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ANFIS AND NEURAL NETWORK TECHNIQUES
FOR NON-PARAMETRIC MODELLING
OF A TWIN ROTOR SYSTEM

Interest in system identification especially for nonlinear systems has significantly increased in the past-few decades. Soft-computing
methods which concern computation in an imprecise environment have gained significant attention amid widening studies of explicit
mathematical modelling. In this research, three different soft computing techniques that are multi-layered perceptron neural network
using Levenberg—Marquardt (LM), Elman recurrent neural network and adaptive neuro-fuzzy inference system (ANFIS) network are
deployed and used for modelling a twin rotor multi-input multi-output system (TRMS). The system is perceived as a challenging en-
gineering problem due to its high nonlinearity, cross coupling between horizontal and vertical axes and inaccessibility of some of its
states and outputs for measurements. Accurate modelling of the system is thus required so as to achieve satisfactory control objec-
tives. It is demonstrated experimentally that soft computing methods can be effectively used for modelling the system with highly
accurate results. The accuracy of the modelling results is demonstrated through validation tests including training and test validation
and correlation tests.
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1. Introduction

System identification is the basis of designing control
system, and it is very difficult to identify a nonlinear
system today. In a model-based control framework,
a pre-requisite to developing an effective control
mechanism for a system is to model and predict the
behaviours of the system based on given input—output
data [1]. A high-fidelity system model is an important
first step in control system design and analysis. A num-
ber of techniques have been devised by researchers to
determine models that best describe input—output be-
haviour of a system. In model identification, tradi-
tional mathematical techniques are rather insufficient
due to difficulty in the modelling of highly nonlinear
components in the system. New methods of modelling
based on soft computing techniques such as neural
networks and fuzzy logic have shown promising re-
sults for modelling of nonlinear plants [2].

Soft computing is a practical alternative for solv-
ing computationally complex and mathematically
intractable problems. The main components of soft
computing namely neural network (NN) and fuzzy

logic (FL) have shown great ability in solving com-
plex nonlinear system identification problems [3, 4].
There has been an explosion in the literature on NN in
the last decades or so, whose beginning was perhaps
marked by the first IEEE International Conference on
Neural Networks in 1987. It has been recognised that
NN offer a number of potential benefits for applica-
tions in the field of control engineering, particularly
for modelling non-linear systems. Some appealing
features of NN are its ability for learning through ex-
amples, they do not require any a priori knowledge
and can approximate arbitrary well any non-linear
continuous function [5].

It is known that modelling and control of rotorcraft
system is challenging due to its nature of nonlinearity,
strong cross coupling between the two rotors and the
difficulty in obtaining an accurate mathematical
model. Previous researchers have successfully used
feedforward multi-layered perceptron neural network
(MLPNN) to model and control of rotorcraft system
[6, 7, 8] using back propagation (BP) learning algo-
rithm. However, it suffers from the problem of local
minima and lower convergence rate because the gra-
dient descent optimisation technique is used to mini-
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mise the error function [9]. A significant improvement
on realization performance can be observed by using
various second order approaches, namely Newton’s
method [10], conjugate gradient’s [11], or the Leven-
berg-Marquardt (LM) [12] optimization technique.
Among the methods mentioned, the LM algorithm is
widely accepted as the most efficient one in the sense
of realization accuracy [13]. The LM has also ap-
peared to be the fastest method for training feedfor-
ward neural networks when the network contains no
more than a few hundred weights [14]. It gives a good
compromise, between the speed of the Newton algo-
rithm and the stability of the steepest descent method,
and consequently it constitutes a good transition be-
tween these methods [15].

The limitation of using feedforward network is the
absence of internal or hidden state, so that the proc-
essing of input patterns does not depend upon the
order in which these patterns are represented during
training process. This is called as static neural net-
work, owing to the fact that these algorithms lack the
necessary dynamical characteristics [16]. Elman re-
current neural network (ERNN) with internal dynam-
ics has first been introduced by Elman [17] and is
adopted in several recent works. Models with such
network are shown to have the capability of capturing
various plant nonlinearities and have a profound im-
pact on the learning capability and performance of the
network [18-20]. ERNN has shown more efficient
than feedforward NN such as MLPNN and radial ba-
sis network in terms of the number of neurons re-
quired to model a dynamic system [21]. Furthermore,
the level of error depends not only on the current pa-
rameter set, but also on the past parameter set [16].
Therefore, in this paper, a modified Elman recurrent
neural network (ERNN) is proposed. It uses LM
learning algorithm to calculate the error function with
respect to the weights to perform the weight updates
in times while the network runs as opposed to the
standard network which is using gradient decent
method.

An adaptive neuro-fuzzy inference system (ANFIS)
is a combination between NN and fuzzy inference
system (FIS) [22]. The objective of the synergy or
hybridization (using neural networks and fuzzy logic)
through ANFIS has been to overcome the weaknesses
in one technology during its application, with the
strengths of the other by appropriately integrating them.
More often, the complexity surrounding a problem has
called for a judicious combination of the technologies,
when a technology individually applied has failed to
obtain an efficient solution [23]. The advantages of
fuzzy systems are: 1) Their ability to describe fuzzy
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rules which fit the description of real-world processor
to a greater extent. 2) Their interpretability to explain
why a particular value appeared at the output. In turn,
some of the main disadvantages of fuzzy systems are
that expert knowledge is needed to define fuzzy rules
and it often requires long time to tune the parameters
(e.g., parameters of membership functions) especially
with a high number of fuzzy rules [24]. Fuzzy systems
also lack the ability to learn and cannot adjust them-
selves to a new environment. Neural network on the
opposite site has the ability to learn, where the user
can train the network and the transformations of the
variables are automated in the computational process.
However, the major downside is that the individual
relations between the input variables and the output
variables are not developed by engineering judgment
so that the model tends to be a black box without
analytical basis [25]. Over this time, the research
stream has gain momentum on ANFIS technique in
time series prediction [26], control of flexible system
[27], noise suppression [28], and clinical human
model dynamics [29].

The modelling of a TRMS using neural networks
is also reported in the literature. Ahmad et al. [30]
have addressed nonlinear modelling of a TRMS using
radial basis function network which presents nonlinear
system identification method for modelling air vehi-
cles of complex configuration. Dynamic modelling of
a TRMS has also been presented in Aldebrez et al.
[31], which has investigated the utilisation of NN with
back propagation and parametric linear approaches for
modelling the system. Feedforward neural network
modelling of a TRMS has also been investigated by
Shaheed [32]. Resilient propagation (RPROP) algo-
rithm is used as learning algorithm to model the sys-
tem. Rahideh et al. [33] have presented the modelling
of a TRMS using both analytical and empirical ap-
proach. The NN model is proved to be superior to the
analytical approach using Newtonian and Langrangian
methods.

Therefore, this research will investigate the hov-
ering position of a TRMS using real input—output data
from the system. Such investigations in dynamic
modelling of TRMS as well as similar system are very
limited in the literature. It is also evident that the sys-
tem has not been modelled using neural network with
dynamic network, Elman recurrent NN and also adap-
tive neuro-fuzzy inference system (ANFIS). The rest
of the paper is organised as follows. Section 2 de-
scribes the TRMS plant used in this work. Sections 3
through 5 describe the algorithms used in this work:
a) MLPNN, b) ERNN and ¢) ANFIS. Non-parametric
model identification validations are described in Sec-



ANFIS and neural network techniques for non-parametric modelling of a twin rotor system 15

tions 6 and 7, respectively. Results of comparison of
the algorithms are presented, analysed and discussed
well in Sections 8 and 9. Section 10 portrays the con-
clusion of the whole work. The responses of all the
experiment based models are compared with those of
the real TRMS to validate the accuracy of the model.
Hence, the performances of the models are also com-
pared with respect to each other. The models obtained
for the TRMS will be used in subsequent investiga-
tions for the development of dynamic simulation,
vibration suppression and control of the twin rotor
system.

2. Twin rotor multi-input
multi-output system

The TRMS is a laboratory set-up developed by Feed-
back Instruments Limited [34]. Due to the size, cost,
case of operation and interfacing facilities with per-
sonal computer, the TRMS has attracted many re-
searchers and is being used as a “test rig” in aerody-
namic control experiments. Although the TRMS does
not fly, its behaviour in certain aspects resembles that
of a helicopter. For example, like a helicopter it pos-
sesses a strong cross-coupling between the collective
(main rotor) and the tail rotor. In a typical helicopter,
the aerodynamic force is controlled by changing the
attack of the blades. However, in the TRMS the aero-
dynamic force is controlled by varying the speed of
the motors. It is driven by two DC motors. Its two
propellers are perpendicular to each other and joined
by a beam pivoted on its base that can rotate freely in
the horizontal and vertical planes. The beam can thus
be moved by changing the input voltage in order to
control the rotational speed of the propellers. The
articulated joint allows the beam to rotate in such
a way that its ends move on spherical surfaces. The
system 1s equipped with a pendulum counterweight
hanging from the beam, which is used for balancing
the angular momentum. Table 1 lists some character-
istic parameters of the TRMS. A schematic diagram
of the TRMS used in this work is shown in Fig. 1.

Table 1. Characteristic parameters of the TRMS.

Parameters Value
Maximum input voltage range +-10V
Length of the beam 0.49m
Length of the counter balance 0.26 m
Mass of the main DC motor with main rotor | 0.228 kg
Mass of the tail DC motor with tail rotor 0.206 kg
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Fig. 1. Twin rotor multi-input multi-output system.

The system is balanced in such a way that when
the motors are switched off, the main rotor end of the
beam is lowered. The controls of the system are the
supply voltages of the motors. It is important to note
that the geometrical shapes of the propellers are not
symmetric. Accordingly, the system behaviour in
one direction is different from that in the other di-
rection. Rotation of a propeller produces an angular
momentum which, according to the law of conserva-
tion of angular momentum, is compensated by the
remaining body of the TRMS beam. This results in
interaction between the moment of inertia of the
motors with propellers. This interaction directly in-
fluences the velocities of the beam in both vertical
and horizontal planes. The system is interfaced with
a personal computer through a data acquisition
board, PCL-812PG. The measured signals are: posi-
tion of the beam, which constitutes two position an-
gles, and the angular velocities of the rotors. Angular
velocities of the beam are obtained through software
by differentiating and filtering the measured position
angles of the beam. During the experimental proce-
dure, the beam motion is allowed unrestricted in the
pitch and the yaw planes, so that the motion of
TRMS includes all the dynamic aspects of the sys-
tem.

3. Multi-layered perceptron
neural network

Multilayer perceptron (MLP) is a feedforward neural
network consisting of an input layer, a number of
hidden layers and an output layer. MLPNN is a com-
putational model comprising numerous nonlinear
processing elements arranged in patterns similar to
biological neural networks. These computational
models have now become exciting alternatives to
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conventional approaches in solving variety of engi-
neering and scientific problems. Multilayer perceptron
NNs constitute an important class of NNs due to their
simple topology and powerful approximation capabil-
ity. They are supervised networks that require training
with exact collected data [25]. A generalised archi-
tecture of MLP with its basic functions is shown in
Fig. 2.

Fig. 2. A three-layered multiple layers
of feedforward neural network.

The most common training methods in MLP is er-
ror backpropagation (BP) algorithm [35, 36]. In spite
of the fact that BP is successfully used for various kinds
of tasks, the training method is quenching for further
improvement. One of the drawbacks of MLP-NN is the
lack of standardization in choosing the number of hid-
den layers and hidden neurons per layer, which con-
stitutes the architecture of an NN. Another drawback
of using this architecture is that the NN with standard
backpropagation learning method may get stuck in
a shallow local minimum as the algorithm is based on
the steepest descent (gradient) algorithm [37]. BP is
also noted to have slow convergence and nonstability
of convergence [38] as well as overfitting [39]. Since
the local minimum is surrounded by a higher ground,
once entered, the network usually does not leave
a local minimum with a standard backpropagation
algorithm.

3.1. Levenberg—Mardquardt
learning algorithm

A highly popular algorithm known as the Levenberg—
Marquardt algorithm is therefore employed to enable
the MLPNN to slide through local minima and con-
verge faster. It gives a good compromise between the
speed of the Newton algorithm and the stability of the
steepest descent method, and consequently it consti-
tutes a good transition between these methods [15].
Consider a two-layered feedforward network such as
the three layer network in Fig. 3 [14].
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Fig. 3. Structure of a two-layered feedforward neural networks.

In the figure, the net input to unit % in the first
layer is

N
2(B) =D Wy, , (1)
i=l-

the net output from unit o in the second layer becomes

90 =Y 70w, @)
h=1

where wy, is the weight between input x; and hidden
unit A4, f(.) is the activation function, v;, is the weight
between hidden unit /# and output unit o, and N;, and
N,, are the numbers of hidden units and the dimension
of input space, respectively. The three most com-
monly used activation functions are:

1

1. Sigmoid function: f(x) =
l+e

= &)

2. Hyperbolic tangent function:

=X

o @

l-e
l+e

x T—
f(x)= tanh(aj =

3. Linear function:

f(x)=x. &)

The network can consist of any of the above activa-
tion functions with linear function normally used in
the output layer, and sigmoid or hyperbolic tangent
functions used in the hidden layers.

The network is to learn association between a fixed
set of input/output pairs (P, T). In the Levenberg—
Marquardt algorithm, the performance index for the
network 1s

Ny

1 1
VZEZ(% -3 (% _yk)zizekrek (6)
k=1

k=1

where f;, yx and e; are the target, the output, and the
error vector, respectively, when the k-th input vector
Dx 1s presented.

Levenberg—Marquardt algorithm estimates the
weight by approximating Newton’s method. Assume
that V(w) required to be minimised with respect to
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the parameter vector w, then Newton’s method
would be

Aw =~V V(W] 'VV (w) (7

where V?V(w) is the Hessian matrix and VV(w) is

the gradient. If we assume that V(w) is a sum of
square function

N
V(w)=> el (w) (8)
i=1

then it can be-shown that
VV(w)=J" (w)e(w),

: : )
V2V (w) = JT (W) (W) + S(w),

where J(w) is the Jacobian matrix. The Jacobian ma-
trix is calculated using the derivative of each error e;
with respect to each weight w or bias, and conse-
quently the result will be an N % » matrix;

[ Oei(w) e (w) .. Og(w) ]
ow, ow, ow,
Oe,(w) 0Oe,(w) Oe, (w)
Jw()=| ™ ow, ow, (10)
Oe,(w) 2de,(w) e, (W)
L oW ow, ow, |
and
N
S(w) =D e,(W)V’e(w). (11)
i=l

Then according to the Gauss—Newton method the
update would be

Aw =" (W) J (W] T (w)e(w) . (12)

Thus, the Marquardt-Levenberg modification to the
Gauss—Newton method is

Awt) =[J" (WT(w) + ld T T (we(w).  (13)

The new sum square error is then computed and com-
pared to the previous one. If the performance becomes
better, where the new error is less than the previous
one, then the new parameters are defined as

w(t +1) = w(t) + Aw(t) (14)

and the parameter u is decreased using u =& The

new iteration is started if the stop criteria are not satis-
fied, otherwise 4 is increased using x4 = pf and Aw(¢)

is recalculated. A full description of Levenberg—
Marquardt modification algorithm can be found
in [40].

4. Elman recurrent neural network

Since all physical systems involve dynamics, mod-
elling a physical system as a “natural” neural net-
work should realistically include dynamical ele-
ments. Furthermore, from a control point of view,
dynamical elements have to be included to have
well posed problems [21]. If the feedback operation
i1s added to static neural network, the network be-
comes dynamic neural network. It will make the
network have short-term and long-term memories at
the same time. The message at the present stage by
way of feedback becomes the input information at
the next stage or other neurons. It causes the time
delay through feedback that network structure is
used, and imitates the characteristic of brain which
postpones and keeps the signal. Just like a biologi-
cal information process system. Therefore, dynamic
neural network can simulate complex systems such
as time varying systems, which some static neural
networks could not [16]. This dynamic neural net-
work is called recurrent neural network (RNN).
RNN offers a number of potential advantages over
the use of static layered networks. RNN provides
a means for encoding and representing internal or
hidden states, albeit in a potentially distributed
fashion, which leads to capabilities that are similar
to those of an observer in modern control theory.
RNN provides increasing flexibility for filtering
noisy inputs. RNN feedback controllers are also
more robust than static feedforward controllers to
changes in plant dynamics and parameters [21].

Recurrent neural networks are different from
feedforward network architecture in the sense that
there is at least one feedback loop. Thus in those
networks, there could exist one layer with feedback
connections as well as there could also be neurons
with self-feedback link where the output of a neuron
is fed back into itself as the input. The presence of
feedback loop has a profound impact on the learning
capability of the network. Furthermore, these feed-
back loops involve the use of particular branches
composed of unit delay elements that result in non-
linear dynamical behaviour by virtue of the nonlinear
nature of neurons.

Nonlinear dynamics has a key role in the storage
function of a recurrent network [15]. A representation
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of a recurrent network as a block diagram is provided
in Fig. 4. Contrary to feedforward networks, recurrent
networks can be sensitive, and can be adapted to past
inputs. Among the several NN architectures found in
the literature, recurrent NNs (RNNs) involving dy-
namic elements and internal feedback connections
have been considered as more suitable for modelling
and control of nonlinear systems than feedforward
networks [41].

External inputs<—

Recurrent inputs

Fig. 4. Recurrent neural network architecture.

Elman [17] has proposed a partially RNN, where
the feedforward connections are modifiable and the
recurrent connections are fixed. It occupies a set of
context nodes to store the internal states. Thus, it has
certain unique dynamic characteristics over static
NNs, such as the MLP-NN and radial basis function
(RBF) networks [42]. The connections are mainly
feedforward but also include a set of carefully cho-
sen feedback connections that allow the network to
remember cues from the recent past. The input layer
is divided into two parts that are the true input units
and the context units that hold a copy of the activa-
tions of the hidden units from the previous time step.
As the feedback connections are fixed, backpropaga-
tion can be used for the training of the feedforward
connections. The network is able to recognize se-
quences and also to produce short continuations of
known sequences [17].

The structure of the Elman recurrent NN (ERNN)
is illustrated in Fig. 5 where z™' is a unit delay. Elman
networks are two-layer backpropagation networks
with addition of a feedback connection from the out-
put of the hidden layer to its input. The Elman net-
work has tansig neurons in its hidden (recurrent)
layer, and purelin neurons in its output layer. This
combination is special in that two-layer networks with
these transfer functions can approximate any function
(with a finite number of discontinuities) with arbitrary
accuracy. The only requirement is that the hidden
layer must have enough neurons. More hidden neu-
rons are needed as the function being fitted increases
in complexity [43]. It is easy to observe that the El-
man network consists of four layers: input layer, hid-
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den layer, context layer, and output layer. There are
adjustable weights connecting every two adjacent
layers. Generally, it can be considered as a special
type of feedforward NN with additional memory neu-
rons and local feedback [44]. The distinct self-
connections of the context nodes in the Elman net-
work make it sensitive to the history of input data,
which is essentially useful in the modelling of dy-
namic systems [17].

Output layer

Hidden layer

Input layer

Context
layer

Fig. 5. Elman recurrent neural network architecture.

5. Adaptive neuro-fuzzy
inference system

Neuro-fuzzy systems are hybrids of fuzzy systems and
neural networks. The goal of neuro-fuzzy systems is
to combine the learning capability of a neural network
with the intuitive representation of knowledge found
in a fuzzy system. This may be accomplished by de-
signing network architecture to mimic a fuzzy system,
by incorporating linguistic terms into the computa-
tions performed by the network, by means of an ex-
planation mechanism for the network, and so forth
[28]. ANFIS is the well-known neuro-fuzzy system,
which mimics the operation of a Takagi—Sugeno—
Kang (TSK) fuzzy system [45]. An ANFIS network
makes use of a supervised learning algorithm to de-
termine a nonlinear model of the input—output func-
tion, which is represented by a training set of numeri-
cal data where under proper conditions it can be used
as a universal approximator [46].

The ANFIS uses a hybrid learning rule combin-
ing back-propagation, gradient-descent (GD), and
a least squares error (LSE) algorithm to identify and
optimize the Sugeno system’s signals. The ANFIS
type-3 fuzzy reasoning and the equivalent ANFIS
architecture of a first order Sugeno fuzzy model with
two inputs are shown in Fig. 6. The model has five



ANFIS and neural network techniques for non-parametric modelling of a twin rotor system 19

layers and every node in a given layer has a similar
function. The architecture of ANFIS with two inputs,
four rules and one output, where each input is as-
sumed to have two associated membership functions
(MFs). The four fuzzy IF-THEN rules can be ex-
pressed as [47]

R, :Ifx; is 4, And x, is B, Then f|,=q, x, + b, x, + ¢,
R, : Ifx, is 4, And x, is B, Then f,,=a,,x; + b, x, +¢;,
R, :Ifx, is 4, And x, is B, Then f,,=a,,x, + by x, + ¢,,
R, : Ifx, is 4, And x, is B, Then f,,=a,,x, + b,,x, +¢,,
. (15)
where x; and x, are the input variables to the ANFIS.
Ay, A, By and B, are the linguistic terms of input mem-
bership function for each rule. Also ay, b; and c;;, where
i, j =1, 2, are the coefficients of output membership

function f;;. The node functions in the same layer are of
the same function family as described below.

Layer 1

Layer 2

Layer 3 Layer 4 Layer 5

Wt

A
W
A"G ﬁ.‘ﬂ :

&<:
B

Fig. 6. Adaptive neuro-fuzzy inference system architecture.

Layer 1: is the membership layer. The output of any
node in this layer will give the membership degree of
an input (crisp). Every node i in this layer is a square
node with a node function

O =, (x), i=12,

! . (16)
OB]- :lqu (xz)’ lea 23

where x is the input to node /, and 4; and B; the lin-
guistic labels (such as big, small, etc.) associated with

this node function. In other words, O is the member-
ship function of 4; and it specifies the degree to which
the given x satisfies the qualifier 4;. u, (x) is Gaus-

sian shaped with the maximum equal to 1 and mini-
mum equal to 0. The x, and Hp, are input MFs of

Gaussian type of the form

2
ﬂA-(xlﬁaiibiﬁcf):eXp _%[XI_miJ 2 i=1’25
; o)
2
L[ X, —m; )
g, (%, 0;,b),¢;)=ex ~g , 1=12,
Q;
(17)

where {m;, o;} and {m;, o;} represent the centre and
width of the fuzzy sets 4; and B, respectively. Pa-
rameters in this layer are referred to as antecedent
parameters.

Layer 2: is the multiplication layer. Every node in
this layer multiplies the inputs of membership degrees
with a circle node labelled IT and produces the firing
strength of the rule or the degree in which the corre-
sponding rule is fired. For instance,

Oyz' =Wy = Hy (xl)»qu (x), i,7=12, (18)
where each node output represents the firing strength
of a rule.

Layer 3: is just a normalisation layer. Every node in
this layer is a circle node labelled N. The i-th node
calculates the ratio of the particular rule-firing degree
to the sum of all rule degrees,

03 :w;i:—, l,]:1,2

L

o
W..
i=1 j=1 y

Outputs of this layer are known as normalized firing
strengths.

(19)

Layer 4: applies Sugeno’s processing rule. It is also
the defuzzification layer. Every node i in this layer is
a square node with a node function

ng,.j [y =wy(agx +byx, +¢;), i,j=1,2, (20)

where w; is the output of Layer 3, and {ay, by, c;} are

the parameter set. Parameters in this layer are known
as consequent parameters.

Finally, the single node of layer 5: calculates the
overall output as the sum of all incoming signal. The
single node in this layer is a circle node labelled Z
that computes the overall output as the summation of
all incoming signals, i.e.,

05T T e 12

The hybrid leamning algorithm using ANFIS tech-
nique, thus described can be formulated as:

@1
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Input data is divided into two parts
Initialise input data (training data)

S. F. ToHA, M. O. TOKHI

Assign number of iterations (epoch) and tolerance (error) value

Repeat

Forward-pass learning using LSE optimisation
Calculate value of consequent parameters (equation 20)
Backward-pass learning using gradient descent optimisation
Calculate value of antecedent parameters (equation 17)

Until convergence criteria is satisfied

Validate with independent data (checking data)

6. Non-parametric modelling

Black box and some non-parametric modelling tech-
niques are gaining considerable interest among re-
searchers due to their simplicity [48]. Non-parametric
identification methods are techniques to estimate
model behaviour without necessarily using a given
parameterised model set. These methods avoid aero-
dynamics/kinetics of the system and can derive model
based on data collected at several input—output termi-
nals. The success of such approaches depends on pre-
experimentation techniques through which the system
is expected to reveal all the important dynamics, suit-
able selection of sensors to measure signals. Data
acquisition system, accuracy of collected data, and all
the estimation or prediction technique, commonly
known as algorithm.

6.1. Model structure

The most basic relationship between the input and
output of a nonlinear system can be represented in
a non-linear autoregressive model with exogenous
inputs (NARX) form [48], as given by

y(@) = flu(t 1), u(t -2), ..., u(t —n,),
y(t_l)’ y(t_z): ey y(f—”y)]

where p(¢) is the predicted output and f(.) is some
vector valued nonlinear function of y(f) and u(?). n,
and n, are the maximum lags in the output and input
vectors. For this work, the input u(f) indicating the
voltage of main rotor, V,(f), the output y(7) indicating
the actual pitch angle of the beam and p(¢) is the

predicted pitch angle of the beam.

The NARX model structure is shown in Fig. 7.
The signal vector applied to the input layer of the non-
parametric model consists of a data window made up
of the following components:

(22)

(1) Present and past values of the input, namely,
u(t — 1), u(t - 2), ..., u(t — n,), which represent exo-
genous inputs originating from outside the network;

(11) Delayed values of the output, namely, y(r — 1),
Wt = 2), .., y(t — ny), on which the predicted model
output p(r) is regressed. :

u() ») .
g e | 50
— 1} &)

—:P z
/ Training
Algorithm =

Fig. 7. NARX model structure for non-parametric modelling.
6.2. Excitation signal

The TRMS set-up is very sensitive to atmospheric
disturbance, hence it was ensured that the identifica-
tion experiments are conducted in calm air. The test
signal was designed separately and read from the
workspace in the MATLAB/Simulink environment.
This is analogous to automation of the test signal,
which ensures the experiments to be sufficiently con-
trolled, be repeatable, and guarantees the desired
spectral content.

Theoretically, the TRMS will have an infinite
number of resonances with associated frequencies. It
is observed from the power spectral density of the
system that the significant mode lies in the 0-1 Hz
bandwidth, with the main resonance mode at 0.34 Hz
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which can be attributed to the main body dynamics
[30]. During the experimental procedure, the beam
motion is allowed unrestricted in the pitch and the
yaw planes, so that the motion of TRMS includes all
the dynamic aspects of the system.

To investigate variations in the detected vibration
modes of the TRMS, modelling exercise is carried out
based on the actual system response to the applied
excitation signal. A pseudo-random binary signal
(PRBS), covering the dynamic range of interest of the
TRMS flexible system is used as an excitation signal.
This experiment was carried out using a sampling
time of 7 ="0.1 s with 5 Hz bandwidth. Input—output
data necessary to perform parametric identification
were collected, where a 5 Volt input PRBS indicates
the voltage of main rotor, V,(f) was used to excite the
TRMS system. The output data collected was the
pitch angle of the beam, a,(?).

The measured data was sampled and recorded on
a PC using the real-time kemel (RTK) software. To
overcome the problem of obtaining biased model, the
empirical input and output data are divided into two
data sets, 1) training data and 2) checking data sets. The
training data set is fed into the algorithm to develop
a model. The model usually tracks the system output
well and converges to a target error value. However,
the checking data, which is different from the training
data set, is presented to the developed model to verify
its performance against the actual data. The optimisa-
tion function utilised is the mean squared error (MSE)
between the actual output y(f) of the system and the
predicted output (), for N number of data.

N
Objective function = % > e - . (23)
=1

6.3. MLPNN modelling using
Levenberg—Marquardt training algorithm

The TRMS is modelled using an MLP-NN with a con-
figuration of two-layered network with 2 x 1 neurons.
The neural network was trained by using a sound
Levenberg—Marquardt algorithm. The NN-based model
1s designed to have 5 inputs, 2 neurons in the hidden
layer and 1 neuron in the output layer. Figure 8 shows
the MLPNN structure for modelling the TRMS. The
input data structure comprises the voltage of main
rotor at present time, V,(#), voltage of main rotor
at previous time, V, (¢ — 1), voltage of main rotor
at 2 previous sample times, V,(r — 2), pitch angle of
the beam at previous time, &, (f — 1), pitch angle of the

beam at 2 previous sample times, a,(f — 2). In this
non-parametric modelling, the activation functions
used for the hidden and output layers are sigmoid and
linear functions, respectively.

P erioa (O

AN ()
Vrica(t = 2)
@rgea 1)

A yeriicar (t -2)

d‘-wm:nf (t )

Fig. 8. MLPNN structure for modelling the TRMS.

6.4. ERNN modelling using
Levenberg—Marquardt training algorithm

The functionality of the recurrent network is deter-
mined by specifying the choice of network architec-
ture, that is, the number and type of neurons, the
location of feedback loops and the development of
a suitable training algorithm. The Elman network
was achieved with a configuration of two hidden
layers, each having two sigmoid neurons and one
output layer with linear neuron. The neural network
was trained by using a sound Levenberg-Marquardt
algorithm. This architecture was obtained by trial
and error process in order to achieve a good result.
Figure 9 shows the ERNN structure for modelling
the TRMS. The input data structure comprises the
voltage of main rotor at present time, V,(f), voltage
of main rotor at previous time, V,(z — 1), pitch angle
of the beam at previous time, &,(# — 1). In this non-
parametric modelling, the activation functions used
for the hidden and output layers are sigmoid and
linear functions, respectively.

Output layer

Hidden layer

Input layer

Context
layer

V.oVv,a-)ea(t-1)

Fig. 9. ERNN structure for modelling the TRMS.
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6.5. ANFIS modelling

The adaptive network-based fuzzy inference system
(ANFIS) using gradient-descent (GD), and a least
squares error (LSE) algorithms is used for the non-
parametric modelling of the twin rotor system. The
input data structure comprises the voltage of main
rotor at previous time, V, (¢ — 1), and the pitch angle of
the beam at previous time, ,(z — 1). The output from
the ANFIS non-parametric model is the predicted
pitch angle of the beam «,(¢) at the hovering motion.

The number of the input membership function as-
signed to each input of the ANFIS was arbitrarily set
to six. Therefore, the ANFIS structure with first-order
Sugeno model containing 36 rules is shown in Fig. 10.

input  inputm{ rule

outputmf outpui

V.@-1)

o, (1)

Fig. 10. ANFIS structure for modelling the TRMS.

Gaussian membership functions with product in-
ference rule were used at the fuzzification level. The
ANFIS Gaussian function used for both input as well
as the 36 rules is shown in Fig. 11. The fuzzifier out-
puts the firing strengths for each rule. The vector of
firing strengths is normalized. The resulting vector is
defuzzified by utilizing the first-order Sugeno model.

MFs of input 1
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\ / |
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3

19 1.95 2
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Fig. 11. ANFIS membership function for inputl and input 2.
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7. Model validation

In system identification, it is crucial to validate
whether the model obtained is good enough to repli-
cate the real system. The use of plots and common
sense, as well as statistical test are the two ways to
investigate the validity of a model [49]. In this work,
model validity tests are carried out as below:
(i) Use of plots and common sense

a. Time domain representation

b. Power spectral density representation
(i1) Use of statistical tests

a. One-step ahead prediction

b. Correlation tests

c. Percentage of accuracy

For a good model, the predicted output should re-
semble the actual output. Such plots and the numerical
fits associated with them are of course most useful and
intuitively appealing for evaluating a given model [48].
A more convincing method of model validation is to use
statistical methods. If a model of a system is adequate,
then the residuals e(f) should be unpredictable from past
inputs and outputs. In other words, the residuals should
not depend on something that is likely to change.

7.1. One-step-ahead prediction

The one-step-ahead (OSA) prediction of the system
output is a common measure of predictive accuracy
used in control and system identification [50]. This
approach is adopted in this work and expressed as

y(O) = fTu(@), u(t =), u(t-2),..,ut—n,),

y(=1), y(t-2),..., y(t—n,))]
where f(e) is a nonlinear function, » and y are the
input and output, respectively. The residual or predic-

tion 1s the difference between the measured output and
the predicted output, given by

e(t) = y(1) - »(@) .
Often p(¢) will be a relatively good prediction of

24)

(25)

¥(f) over the estimation set even if the model is biased
because the model was estimated by minimizing the
prediction errors.

7.2. Correlation tests

The most useful statistical methods through which one
can be roughly convinced about the validity of a model
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are the auto-correlation and cross-correlation tests.
The auto-correlation test examines the correlation
among the residuals themselves. On the other hand,
the cross-correlation tests investigate the correlation
between the residuals and past inputs. In order to
check these correlations, it is reasonable to study the
covariance among the residuals and changeable pa-
rameters [49].

If a system is linear, then two simple covariance
tests can be applied to detect unmodelled linear terms
in the residuals [51]. If the process and noise model
estimates are correct, it can be shown that

#..(7) = E[e(t -7)e(0)] = 6(7) ,

h.e(7) = E[u(t =7)e(0)]=0 V7,

(26)
27

where &£(f) represents the residual sequence. If the
process model is correct but the noise model is incor-
rect, the residuals will be autocorrelated such that
@..(r)# 0(r) but they will be uncorrelated with the

input such that ¢,(7)=0 V7. Alternatively, if the
noise model is correct and the process model is bi-
ased, then the residuals are both autocorrelated such
that ¢,,(7) # 5(r) and correlated with the input such
that ¢, (7) # 0. It is possible using the simple correla-
tions, therefore, to distinguish between deficiencies in
the process and noise models.

Billing and Voon [52] had shown that the tradi-
tional tests used for linear system in equations (26)
and (27) are not sufficient. During the model valida-
tion stage, only a little control over the form of the
input signals and the residuals are known. Therefore,
few tests are derived that work under the worst possi-
ble combinations of signal properties. It is assumed
that «(7) and &(7) are independent zero-mean process,
that £(-) is white and that %(-) may be white. The non-
linear model estimated will therefore only be unbiased
providing

$,.,(0) = E[@’(t~7)-7" ()e(n)]=0 V7, (28)

b2 (D) =E[@* (1—7) -7 e’ (] =0 Vz, (29)

Boeny(7) = E[e(t)e(t =1-T)u(t -=1-7)]=0 720.(30)

7.3. Percentage of accuracy

Accuracy of a result or experimental procedure can
refer to the percentage difference between the experi-

mental result and the accepted value. In this work, the
percentage of accuracy is calculated to measure the
relationship between the actual output y(7) and pre-
dicted output p(f) according to equation (25). The

higher the value of percentage of accuracy to 100%
replicates an accurate time domain output mapping of
actual output and predicted model output of the sys-
tem.

Percentage of accuracy =100%

N ,\
— Percentage of error=| 1- [L ZM] x100.
N =1 y(f)

3D
8. Results and discussion

This section presents the results of non-parametric
modelling of a TRMS using three different intelli-
gent techniques that are MLPNN using LM training
algorithm, ERNN using LM training algorithm and
hybrid ANFIS GD + LSE. In order to establish
reputability, the hybrid modelling methods are run
ten times independently. All simulations are carried
out on a PC (Intel Pentium ®, 3.40 GHz, RAM
1 GB).

The correspondence time domain mappings be-
tween the actual and predicted output of the pitch
angle (rad) are shown in Fig. 12, Fig. 13 and Fig. 14.
For the 700 training data, it is shown that all the three
different modelling methods can obtain a good output
mapping. However, the zoom-up figure shows that
MLPNN gives the worst result as compared to ERNN
and ANFIS GD+LSE. It is further explained, where
the percentage of accuracy (equation (31)) indicates
some variations in non-parametric modelling with
96.68%, 97.51% and 98.06% using MLPNN, ERNN
and ANFIS GD+LSE.

The power spectral densities of the actual and
predicted non-parametric model of the system are
shown in Fig. 15. Since the significant mode lies in
the 0—1 Hz bandwidth, it is clearly evidence that the
non-parametric modelling techniques used are able
to capture the main resonance mode at 0.34 Hz.
From the modelling work carried out, it is also ob-
served that with correct network architecture for
MLPNN and ERNN, as well as correct number of
rules for ANFIS GD+LSE, they can estimate the
system well and manage to locate resonance fre-
quencies of the system.



24

03 T T g ! !
= Actual output
0.25¢ ~#= MLPNN predicted output| |
0.2r
0.15r
01

Pitch angle (rad)

0% 900 200 300 400 500 600 700
i) Number of data

S. F. ToHA, M. O. TOKHI

e Actual output
~%+ MLPNN predicted output

Pitch angle (rad)

148 150 152 154 156
Number of data

Fig. 12. Actual and MLPNN predicted output of the system.
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Fig. 13. Actual and ERNN predicted output of the system.
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Fig. 14. Actual and ANFIS GD+LSE predicted output of the system.

The convergence representation of mean-squared
error for 100 epochs using non-parametric modeling
techniques is shown in Fig. 16. It is clearly evi-
dence that the convergence curve using MLPNN
and ERNN techniques are still not converge until

the predefined number of epoch. However, the dy-
namic ERNN wins in the convergence competition
with smaller value of MSE as compared to static
feedforward MLPNN. It is opposed to the ANFIS
GD+LSE, where the synergies between neural
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Fig. 15. Power spectral density of actual and non-parametric modelling predicted output.

network and fuzzy logic compensate the weak-
nesses between both techniques. It gives faster con-
vergence in only 14th epochs with the best value of
MSE, 3.304 x 107,

10' ; - : : . ‘
2 e ANFIS GD+LSE
% ~#- ERNN

10° ¢ MLPNN

Mean-squared Ermror

05 20 40 50 80 100
Epochs

Fig. 16. Convergence of non-parametric modelling algorithms
over 100 epochs.
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Fig. 17. The 3D-surface of the ANFIS GD+LSE modelling.

Figure 17 shows the 3D-surface of the hybrid
ANFIS modelling (which is responsible for pre-
dicting the pitch angle output of the TRMS) using
GD+LSE training algorithm. From the 3D-surface,
it can be noticed that this ANFIS predictor is stable
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Fig. 18. Correlation test of MLPNN estimation.

tinuous, i.e., there are no fluctuations or sudden
changes in the pitch angle prediction.

Normalization ensures that all the correlation
functions lie in the range [1, —1] irrespective of the

because along the domain of discourse, there are no
predicted pitch angle output values lying beyond
the upper or lower limit. Furthermore, the surfaces
are smooth which means that the rule-base is con-
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Fig. 19. Correlation test of ERNN estimation.

signal strengths. The correlations will never be exactly
zero for all lags and the 95% confidence bands de-

fined as |r|<1.964 N are used to indicate whether
the estimated correlations are significant or not, where

N is the data length and # is the correlation function
[52]. Using the five equations in Section 7, the corre-
lation tests are carried out to determine the effective-
ness of the non-parametric modelling techniques. The
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Fig. 20. Correlation test of ANFIS GD-+LSE estimation.

results of correlation tests are shown in Fig. 18, Fig. 19 ANFIS GD+LSE technique complies with all the five
and Fig. 20 using MLPNN, ERNN and ANFIS correlation tests indicating that the model behaviour is
GD+LSE, respectively. It is evidenced that model unbiased and close to that of the real system.
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9. Comparative assessment

This section will discuss the comparative assessment
of using MLPNN, ERNN and ANFIS GD+LSE to
obtain the nonlinear model of the TRMS in Table 2
and Table 3. In this work, LM has been used to over-
come the slow convergence rate problem in BP algo-
rithm. Both the feedforward MLPNN and dynamic
ERNN are trained using LM algorithm. The crucial
drawbacks of this method, however, are that in many
applications_too much computation per pattern is re-
quired so that the storage and memory requirements
go up as the square of the size of the network [53].
Thus, the number of epochs obtained in each run is
very high which is approaching the predefined num-
ber of epochs.

Table 2. Performance of the employed non-parametric
modelling techniques with 100 epochs (training data).

Non-parametric | Mean-squared No. CPU Execution
Modelling Error (MSE) | of Epochs Time (s)
MLPNN 7.269 x 107 80 2.689
ERNN 8.448 x 10°* 92 2.238

ANFIS GD+LSE | 3.304 x 107 29 2473

Table 3. Performance of the employed non-parametric
modelling techniques with 100 epochs (checking data).

Non-parametric | Mean-squared No. CPU Execution
Modelling Error (MSE) [ of Epochs Time (s)
MLPNN 7.538 x 10~ 88 2.125
ERNN 8.762 x 107* 85 1.952

ANFIS GD+LSE | 3.483 x 107 32 2.275

Table 4. Percentage of accuracy for parametric
modelling of the system.

Noﬁgz;r; egtric Dataset Ma&]olzzs(oﬁ]:;l 1% of accuracy
Tl
BN g | asn | og

ANFIS GD+LSE T;:;E‘;lgg g;i;g 3?2?

ANFIS GD+LSE technique on the other hand,
is able to produce the best MSE value, within less
than 34 epochs (according to the average number
of epochs) in a comparable CPU execution times
as compared to the other methods. The number of
membership functions for each input is set to be six
which is equivalent to 36 rules to obtain the nonlin-
ear model of the system. It is also shown in Table 2

and Table 3 that ANFIS GD+LSE technique gives
the smallest value of standard deviation, indicating
that the algorithm is consistent. According to Table 4,
the highest percentage of accuracy also obtained
using ANFIS GD+LSE technique which corrobo-
rates that the estimated model is adequate to repli-
cate well the real system.

10. Conclusion

In this work, a non-parametric modelling approach for
characterising the TRMS has been carried out based
on MLPNN, ERNN and ANFIS GD+LSE. It is ob-
served from the results and discussion (Section 8) that
ANFIS GD+LSE gives the best result for modelling
such systems. The underlying theme of this work has
been to demonstrate the nonlinear modelling tech-
nique, which has various other applications apart from
its utility as a “true” representation of the plant for
controller evaluation. For instance, nonlinear models
arc essential for the design of nonlinear control laws.
The ANFIS GD+LSE technique has performed well in
approximating the system. In the time domain the
developed model has predicted the system output
closely and in the frequency domain the resonance
frequencies of the model have matched those of the
actual system very well.
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