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A B S T R A C T   

The use of artificial intelligence (AI) has gained tremendous popularity in recent years, and it has become 
ubiquitous for use in the energy sector. The newly emerging digitalised tools are reliant on the use of AI which 
offers seamless possibilities for improved connectivity across the energy supply chains, trade and end-use. In the 
near course, the integration of energy supply, demand and renewable sources into the power grid will be 
controlled autonomously and this will aid in swift decision-making processes. This review focuses on studies that 
highlight the realm of AI to benefit the energy sector as a key enabler to the growth of renewable energy sources 
from wind, solar, geothermal, ocean as well as hydrogen-based energy storage. The work presented here alludes 
to an AI based energy management approach in the context of CO2-neutral hydrogen production and storage 
landscape. A major intended outcome of this review is that it would allow the readers to compare their AI efforts, 
ambitions, state-of-the-art applications, challenges, energy efficiency optimization, predictive maintenance 
control and global roles in policymaking for the renewable energy sector. Finally, observations and ideas for 
future research, enhancements and investigations through a summary of key discussions are also made.   

1. Introduction 

The production, distribution and management of sustainable energy 
are all integral to the global economy (Kishore et al., 2022). Reliance on 
fossil fuels will continue to adversely impact the climate change (Hu 
et al., 2019; Rasheed et al., 2021). The International Energy Agency has 
issued warning stating that the "Energy-related greenhouse gas (GHG) 
emissions would lead to considerable climate degradation with an 
average global warming of 6 ◦C” (Dincer and Acar, 2015). 

The world can transform to be a safer place by using clean energy. 
Safe, sustainable, and environmentally friendly renewable energy 
sources are essential to the long-term existence of humans (Frankl et al., 
2010). It is widely acknowledged that no single energy source has the 
ability to control and monopolize the global energy market. As a result, 
the energy-mix model—which makes use of combined resources that are 
available for use has gained widespread acceptance. The world’s main 
energy sources have historically been fossil fuels such as natural gas, 
coal and oil (Mehta and Cooper, 2003, Verma and Goel, Verma et al., 
2018). As of today, the renewable energy (RE) can be derived from wind, 

solar, hydro, geothermal, bio, ocean and hydrogen as well as their 
hybrid variants (Sorensen, 2017; Energy, 2014; Chalk and Miller, 2006). 
A schematic diagram showing broad category of these different renew-
able energy sources is shown in Fig. 1. 

Knowledge Based Systems (KBS) were among the first AI applica-
tions. KBS used human knowledge, primarily in the form of rules, to help 
with decision-making and its earliest application was in materials se-
lection (Watson and Marir, 1994; Matthews and Swift, 1983). It has 
since then transformed the use of AI based systems leading to the 
development of Industry 5.0 ready systems (Popov et al., 2022). De-
velopments in the field of AI have transformed many sectors including 
healthcare, energy, aerospace, transport and manufacturing to list a few 
(Ahmad et al., 2021; Bose, 2017). With the use of deep-mind AI tech-
nology, Google has reduced its field device management expenses by 
40% (Kaplan and Haenlein, 2020). Through the early detection of 
development prospects associated with the deployment of the Internet of 
Things (IoT) and the integration of renewables, AI can benefit the energy 
sector tremendously (Sodhro et al., 2019). Modern infrastructure, 
including cyber technologies, power electronics, supercomputers, in-
formation, and bi-directional control center-equipment connections are 
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Abbreviations 

AI Artificial Intelligence 
ACO Ant colony optimization 
ANFIS Adaptive-network-based fuzzy inference system 
ANN Artificial neural network 
BMO Bird mating optimization 
BPNN Backpropagation neural network 
CGP Pola–Ribiere conjugate gradient 
COE Cost of energy 
CPV Concentrator photovoltaics 
CS Cuckoo search 
CSP Concentrated Solar Power 
CBR Case-based reasoning 
DL Deep Learning 
FCHV Fuel cell hybrid vehicles 
FFNNs Feed Forward Neural Networks 
GA Genetic algorithm 
GC Generation cost 
GHG Greenhouse Gas emissions 
GSR Global solar radiation 
GRNN Generalized regression neural network 
HI Human intelligence 
HO Hybrid optimization 
HISIMI HIstorical SImilar Mining 
HCPS Human-cyber-physical system 
HCPV High concentrator photovoltaic 
HOMER Hybrid optimization model for electric renewables 

IBM International Business Machines 
IoT Internet of things 
IT Information technology 
KBS Knowledge Based Systems 
KNN k-nearest neighbor 
LEC Levelized energy cost 
LM Levenberg–Marguardt 
ML Machine Learning 
MLP Multilayer perceptron 
NWM Numerical wave model 
NPC Net present cost 
VGCHP Vertical ground coupled heat pump 
PEM Proton exchange membrane 
PSO Particle swarm optimization 
MPPT Maximum power point tracking 
PEMFCs Proton exchange membrane fuel cell systems 
PEMFC Polymeric electrolyte membrane fuel cell 
RMSE Root mean square error 
RE Renewable energy 
RES Renewable energy sources 
RBFNN Radial basis function neural networks 
SCG Scaled conjugate gradient 
SOC Storage of charge 
SFT Static formation temperature 
SVR Support vector regression 
SOFC Solid oxide fuel cell 
VST Voltage stability index  

Fig. 1. Categories of renewable energy and their sources (Jha et al., 2017).  
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now abundantly available in the smart energy sector (Bose, 2017). This 
is particularly true in cases where the architecture of the current elec-
trical grid is antiquated, ineffective and does not offer enough protection 
for prompt failure identification. However, the production of energy, the 
planning of its distribution, and the sustainability of its finances are vital 
to the world economy (Jha et al., 2017). 

Renewable energy resources (RES) were not included in the tradi-
tional designs since awareness of their promotion emerged much later 
than the conventional power networks. Weather dependent variations in 
the generation of renewable energy made it more difficult to fulfill the 
needs of the power grid’s changing loads. Lately, the energy sector has 
been undergoing a revolution thanks to AI technologies, such as big 
data, IoT, deep learning and machine learning. AI technology is now 
being used in various nations to carry out a variety of activities, 
including forecasting, controlling and effective power system operations 
(Kow et al., 2016). The use of AI enables efficient inverter control of 
photovoltaic (PV) systems (Youssef et al., 2017) and maximizes the 
ability to track power points (Seyedmahmoudian et al., 2015; Yang 
et al., 2019). Artificial maximum power point tracking (MPPT) tech-
niques are efficient and can improve performance when compared to 
conventional MPPT techniques. Particle swarm optimization for MPPT 
is preferred in swarm intelligence courses because of its simple and fast 
capabilities (Miyatake et al., 2011). Prediction technologies are 
frequently used to estimate electricity pricing, load demand and the 
supply and demand of renewable energy sources (RES) such as wind, 
hydro, solar, and geothermal energy, as well as fossil fuels such as coal, 
oil, and natural gas. Probabilistic forecasting, such as predicting future 
events, or forecasting for distribution plans, different forms of invest-
ment programs, fuel purchase management, generation planning, 
maintenance schedules, and security objectives are examples of fore-
casting (Ranaweera et al., 1997). The role of AI in planning and fore-
casting load demand (Kong et al., 2017), solar energy (Rodríguez et al., 
2020), wind energy (Ren et al., 2014) and hydro and geothermal energy 
(Debnath and Mourshed, 2018) is well documented. The forecast seeks 
to lower uncertainty and provide benchmarking for managing the actual 
performance of the power networks (Guo et al., 2018). A new generation 
of artificial intelligence technology has emerged that has the potential to 
significantly improve forecasting techniques for applications like prod-
uct demand, labour turnover, cash flow, distribution requirements, 
personnel forecasts, and inventories, shown in Fig. 2. 

Time is of the essence and this is the most opportunistic window 
where AI technology has risen to its prominence to transform various 
sectors, in particular the energy section. Considering this scenario, this 
review aims to enhance our understanding of the applications and im-
plications of AI in the energy sector. Through this review, the readers are 
expected to gain major learning outcomes concerning the use of AI in the 
energy sector and how can this potentially be worked on to mitigate the 
issue of climate change. It is hoped that the funding agencies, research 
evaluators, academics and policymakers would work collaboratively on 

this diverse, developing and increasingly growing field to contribute to 
the development of full scale AI ready trustworthy, responsive and 
autonomous energy systems with self-decision making capabilities. 

2. The history of AI in the smart energy industry 

AI’s past is built on examples, possibilities, and promises. AI research 
has been developing experimental devices to carry out various intelli-
gent system functions for the energy sector since the 1950s. The Alan 
Turing Test was subsequently named after Alan Turing, who devised the 
"imitation game" idea in 1950. The term artificial intelligence was first 
used in 1956. In 1964, the List Processing program was introduced as a 
way to read and solve word problems involving mathematics. Between 
1975 and 1980, there was a chilly time for the development of AI 
technology. This time frame revealed a lack of logic and processing 
power, as well as a lack of interest in AI and fewer funding prospects for 
new initiatives. The artificial neural network hypothesis initially gained 
traction in 1982. From 1990 to 2015, notable advancements in artificial 
intelligence (AI) gave rise to several well-known campaigns, such as the 
logistics planning for US military applications (Hoadley and Lucas, 
2018), the IBM theory (Feigenbaum, 1963), the application of AI in 
vertical markets, new web designs, the introduction of the Google 
browser, image processing and face recognition, free online cutting-edge 
communication applications, and so forth. 

TensorFlow, Caffe-2, and Lite Libraries have replaced cloud devices 
in AI in recent years, which has made it easier to solve complicated 
analytical problems. The energy supply is significantly enhanced by the 
availability of these AI digital technologies, which lead to better oper-
ation and maintenance costs, process efficiency, and equipment lifespan 
in addition to more sophisticated wind farm projections (Ahmad et al., 
2021; Cozzi et al., 2020). Fig. 3a provides an exemplary representation 
of the major advancements in AI during the last many years. Although 
breakthroughs in AI have been made every ten years, after 2000, there 
has been a noticeable rise in the rate of progress. AI will run nearly every 
significant technical system in the coming years, including power sys-
tems, cybersecurity, financial markets, payment systems, nuclear power 
plants, electrical grids, the Internet of Things, logistics, manufacturing, 
building construction, and so forth. 

Fig. 3b shows the impact of AI on energy and business sectors 
(Gerbert et al., 2017). Energy will keep having a significant impact on 
the economy in the near future. The influence of AI on energy enter-
prises across several industries is expected to exceed current expecta-
tions. The impact of AI technology on various business kinds over the 
next five years is covered by the portion of the red line in Fig. 3b. The 
"Effect of offerings" is represented by the horizontal axis, and the "Effect 
of processes" by the vertical axis. The "Effect of Processes" refers to a set 
of activities or procedures done to accomplish a given goal, whereas the 
"Effect of Offerings" offers enhanced opportunities and influence of AI in 
many areas (accept or reject as desired). The majority of enterprises 

Fig. 2. AI applications in sustainable energy industry (Ahmad et al., 2021).  
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anticipate that AI will have a greater impact on supply chain manage-
ment, manufacturing and operations, customer-focused activities, and 
energy information technology (IT). Industrial company executives 
anticipate a greater influence on the manufacturing, energy, and oper-
ations sectors (Ahmad et al., 2021). 

Artificial intelligence has been widely used in smart controls of 
renewable energy systems because of its exceptional learning capability 
and quick convergence to adjust to changes in parameters and un-
certainties in the model. Karabacak and Cetin (Karabacak et al., 2014) 
systematically reviewed ANN-based power point tracking applications 
of PV systems, and pitch controllers on wind turbine systems. The use of 
AI in smart controls for renewable energy systems, such as solar 
photovoltaic systems, wind turbines, and natural thermal energy sys-
tems, is summarized in Table 1. ANNs have been applied to MPPT in a 
variety of operational and meteorological scenarios (Veerachary and 
Yadaiah, 2000; Hiyama and Kitabayashi, 1997; Bahgat et al., 2005). 
According to reports, on a bright, sunny day, the output energy can be 
increased by roughly 45.2% when ANN is used for MPPT. When the 
wind speed is high, ANNs can be used in wind turbine systems to adjust 
the pitch angle through active pitch control. Furthermore, research has 
been done on the ANN-based MPPT with adjusted power coefficient to 
produce the greatest mechanical power tracking in both dynamic and 

steady states (Yilmaz and Özer, 2009). To achieve the greatest energy 
savings in natural thermal energy storage, smart charging and dis-
charging on PCM storage was accomplished using the reinforcement 
learning technique (de Gracia et al., 2015; Patel et al., 2022). From the 
perspectives of control mechanisms, methods, and techniques, this 
section offers a comprehensive review of the uses of artificial intelli-
gence in smart controls of renewable energy systems. Several significant 
obstacles are noted to provide insight for further investigation (Kumari 
and Tanwar, 2021b, Kumari and Tanwar, 2021a). 

3. Role of AI in renewable energy sector 

To create intelligent systems that can work effectively to tackle 
challenging issues, AI imitates human thought processes (Jha et al., 
2017; Michalski et al., 2013; Hayes-Roth et al., 1983; Jackson, 1986). 
The advancement of AI lessens the need for human intervention while 
giving significant importance to past data and system performance 
(Poole and Mackworth, 2010; Katne et al., 2019; Smolensky, 1987). This 
can also be alluded to as “responsiveness” of the system. The natural 
brain is superior to AI in certain domains, but in others, AI has out-
performed the human brain. AI is currently influencing several in-
dustries and sectors, such as manufacturing (Pan et al., 2021), finance, 

Fig. 3. (a) Evolutionary development in the field of AI (b) Impact of AI on energy and business sectors (Ahmad et al., 2021).  
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accounting, information retrieval, healthcare (Popov et al., 2022), food 
quality, energy, biometrics, and forensics, among others. Production 
planning and distribution economics and industry are also affected by AI 
(Smolensky, 1987). Numerous learning theories, including statistical, 
neural, and evolutionary learning, are the foundation of AI (Jha et al., 
2017). Neural learning is the most widely utilized of them. The most 
basic method of neural learning is the artificial neural network (ANN). 
Based on the theory of a mathematical model for a basic brain cell 
(neuron), the ANN was created in 1943. When the weighted sum of the 
input values is greater than a threshold, the neuron is activated and 
produces an output as a result of some active function. Since ANN can 
modify its values to correct errors in the output, it is an even more potent 
learning tool (Reed and MarksII, 1999). 

A schematic illustration of the ANN model based on the mathemat-
ical neuron is shown in Fig. 4a. Radial basis function neural networks 
(RBFNN), feed-forward neural networks, and Kohonen self-organizing 
networks are some of the types of ANN (Sazli, 2006; McLean et al., 
1998). In addition to brain learning, strategies based on statistical and 
evolutionary learning have also found practical utility. Among the sta-
tistical learning methods used in AI, clustering, hidden Markov model, 
Bayesian and naïve Bayes models are the most popular (Vapnik, 1999). 
Additionally, ant colony optimization (ACO), particle swarm optimiza-
tion (PSO), genetic algorithms (GA), and bee algorithms are well-liked 
evolutionary learning techniques (Fogel, 2006). In recent years, 
hybrid artificial intelligence systems have also been employed in 
numerous applications to achieve more accuracy. A variety of hybrid 
artificial intelligence techniques are on the horizon, including but not 
limited to (i) Neuro-fuzzy, which combines artificial neural networks 
and fuzzy inference systems; (ii) Neuro-genetic, which combines ANN 
and genetic algorithms; and (iii) Fuzzy-genetic, which combines fuzzy 
inference systems and genetic algorithms (Cord, 2001). This work 
analyzed artificial intelligence strategies (Fig. 4b) used in renewable 
energy research, both single and hybrid. Table 2 describes the ANN 

techniques unique to each type of RE. 

3.1. AI in wind energy 

The role of AI in wind energy has been reviewed by various re-
searchers (Lei et al., 2009; Foley et al., 2012; Colak et al., 2012; Zhang 
et al., 2014; Tascikaraoglu and Uzunoglu, 2014). Three primary cate-
gories of methodologies used are neural, statistical, and evolutionary 
learning, as well as their combination to create hybrid AI techniques (Li 
and Shi, 2010; Cadenas et al., 2010; Monfared et al., 2009). The majority 
of research focuses on leveraging AI’s neural learning techniques to 
estimate wind power and speed. The Mabel research group used 
feed-forward backpropagation neural network (BPNN) to estimate the 
wind generation from seven wind farms over three years (Mabel and 
Fernandez, 2008). With a root mean square error (RMSE) of 0.0070 for 
the training data set and 0.0065 for the test data set, BPNN revealed 
exceptional prediction accuracy. In order to estimate wind speed from 
two separate locations, three distinct ANN methods—BPNN, RBFNN, 
and adaptive linear element network (ADALINE) were employed (Li and 
Shi, 2010). When the effectiveness of ANN approaches was examined in 
relation to the location of wind farms, it was found that, for one site, 
BPNN produced the best results (minimum RMSE 1.254), while, for 
another, the RBF method produced the best results (minimum RMSE 
1.444) (Mabel and Fernandez, 2009). used trial and error to optimize the 
BPNN setup in order to estimate wind power. The optimal estimation 
(mean square error (MSE) 7.6 × 10− 3) was produced by a 3 × 5 × 1 
ANN model with the wind speed, relative humidity, and generation 
hours as inputs. Additionally, a few statistical techniques were also 
covered (Juban et al., 2007; Mohandes et al., 2004). 

A probabilistic approach was put up by (Juban et al., 2007) for 
estimating wind power in the short term. The process produced a pre-
dictive probability density function for estimate and was based on kernel 
density estimation. The model’s dependability was between 2 and 4%, 

Table 1 
Application of AI in smart controls in renewable energy systems (Zhou et al., 2010)  

Systems Studies Approaches/techniques Control mechanisms Results 

PV Veerachary and 
Yadaiah (Veerachary 
and Yadaiah, 2000) 

Maximum power point tracking Gradient descent algorithm to train the 
ANN controller and then identify the 
maximum power point of the solar cell 
array 

The adaptive controller can be applied for different 
operating conditions with various solar insolation. 

Hiyama and 
Kitabayashi (Hiyama 
and Kitabayashi, 
1997)  

Accurate prediction on weather 
information 

The proposed method can provide more accurate 
predictions than the conventional multiple 
regression model. 

Bahgata et al. (Bahgat 
et al., 2005)  

ANN detects the optimal operating point 
under different operating conditions, to 
send driving signals to the MPPT 

Both power output and operating periods can be 
increased by the MPPT. The output energy can be 
improved by about 45.2% for a clear sunny day. 

Wind turbine Ro and Choi (Ro and 
Choi, 2005) 

A neural network (NN) based 
pitch control (active) 

when the wind speed is much high, a blade 
pitch mechanism will be received and the 
rotor blade immediately pitches (turns) 
slightly out of the wind 

Compared to a PI controller, the NN pitch controller 
shows much higher power extraction from wind. 

Mayosky et al. ( 
Mayosky and Cancelo, 
1999) 

Adaptive controllers based on 
the combination of Gaussian 
networks and supervisor 
controller 

Fast convergence to a simple linear 
dynamic behavior under parameter changes 
and model uncertainties 

The approach is feasible and simple to be 
synthesized using fixed-point signal processors. 

Li et al. (Li et al., 2005) ANN-based MPPT with 
compensated power coefficient 

ANN for wind speed estimation and 
maximum wind power extraction 

The controller shows superiority over traditional 
controllers, in terms of maximum mechanical power 
tracking in both dynamic and steady states, fast and 
accurate wind velocity without anemometers, and 
compensated power coefficient without extra 
sensors. 

Yilmaz and Özer ( 
Yilmaz and Özer, 
2009) 

ANN-based pitch angle control Multi-layer perceptions with back 
propagation learning algorithm and radial 
basis function network are adopted for 
pitch angle controllers 

Overloading or outage of the wind turbine can be 
avoided, when the wind speed is high. 

Natural 
cooling/ 
heating 
energy 

Gracia et al. (de Gracia 
et al., 2015) 

Reinforcement learning Smart control on a ventilated façade for 
charging/discharging on PCM storages 

Energy savings from control strategies can be 
noticed, in different climatic conditions.  
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which was consistent with earlier studies. The support vector machines 
(SVM) method was used (Mohandes et al., 2004) to predict the wind 
speed from the wind data obtained from Madina in Saudi Arabia. 
Additionally, a comparison was made between the multilayer percep-
tron (MLP) neural networks and SVM’s performance. In comparison to 
the ANN approach (MSE 0.0078), SVM demonstrated lower estimation 
accuracy (MSE 0.009) (Chen et al., 2021). In the framework of Industry 
5.0 technologies, a novel notion for an intelligent and semi-autonomous 
human-cyber-physical system (HCPS) to control wind turbines in the 
future was proposed. Artificial intelligence (AI) is needed to manage 
next-generation wind turbines reliably and efficiently due to their 
exponentially increasing complexity. By using machine learning to 
effectively train the AI, the digital twin in the proposed system goes 
beyond the present Industry 4.0 digital twin technology’s employment 

as a purely advisory tool for human decision-making. As demonstrated 
in Fig. 5, human intelligence (HI) is raised to a supervisory level, where 
high-level judgments made via a human-machine interface violate au-
tonomy (Chen et al., 2021). 

3.2. AI in solar energy 

Similar to wind energy research, solar energy research uses both 
single and hybrid AI techniques (Mellit and Pavan, 2010; Rehman and 
Mohandes, 2008; Kalogirou et al., 1999; Zhao and Magoulès, 2012). The 
most popular technique used in solar energy research to date is ANN. 
ANN is utilized to forecast solar irradiance for grid-connected photo-
voltaic systems (Jiang, 2009). It has been possible to obtain a correlation 
between the actual and anticipated solar irradiance of 98–99% on sunny 

Fig. 4. (a) A simple architecture of ANN method (b) A schematic representation of application of AI in different sources of renewable energy (Jha et al., 2017).  
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days and 94–96% on gloomy days. Using temperature and humidity as 
inputs, BPNN was used to anticipate global solar radiation (GSR) from 
1998–2002 (Atia et al., 2012). For the year 2002, the RMSE value be-
tween the actual and BPNN predicted GSR was 2.823 × 10− 4 (Kalogirou 
et al., 1999). investigated a solar water heating system’s performance 
using BPNN. The improved performance of BPNN was confirmed by the 
higher values of the coefficient of determination (R2 0.9808 for the 
maximum temperature rise and 0.9914 for extracted energy, respec-
tively). Using BPNN, beam solar radiation was calculated by examining 
data from eleven distinct stations. The radiation model’s projected 
values and actual values had an RMSE of 2.69–2.79% (Alam et al., 
2006). The daily ambient temperature was estimated with a BPNN of 3 
× 6 × 1, with an RMSE of 1.96 [250]. The BPNN was used to estimate 
the daily sun irradiation with an RMSE of 5.5–7.5% (Bosch et al., 2008). 
The BPNN was used to forecast the maximum power of a high concen-
tration photovoltaic (HCPV) system with an RMSE of 3.29% (Almonacid 
et al., 2013). The BPNN was used to estimate the monthly average daily 
global sun irradiation, and the correlation between the projected and 
real solar irradiation was 0.97 (Mubiru and Banda, 2008). The BPNN 
was used to estimate the quantity of hot water and solar energy output; 
the R2 values were 0.9973 and 0.9978, respectively (Kalogirou, 2000). 
With an R2 of 0.971, solar radiation was estimated in Nigeria using the 
BPNN with the following input variables: latitude, longitude, altitude, 
month, mean temperature, mean sunshine duration, and relative hu-
midity (Fadare, 2009). BPNN was also used to estimate the energy intake 
of a passive solar building (wall thickness (15–60 cm) with R2 0.9991) 
(Kalogirou and Bojic, 2000). In a different investigation, BPNN pre-
dicted building energy consumption with 94.8–98.5% prediction accu-
racy for insulation thickness values of 0, 2.5, 5, 10 and 15 cm, 
orientation angles of 0–80◦, and transparency rates of 15, 20 and 25%, 
relative to each other. It was also noted that by combining the AI 
techniques the forecast accuracy improves (Souliotis et al., 2009; 
Monteiro et al., 2013; Pedro and Coimbra, 2012). ANN and TRNSYS 
were combined to forecast the performance of an integrated collector 
storage (ICS) solar water heater, with an R2 value of 0.9392. GA was 
utilized by (Monteiro et al., 2013) to optimize the parameters of the 
Historical SImilar Mining (HISIMI) model for PV system power predic-
tion. Comparisons were made between the GA + HISIMI model (RMSE 
283.89) and the classical persistence (RMSE 445.48) and BPNN (RMSE 
286.11) approaches. To optimize the size of PV systems in Algeria, 
RBFNN and infinite impulse response (IIR) filters were combined 

Table 2 
Artificial neural network (ANN) methods of power forecasting (Rahman et al., 
2021).  

RE Sources Methods Prediction 
Outputs 

Inputs 

Solar 
Energy 

LSTM based deep 
learning approach 

short-term 
prediction of 
solar energy 

Time series 
meteorological 
data, such as 
irradiance, 
temperature, and 
wind speed 

Solar 
Energy 

ANN-based prediction 
models 

the hourly 
prediction of 
the PV system’s 
power 

Parameters of 
environment, e.g., 
Solar irradiance, 
air humidity, 
temperature, wind 
direction/speed, 
surface 
temperature of PV 

Solar 
Energy 

Feedforward neural 
network 

Predict the 
monthly solar 
radiation based 
on a daily 
average 
radiation 

solar irradiation 
on daily basis, 
Time of sunshine, 
temperature as 
well as latitude, 
and longitude 

Solar 
Energy 

Deep Learning and ANN 
algorithms, such as 
LSTM, Auto Encoder, and 
Deep Belief Networks 

Forecasting 
solar power 

Daily average 
solar irradiation, 
sunshine hours, 
temperature, 
location, etc. 

Solar 
Energy 

ANN Model Solar power 
prediction 

Time, direct beam 
solar irradiance, 
total solar 
irradiance, power 
produced from the 
solar panel 

Solar 
Energy 

Deep convolutional 
neural networks 

Forecasting 
solar energy 
generation 

Latitude, 
longitude, altitude 
and time; 
temperature, 
humidity, 
moisture, wind 
velocity, etc. 

Wind Power Single-step and multistep 
RNN 

Wind speed 
prediction from 
a daily basis to 
monthly basis 

Historical data on 
wind speed and 
wind direction for 
15 years on an 
hourly basis 

Wind Power BP neural network Future 
prediction of 
wind speed 

1500 daily 
windspeed 
patterns 

Wind Power Deep learning approach, 
Feedforward ANN, 
Linear regression 

Predict of Wind 
energy From 5 
to 30 min ahead 

Wind speed 

Wind Power Deep neural network Wind speed 
prediction 

wind direction, 
speed of the wind, 
temperature, air 
pressure, etc. 

Wind Power BP network, RBF 
network, and NARX 
models 

Wind speed 
prediction 

Time series 
historical weather 
data for 3 years 
and intervals of 
15 min: radiation, 
wind direction and 
speed, 
temperature, 
humidity, 
reflected 
radiation, etc. 

Wind Power multivariable model 
based on ANN 

Prediction of 
Wind velocity 
(speed) 

Temperature, 
wind direction and 
speed, and air 
pressure 

Hydropower ANN: Feed Forward 
Neural Networks 
(FFNNs) 

Prediction of 
power 
generation 

Waters’ Flow rate 
and Net Turbine’s 
head  

Table 2 (continued ) 

RE Sources Methods Prediction 
Outputs 

Inputs 

Hydropower “multi-layer perceptron” 
(MLP) 

Prediction of 
the flow rate of 
the river 

the flow rate of the 
river, rainfall 
amounts, overall 
rainfall’s volume 
and duration 

Hydropower multi-layer perceptron 
(MLP) 

Forecasting up 
to 6 h ahead of 
the future 
natural water 
inflow 

Amount of 
precipitation in 
the last 15 min, 
last hour, last 2 or 
4 h, current water 
inflow, natural 
inflow 8 h ago 

Hydropower the 
Levenberg–Marquardt 
algorithm in Neural 
network and feedforward 
mode 

The annual 
average’s 
prediction of 
the 
hydroelectric 
energy 

series of Inflows, 
requirements for 
irrigation water, 
rates of 
evaporation, ratio 
of turbine running 
time, and the 
coefficient of C 

Hydropower MLP using the BP 
algorithm 

Forecasting the 
monthly 
hydropower 
generation 

Daily rainfall data  
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Fig. 5. (a) The human-cyber-physical system (HCPS) concept of future wind turbines in the Industry 5.0 era. The system comprises an AI (red loop) that directly 
controls the operation of the WT in quasi real time. The AI is trained by a DT that makes predictions to aid the decision-making process (b) A digital twin of a wind 
turbine blade. The digital twin follows the entire life cycle of a wind turbine blade from manufacturing to operation to maintenance (Chen et al., 2021). 
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(Mandal et al., 2012). The RBF + IIR approach was used to estimate the 
optimal sizing coefficients, and its effectiveness was compared to that of 
the classical models, BPNN, RBFNN, and MLP + IIR methods. Using the 
RBF + IIR approach, the sizing coefficients were computed with an ac-
curacy of 98%. For the purpose of estimating solar radiation values, WT 
and BPNN were combined (Amirkhani et al., 2015). WT + BPNN out-
performed the traditional approaches (AR, ARMA, MTM), BPNN, 
recurrent, and RBFNN methods in terms of accuracy (97%) and per-
formance. Without using exogenous inputs, solar power output was 
forecasted using GA-optimized BPNN. The persistent model, ARIMA, 
k-nearest neighbor (KNN), and BPNN approaches were contrasted with 
the GA + BPNN method’s performance. The GA + BPNN produced an 
RMSE of 72.86 kW as the minimum. To estimate the power of a PV 
system (Mandal et al., 2012), combined WT and RBFNN and evaluated 
the system’s performance against WT + BPNN, RBF and BPNN. The WT 
+ RBF showed an RMSE of 0.23 at minimum. The economic benefits of 
solar energy were optimized through the application of NN and GA in 
the group method of data handling (GMDH). The best course of action 
increased life cycle savings by 3.1–4.9% (Caputo et al., 2010). 

Concentrated Solar Power (CSP) is one of the most promising solar 
technologies that raises the bar for solar energy. Large arrays of mirrors, 
or heliostats, are key components of CSP systems. Their job is to pre-
cisely track the sun’s movement and reflect beneficial sunlight onto a 
central receiver. This receiver, which is often found at the summit of a 
tower, is filled with heat-transfer fluid, such as molten salt. The fluid 
warms up when the receiver is exposed to intense sunshine. After being 
heated, this fluid is utilized to create steam, which powers a conven-
tional steam turbine that is connected to a generator to produce energy. 
Some cutting-edge CSP technologies can also use thermoelectric or 
photovoltaic processes to directly turn sunlight into power (Abreu et al., 
2020). 

A summary of key advances made with the use of AI in the CSP field 
is made below:  

• Heliostat Alignment and Tracking: Heliostats, or mirrors used in 
CSP plants can have their alignment and tracking optimized using AI 
algorithms. AI determines the most effective angles for the mirrors by 
analyzing real-time data, such as the sun’s location, the weather, and 
the performance of the plants. By doing this, one can optimize the 
amount of sunlight reaching the receiver, which raises the total en-
ergy production. 

• Predictive Maintenance: In CSP systems, AI can be used for pre-
dictive maintenance. Artificial Intelligence (AI) can forecast prob-
able component failures or anomalies by examining sensor data, 
performance patterns, and previous maintenance records. It then 
makes it possible for operators to plan maintenance which cuts 
downtime and increasing plant efficiency. 

• Energy Dispatch Optimization: Based on current electricity de-
mand, energy costs, and grid circumstances, artificial intelligence 
(AI) can optimize the dispatch of energy from CSP facilities. CSP 
plants can better adapt to changes in energy supply and demand by 
dynamically varying their power output, which helps in maintaining 
the grid stability.  

• Thermal Storage Management: Thermal energy storage devices are 
frequently used by CSP facilities to store excess heat for use in the 
production of electricity during low-sun times. AI may be used to 
evaluate and improve thermal storage behaviors, enhancing 
charging and discharging plans for optimal energy storage.  

• Solar Irradiance Prediction: To precisely forecast the irradiance 
levels of the sun, artificial intelligence (AI) algorithms can use sat-
ellite photos, historical meteorological data, and other factors. This 
data assists CSP operators in forecasting patterns of energy genera-
tion and making plans for possible weather-related variations. 

AI has many benefits for CSP, including improved performance, cost 
savings, grid integration, efficiency gains, and efficient thermal storage. 

Multi-junction solar cells are used in concentrator photovoltaic (CPV) 
systems, which are designed to convert energy with a high degree of 
efficiency. Nontracking CPV systems have been created by researchers 
to minimize the amount of mechanical hardware. Since a building’s roof 
area is constrained, CPV systems ought to be created for the building 
envelope of multi-story structures. In the same manner, non-tracking 
tiny concentrators with a high acceptance angle ought to be created 
for vehicle-based CPV systems. Subsequent advancements will strive 
towards broadening of the scope of geographical areas where CPV sys-
tems can be implemented, encompassing areas with reduced DNI. Im-
provements in tracking systems, concentrator optics, and system 
integration with other renewable energy technologies such as energy 
storage and hybrid systems will aid in achieving this. Future studies 
should focus on improving the durability and dependability of CPV 
systems by utilizing high-quality parts, robust construction, and effec-
tive heat management techniques (Iqbal et al., 2023). 

3.3. AI in geothermal energy 

Similar to the previously discussed systems, both single and hybrid 
approaches of AI are used in geothermal energy applications (Esen and 
Inalli, 2009; Bassam et al., 2010; Arslan, 2011; Yabanova and Keçebaş, 
2013), albeit, the ANN method is used in most studies (Arslan and Yetik, 
2014; Yeo and Yee, 2014; Kalogirou et al., 2015). 

In order to forecast the performance of a vertical ground coupled 
heat pump (VGCHP) system (Esen and Inalli, 2009), employed BPNN in 
conjunction with the Levenberg–Marguardt (LM), Pola–Ribiere conju-
gate gradient (CGP), and scaled conjugate gradient (SCG) algorithms. 
Better prediction efficiency was achieved by the LM-based BPNN with 
eight neurons in the hidden layer (RMS 0.0432). For the geothermal 
well’s static formation temperature (SFT) prediction (Bassam et al., 
2010), employed LM-based BPNN. A prediction error of less than 5% 
was achieved by the BPNN with five neurons in the hidden layer. The 
ideal geothermal well operating conditions were ascertained by using 
BPNN (in conjunction with LM, CGP, and SCG). Using the ammonia 
fraction, temperature and vapor fraction of geothermal water as inputs, 
the BPNN with seven neurons in the hidden layer produced the 
best-predicted values of generated and circulation pump power (RMSE 
1.5289). ANN was used to optimize the power cycle utilizing BPNN 
(with LM, CGP, and SCG), much like ORC-Binary. For generating and 
needed pump circulation power, the LM based BPNN with 14–16 neu-
rons in the hidden layer produced the greatest results (RMSE 0.0001 for 
s1 and s2 cycles). Although an extra input variable, outlet pressure, was 
included in the analysis for cycle s2, the input variable of cycle s1 was 
comparable to that of another study (Bassam et al., 2015). A geothermal 
map at various depths was created using BPNN, with real values for 
96.5% of the data points deviating by less than 5%. The Afyonkarahisar 
geothermal district heating system (AGDHS) thermal performance and 
energy destructions were predicted with good accuracy using the 
LM-based BPNN (RMSE 0.0053) (Keçebaş and Yabanova, 2012). 

3.4. AI in ocean energy 

The role of some single and hybrid AI approaches in ocean energy 
was described in several studies (Makarynskyy et al., 2004; Londhe and 
Panchang, 2006; Chen et al., 2010) and a summary of the performance 
prediction/analysis showing the use of AI in ocean energy is shown in 
Fig. 6. 

(Londhe and Panchang, 2006) used the BPNN approach (six alter-
native designs for the number of neurons in the hidden layer) to forecast 
the conditions of ocean waves for one day. Good accuracy (67% corre-
lation for the projected wave height for lead times of 12 h) was attained. 
By examining the data gathered from Tasmania between 1985 and 1993, 
three distinct architects employed the BPNN technique to estimate the 
wave parameters using the coastal environment factors as input (R2 
0.92) (Toprak and Cigizoglu, 2008; Toprak and Cigizoglu, 2008). used 
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BPNN, RBFNN and generalized regression neural network (GRNN) to 
forecast the longitudinal dispersion coefficient in streams for 65 data 
sets from 30 rivers in the USA (MSE 13275 for BPNN). Fuzzy (Chen et al., 
2010) and GP methods have also been used in the study of ocean energy 
(Chen et al., 2010) developed an FLC to reduce the effect of the external 
ocean wave force. The FLC exhibits good stability. Sea level is predicted 
using the GP and ANN by (Ghorbani et al., 2010). The GP prediction 
accuracy was better than the BPNN based on the LM algorithm (MSE 
230.5–236.2). ANFIS and hybrid AI approaches have been implemented 
to achieve better prediction accuracy. In order to forecast sea level 
(Karimi et al., 2013), employed ANFIS (five types with various mem-
bership functions) and evaluated its performance against that of BPNN 
(LM), BPNN (CG), BPNN (GD), and eleven other types of ARMA models. 
While not quite as good as the ARMA models, the outcomes of the ANFIS 
and ANN techniques were comparable. For wave hindcasting, a hybrid 
method combining the numerical wave model (NWM) and BPNN was 
employed (Malekmohamadi et al., 2008). The hybrid strategy out-
performed the NWM and BPNN techniques (De Paz et al., 2012). created 
a hybrid intelligent system that combines support vector regression 
(SVR) and case-based reasoning (CVR) to better estimate CO2 flux and 
investigate the relationship between the air and ocean. 

3.5. AI in hydrogen energy 

3.5.1. Hydrogen production 
Two important selection criteria for hydrogen generation are 

affordability and low carbon emissions. The most straightforward way 
to produce hydrogen is by electrolyzing water, which is also the most 
cost-effective approach in terms of energy conversion and production 
costs. Despite this, industrial hydrogen production does not use this 
process (Holladay et al., 2004; Verma and Goel, 2022; Faisal et al., 
2022). Nowadays, the primary energy source for producing hydrogen in 
industrial hydrogen generation technologies is petrochemical energy. 
The technology for producing hydrogen from petrochemical energy is 
quite advanced, and over 95% of the hydrogen generated globally comes 
from this source. However, the generation of hydrogen from petro-
chemical energy has a drawback as it produces a large amount of carbon 
dioxide as a byproduct. We should utilize industrial by-product 
hydrogen to its full potential from the outset of hydrogen energy 
development. It should limit the growth of electrolytic water to make 
hydrogen, develop less oil and natural gas cracking to produce hydrogen 
and develop coal gasification to produce hydrogen. For long-distance 
energy transmission (Li et al., 2019), integrated the electrical network 
into the hydrogen supply chains. The primary benefit of this was lower 
investment costs and more electrolyze usage. The safety and system 
economy of the power systems were enhanced by the optimization of the 

heat, hydrogen (Li et al., 2018), and high-temperature electrolysis sys-
tem with feed factors and coordinated temperature under varied loading 
situations (Xing et al., 2018). 

3.5.2. Hydrogen storage 
High-pressure hydrogen gas storage, cryogenic liquefied hydrogen 

storage, organic liquid hydrogen storage, porous materials, metal alloys, 
and other physical solid-state hydrogen storage technologies are some of 
the hydrogen storage techniques being researched and used. While 
many technologies and methods have been developed to date for the 
large-scale storage and transportation of hydrogen energy, only high- 
pressure gas hydrogen storage technology and cryogenic liquid 
hydrogen storage technology are most practical for use in industry 
(Verma and Goel, 2022). 

3.5.3. Hydrogen transportation 
A long tube trailer is used to carry high-pressure hydrogen, and by 

raising the operating pressure of the long tube trailer bundle, hydrogen 
transport efficiency can be increased (Ahmad et al., 2021). The cryo-
genic liquid hydrogen is transported in an insulated and cold-insulated 
tank car. Pressurized hydrogen is used by users once they reach their 
destination. Large-scale hydrogen transportation is appropriate for the 
long-distance hydrogen transmission line. A certain amount of money 
must be set aside for hydrogen transportation infrastructure because 
building long-distance hydrogen transmission pipelines requires signif-
icant financial outlays. Long-distance hydrogen transmission pipelines 
will co-develop with the full development of hydrogen energy in the 
future to satisfy the demand for long-distance natural gas transmission 
pipelines (Ahmad et al., 2021). 

(Petrone et al., 2013) provided a succinct overview of model-based 
artificial intelligence (AI) techniques for proton exchange membrane 
fuel cell (PEMFC) diagnosis. Likewise, three categories of 
nonmodel-based techniques—AI, statistics, and signal processing 
methods were described in another study (Zheng et al., 2013). The 
research application of AI approaches is described in several studies (Liu 
et al., 2001; Sammak, 2021; Ho and Karri, 2010; Marra et al., 2013). 
According to (Tardast et al., 2014), the ANN was discovered to be the 
most widely used technique in the hydrogen energy sector (Fig. 7). 
Specifically, techniques like BPNN, SVR, and multi-gene genetic pro-
gramming (MGGP) were utilized to predict the output voltage of mi-
crobial fuel cells (MFCs), with MGGP demonstrating the highest 
accuracy. Additionally, the CO2 hydrogenation activity was predicted 
using BPNN (Liu et al., 2001). The effect of hydrogen car engine oper-
ating conditions on the emission of CO2, CO, NOx, and hydrocarbons was 
predicted by BPNN with eleven training algorithms (Ho et al., 2008); the 
prediction of CO emission was 100% accurate; BPNN trained with LM 
and Bayesian algorithm was used to monitor the stability and error 
detection in the PEM fuel cell (Hatti and Tioursi, 2009). The voltage and 
cathode temperature of the polymeric electrolyte membrane fuel cell 
(PEMFC) were highly accurately predicted using BPNN, which is based 
on the LM training method (Chávez-Ramírez et al., 2010). Using two 
inputs, engine speed and throttle position, BPNN with twelve distinct 
training algorithms was developed for the prediction of hydrogen engine 
parameters (mass airflow (MAF), air pressure, fuel pulse width, exhaust 
gas and engine temperature, and NOx emission) (Ho and Karri, 2010). 
Moreover, BPNN was used in several other studies (Yap et al., 2012; 
Marra et al., 2013; Tardast et al., 2014) to predict the power density of 
MFC (RMSE 4.89 × 10− 4 for one configuration), the stack voltage of the 
solid oxide fuel cell (SOFC), the hydrogen engine parameter and emis-
sions (RMSE ± 4%) (Tardast et al., 2014). 

Fuzzy logic methods (Ho and Karri, 2008; Flemming and Adamy, 
2008) and EU approaches (Sewsynker-Sukai et al., 2017; Askarzadeh 
and Rezazadeh, 2013) have also been used for hydrogen energy analysis. 
For example, the ignition duration of a hydrogen automobile was pre-
dicted using the fuzzy logic method and three different membership 
function types (Ho and Karri, 2008); the current density characteristics 

Fig. 6. A summary of artificial intelligence methods used in ocean energy (Y. 
Zhou, 2022). 
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of the SOFC were modeled using a recurrent fuzzy system (Caux et al., 
2010). Fuel cell hybrid vehicles (FCHV) were equipped with a fuzzy 
logic controller that was based on parameter optimization using the GA 
to control hydrogen consumption. In addition to fuzzy logic, GA and PSO 
were employed in the FCHV energy optimization process (Caux et al., 
2010). BPNN, GA and PCA in hydrogen production modeling have been 
reviewed by (Nath and Das, 2011; Askarzadeh and Rezazadeh, 2013) 
proposed a bird mating optimization (BMO) approach to model the 
PEMFC system. Application of ANFIS (Entchev and Yang, 2007; Karri 
and Ho, 2009) and other hybrid AI approaches (Erdinc et al., 2009; 
Minqiang et al., 2010) were described in many studies (Zhang et al., 
2013; Luna-Rubio et al., 2012). The performance of ANFIS and the ANN 
technique was examined in the prediction of SOFC parameters, specif-
ically voltage and stack current, with RMSE <2 for ANFIS in current 
prediction. Using 10 input conditions, ANFIS was utilized to forecast 
several hydrogen safety parameters (such as explosive limit, hydrogen 
pressure, and flow rate). Additionally, eleven different forms of BPNN 
based on various training procedures were tested to see how well ANFIS 
performed (RMS 1.4 in hydrogen pressure prediction with ANFIS). 
When it came to predicting emissions (HC, CO, CO2, and NOx) from the 
hydrogen automobile, ANFIS and BPNN (LM) were used, however, the 
BPNN performed better than the ANFIS (RMSE 1.58% of HC emission 
with the BPNN). The H2 flow rate, system, and stack efficiencies of the 
PEM electrolyzer were studied using ANFIS (1.06% prediction error for 
hydrogen flow rate). It performed comparably to RBFNN and BPNN and 
was able to forecast the PEMFC cell voltage with efficiency. 

For energy-managing HEVs (fuel consumption of 0.06962 kMol H2), 
a hybrid AI strategy based on wavelet and a completely logical method 
was designed (Amirinejad et al., 2013). The temperature forecasting of a 
hydrogen reactor was conducted using a hybrid approach based on SVR 
and PSO, which demonstrated superior accuracy and performance when 
compared to SVR and BPNN (Minqiang et al., 2010). The biohydrogen 
yield was optimized using BPNN and GA (54 ml/g improvement with the 
proposed technique). 

Similar techniques have been applied by (Bozorgmehri and Hamedi, 
2012) to maximize the SOFC’s cell characteristics (standard error of 
prediction: 1.705%). When the performance of the hybrid ABC algo-
rithm was compared to that of the PSO and GA for the parameter pre-
diction of the PEMFC, it outperformed the other techniques with the 
lowest sum of squared errors (SSE) (Zhang et al., 2013). 

3.6. AI in hybrid renewable energy 

Numerous reviews have discussed the use of AI techniques in the 
hybrid RE, including (Luna-Rubio et al., 2012; Zhou et al., 2010; Fadaee 
and Radzi, 2012). For a hybrid RE system based on a water power 
supply, BPNN was utilized to anticipate power consumption and 
generator state (on/off) with a 97% prediction accuracy (Al-Alawi et al., 
2007; Chàvez-Ramirez et al., 2013) used FLC for energy management 
and the BPNN approach for hybrid RE system power prediction. In a 
different study (Jha et al., 2017), the hybrid RE system’s energy man-
agement (levelized energy cost (LEC) 2.01 $ with the CS) employed the 
FLC and cuckoo search (CS) algorithm along with PSO (Berrazouane and 
Mohammedi, 2014). PSO was used in the size optimization of the hybrid 
RE system by (Hakimi and Moghaddas-Tafreshi, 2009) to make it more 
cost-effective. An improved GA was used in the operation optimization 
of a hybrid RE system, which performed better than the traditional GA 
method (Zeng et al., 2010). A Bee algorithm was used in the perfor-
mance parameters (net present cost (NPC), cost of energy (COE) and 
generation cost (GC)) optimization of a hybrid RE system (Tudu et al., 
2011). In order to optimize the hybrid PV/wind system for the size of the 
PV array, the wind turbine, and the storage capacity (Khatib et al., 
2012), used GA. In order to optimize the size and distribution of a hybrid 
energy system that combines solar energy, wind power, and fuel cells, a 
multi-objective (MO)-ABC method was employed (Nasiraghdam and 
Jadid, 2012). This produced a high voltage stability index (VSI). 

The hybrid wind-PV-diesel system’s size was optimized using a 
Markov based GA (Hong and Lian, 2012). ANFIS was utilized in hybrid 
AI techniques to optimize the hybrid PV-wind-battery system’s size to 
lower production costs. Additionally, a comparison was made between 
the performance and the hybrid optimization model for electric re-
newables (HOMER) and hybrid optimization (HO)-GA, with the results 
showing that ANFIS performed better (Maleki and Askarzadeh, 2014). 
To control the power flow between the hybrid RE system and the energy 
storage unit, ANN and fuzzy logic-based controllers were designed as a 
hybrid AI technique, leading to a high storage of charge (SOC) (Natsheh 
and Albarbar, 2013) (Fig. 8). 

4. AI for demand, planning, and control of energy 

An Intelligent energy supply can meet commercial, industrial, and 
residential needs. Consequently, the energy industry is transforming. 
Numerous opportunities are presented by AI technologies. Some of them 

Fig. 7. AI in hydrogen energy storage (Dreher et al., 2022).  
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are demand management, energy trading, yield optimization, theft 
detection, utility energy planning and control, and energy trading. 

4.1. Demand-side management, planning, and control of utilities’ energy 
use 

AI techniques are increasingly being used in utility energy planning 
and control (Xu et al., 2019). AI may be more advantageous than other 
technologies when it comes to actively controlling the grid station. 
Strong utility intelligence systems will be able to negotiate actions, 
enable self-healing, manage load demand requirements, balance grid 
stations, and enable a variety of new services and products. AI will help 
power firms operate more efficiently by assisting in the analysis of un-
structured data related to energy supply and consumption. Over the next 
ten years, distributed energy resources and a broader range of sensor 
infrastructure will be important AI trends for utilities in energy trans-
actions. To give an example, AI-powered gadgets will automatically 
determine the net energy demand and consumption, and they will be 
able to lower and regulate the overall load demand. The majority of 
utility firms think AI will have a significant impact on their operations, 
as evidenced by the fact that AI will enable new business models (43%), 
allow them to offer a competitive edge (33%), and replace particular 
processes (51%) (Henzelmann et al., 2018). Demand-side management 
(DSM) involves the use of energy-efficient equipment and reduced en-
ergy waste (Foucquier et al., 2013). AI can improve load demand 

management by increasing its automation and intelligence. AI is being 
used in the UK to assist power plants in managing power grid compo-
nents (such as relays and circuit breakers) more flexibly in order to 
adjust and regulate energy demand in real time. Additionally, without 
affecting end users, these models are help support and redistribute the 
peak demand-side load to the network’s flexibility during peak hours 
(Macedo et al., 2015). AI may offer new services including dynamic 
pricing, direct load control, and specialized charging for electric vehicles 
(Macedo et al., 2015; Ramanathan and Vittal, 2008). Demand response, 
energy efficiency, time of use, and auxiliary reserve (production ca-
pacity that can temporarily compensate the power system to respond to 
generation or transmission outages) are some of the aspects of demand 
management that can be categorized based on the measures taken about 
consumers and the duration of the process. 

4.2. Using AI to identify theft of energy 

The detection of energy theft is a serious issue, particularly in 
developing nations. Energy theft can take several forms, such as direct 
connection from electrical distribution lines, physical obstruction, 
evading the energy meter, tempering of the electronic meter, inserting 
an external chip into the electricity meter, providing a false reading, 
corrupt utility staff assisting customers in stealing electricity, political 
mismanagement, evading the meter, breaching the meter through 
remote network operation, changing the firmware, obtaining login 

Fig. 8. (a) Block diagram of a hybrid power generation system (b) Hybrid power system simulation model (Natsheh, 2013).  
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credentials, manipulating communications, meter malfunction and 
imprecise reading, failing to pay electricity bills, arranging accounting 
irregularities within the company, cyberattacks on the billing system, 
etc. (Jokar et al., 2015). Energy waste in the form of electricity theft is 
estimated to be around $96 billion per year worldwide (Yip et al., 2018). 
Numerous methods have been put out to identify energy theft. In 
research and development, artificial intelligence (AI) and machine 
learning (ML) techniques are very useful for detecting clients who steal 
electricity. The AI models help identify potential hotspots for energy 
theft so that a physical inspection may be conducted (Razavi et al., 
2019). The support vector machine is one of the most popular AI 
methods used to detect suspicious consumer trends (Nagi et al., 2009). It 
has been witnessed that the theft detection rate of AI-based schemes, e. 
g., support vector machine and extreme learning machine models (Nizar 
et al., 2008) is between 60% and 70%. Some other approaches such as 
set theory (Spirić et al., 2014), decision tree and Naïve Bayesian (Nizar 
et al., 2008), lower-upper decomposition (Salinas et al., 2013), support 
vector machine with multiclass (Jokar et al., 2015), linear regression 
model, linear programming. AI is capable of identifying payment his-
tory, energy usage habits, consumer information, and other elements 
that can result in models of questionable behaviour. It comprises a va-
riety of building types, including commercial centers, business hubs, 
marketplaces, residences, government buildings, and shopping malls. 
The local control center and the building smart meters are connected by 
the neighborhood area. In addition to serving as a link between the main 
control center and the smart meters, the local control center monitors a 
limited portion of the network. At the municipal or district level, the 
main control center keeps an eye on the load behavior of the clients. The 
main control center can monitor the total discrepancy between the 
supply supplied to customers and the actual use of energy in real time 
thanks to the installation of smart meters and the various levels of the 
local control center. Smart meters are used to detect the dispersion be-
tween supply and demand, which allows for the inspection of a partic-
ular area or part. It is also possible to start the physical examination to 
identify faulty customers. Artificial intelligence (AI) facilitates the use of 

smart energy meters and local control centers to detect and identify 
problematic customers (Fig. 9) (Yip et al., 2018). 

4.3. Supply management and forecasting of load demand 

Load forecasting and energy supply management are the primary 
focus of the utilities and power industry (Saleem and Karmalkar, 2009). 
In order to optimize a sequence of generators and reduce generation 
costs, an accurate load forecast is helpful. Building heating and cooling 
accounts for a significant portion of the demand, making it the primary 
load driver. The AI models reflect unsettling internal information and 
building information by utilizing past data on energy use and the 
environment (Chou and Bui, 2014). 

The smart power grid’s supply management and load planning 
network is depicted in Fig. 10. AI models make up the controller. The 
main goal of the AI controller is to lower demand and raise the cost 
function of the electricity supply for customers. When compared to the 
current models in use, AI performs far better (Raza and Khosravi, 2015). 
Load management and energy forecasting have made extensive use of a 
variety of population-based multi-objective AI functions, including 
multiobjective ant bee colony optimization, multiobjective genetic 
method, and multiobjective particle swarm optimization models. Find-
ings show that these models are capable of producing accurate findings. 
A single run can forecast the probability of any target coverage, such as 
solar and wind forecasts, which is another advantage of the 
multi-objective technique that will yield the best outcomes. Utilities use 
AI models to assist in decision-making about energy generation, main-
tenance, and procurement. The amount of electricity required to be 
generated for its consumers in the short-, medium-, and long-term is 
predicted using AI-based forecasting models (Debnath and Mourshed, 
2018). 

The AI-based ANN ratio for monthly, annual, hourly and daily energy 
consumption forecast is 18%, 24%, 27%, and 31%, respectively (Wei 
et al., 2019). Accurate resource forecasting for increased renewables is 
becoming more and more important. Renewable energy sources like 

Fig. 9. AI network structure for the detection of energy theft (Ahmad et al., 2021).  
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wind and solar power still struggle with uncertainty. Despite being 
categorized as renewable, these energy sources vary and are 
weather-dependent, making long-term energy supply unpredictable. 
The effects of AI models on statistical optimization should be used for 
better accuracy and higher forecasting performance in order to suggest 
an ideal combination of power generation sources to fulfill the antici-
pated demand and reduce expenses. Numerous models are examined 
(Yagli et al., 2019). Selecting which of them is the best can be difficult. 
The production of renewable energy has been successfully predicted by 
artificial neural networks. 

5. Challenges and future research opportunities of AI in the 
smart energy industry 

AI techniques rely heavily on energy data, thus contributing indi-
rectly/directly to the global carbon footprint of information technology 
(IT) (Nishant et al., 2020). The key energy-related AI challenges include:  

• Non-theoretical history: Lack of essential AI skills is one factor 
contributing to AI’s sluggish progress in the energy sector. The ma-
jority of businesses lack the technological know-how to comprehend 
the potential advantages of using AI. 

• Lack of practical expertise: Many experts possess extensive techno-
logical expertise. Finding competent experts, however, is challenging 
when it comes to creating trustworthy AI-powered applications with 
genuine useful advantages. Power companies keep a lot of data under 
observation and maintenance, but digitizing it with sophisticated 
management software presents challenges. Risks associated with this 
include data loss, improper configuration, device malfunction, and 
illegal access. Due to the enormous cost of error in the energy sector, 
many businesses are hesitant to even attempt novel approaches.  

• Outdated power system infrastructure: The biggest barrier to the 
energy sector’s transformation is its antiquated infrastructure. Utility 
businesses already generate large amounts of data, but they are un-
sure about how and when to handle it. Despite having more data than 

anyone else, the industries’ data is also scattered, jumbled, multi-
format, and locally stored.  

• Economic pressure: Even if it is expensive, integrating cutting-edge 
advanced energy technologies might be the best course of action. 
Locating a reputable software supplier, developing and configuring 
software, and managing, maintaining, and modifying it all take time 
and money. In addition, the implementation of energy technology 
will require the development, modification, and management of 
software, which will require substantial financial and material 
resources.  

• Decentralization and diversification: In all nations around the globe, 
complicated issues pertaining to energy production, transmission, 
distribution, and load consumption are brought about by decen-
tralization, diversity, and the emergence of AI technologies and ris-
ing demand trends. 

• Cellular technologies: The dependency of many developing econo-
mies on cellular technology restricts the potential applications of AI, 
especially in low-income, rural, and other underserved areas. The 
growing concern and threat of cyberattacks is mostly due to the fact 
that smart metering and automated control account for nearly 10% 
of worldwide grid investment, or $30 billion annually, for the 
installation of digital infrastructure (Fickling, 2019). 
•Black boxes: Customers view AI-based apps as "black boxes," since 
they are often unaware of their internal workings or development 
process. This presents a risk. Additionally, the protections will work 
as long as they are incorporated into the power systems, even though 
the existing methods are far from ideal. 

As it was previously mentioned, artificial intelligence (AI) is widely 
used in nearly all renewable energy research projects (such as solar, 
wind, ocean, geothermal, hydro, hydrogen, biofuel, and hybrid) for 
distribution, design, management, estimation, and optimization. The AI 
algorithms that have been suggested for research on renewable energy 
are costly and intricate. These models must be made more affordable 
and straightforward. In order to optimize energy utilization and save 

Fig. 10. Smart power network for load planning and supply management (Ahmad et al., 2021).  
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costs, server banks and other energy-consuming devices must be 
developed without cooling down. In the event of a typhoon, how can 
artificial intelligence technology regulate and adjust the load demand 
for wind and solar power farms automatically? 

How can we use the IoT and AI technology to increase the efficiency 
of geothermal plants? How can we use AI technology to automate circuit 
breakers and relays so they operate longer and at the lowest cost under 
fault conditions? How might AI and IoT technologies be used to avoid 
and detect lighting-related effects on transmission and distribution 
lines? How can smart meters be integrated with consumer appliances in 
the home to help consumers control and manage their energy use more 
easily and conveniently? These problems still need to be resolved 
(Hatani, 2020). 

Fig. 11 illustrates the projected demand for AI techniques across 
several sectors, together with organizational aspirations. In general, 
61% of firms believe that developing AI strategies is essential while 39% 
say they agree with AI advancements to some extent but not strongly. AI 
technology is already being used by 50% of enterprises. The distinction 
between data algorithms and AI is demonstrated by four maturity 
clusters, which include pioneers, investigators, experiments, and pas-
sives for varying degrees of AI understanding technologies. Organiza-
tional respondents anticipate a significant impact from AI on industrial 

activities, including media, telecommunications, energy, and technol-
ogy. 15% organizations report on the significant impact of AI on current 
technological advancement and 59% expect to predict major impacts 
over the next five years (Yang et al., 2020). The major participants in the 
energy sector should make sure that regulators, legislators, major sup-
pliers, and supervised network monopolies are all aware of AI technol-
ogy, especially in the areas of machine learning, data analysis, and 
digital automation of electrical networks. Above all, the disadvantages 
of these advances are becoming increasingly significant, and proper 
planning can help guarantee that they are taken into account when 
making decisions for the organization. Guidelines on best practices for 
coordinating data storage, usage, and access with privacy, security, and 
customer confidence should be provided by stakeholders. AI is a very 
potent tool that, when used well, has the potential to drastically change 
the energy sector. However, the caliber of the training and data sources 
determines how useful these technologies are. Furthermore, a lot of the 
strategies, especially the ones that are essential to safeguarding the en-
ergy industry, can include a black box component (Gerbert et al., 2017; 
Tang et al., 2018). 

After a thorough analysis of the available evidence, it is possible to 
conclude that improving energy efficiency can greatly lessen the effects 
of climate change. Smart manufacturing has the potential to cut carbon 

Fig. 11. Organization expectations and future forecasting of AI techniques in various sectors (Ahmad et al., 2021).  
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emissions, waste, and energy use by 30–50%. It can also cut energy use 
in buildings by the same amount. Artificial intelligence technologies are 
employed by around 70% of the worldwide natural gas business to 
improve the precision and dependability of weather forecasts. Artificial 
intelligence and smart grids together can maximize power system effi-
ciency and cut electricity costs by 10%–20%. Transportation systems 
with intelligence can cut carbon dioxide emissions by over 60%. 
Furthermore, artificial intelligence may be used to manage natural re-
sources and create resilient city designs, which will further advance 
sustainability (Fig. 12) (Chen et al., 2023). 

6. Conclusion and future directions 

This paper surveys and charts the most recent significant trends in 
the use of AI algorithms in the renewable energy sector. This includes 
the likes of wind energy, solar energy, geothermal energy, ocean energy 
and hydrogen energy. Both singular and hybrid AI approaches have been 
used and applied to efficiently manage energy demands. In addition to 
neural learning, statistical and evolutionary learning-based methods are 
also effectively employed in AI. Examples of these methods include 
clustering, hidden Markov models, closest neighbor models, Bayesian 
and naïve Bayes models, and so on. Additionally, well-known evolu-
tionary learning techniques such as bee algorithms, ant colony optimi-
zation (ACO), particle swarm optimization (PSO), and genetic 
algorithms (GA) are also successfully applied. The analysis made it clear 
that by applying AI, the energy sector can well achieve its full potential. 
Some impediments may need to be overcome which include, for 
instance, properly utilizing fresh sources of RE, particularly in the 
hybrid RE system. The performance of RE sources will be enhanced by 
the application of innovative and hybrid AI techniques. 

Artificial intelligence developments could help the energy sector in 
optimizing the power system and successfully maintaining resilience 
and reliability. Although AI is widely used, it may be broadly catego-
rized into three areas: response (such as taking action and making de-
cisions), assessment (such as receiving and recognizing), inferring (such 
as learning and processing from this knowledge), and evaluation. Big 
data explosions, machine learning advances, smart robotics for infra-
structure production and power grid monitoring, enhanced integration 
of renewable energy, a significant rise in IoT in the energy sector, se-
curity privileges and prevention of cyberattacks, and increased 
computational power are just a few examples of the broad role that the 
AI is playing in solving several global issues in the energy sector. AI and 
related modelling and simulation techniques will be able to use previ-
ously unimagined capabilities due to the spark developments in the field 
of quantum computing. While the AI relies on learning from the data 
sets, data analysis requires high-quality precision data sets. The data 
about the energy business can be broadly classified intocategories such 
as data collected from network systems; data on measurement and use; 
data on consumers; and data on real-time energy consumption by sup-
pliers and customers. To improve interactions between people and assets 
and infrastructure, which support regular operations, asset manage-
ment, and field service operations, power system operators and utilities 
should depend more and more on artificial intelligence (AI) technolo-
gies. AI-based technologies for the integration and optimization of 
renewable energy sources with the power grid can improve the effi-
ciency, load management, resilience, stability, and reliability of the 
power system. In conclusion, artificial intelligence (AI) is not only ur-
gently needed, but also a vital instrument for bolstering and enhancing 
the energy sector’s digitalization initiatives. AI can revolutionize several 
energy industries and spur growth in the years to come. 

Fig. 12. Utilization of artificial intelligence in reducing the impact of climate change(Chen et al., 2023).  
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