporal Convolutions, Bi‐
directional Long Short‐Term Memory, and Finite‐State
Transducers were utilised for feature extraction, phoneme
recognition, and word recognition. The phoneme recognition
accuracy rate was 66%, and the word accuracy rate was 60%.

The relevant works on Automatic Speech Recognition are
discussed below.

Chiu et al. [25] presented a so‐called Listen, Attend, and
Spell (LAS) architecture, an attention‐based encoder‐decoder,
in which traditional automatic speech recognition system
components were included in a single neural network. They
proved that graphemes could be substituted with a word
piece model. The work has shown that the performance of
ASR can be significantly improved by optimising the LAS
model and introducing a multi‐head attention architecture.
Also, they improved the accuracy by exploring synchronous
training, scheduled sampling, label smoothing, and minimum
word error rate optimization. The experiments were con-
ducted on a 12,500‐h voice search task (Google Voice
Search).

The work by Anjie Fang et al. [26] aimed to present a
classification model that is robust to ASR errors and acquires
pronunciation similarities ignored in word‐level representations
by creating an ASR transcription at the phoneme level. Four
existing datasets were used in the research, including the
Stanford Sentiment Treebank (SST), The TREC Question
classification (TQ), SQuAD, and the subjectivity dataset
(SUBJ) by generating noisy ASR transcriptions for them. The
authors demonstrated the integration of phoneme embedding
into existing neural network architectures and the improve-
ment of classification models when handling data containing
ASR errors. The accuracies for SST, TQ‐50, and TQ6, were
41%, 65%, and 75%, respectively.

A comparison was conducted by Mohammad Zeineldeen
et al. [27] between phoneme‐based and grapheme‐based
output labels utilising the encoder‐decoder‐attention ASR
model. Furthermore, the use of byte‐pair‐encoding (BPE)‐
based phonemes and single phonemes as output labels was
investigated with a conclusion that both had a similar perfor-
mance, and this has further proven that phoneme‐based
models are competitive to grapheme‐based models. Switch-
board 300 h and LibriSpeech 960 h benchmarks were used to
conduct the experiments. As a result of these experiments, the
accuracies obtained when using the switchboard 300 h dataset
for BPE‐based grapheme were 85%, and 86.2% was achieved
for both single and BPE‐based phonemes. As for the Lib-
rispeech 960 h dataset, the accuracies acquired were 89.44%,
86.2%, and 90.86 for BPE‐based phoneme, single phoneme,
and BPE‐based grapheme, respectively. As such, it was
observed that grapheme and phoneme‐based BPE outperform
single phonemes on Librispeech 960 h, which contradict the
results of Switchboard 300 h.

Wei Zhou et al. [28] adopted a simple competitive
approach for phoneme‐based neural transducer modelling,
sustaining the advantages of both classical and end‐to‐end
approaches. In order to maintain the sequence‐to‐sequence
modelling consistency, a simplified neural network structure
along with direct integration with an external word‐level lan-
guage model was presented by utilising the local dependencies
of phonemes. Furthermore, augmentation for word‐end‐based
phoneme labels was proposed to improve the system perfor-
mance. Furthermore, frame‐wise cross‐entropy loss was used
for an efficient training procedure. The proposed model was
evaluated on both TED‐LIUM release 2 (TLv2) and Switch-
board (SWBD) corpora, and the word error rate obtained was
6.3% and 11.5, respectively (Tables 1 and 2,).

As shown in the literature, research on phoneme‐based lip‐
reading systems is very limited, and to the best of the authors'
knowledge, this study is the first work that purely uses pho-
nemes from videos for lip‐reading sentences in the wild. Most
of the time, using phonemes is associated with audio signals;
however, in this research, the audio is not presented/provided
as in some scenarios and potential applications, such as CCTV
footage analysis, forensic investigations, silent dictation in
public places, wearable optical technologies to aid hearing,
animation and digital avatars, silent movies restoration, and last
but not least, humanoid robotics.
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3 | METHODOLOGY

The objective of the proposed system is to predict sentences
being spoken from silent videos by extracting lip movements
and decoding the movements into phonemes. This section
discusses the different processing steps of the lip‐reading
system under consideration.

The first step is pre‐processing, where facial landmark
detection is utilised to extract the lip contour as the region of
interest from videos. In the second step, a spatio‐temporal
visual front‐end uses a sequence of images of loosely crop-
ped lip regions as input to generate and outputs a feature
vector per frame as outputs. Finally, in the third step, a
sequence processing module inputs the sequence of per‐frame
feature vectors to the phoneme classifier to recognise the
phonemes; then, a language model is used to convert the
phonemes into words and outputs a sentence. The overall
system diagram is shown in Figure 1.

3.1 | Pre‐processing

All of the videos are pre‐processed as shown in Figure 2. With
25 frames per second framing rate, images with red, green, and
blue pixel values with a resolution of 160 pixels by 160 pixels
are utilised. Because the region of interest (ROI) and feature
input to the visual front end are speaker's lips, the following
steps for video pre‐processing are:

� Step 1: Sample videos are into image frames.
� Step 2: Identify face landmarks with the videos sampled.

Based on iBug [29], a Convolutional Neural Network de-
tector known as The Single Shot Multi‐Box Detector (SSD)
[34], facial landmarks are extracted by detecting face pres-
ence in every single frame.

TABLE 1 Phoneme‐based lip‐reading systems

References Dataset Year Signal Feature extraction Phoneme recognition PAR Classification Classifier WAR (%)

Howell et al. [22] ‐‐‐‐‐‐‐‐‐ 2013 Video AAM HMM ‐‐‐‐‐‐ Isolated words WFTS 49.7

Noda et al. [23] ‐‐‐‐‐‐‐ 2014 Video CNN CNN 58% Isolated words HMM 37

Thangthai et al. [18] TCD‐TIMIT 2017 Video Eigenlip Hybrid DNN‐HMM 33.4% Sentences WFTS 48.7

Shillingford et al. [24] LSVSR 2018 Video Spatio‐temporal convolutions Bi‐LSTM 66% Sentences FST 60

TABLE 2 Works on ASR in the literature.

Reference Dataset Year Signal Model WAR

Chiu et al. [25] a 12, 500‐h voice search task 2018 Audio Attention‐based encoder‐decoder 94%

Fang et al. [26] Amazon ALEXA DATA 2020 Audio CNN 76%

Mohammad Zeineldeen et al. [27] Switchboard 300h 2020 Audio Attention‐based encoder‐decoder BPE‐grapheme 85%

Single‐phoneme 86.2%

BPE‐phoneme 86.2%

LibriSpeech BPE‐grapheme 90.8%

Single‐phoneme 86.3%

BPE‐phoneme 90.7%

Wei Zhou et al. [28] TLv2 2021 Audio LSTM‐T 93%

SWBD 88.5

F I GURE 1 Overall lip‐reading system components

F I GURE 2 Pre‐processing steps for video
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� Step 3: Generate image dimensions of 112 � 112 � T di-
mensions (where T is the number of image frames) by con-
verting each video frame to a greyscale, followed by scaling
and cropping in the centre of the facial landmark boundary.

� Step 4: Conduct data augmentation with horizontal flipping,
random frame removal [30, 31], and random shifts in the
temporal and spatial dimensions of �2 frames and �5
pixels, respectively.

� Step 5: Normalise each pixel in a frame to its overall mean
and variance.

3.2 | Visual front‐end model

The model presented in [32] has served as the foundation for
the spatial‐temporal visual front‐end model. As the outputs of
the pre‐processing step, the frame sequence that contains the
cropped lips is then inputted to a spatial‐temporal (3D)
convolution with a filter width of 5 frames to best capture the
short‐term dynamics of the mouth region and outputs a 3D
feature map. A 2D ResNet is then employed to use these
feature maps to reduce the spatial dimensions. The output is a
T � W

32 �
H
32 � 512 tensor for an input sequence of T

� W � H (Time/width/Height) frames, and it is then
average‐pooled over the spatial dimensions, producing a 512‐
dimensional feature vector for every input video frame.

Illustrated in Figure 3, the input image frames are fed into a
3D CNN, and the network captures the short‐term dynamics
of a mouth area. Further, the 3D feature maps are fed into a
2D ResNet, which reduces the spatial dimensions to a single‐
dimensional tensor at every time step.

3.3 | Phoneme recognition model

In this study, the Carnegie Mellon Pronunciation Dictionary
[33] is utilised to map (convert) a sequence of words into a
sequence of phonemes to produce labels for phoneme classi-
fication. A Transformer uses 44 classes in total to predict
phonemes in silent videos. Also, a padding character where

each video is added to 180 characters is to ensure that all
videos are of the same length, a space character, Start of
Sentence <SoS>, and End of Sentence <EoS>. Table 3 il-
lustrates the classes used by the phoneme classifier.

As the primary building block in an encoder‐decoder ar-
chitecture, as illustrated in Figure 4, multi‐headed attention is
implemented by Transformers [34]. A stacked self‐attention
layer with the input tensor as attention queries and keys and
values constitutes the encoder. As for the decoder, it follows
the model presented in [15] and consists of a dense layer, batch
normalisation, RELU, and a dropout layer probability of 0.1
for each of the three fully connected layers; 1024 nodes in the

F I GURE 3 Visual Front‐end Model. The input image frames are input
to a 3D CNN to capture the short‐term dynamics of a mouth region, and
then the outputted 3D feature maps are used as input to a 2DResNet to
reduce the spatial dimensions to a single‐dimensional tensor per time step

TABLE 3 Phonemes as classes

{[pad], <sos> ‘AA’ , ‘AE’, ‘AH’, ‘AH’, ‘AO’, ‘AW’ , ‘AY’ , ‘B’ , ‘CH’ , ‘D’ ,
‘DH’ , ‘EH’ , ‘EH’ , ‘ER’, ‘EY’, ‘F’, ‘G’ , ‘HH’, ‘IH’, ‘IY’, ‘JH’,’K’ , ‘L’ ,
‘M’ , ‘N’ , ‘NG’, ‘OW’ , ‘OY’ , ‘P’, ‘R’ , ‘S’ , ‘SH’, ‘T’, ‘TH’,’UH’, ‘UW’,
‘V’, ‘W’, ‘Y’, ‘Z’, ‘ZH’, <eos>, [space]}.

F I GURE 4 Phoneme transformer architecture
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first and the last fully connected dense layers, and as for the
dense middle layer, it consists of 2048 nodes. Furthermore, the
decoder generates phoneme probabilities with a cross‐entropy
loss function corresponding to the ground truth table. The
encoder utilises the [34] base model, which has six layers, a
model size of 512, eight attention heads, and a dropout
probability of 0.1.

3.4 | Language model

An attention‐based RNN is utilised to convert the recognized
phonemes into meaningful sentences [35]. As shown in
Figure 5, the network consists of two multilayer RNNs: an
encoder for the source phoneme sequences and a decoder for
the target word sequences. By initialising the decoder with the
last hidden state of the encoder, the decoder will gain access to
the source information. The main goal of the attention
mechanism is to create direct connections between the target
and the source. At every decoder time step, the following
process of attention computations takes place. First, all source
states and current target hidden states are compared to pro-
duce/drive attention weights as in Equation (1). Second, a
context vector is computed based on the attention weights as
shown in Equation (2). Third, as shown in Eqution (3), in
order to produce the attention vector, the current target hidden
state is combined with the context vector and then fed as input
to the following time step, where αts represents attention
weights, ht is the target hidden state, hs is the source hidden
state, Ct is the context vector, and at is the attention vector.

αts ¼
expðscore ðht; hsÞÞ

PS
s0 expðscore ðht; hs

0 ÞÞ

ð1Þ

Ct ¼
X

s
αtshs ð2Þ

at ¼ f ðct; htÞ ¼ tanhðWc½ct; ht�Þ ð3Þ

4 | DATASET USED

The BBC Lip‐reading Sentences 2 (LRS2) [36] dataset has been
used for this work. There are over 46,000 videos in total in the
dataset with over two million‐word occurrences and a vocab-
ulary of approximately 40,000 words. The video with the most
extended duration is 180 frames long with each video having a
frame rate of 25 frames per second. The dataset consists of
spoken sentences, where each sentence is up to 100 ASCII
characters extracted from BBC videos, with a range of facial
positions from frontal to profile. The dataset is quite chal-
lenging because of the variety of perspectives, lighting settings,
genres, and speakers.

5 | MODELS COMPARISON

Recently, two prominent techniques are used to tackle the lip‐
reading challenge. The first technique treats it as a word or
phrase recognition problem, where video samples are analysed
to predict a word or phrase label. The second technique, the
latest solution, addresses the lip‐reading problem by predicting
a viseme sequence or a character sequence rather than a word
label. In this section, a comparison is provided regarding the
work of both [15, 37].

Lip‐reading systems consist of 3 stages; the first stage is the
pre‐processing stage, where videos are input into the system
and apply facial landmark extraction, which consists of face
detection, face tracking, and facial landmark detection, grey-
scale conversion, scaling, central cropping horizontal flipping,
random frame removal, pixel shifting, and Z‐score normal-
isation to extract the felicitous region of interest (ROI). Next,
the extracted ROI as a sequence of frames is input into the
visual front‐end model, where a spatial‐temporal (3D)
convolution is applied. Subsequently, a 2D ResNet is utilised to
decrease the spatial dimensions with depth. Accordingly, the
output would be a 512‐dimensional feature vector for each
input video frame.

The second stage depends on the classification scheme [37]
using characters for labelling the videos with 26 classes; the
authors in [15] use visemes with 13 classes; the authors in [37]
discussed three models for this task: the first is a recurrent
model consisting of stacked Bidirectional LSTM layers, the
second model is fully convolutional, and the third is a Trans-
former model that follows an encoder‐decoder structure with
multi‐head attention layers as a building block. The authors in
[15] presented a Transformer model with a different decoder
and a dense layer structure than the work presented in [37] due
to the difference in nature between visemes and characters.

The third stage is the language model, where the input is
the labels for each sequence of frames and outputs of the
uttered sentence. For example, the author [37] uses a character‐
level external language model consisting of four unidirectional
layers of a Recurrent Neural Network with 1024 LSTM cells
each that outputs a sentence character by character. As for [15],
a word detector consists of two steps: the first step is a word
lookup step and the second is Perplexity Calculations.F I GURE 5 Encoder‐decoder‐attention architecture
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The datasets used by [37] are Lip Reading in the Wild
(LRW) and the Lip Reading Sentences 2 (LRS2); the authors in
[15] used the Lip Reading Sentences 2 (LRS2). Both [15, 37]
trained their models on a single GeForce GTX 1080 Ti GPU
with 11 GB memory and implemented all operations in
TensorFlow.

According to [37], Transformer is the best performing
network among the three presented networks with a 50% word
error rate. While in [15], the model presented achieved better
performance with a 35.4% word error rate.

6 | EXPERIMENTS AND RESULTS

In this section, we provide some experiments to compare the
performance of our proposed model using phonemes as
classifiers with the work presented in [37] using characters as
classifiers and the authors in [15] use visemes as classifiers. The
matrix used for model evaluation includes Word Error Rate
(WER) and Character Error Rate (CER) as discussed below.

All the simulations have been implemented with Tensor-
Flow and on a GeForce GTX 1080 Ti GPU with 11 GB
memory for the first set of simulations with 90% training to
10% validation and the second set of simulations using
GeForce RTX‐3070 GPU with 16 GB memory for 70%
training to 30% testing.

6.1 | Evaluation criteria

In order to evaluate lip‐reading systems, many matrices have
been used, such as Word Accuracy Rate (WAR) and Sentence
Accuracy Rate (SAR). In addition, word, character, viseme, or
phoneme is another category that can be assisted using the
Error Rate (ER) matrices, which is shown in Equation 4. The
overall distance is calculated by comparing the decoded text to
the original text as follows:

ER¼
S þDþ I

N
ð4Þ

where S is the number of substitutions, D is the number of
deletions, I is the number of insertions, and N is the total
number of characters in the ground truth.

As for our model, the matrix used includes phoneme Error
Rate (PER), Character Error Rate (CER), and Word Error Rate
(WER) as expressed as follows:

PER ¼
PSþPD þ PI

VN
ð5Þ

CER ¼
CSþCD þ CI

CN
ð6Þ

WER ¼
WSþWD þWI

WN
ð7Þ

6.2 | Experimental results

In this section, the proposed model is evaluated and compared
to different state‐of‐the‐art classification schemas. Different
ratios of training and testing are used to verify the robustness
of the model. The model/phoneme classifier was trained for
2000 epochs. The results for the first simulations are shown in
Table 4, and the plots for the loss and the PER for both the
training and validation for 2000 epochs are given in Figures 6
and 7. The confusion matrix for classification of ASCII char-
acters is provided in Figure 8.

The phoneme‐based lip‐reading system achieved an overall
WER of 40%, a reduction of 10% compared to the highest
result of 50% of the previous state‐of‐the‐art model [37] as
presented in Table 5.

Comparing the results of the phoneme‐based lip‐reading
system with those of a viseme‐based system that uses the
LRS2 dataset with the same ratio of the number of training

TABLE 4 Results of phoneme‐based lip‐reading system

Epochs Validation samples PER (%) CER (%) WER (%)

2000 1500 30 32 40

F I GURE 6 Loss curve for training and validation

F I GURE 7 PER curve for training and validation
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samples to test samples, the observed accuracy of the
phoneme‐based model was lower than that of the viseme‐
based. Table 6 shows the PER, VER (Viseme Error Rate,)
and WER results. VER is calculated as

VER ¼
VSþVD þ VI

VN
ð8Þ

After running more simulations with a different ratio of
training to testing till no further convergence was recorded, the
achieved results are reported below in Table 7, and the plots
for the loss and the PER for both the training and the vali-
dation are shown in Figures 9 and 10.

6.3 | Gamma correction

The pixel brightness has been altered to provide illumination to
image frames in order to test the robustness of the proposed
model. Videos consist of images with red, green, and blue
pixels, and the intensity of the numerical values ranges from
0 as a minimum to 255 as a maximum. Normalisation is the
first step used to map the pixel values ranging from a minimum
of 0 to a maximum of 1. The next step is to apply gamma
correction according to Equation (9):

Vo ¼ AV γ
I ð9Þ

where A represents a constant equals to 1, VI represents the
matrix of pixels, γ, when given a value of less than <1 makes
dark parts lighter, and when given values larger than >1 makes
shadowed parts darker. The last step is re‐normalisation, where
all the pixels are re‐normalised to values from 0 to 255.

Tables 8 and 9 show the performance of the phoneme‐
based lip‐reading system under varying illumination ratios
compared to the state‐of‐the‐art model [37]. The proposed
system has an improved performance with a 10% lower word
error rate. It can be seen that the lip‐reading system is generally

F I GURE 8 Confusion matrices of ASCII characters

TABLE 5 Performance comparison of phoneme and best results of
character‐based Lip‐reading systems

Phoneme‐based lip reading
Character‐based lip reading
[37]

PER (%) WER (%) CER (%) WER (%)

30 40 34 50

TABLE 6 Performance comparison of phoneme and viseme‐based
lip‐reading systems

Phoneme‐based lip‐reading
Viseme‐based lip‐reading
[15]

PER (%) WER (%) VER (%) WER (%)

30 40 5 35

F I GURE 9 Loss curve for training and validation for 4000 epochs

F I GURE 1 0 PER curve for both training and validation for 4000
epochs

TABLE 7 Results of the phoneme‐based lip‐reading system

Epochs Validation samples PER (%) CER (%) WER (%)

4500 4500 16 18 26
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robust to varying levels of illumination, like that reported in
[37], and this has been expected given that videos in the BBC
LRS2 corpus were recorded in varying lighting conditions.

7 | CONCLUSION

Using phonemes is usually associated with audio signals;
however, in this research, audio signals are not presented/
provided. A purely phoneme‐based lip‐reading system from
videos using spatial‐temporal Convolution Neural Network as
the front end and Recurrent Neural Network as the back end
has been proposed in this study. The advantage of using
phonemes for lip‐reading sentences is to overcome the cu-
mulative loss of information caused by the mapping process
from phoneme to viseme. Another advantage is having only
two variations of dictionaries used in phoneme recognition
compared to the large number of phoneme‐to‐viseme maps;
that means that the conversion part in the phoneme system has
less complexity, that is, the required computational effort is
lower. With the BBC LRS2 benchmark dataset, the proposed
model has demonstrated an improved performance by an 18%
lower word error rate on average compared with the state‐of‐
the‐art lip‐reading sentences. The results prove that using
phonemes as a classification schema is a promising alternative
to other classification schemas.

Future research includes an in‐depth investigation on how
to improve the performance of the phoneme recognition
model and to investigate further how to enhance the language
model, particularly in speech impediments, such as in the case
of dysarthria speech.

As observed in the results presented in Tables 4 and 7, the
phoneme recognition accuracy is 70%, and the word accuracy
after the language model decreases to 60% due to the RNN
architecture and the fact that in some cases, the current output
depends on subsequent sequence factors, not only the previous
factors. Furthermore, because the difference in speech speed
varies from person to person (the input sequence and the
output sequence do not correspond to a one‐to‐one relation-
ship), the duration of the image frame sequences also differs.
Information regarding the beginning and finishing of a word in
an image sequence is not obtainable and the fact that RNNs
process the input in a sequential behaviour. Because of these
reasons, we intend to enhance the language model by
substituting the RNN with Attention‐Transformer to elevate
the accuracy further, primarily when the input consists of
distorted phoneme representation.

In our future work, we will further develop our system in
the same direction and comprehensively verify the results using
more than one dataset. Specifically, we will use the BBC LRS3
and apply a systematic ablation study to investigate the network
behaviour further.
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