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Abstract

Bootstrapping time series is one of the most acknowledged tools to study the statisti-
cal properties of an evolutive phenomenon. An important class of bootstrapping methods
is based on the assumption that the sampled phenomenon evolves according to a Markov
chain. This assumption does not apply when the process takes values in a continuous set,
as frequently happens for time series related to economic and financial phenomena. In this
paper we apply Markov chain theory for bootstrapping continuous-valued processes, starting
from a suitable discretization of the support that provides the state space of a Markov chain
of order k£ > 1. Even for small k, the number of rows of the transition probability matrix is
generally too large and, in many practical cases, it may incorporate much more information
than it is really required to replicate the phenomenon satisfactorily. The aim of this paper
is to study the problem of compressing the transition probability matrix while preserving
the “law” that characterizes the process generating the observed time series, in order to
obtain resampled series that maintain the typical features of the observed time series. To
this purpose, we formulate a partitioning problem of the set of rows of such a matrix and
propose a Mixed Integer Linear Program specifically tailored for this particular problem. We
also provide an empirical analysis by applying our model to the time series of Spanish and
German electricity prices in given time periods, and we show that, for these medium size
real-life instances, bootstrapped time series obtained by the compressed transition probabil-
ity matrix reproduce the typical features of the observed ones.

Keywords: Time series bootstrapping, Mixed Integer Linear Programming, Markov chains,
Transition probability matrix compression, Continuous-valued stochastic processes.

1 Introduction

After the seminal paper by Efron (1979), several developments and applications of bootstrap
methods appeared in the literature. Methods following the original idea by Efron and based on
re-sampling of model errors have been largely applied in Economics and Finance. The reader
is referred to Freedman (1984), Freedman and Peters (1984), Efron and Tibshirani (1993) for
a methodological discussion and to Brock et al. (1992), Sullivan et al. (1999) for an applica-
tion to financial markets. However, the original approach of Efron suffers, in general, of model

*



O J oy U WD

DA TN TR TGOS DDA DLDDAEDLDDAEDNWWWWWWWWWWWWNNNONMNNONNNNMNONNNR R R R R PR e
O WNRFROWVWO-JATDdWNROW®O-IAAUBRWNROW®OW-JdANU D WNRFROW®OW-TJNUP®WNR OWW-I0U D WN R O WO

misspecification risk and requires observations to be time independent. To overcome such limi-
tations, nonparametric, model-free bootstrap methods have been proposed in the literature. In
Biihlmann (2002) several bootstrap methods of this type are compared, such as the block, the
sieve, and the local methods. The advantage of nonparametric, model-free methods is that they
do not require the observations to be time independent: data themselves capture the depen-
dence structure of the time series, thus relieving the researcher of the responsibility of choosing
a model. Among the nonparametric bootstrap methods, a relatively recent group is based on
Markov chain theory (see, e.g., Anatolyev and Vasnev, 2002). The major issue in this research
direction is the estimation of the true dimension of the transition probability matrix, which,
in turn, consists of estimating the relevant states and order of the process. Even if these two
estimates refer to different aspects of the process, they are not independent and they have been
extensively examined in the area of Information Theory to model alphabet processes (see, for ex-
ample, Bithlmann and Wyner, 1999; Biithlmann, 2002). These studies concern only the problem
of estimating the true order of a Markov chain.

In some real applications, the order k of a Markov process is specified in advance. On the
basis of the observed series, the value of k& can be rather large. Moreover, the series might
range in a wide set of values. All such occurrences may cause that the number of rows in the
transition probability matrix is too large w.r.t. the information necessary to model the process
(i.e., several rows are redundant). In this case, one would like to reduce the number of rows,
focusing in particular on those which do not “carry” enough information.

Reducing the dimension of the transition probability matrix means, in general, to oppor-
tunely aggregate the states of the related Markov chain into “super-states”, in order to get
a reduced model that still well represents the original process. Therefore, model reduction
in Markov chains basically consists of finding a suitable partition of the state space and the
corresponding aggregation of the rows and/or the columns of the transition probability matrix.

Different reduction methodologies have been proposed in the literature to fulfil the different
requirements ruled by the specific application under study.

The aggregation rules strongly depend on the order of the considered Markov chain. In the
classical framework of Markov chains of order 1, the aggregation should be performed to obtain
states of a new Markov chain of order 1. For example, Zhu et al. (2002), who propose an
efficient link prediction procedure for the design of adaptive web sites, base their reduction of
the transition probability matrix on a “similarity” criterion and apply an algorithm devised by
Spears (1998).

In the literature, a well-known Markov chain reduction approach is lumping, in which the
states of a Markov chain must be aggregated guaranteeing that the transition probabilities of
the reduced Markov chain satisfy the Chapman-Kolmogorov equations. A lumping approach is
followed, for example, by Deng et al. (2011), who study the problem of reducing a Markov chain
of order 1 by minimizing the “Kullback-Leibler” divergence rate between the original and the
reduced transition probability matrix. The Kullback-Leibler divergence rate, which measures the
loss of information when replacing the original matrix with the reduced matrix (see Rached et
al., 2004), is the objective function of their optimization model. Since it is a nonlinear function,
their problem is hard to solve so that they must use a heuristic solution procedure.

For lumping, we refer the reader to the introductory paper of Burke and Rosenblatt (1958)
and also to Kemeny and Snell (1976), Barr and Thomas (1977), Abdel-Moneim and Leysieffer
(1984), and White et al. (2000). More recently, Thomas (2010) has provided an encyclopedic
overview on lumping, along with the related main theoretical results. A different aggregation
approach for the Markov chain reduction problem relies on spectral graph theory. The basic idea
is searching for an optimal partition of a graph into subgraphs by implementing a procedure
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grounded on the eigenvectors of a special pre-specified matrix. For excellent surveys and bib-
liographic reviews on spectral graph theory, see Chung (1997). In spectral theory, graphs and
Markov chains can be linked in a natural way: indeed, a Markov chain can be obtained as a
random walk on the vertices of a given graph, and transition probabilities are the normalized
weights assigned to the edges. The partition of the graph is then translated into the parti-
tion of the state space of the Markov chain. Spectral Markov theory generalizes the lumping
framework and it has been the scientific ground of some important studies. Verma and Meila
(2003) compare different clustering three-stage algorithms based on matrices eigenvectors. In
particular, they introduce a preprocessing phase where the matrix of interest M is normalized
to M, moving de facto from graphs to a Markov chain with transition probability matrix M.
Meila and Xu (2004) discuss the explicit relationships between graphs and Markov chains and
introduce a new spectral clustering-based optimization problem, that falls into the considerably
difficult class of NP-hard problems.

When dealing with an order k£ > 1, the constitutive properties regarding the Markov chains
of order 1 stand no longer in force. In particular, the rows of the transition probability matrix are
null when the related k-state occurs with zero probability; moreover, the Chapman-Kolmogorov
Theorem cannot be properly stated. This shows that the lumping framework does not fit any
Markov chain reduction problem.

When model reduction in Markov chain is formulated as a partitioning problem, one has to
take into account that, in general, the computational complexity of the problem forces to the
use of heuristic procedures. For example, a heuristic approach is adopted by Cerqueti et al.
(2013), who propose a Tabu Search procedure for the problem of simultaneously partitioning
the state space of a continuous-valued process and identifying the order of the process. Their
approach starts by modeling a continuous-valued process as “Markov switching regimes” (see,
e.g., Hamilton, 1996; Jeanne and Masson, 2000; Hamilton, 2005), and identifying the “relevant”
states defined by the thresholds that mark the passage from a regime to another (see also
Cerqueti et al., 2010). Their idea is to partition the set of the rows of the transition probability
matrix (associated to the discretized version of the process) to reduce its size and yet minimizing
the information loss that may derive from matrix compression. The rows belonging to the same
class of the partition are “similar” according to a suitable distance indicator. The computational
effort for solving such problem increases exponentially w.r.t. the order of the Markov chain,
and follows the law of the Bell numbers w.r.t. the number of states included in the initial
discretization. Even if the authors provide a pre-processing that drastically reduces the size of
the solution space!, the partitioning problem remains intractable and a heuristic procedure for
its solution is required.

In this paper, we are concerned with Markov chains of order &k > 1, our interest being
mainly for the case k& > 1. Aggregation involves only the rows of the transition probability
matrix, i.e., the k-states of the process, while the columns of the matrix remain associated
to the original (single) states. Therefore, in general, we have a Markov chain defined by a
rectangular transition probability matrix, and also the aggregated matrix is rectangular. This
is a main distinctive feature of our model that requires an approach different from lumping,
in which the transition probability matrix of the given Markov chain is required to be square,
and both its rows and columns must be aggregated producing a reduced Markov chain with a
square transition probability matrix (whose size is reduced w.r.t. the size of the original matrix).

'The size of the solution space is reduced from B (nk) to [B (n)]*, where B (n) is the n-th Bell number, i.e.
the number of partitions of the set of n states of a Markov chain of order k.
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Hence, the grounding assumption on the order k of the Markov chain prevents us to use lumping
techniques and requires an ad hoc aggregation procedure.

We assume k fixed and focus on the problem of optimally partitioning the set of rows of the
transition probability matrix by proposing an exact approach through a Mixed Integer Linear
Programming formulation (MILP). The objective function relies on a dissimilarity measure
between pairs of rows, and a special constraint is introduced to guarantee that the bootstrapped
series are sufficiently diversified. The constraint is introduced to fulfil the basic requirement of
diversification of outputs when applying bootstrapping methods. In our application, relying on
the partition provided by our MILP, we are able to generate bootstrapped series that maintain
the statistical properties of the original sample without being its exact replication.

The proposed MILP can be solved via common optimization packages, like the most recent
GUROBI optimization solver. This allows to efficiently solve problems where the number of rows
of the matrix ranges from 40 to 60, which is the typical size of certain economic and financial
phenomena. As a real application of our method we consider the problem of bootstrapping
series of the Spanish and German electricity prices observed daily for 6 and 7 consecutive years,
respectively. We point out that such time series are considered in the literature as “hard cases”
to replicate, because of their nonlinear dependence structure.

The present paper contributes to the literature on Markov chain bootstrapping by providing
a nonparametric, model-free approach, which is particularly suited for time series with nonlinear
dependence of data, as those related to evolutive phenomena in electricity markets. Our work is
focused on the original purpose of bootstrapping, i.e., to improve parameter estimation obtained
from a sample of observed data. We point out that bootstrapping consists of resampling the
original data (with replacement), and, therefore, it cannot be immediately used to simulate
out-of-sample trajectories, as it generally happens for other simulation methods (e.g., Monte
Carlo, neural networks, etc.). This kind of analysis is out of the scope of our application. To
conclude, we point out that in the literature there exists a variety of contributions dealing with
Mixed Integer Linear Programming for optimal (constrained) partitioning problems of different
nature (see, e.g., Mueller and Kramer, 2010, Saglam et al., 2006, and the references therein). It
must be notice that, even if in this paper we adopt standard modeling techniques (such as, for
example, the one to linearize the objective function), our MILP provides a new contribution in
Markov chain model reduction under different aspects. It is specifically designed for the real-life
problems related to Markov chain bootstrapping. In particular, the objective function can be
viewed as an innovative way for measuring information loss when the Markov chain reduction
problem consists of aggregating only the rows of the transition probability matrix. In addition,
it provides tools for controlling diversification of the bootstrapped series, and proposes a bi-
objective approach that is able to find aggregations of rows with a good compromise between
the number of “super-states” and the dissimilarity between rows aggregated in the same super-
state.

The paper is organized as follows. In Section 2, we discuss in detail Markov chain boot-
strapping and describe the Mixed Integer Linear Program proposed for partitioning the rows of
a transition probability matrix. Section 3 is dedicated to the analysis of two real-life problems:
after the description of the data sets, we illustrate our results for the reduction of the transi-
tion probability matrix and then provide a comparative statistical analysis of the bootstrapped
time series with respect to the observed ones. In Section 4, we collect some final thoughts and
concluding remarks.
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2 Markov chain bootstrapping based on Mixed Integer Linear
Programming

In this section we introduce the Markov chain resampling problem and propose an optimization
approach to solve it. The basic idea underlying the problem is first introduced, together with
the corresponding notation and definitions.

Consider a time-varying phenomenon. Under the hypothesis that the phenomenon evolves ac-
cording to a k-th order Markov chain (X(¢),t > 0), with & > 1, our aim is to resample it
through a bootstrapping method. The estimation of the transition probability matrix associ-
ated to (X (¢),t > 0) relies on an available time-ordered sample of observations of the investigated
phenomenon.

In resampling procedures, two aims are pursued which are somehow conflicting: on the one
hand, the exact replication of the sample at each simulation should be avoided (diversification
or multiplicity criterion); on the other hand, the statistical properties of the original sample
should be reproduced in the replications as much as possible (similarity criterion). In order to
generate a bootstrapped series satisfying the two above properties, we propose a method based
on the aggregation of the rows of the transition probability matrix of (X (¢),¢ > 0). The problem
is formulated as a partition problem of the set of rows of the transition probability matrix, and
it is modeled as a Mixed Integer Linear Program (MILP) in order to solve it exactly.

2.1 Notation and definitions

Assume that the possible realizations of an evolutive phenomenon vary in an interval [a, 8] C R.
Consider the following series of time-ordered realizations of the phenomenon observed in the
time horizon (1,...,t,...,T):

e(T) = (e1,....€t....e7). (1)

We also refer to T" as the length of the observed series. Let [bo,b1),...,[bz—1,bz), ..., [bn—1, bn]
be a partition of [«, 5] into n intervals such that by = o and b, = . In order to simplify the
notation, we refer to the z-th interval [b,_1,b;) as a.. This is only a matter of notation, and a,
is not meant to be a single point replacing the whole interval [b,_;,b,). By definition, one has:

{ aiNoa; =0, i,j=1,...,n,i#j
UZ:1 o, = [o, B].

We collect the elements of such partition in a set A = {a1,...,az,...,a,} so that A represents
the set of all possible states for the time-ordered series under analysis. States in the set A are
called theoretical. We will refer to the above partition of [«, 8] as the initial partition. A state
corresponds to one of the intervals a,, z = 1, ..., n, which are then called the initial intervals or
initial states. The choice of adopting the term “state” is taken to refer explicitly to the Markov
chain framework described later in this section. Relying on the above discretization, one has
that, for each observed value e; (point), there is a unique o, (interval) in A such that e¢; € a.
As a consequence, a time series as (1) will be represented as a sequence of states of a Markov
chain a(T) = (ay,...,at,...,ar), where a; = a, whenever e; € o, for z =1,...,n.

Given the set A of the initial states, for a fixed k the cartesian product A* collects all the
k-tuples formed by states in A (theoretical k-states). We denote a generic theoretical k-state by
(k) = (hy, Qhy_ys - -y 0ny ), with by € {1,...,|A|} and w = 1,..., k.

We denote a sequence of k < 1" consecutive elements extracted from e(71') as:
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e(t, k) = (eg,...,e£+j,...,e£+k_1) for some? € {1,...,7 —k+1}. (2)

Notice that in formula (2) e(f, k) depends on two parameters, namely, the length k of the above
sequence and #, which identifies the starting time of the sequence. An observed k-state (or
simply k-state) a(f, k) is the sequence of the k observed states corresponding to e(f, k). More
precisely, a(t, k) = (az, .. TR ;@7 p_1) 1s obtained by setting a; = a, when ¢; € o, for
tet.t+k—1].

Let Oy denote the set of observed a(t, k), that is

Ok={a(f,k), £e{1,...,T—k+1}},

for which one has |Oy| =T — k + 1.

Assume that the evolutive phenomenon is modeled as a Markov chain of order k, (X(¢),t > 0),
with state space A. Then, the k-th order transition probability matrix is estimated by using the
definition of Ching et al. (2008), which involves the estimation of the empirical frequencies.

We introduce the transition probability for the process to reach state a, immediately after the
sequence of states of o/ (k), that is:
k ‘
1 o = Prob(X (1) = as X(t— 1) = ap,,..., X (E— k) = an,). (3)

Let us denote by M the k-th order transition probability matrix, with |A*| = n* rows and |A| = n

k — m. Matrix M is built starting from the
(k)

ah(k),a

columns. To avoid a cumbersome notation, we set n

observed sample e(7") and its generic entry (h, z) contains the value p corresponding to

k-state of*(k) in A* and state a, in A.
(k)

NATSPNLL follows?:

According to the approach in Ching et al. (2008), we estimate p

Alah(k).az) p AT A (k) ap) # 0

(k) B i1 Aah(k),a4
:U’Oéh(k),az - ’ (4)
0 otherwise
where
T—k
Aa(k), o) = ‘ U fatk+1) € Orpy + alt k+1) = (a”(k), 02)} (5)
=1

is the number of times that a sequence (a’(k), «,) has been observed in the sample.

For a given k, each row of the transition probability matrix M contains the transition probabil-
ities from a k-state a’(k) € A* to the states a, € A. Formula (4) is used to compute M on the
basis of the original sample. Notice that, when a k-state is observed only once in the original
series e(T'), the estimation of its transition probabilities is equal to 1 for the unique state to
which the corresponding trajectory evolved, while it is equal to O for all the other states. We
refer to this case as deterministic k-states, and the corresponding rows of the transition prob-
ability matrix are called deterministic rows. Each row not completely filled with zeros reports
the estimated probabilities from an observed k-state to the observed states, which substantially

2For the sake of simplicity, we avoid introducing here a specific notation for the estimates of the probabilities.
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means that only sequences o (k) such that o/(k) = a(t, k) for some £ € {1,...,T —k+ 1} and
states a, = a; for some ¢t € {1,...,T} are considered.

To introduce our MILP model, in the following we indifferently refer to (k) and o (k) of A*
and to the corresponding rows, u and v respectively, of matrix M. Similarly, we will indifferently
refer to the set A¥ and to the corresponding set of rows V of matrix M.

The dissimilarity between two rows uw and v of M can be measured as follows:

n
dyy = Z

z=1

(k) (k)
'ua“(k),az o 'u‘a”(k),az : (6)

It is, in fact, a distance indicator between rows of the matrix M which takes values in the interval
[0,2] (see Cerqueti et al., 2010). As we will argue below, the dissimilarity d,, can be viewed as
a proxy for the “cost” of putting k-states a”(k) and o’ (k) in the same class of a partition, and,
in fact, the objective function of our optimization model is based on it.

2.2 An optimization approach to the aggregation of the rows of a transition
probability matrix

Let us introduce our partitioning problem of the set V' of the rows of the transition probability
matrix M. Consider a partition of V' into ¢ classes, 7 = {C1,...,C)p,...,Cy}. with 1 < g < m,
and let II be the set of all possible such partitions.
The diameter of a class Cp, is defined as the maximum dissimilarity between two elements in
Cyp, and it is denoted by §(Cp):

4(Cp) = max dyy. (7)

u,veCyp

The diameter of a partition w € 11 is defined as

A(m) = max 5(Ch). (8)

Remark 1 According to formula (8), and since dy, € [0,2], V u,v € V, A(m) € [0,2] for each
partition w € Il. In the special case of the partition m in which each class includes only one
element, which we call singleton partition, one has A(w) = 0. Notice that, given w, ©' in I, 7w
is a refinement of 7’ when 7 has the same classes of ™ with the exception of some classes which
in m are further partitioned. When w is a refinement of ', one has A(w) < A(n’). The less
refined partition is the one composed by only one class grouping all the elements of V', which
therefore corresponds to the partition with the maximum diameter, call it Apmax, among all the
partitions m € I1. Finally, notice that Amax < 2 and, depending on the data set under study, it
may, or may not, reach this upper bound.

For a given 7 € II, we denote by Cj a class for which §(Cp) = A(n), that is:

Cp € argmax{6(C,),Cp € 7}.
In our partitioning problem we want to minimize both the number of classes and the diameter
of the partition. These two objectives are obviously in conflict, since the diameter of a partition

tends to increase when the number of classes decreases and vice versa. In fact, we have a bi-
objective problem which we handle by minimizing the diameter of the partition while controlling
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for the number of its classes. To this purpose, we introduce in the model a parameter v > 0
that limits the value of the diameter A(7) from below, implying a constraint on the cardinality
of the partition. By means of v we implement a control in the resampling procedure to meet
the multiplicity criterion, i.e., to avoid the exact replication of the original sample. For a fixed
value v > 0 and an integer 1 < g < m, we formulate the following partitioning problem:

among all the possible partitions m € I with at most q classes and such that 6(Cp) is at least
equal to v, find a partition 7 that minimizes A(7).

The problem can be formulated as a Mixed Integer Linear Program, as illustrated in the follow-
ing.

To formalize the optimization model, let us observe that a partition = = {C,...,C),...,Cy},
with 1 < g < m, can be equivalently written as 7 = {C1,...,C),...,Cy,}, with

Cp#0, forp=1,...,¢q )
C,=10, forp=q+1,...,m

Definition 1 Given a partition of V, m = {C1,...,C,, ..., Cn}, the class C), is active if Cp, # 0.

Let v € V be a generic row of M. We introduce the binary variables x,, and y,, with p =
1,...,m, such that:

7

- 1, if row v belongs to class C),
P71 0, otherwise

—J 1, if class Cp is active
Yp = 0, otherwise

Consider now u,v € V. It is easy to see that the product x,, - x4, is equal to 1 if and only if
the rows u and v belong to the same class C), of the partition:

. _ [ 1, if both u and v belong to class C),
Lup " Top = 0, otherwise.

Hence, the cost of assigning both u and v to class C), is given by:

duv * Tup * Top-

With this notation, the diameter of class C), can be rewritten as 6(Cp) = ax, {duv - Tup - Top}-
RIS

The problem of finding the partition of the set of rows V into at most q classes that minimizes
the maximum diameter of a class can be formulated as follows:

min @ max max {dyy * Tup * To
rell  Cpenm u,vEV{ P p}

(1) Soxyp=1 YveV
p=1 (10)
(2) Zop < Yp VoeV, p=1,....m
m
(3) Yp < ¢q
p=1
Typ, Yp € {0,1} YoeV, p=1,...,m.
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Notice that in the above formulation we bound the number of classes of the partition by ¢. Thus,
varying ¢ in {1,...,m} allows us to tackle the bi-objective problem as a sequence of m single-
objective ones. In problem (10) the first set of constraints states that each row must belong to
only one class of the partition. According to constraints (2), a row can belong to a class C),
only if C), is active. Constraint (3) provides an upper bound on the number of classes of 7.
Problem (10) is an integer nonlinear program which can be linearized by introducing additional
association variables wyyp, with 0 < wy,, < 1:

{ 1, if both u and v belong to class C),
Wyvp = Lup * Typ = 0

otherwise ’
and the following set of constraints:
Wyvp < Typ Yu,veV, p=1,....m
Wyrp < Typ Yu,veV, p=1,....m (11)
Wypp = Tup +Top —1 Yu,veV, p=1,....m.

Thus, if both v and v belong to class C, one has x,, = z,, = 1, and therefore wy,, = 1. On
the other hand, if either x,, = 0 or x,, = 0, one has wy,, = 0, too. This also implies that the
bounds wy,, < 1 are always satisfied, and hence they need not to be included explicitly in the
problem formulation. Notice that constraints (11) guarantee that variables wy,, assume only
values 0 or 1, and, therefore, they can be introduced in the model as real variables.

The objective function can be written in terms of the new variables as follows:

min @ max max{dy, - w .
mell  Cpem u,vEV{ e uvp}
Then, the objective function can be linearized introducing a new variable d that replaces
max {duv - wupp } and adding the following set of constraints:
€

U,V

Ay - Wypp < d, YVu,veV, p=1,...,m.

Let us notice that the above model does not prevent the optimal objective function value to
become very small (it may even turn out to be 0). We recall that the core of the bootstrapping
method is to generate resamplings of the observed series e(T") which should be sufficiently “sim-
ilar” to e(T), in order to guarantee that they can be seen as different realizations of the same
phenomenon that generated e(7). However, they have to be also sufficiently “diversified” from
e(T), in order to have some degree of “variability” among them. The optimal partition applied
to M should then be structured so as to guarantee these requirements as much as possible. If,
on the one hand, similarity is pursued in the model via the minimization of the diameter, on the
other hand, diversification can be controlled by imposing the diameter to be not smaller than
a prefixed (positive) threshold . This additional constraint prevents from choosing the trivial
singleton partition, where each class is formed by a single element. This, in particular, happens
if we choose v = 0. In fact, for this partition, the value of the objective function is zero, but
no aggregation of the rows of M is actually performed. In order to formalize the additional
condition related to the threshold v, we introduce the binary variables t., defined as follows:
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. i v : >
£ _{1, if dyy Wypvp Z 7Y Yu,veV, p=1,....,m.

wp 10, otherwise

Adding further suitable constraints involving ¢4y, and v, we obtain the MILP representing our
specific partitioning problem:

mind

m
(1) Typ = 1 VvoeV

p=1
(2) Top < Yp YoeV, p=1,....m

m
(3) > U =q

p=1
(4) Wypp < Typ Vu,veV, p=1,....m
(5) Wyvp < Top Yu,veV, p=1,....m
(6) Wypp > Tup + Tpp — 1 VuoeV, p=1,....m (12)
(7) dyy - Wypp < d Vu,veV, p=1,....,m
(8) duv'wuvpztgvp"y VU,UEV, p:]-) , T

(9) S % >t

p=1u,weVvV
Tup, Yp € {0,1}, thp € {0,1} Vu,veV, p=1,....m
d>0, wyyp >0 VuveV, p=1,...,m.

In the above model, constraint (8) describes the relation between the variables w and the new
variables t7. Constraint (9) forces at least one variable ¢ to be equal to 1, thus guaranteeing
that the diameter of the optimal partition is at least ~.

Cerqueti et al. (2010) discuss the coherence of some distance indicators to information-type
criteria advanced by Kolmogorov (1965). According to Remark 1, the dissimilarity measure
used in the objective function of model (12) respects the conditions of Kolmogorov (1965).
Therefore the optimal solution 7* of model (12) ensures that the “loss of information” (about
the evolution properties of the process) is minimized for any given level 7 fixed to meet the
multiplicity criterion. In other words, the information efficiency of 7n* implies that, although
generated through a coarser structure of the information in the aggregated transition probability
matrix M*, a resampled series maintains simultaneously a good statistical similarity w.r.t. the
original sample and a satisfactory diversification from other resampled series (multiplicity). The
bootstrapping method adopted in this paper has been advanced in Cerqueti et al. (2013), to
which we refer the interested reader for further details. Here the procedure takes as inputs the
optimal partition 7* of model (12), the compressed transition probability matrix M* associated
to 7*, as well as the observed time series e(T) = (eq, ..., et ..., e7).

Besides the above theoretical arguments, the good statistical properties shown by our resampled
series will be analyzed in detail in Section 3.4, where the values of several statistics computed

10



O J oy U WD

DA TN TR TGOS DDA DLDDAEDLDDAEDNWWWWWWWWWWWWNNNONMNNONNNNMNONNNR R R R R PR e
O WNRFROWVWO-JATDdWNROW®O-IAAUBRWNROW®OW-JdANU D WNRFROW®OW-TJNUP®WNR OWW-I0U D WN R O WO

110

100 +

90 -

80

70

60 -

50 A

Price (€/MWh)

40 -

30 A

20 1

10

01/02/98

04/02/98
07/02/98 ~
10/02/98 -
01/02/99 -
04/02/99
07/02/99
10/02/99 +
01/02/00
04/02/00 -
07/02/00 -
10/02/00 -
01/02/01
04/02/01
07/02/01
10/02/01 +
01/02/02
04/02/02 -
07/02/02 ~
10/02/02 +
01/02/03
04/02/03
07/02/03
10/02/03

Figure 1: Spanish daily electricity prices.

on the bootstrapped series will be compared with the corresponding values calculated on the
original sample.

3 Application and results

In this section we provide a case study application of the bootstrapping method we propose. It
relies on data taken from the Spanish and German electricity markets as described in detail in
the following. The analyzed series show several interesting features which make them difficult
to treat for a bootstrapping method. Therefore they represent challenging tests for evaluating
the performance of our approach.

3.1 Data

In our application we study two time series, namely the “Mibel Spanish Electric System Arith-
metic Average Price” and the German “EEX Phelix Day Base Price”. The series have been
observed daily in the period from January 1st, 1998 to December 31st, 2003 (Spain) and from
June 17th, 2000 to May 8th, 2007 (Germany). The prices are expressed in euros and refer to 1
MWHh. The Spanish time series consists of T = 2190 observations, while for the German series
we have T" = 2517.

Figures 1 and 2 show the two time series which are characterized by the following features:

- a weekly and annual seasonality;
- a slightly positive trend;

- stochastic volatility;

11
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Figure 2: German daily electricity prices.

- nonlinear dependence of data;

- two clear regimes of prices: normal trading and occasional spiking periods.

Spikes are occasional, since they usually correspond to unexpected shortages on the supply side
of the electricity system, or unexpected and temporary increases of the demand (e.g., sudden
meteorological events driving to high consumption). Since our data consist of daily data, intra-
day seasonality is neglected in this analysis. Because of the joint presence of such features, in the
literature, electricity price series are usually considered as “hard to model” cases. For a review
of the difficulties in modeling electricity prices and the methods developed to solve them, see,
for example, Bunn (2004), Huisman and Mahieu (2003), Weron et al. (2004), and Weron (2006).
Raw data prices have been removed of an (exponential) weekly seasonal component as well as
of an (exponential) trend. Two main reasons justify this pre-treatment. Removing the weekly
seasonality lets us free to reduce the order of the Markov chain below 7, which corresponds to a
great reduction in the complexity of our problem. The removal of the trend component makes
the series more stationary. Of course both components are added back to the bootstrapped
series. The estimation of exponential (rather than linear) components is recommended to avoid
that this removal /reintroduction process generates occasional negative prices. In Appendix A
we give the details about this data treatment.

3.2 Preliminary segmentation of the support

As already explained in Subsection 2.1, to discretize our continuous-valued process, a prelimi-
nary segmentation of the support [a, ] is performed by partitioning it into n initial intervals
1y eeyQyy...,n. We notice that, if there is no theoretical evidence that the regimes of the
phenomenon are a few, increasing the number of initial intervals n will help finding a segmenta-

12
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Figure 3: Spanish daily electricity prices without exponential trend and exponential weekly
seasonality. Horizontal lines mark the extremes of the intervals aq, ..., ais.

tion whose classes approximate the relevant regimes more precisely. Unfortunately, fixing large
values for n has two limitations. First, this will increase the number of rows of the transition
probability matrix M, thus affecting the compression procedure on M from a complexity view-
point. Second, this reduces the number of observations available thus affecting the statistical
significance of the estimates of the transition probabilities, since this reduces the expected fre-
quency of observations for each initial interval. Therefore, the value of n should be set in order to
overcome such limitations. In our case study, we finally set n = 12 which, however, corresponds
to an order of magnitude larger than the number of states commonly considered in the literature
for the regimes of electricity prices (usually 2 or 3, see, e.g., Huisman and Mahieu, 2003).

The segmentation of the support into 12 initial states was performed through the minimum-
variance clustering procedure provided in Ward (1963), after having removed trend and weekly
seasonality from the original series (see Appendix A for further details). Figures 3 and 4 show
the series of Spain and Germany, together with the initial 12 intervals o, ..., a2 (separated by
horizontal lines). Appendix B details this preliminary segmentation.

The transition probability matrices Mg and Mg of order k = 2, estimated for the Spanish (.5)
and German (G) markets, respectively®, were computed using formula (4).

The set of observed 2-states, Oo, is composed by 2188 elements for the Spanish instance and 2515
elements for the German one*. The percentage of deterministic 2-states over all the observed
ones is about 1% in both cases (23 for Spain and 21 for Germany). The remaining observed
2-states are probabilistic (2165 for Spain and 2494 for Germany). In partitioning the rows of

3The matrices are available from the authors upon request.
4For both Spain and Germany the last observed 2-state is excluded from the computation of the cardinality
Of 02.

13
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Figure 4: German daily electricity prices without exponential trend and exponential weekly
seasonality. Horizontal lines mark the extremes of the intervals aq, ..., ais.

the transition probability matrices Mg and Mg, we actually considered only the probabilistic
2-states. On the other hand, we defined a priori a single class collecting all the non observed
2-states, while we set up as many classes as the number of observed deterministic 2-states. For
n = 12 we obtained 63 and 44 probabilistic rows in the transition probability matrix of Spain
and Germany, respectively, while the deterministic rows are 19 in both cases.

3.3 Optimization phase

The central element in model (12) is given by parameter v. This parameter provides a lower
bound to the objective function value. Fixing « to a positive value in the model means imposing
that at least one class of the partition is not formed by a single row. On the contrary, when v = 0
no bound is imposed, so that the optimal solution always corresponds to the trivial singleton
partition, provided that the maximum number of classes ¢ in constraint (3) of model (12) is
set large enough (it suffices to set ¢ = m). Since the objective function value of the singleton
partition is equal to 0, such partition is, obviously, the one with maximum similarity within its
classes®, and, therefore, it can be taken as a benchmark for the evaluation of the partition finally
chosen to perform the bootstrapping method.

In our experimental analysis we tested a set of values for v in model (12). After Remark 1, we
know that the set of possible values for this parameter is a subset of the interval [0,2]. Different
values within this range lead model (12) towards different optimal solutions, since constraints
(8) and (9) become stricter as the value of «y increases. We notice that, for a given -, the same
optimal value in model (12) could be obtained w.r.t. different possible values of ¢. In this case,

5Actually, in this case, no aggregation at all is performed on the rows of the transition probability matrix
which remains the original one.
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for a given value of v, we always prefer the minimum number of classes which enables model
(12) to satisfy constraints (8) and (9). For each fixed value of v this provides a preferred solution
characterized by two attributes: i) the optimal value of the objective function in model (12),
that we denote by d*(7y); ii) the corresponding preferred value of g associated to such optimum,
denoted by ¢* (7).

It is clear that, a priori, we do not have any information about which, among the infinite
values in [0, 2], is the best choice for our aggregation purposes; we know that the extreme values
of the above interval are not good choices, but, within that interval, we need to test different
values of v and evaluate the pair of attributes (¢*(7), d*(7)) of the corresponding preferred
solution. Indeed, different pairs of attributes correspond to different compromises between the
number of classes in the final partition and the value of its diameter. In our analysis, we produce
different compromises and then we compare them to choose the one that best fits the similarity
and multiplicity purposes of the bootstrapping method. To this purpose, we tested a finite
number of values for 4 equally spaced in the interval [0,2]. This is a standard practice for
parameter tuning when the only available information about the parameter is the range of its
possible values and there is no reason to prefer one of these values a priori.

For each tested value of v, we applied our MILP model with increasing values for the integer
parameter ¢, from 2 to m — 1. For any fixed -, as q increases, we observed a converging process
towards a stable optimal value of the objective function, i.e., the optimal value d*(vy) is reached
for ¢*(v), and it remains unchanged for all ¢ > ¢*(), so that there is no need to choose a value
g > ¢*(7). In addition, since in the model we want to minimize the maximum diameter of a
class of the partition, d, and « is a lower bound for d, the ideal case would be attaining exactly
this bound. In Figure 5 we plot the solutions obtained by applying model (12) to a data set
extracted from the German time series for which the transition probability matrix has 25 rows
(called German25) with different values of parameter . In this example, one can understand
that lowering the value of v allows the model to reach smaller values of the objective function,
and that any fixed value v = 0.25,0.5,0.75,1,1.25, 1.5 can be actually reached by the objective
function from the value ¢*(y) on. In this example we observe an ideal behavior of the model
which, in all cases, manages to attain the minimum for the objective function.

As expected, for the successive values of «y, taken in their decreasing order, we have lower
values of d corresponding to the same ¢. In particular, the figure highlights the point (¢*(7),
d*(7)) where each curve becomes flat. We notice that, given «, the smallest g of the flat part
corresponds to the pair (¢*(y), d*(y)) that is the optimal solution value of model (12). Reducing
even further ¢ implies accepting higher values for d, that is, solutions identified by larger values
of v. As a result, the solutions obtained for a given value 4 are contained in the envelop of the
solutions corresponding to values v < 7.

The plot in Figure 5 shows that good improvements in the objective function can be obtained
(for successive values of ) by increasing g up to ¢*(v) = 7 for v = 0.5. Going beyond this requires
q" = 15 for v = 0.25. We did not analyze values of v smaller than 0.25, since this would have
implied too many classes for the optimal partition and required a too long computational time
for solving model (12). In order to choose the final partition for the aggregation of the rows of
the transition probability matrix, we defined an evaluation index that takes into account both
the values d*(y) and ¢*(v):

EV(y) = % (13)

The index is defined for 2 < g < m, and it positively evaluates those v that produce a small
value of d*(7) combined with a value of ¢*(vy) “sufficiently smaller” than its maximum (¢ = m).
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Figure 5: The solutions obtained by model (12) for v = 0.25,0.5,0.75,1,1.25, 1.5 on the data
set German2b with transition probability matrix with 25 rows.

Figure 6 plots this index for each value of v for the data set German25. It shows that there is a
systematic improvement when ~ is lowered, but it becomes less evident for the last two values.
We also considered the computational time required by the solver to obtain (¢*(7), d*(v)) and
decided between the values v = 0.5 and v = 0.25 on the basis of both measures. Unfortunately,
for v = 0.25 the computational time was always too high to justify the small improvement in
d* that it was able to produce. For example, for German25, to obtain d* we have 512 seconds
for v = 0.5 and 8650 seconds for v = 0.25. A similar behavior was observed for the other data
sets, thus leading to the final choice of v = 0.5, and excluding v = 0.25 from the analysis (see
Table 1 for the computational burden of the runs performed on our medium size German and
Spanish data sets).

The above considerations suggest the choice of v = 0.5 for the aggregation of the rows of
the transition probability matrix that will be used in the bootstrapping method. This choice
is also supported by the statistical analysis that we performed on 5000 bootstrapped series to
assess the performance of the method we advance (we illustrate this analysis in detail in the
following subsection). Indeed, the 5000 series obtained with v = 0.5 reflect in a rather satis-
factory manner the statistical properties of the original sample, and a very low probability of
duplication over the 5000 tested cases is observed. Therefore, for the bootstrapping method, we
selected the optimal partition corresponding to v = 0.5 for each data set. We denote them by
TrTgndp and Wg”lp , for the Spanish and the German data sets, respectively, while Mg“lp and M/, itp
indicate the corresponding 2"¢ order aggregated transition probability matrices®. The singleton
partitions obtained for v = 0 and ¢ = m are denoted by 7g and mg, respectively. Partition ﬂgn”p
consists of 72 classes (19 of which correspond to deterministic 2-states, and one contains all the
non observed 2-states). Partition nglp has 43 classes (19 of which correspond to deterministic
2-states, and one contains all the non observed 2-states).

5The matrices are available from the authors upon request.
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Figure 6: Index EV () for the German25 time series.

Table 1: Summary of the results of the MILP model for the two data sets. The number of
classes corresponds to the smallest value of ¢ for which the optimal objective function value can

be attained. A “-” means that the time limit of 20 hours has been reached by the optimization
procedure.
v Spain Germany
d(v) q(y) Times (Sec.) d(7) q(v) Times (Sec.)

0.50 0.50 52 - 0.50 23 -

0.75 0.75 31 16449 0.75 16 1010

1.00 1.00 12 - 1.00 9 3376

1.25 1.25 10 5128 1.25 7 1014

1.50 1.50 6 30106 1.50 5 606

Referring to our medium size data sets, Table 1 reports the values ¢(v) and d(y) of the
solutions found for model (12) w.r.t the different values of v = 0.5,0.75,1,1.25, 1.5, together
with the total time needed to find such solutions. In our tests, we imposed a limit of 20 hours
on the running time: in Table 1 we put a “” when the time limit was reached, and, in these
cases, we report the best solution found so far. In all other cases, ¢(v) and d() correspond to
q* () and d*(y). It must be noticed that, in spite of the premature arrest of the procedure, in all
cases in which the time limit was reached the value of the best solution found was always equal
to its lower bound 7. For the model solution, we used the well-known software AMPL &, calling
the solver GUROBI v6.04 for the optimization. The experiments have been carried out on a
workstation equipped with an Intel Core i7-4810MQ processor with 2,28Ghz clock rate and 16
GB RAM. We also used the default GUROBIs values of 1e-10 and le-4 as absolute and relative
tolerances on the gap between the lower and upper objective bound, and the gap between the
MIP objective bound and incumbent solution objective, respectively.
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3.4 Statistical analysis

The theoretical justification of our experiments is grounded on the definition that any trajectory
generated by a stochastic process is a random sample extracted from an infinite population.
Starting from this point, one should expect that the distribution of any statistics built on a
population (i.e., moments, minimum, maximum, etc.) can be used to identify an acceptance
range within which the same statistics, computed on a single observation w, is expected to fall
with a given probability, under the null hypothesis that w is extracted from that population. If
a large set of statistics calculated on w falls on average into the corresponding acceptance range,
then the null hypothesis cannot be rejected.

For each market (Spain and Germany), we evaluate the performance of the bootstrapping
method we advance in two different scenarios:

i. a “conservative” scenario, where we consider the two partitions of singletons mg and 7,
which represent the benchmark situation of minimum multiplicity and maximum similarity
for the generation of the bootstrapped series;

ii. a “progressive” scenario, where we consider the two partitions ﬂgmlp and Wg”lp (v =10.5),
which are expected to generate higher diversification and lower similarity than those of
the conservative scenario, i.e., mg and 7.

We generated 4 sets of 5000 bootstrapped series (one set for each partition) with length ¢ = 2188
for the Spanish case and ¢ = 2515 for the German one. In the following, we analyze the statistical
properties of the bootstrapped series in order to compare them with the ones of the original
series.

Before introducing the indices, we want to give an idea of how the bootstrapped series look like.
Figures 7 and 8 report two bootstrapped series, one for the Spanish market and one for the
German instance, based on partitions ﬂg“lp and ﬂg”lp . Here, the bootstrapped series include
the exponential trend and the exponential weekly seasonality initially removed from the original
samples (see Appendix A). Each value of the series is classified as deterministic (thick mark) or
probabilistic (thin mark).

We can make the following considerations:

- both the bootstrapped series in Figures 7 and 8 reproduce the spikes observed in the
original series (see, Figures 1 and 2);

- also the normal trading regime appears satisfactorily reproduced. Indeed, the two series
take values in ranges strongly overlapping those of the original one;

- weekly seasonality is clearly distinguishable, as well as, a slightly positive trend;

- the frequency of deterministic values is 1% for both the Spanish and German cases, sim-
ilarly to the values observed in the original series. The bootstrapping method proba-
bilistically reproduces sequences of the original series and occasionally such segments are
interleaved by deterministically chosen values. Let us observe at this point the key advan-
tage of the Markov chain bootstrapping method: depending on the different probability
distributions associated to each conditioning event, the resampling method switches from
deterministic (e.g., in the case of spikes) to highly unpredictable.
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Figure 7: Bootstrapped Spanish electricity prices. The thin mark indicates that the selected
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bootstrapped values are the last points of observed deterministic 2-states.
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Figure 8: Bootstrapped German electricity prices. The thin mark indicates that the selected
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To evaluate more rigorously the statistical properties of the bootstrapped series with respect to
their original counterparts, for each bootstrapped series, we calculated the following statistics:

1.
2.

8.

average
standard deviation

skewness

. kurtosis

minimum
maximum
autocorrelation at lag k, k=1,...,8

slope of a linear regression model, b, with 2; =a+b-j+¢e;, j=1,... ¢

The statistics 1. — 6. are concerned with the distribution of prices, while 7. and 8. are more
concerned with the dynamic structure of the series. The autocorrelations at lags k =3 to k = 8
are observed to check if the similarity between the original and the bootstrapped series is kept
beyond the order k£ = 2 used to define the driving process.

For the distribution of each of the above statistics 1. — 8., Tables 2 and 3 report (for Spain and
Germany, respectively) the 5 and the 95" percentiles, together with the corresponding value
for the original series. To evaluate these distributions, we also report the percentile rank, i.e.,
the percentage of cases in which the statistic is smaller than or equal to the original observed

one.

We can make the following observations:

i.

ii.

iii.

iv.

For all the four partitions mg, W?”p , T, and nglp , all the statistics computed for the

original series take values in between the two above percentiles. This is true also for the
autocorrelations at lags k = 3 to k = 8, with the exception of the autocorrelations at lag
k = 7 for the Spanish case.

The percentile ranks are more fluctuating in the Spanish scenarios than in the German
cases: the lowest percentage for Spain is 46% (see, row “average” of partition mg in Table
2), while it is 51% for Germany (see, row “average” of partition wg”lp in Table 3). The
highest percentages in the Spanish and German cases are 99% and 94%, respectively. In
general, though, the differences can be considered negligible.

There seems to be no remarkable difference of values between the 5" and the 95" per-
centiles generated with the two partitions 7g and Wg“lp , therefore suggesting that the
bootstrapped series obtained with the two partitions are rather similar. The same obser-
vation applies to the German case.

Not all the 5000 series generated in each setting showed a spike. This feature reflects the
desirable property that a rare event, like a spike, does not appear regularly.
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Table 2: Percentiles of the distributions of some indices computed over the 5000 bootstrapped
the conservative scenario (partition 7g) and the progressive

series of Spain for two scenarios:

scenario (partition W?ilp ).
Index Spain - =g Spain - 75?
5th 95th Value Percentile rank 5th 95th Value Percentile rank
percen- percen- of original of original percen- percen- of original of original

tile tile series series value tile tile series series value
average 28.318 31.975 29.688 46 28.080 31.541 29.688 56
standard dev. 7.796 12.538 9.562 62 7.788 12.318 9.562 65
skewness 0.211 2.126 1.383 67 0.214 2.099 1.383 67
kurtosis —0.127 8.590 5.092 70 —0.150 8.630 5.092 69
minimum 3.599 9.466 5.469 65 3.573 9.303 5.469 69
maximum 58.261 110.729 103.758 80 58.020 110.819 103.758 81
aut. at lag 1 0.748 0.868 0.818 66 0.752 0.868 0.818 65
aut. at lag 2 0.613 0.795 0.705 59 0.617 0.794 0.705 59
aut. at lag 3 0.539 0.764 0.680 70 0.543 0.762 0.680 72
aut. at lag 4 0.485 0.736 0.667 78 0.487 0.733 0.667 80
aut. at lag 5 0.442 0.715 0.661 84 0.444 0.714 0.661 85
aut. at lag 6 0.472 0.729 0.721 93 0.470 0.727 0.721 94
aut. at lag 7 0.526 0.755 0.802 99 0.523 0.753 0.802 99
aut. at lag 8 0.391 0.685 0.683 94 0.387 0.680 0.683 95
lin. regr. slope 0.001 0.006 0.004 69 0.001 0.006 0.004 69

Table 3: Percentiles of the distributions of some indices computed out of the 5000 bootstrapped
series of Germany for two scenarios: the conservative scenario (partition 7¢) and the progressive

scenario (partition Fgﬂp ).
Index Germany - ng Germany - 73"
5th 95th Value Percentile rank 5th 95th Value Percentile rank
percen- percen- of original of original percen- percen- of original of original

tile tile series series value tile tile series series value
average 30.683 33.497 32.230 60 30.940 33.717 32.230 51
standard dev. 14.017 21.117 18.396 75 14.141 20.925 18.396 T
skewness 1.308 8.187 3.973 62 1.364 7.803 3.973 66
kurtosis 3.457 145.269 35.562 56 3.751 135.671 35.562 61
minimum 1.451 4.051 3.117 81 1.570 4.533 3.117 71
maximum 132.782 493.512 301.542 60 136.361 486.727 301.542 65
aut. at lag 1 0.635 0.772 0.717 60 0.633 0.772 0.717 62
aut. at lag 2 0.428 0.628 0.572 67 0.430 0.623 0.572 70
aut. at lag 3 0.370 0.550 0.507 76 0.368 0.545 0.507 80
aut. at lag 4 0.335 0.516 0.477 79 0.333 0.511 0.477 83
aut. at lag D 0.339 0.522 0.487 81 0.338 0.515 0.487 85
aut. at lag 6 0.394 0.597 0.586 92 0.395 0.589 0.586 94
aut. at lag 7 0.442 0.673 0.644 84 0.439 0.664 0.644 89
aut. at lag 8 0.355 0.558 0.544 91 0.353 0.549 0.544 93
lin. regr. slope 0.010 0.014 0.013 62 0.010 0.014 0.013 61
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The above results suggest that, both in the Spanish and in the German case, it cannot be
confuted that the original series was generated by the same Markov process that produced the
5000 bootstrapped series. In addition, the statistical properties of the series generated by the
bootstrapping method based on ﬂg”lp and Wg"lp do not significantly differ from those of the
series generated by the procedure based on mg and mg, respectively.

To conclude, our empirical analysis provides evidence that the use of the aggregated transition
probability matrix M™* does not significantly alter the “information” contained in the original
matrix M. Thus M* can be adopted in the bootstrapping method to generate resampled series
with the same characteristic features of the original one.

4 Conclusions

In this paper we study economic and financial phenomena that evolves according to a Markov
chain, and we apply bootstrapping to improve parameter estimation obtained from a sample of
data of the observed series. This nonparametric, model-free approach is particularly suited for
time series with nonlinear dependence in the data, like electricity prices, and its performance is
improved here by adopting a Markov chain reduction that maintains the typical features of the
observed time series. The key aspect of our work is that a Mixed Integer Linear Programming
model, specifically tailored for our application, is adopted to formulate and solve the reduction
problem. Even if solving the proposed model is computationally hard from a theoretical view-
point, in our application on medium size real-life cases, the problem was solved exactly within
reasonable computational times. With this approach, also the purpose of simplifying the original
transition probability matrix, and yet preserving the law driving the process, can be considered
satisfactorily fulfilled, also in the case of electricity prices that are particularly hard to replicate.

Since for large scale partitioning problems (i.e., when the transition probability matrix has a
very large number of rows) a heuristic approach is still advised, the development of ad hoc
heuristics for this kind of problems is one of our future lines of research on this subject.
Another interesting development could be the introduction in the proposed MILP of new con-
straints for modeling specific relations that characterize the states of the Markov chain under
study. This could help in reducing the number of feasible partitions and, therefore, it may be
a viable strategy to reduce the computational effort for solving our reduction problem in the
general case.

Appendix A - Trend and weekly seasonality removal

The estimation of the exponential trend and weekly seasonality is based on the following model:

egc) = eXp(Tt + ml (t) + 772]12(75) + 773]13(75) + 774]14(75) + 775]15(75) + 776]16(t) + 777]17(75) + 675), (14)

where egc) are the raw original prices, I;(¢) is the dummy variable signalling whether ¢ is the jth

day of the week, with j = 1,...,7, r is the growth rate, n; is the coefficient of dummy variable
I;(t), with j = 1,...,7, and & are the errors. If we take the natural logarithm on both sides of
Formula (14), we obtain the following formula:

zp = rt+mli(t) + n2la(t) + n3ls(t) + nalla(t) + nsl5(t) + nele(t) + n7lz(t) + &,
()

where z; = 1Ine; .
For estimation purposes, we assume that the usual hypotheses of linear regression on the errors
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¢ hold. We obtain the OLS estimates of r and n;, j = 1,...,7, and they are significant at a

level of 5% (see Table 4).

Table 4: Coefficients estimates of an exponential regression model of trend and weekly seasonality

applied to the series of electricity prices of Spain and Germany.

Coefficient estimate Spain Germany
7 0.0001161214 0.0003865792
M 2.9922407785 2.4365264186
N2 3.2673051542 2.9583694626
N3 3.2697769413 3.0280264215
N4 3.2754546141 3.0209612161
N5 3.2888136542 3.0002419013
N6 3.2762719043 2.9386885451
N7 3.1382584293 2.7011989900

To the purpose of removing the exponential trend and the exponential weekly seasonality from
our original series, we define the series of prices e(1') = (ey1,...,€t,...,er), where:

er = explze — (Pt + 11 (2) + N2lla(t) + 7sls(t) + ala(t) + 0515 (¢) + Nels(t) + Nrle ()], t =1,..., T.
Set e(T') is an input of the bootstrapping method, while the output is the bootstrapped series

z(l) = (x1,...,m7). To re-introduce the exponential trend and the exponential weekly seasonal-
ity iIl x(£)7 we IIHlltlplY ea(:h. p()iIlt 3:] by C(TA‘J‘FﬁlHl (7)+ﬁ2ﬂ2(7)+ﬁ3ﬂ3(J)+ﬁ4]14(7)+ﬁ5]15(7)+776H6(.])+777]I7(.]))’

j=1,....0.

Appendix B - Initial states, or intervals

Table 5 reports the 12 intervals of the initial partition of the support [« 3] of the series of Spain
and Germany after removal of trend and weekly seasonality.
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Table 5: Elements of the initial partition of the support of the detrended series of electricity
prices of Spain and Germany. In both cases, the upper limit of the interval 12, i.e., 5, represents
a “high enough” value such that no price can be reasonably thought to be greater than it. For
example, in our experiment we take 5 = 1,000, 000.
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Interval Interval of prices

label Spain Germany
o [0,0.51) [0,0.59)
a9 [0.51,0.66) [0.59,0.83)
as [0.66,0.76) [0.83,1.04)
Qyq [0.76,0.87) [1.04,1.20)
as [0.87,0.96) [1.20,1.43)
ag [0.96,1.09) [1.43,1.70)
ar [1.09,1.18) [1.70,2.20)
asg [1.18,1.35) [2.20,3.09)
o) [1.35,1.54) [3.09,4.02)
a10 [1.54,1.92) [4.02,5.93)
aq [1.92,2.29) [5.93,8.58)
12 [2.29, F] [8.58, ]
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