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ABSTRACT 
Increased demand for more affordable homes in recent years has led to recent resurgences in the 
use of prefabricated construction method. Although there have been various environmental 
advantages associated with prefabricated construction techniques, the judgement against it is 
believed to be based on limited understanding and without the necessary detailed research on its 
environmental performance. The main environmental issues associated with prefabricated 
houses lies in its transportation pattern and the effect it has to the overall embodied transport 
energy. The complexity and dynamics of transportation processes, e.g. from forest to site in the 
case of building prefabricated timber houses, reveals the importance in having a better 
understanding of the significance of embodied transport energy consumption associated with 
prefabricated construction.  

 

Due to high dependency on imported timber, concern has been raised over transport energy 
consumption when using prefabricated timber elements on UK construction sites in contrast to 
masonry materials that are readily available locally. This research therefore analyses the 
embodied transport energy consumption when using prefabricated timber elements for building 
affordable homes in the UK with particular reference to the use of prefabricated timber wall 
panelling unit.  

 

The evaluation of embodied transport energy has been carried out through the use of process 
flow analysis. This research has developed a generic process flow model for using prefabricated 
timber wall system in the UK. Primary data has been gathered through questionnaires to identify 
the most commonly used prefabricated timber panelling system, its components, the origins of 
raw material along with the transportation and material processes involved for each component. 
The questionnaires revealed that open wall panelling system is the most marketed prefabricated 
timber wall type in the UK. Based on the findings of the questionnaires and the developed 
process flow model, a number of mathematical formulae have been developed in order to 
systematically quantify the intricate embodied transport energy consumption associated with 
using prefabricated timber wall panelling unit on construction sites.  

 

Scenario analysis has been employed in order to test the functionality of the system 
methodology and to demonstrate the way embodied transport energy may vary within a set of 
variables. The results suggest that the unit difference between the embodied transport energy of 
a scenario when delivering a single wall panelling unit to site compared to having vehicles fully 
loaded with panelling units is as much as 16.83GJ/panel. The process flow analysis concludes 
that it is environmentally friendly to employ prefabricated timber frame construction for large 
housing development projects such that delivery to site is always with a full load. Another 
important finding is that waste factor of building materials has a significant effect on the overall 
embodied transport energy consumption especially the waste factor of converting the logs onto 
plywood and studs used to produce the prefabricated timber wall panelling unit . 

 

The research has provided a better understanding of the effect of transport load, choice of 
transport, and the transportation distances on the overall embodied transport energy for 
prefabricated building elements and their associated materials. It can be concluded that the 
developed process flow analysis model has potential to be used as a base model to analyse other 
type of materials used within prefabricated house construction to aid decision making. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Climate change caused by human factors is a major topic of contention both locally and 

globally. The biggest contribution to this include greenhouse gases emitted from 

activities such as increased human dependents on fossil fuels, cement manufacturing, 

deforestation, ozone depletion and animal agriculture. 

 

The construction industry alone is cited as a major contributor to greenhouse gases, 

generating 40-50% of the global output of greenhouse gases and the agents of acid rain 

(Asif et al, 2005). In addition to that, 27% of carbon emissions have been attributed 

simply to the housing industry (WWF, 2003), with the materials used in housing 

construction being accounted for around 10% of mineral extraction and 1% of climate 

change (Anderson and Howard, 2000).  

 

The need to increase housing supply to meet the increase in global human population 

will lead to further environmental impact and thus may cause a higher proportion being 

contributed to climate change. In the UK alone, access to affordable housing remains 

the single most important housing issue in the South East. In an attempt to combat the 

growing backlog of current and future housing demand, the UK Government is 

targeting two million new homes by 2016 plus an additional one million new homes by 

2020 (CLG, 2007). Because the construction of new homes will impact the 

environment, the need for affordable homes that are also sustainable has never been 

more crucial and important.  
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Due to concerns of climate change, the UK government has acknowledged the 

increasing need to reduce CO2 emissions. The Climate Change Bill was drafted to 

position carbon emissions reduction targets into law of which stated a commitment for 

the UK to reduce carbon dioxide emissions by 60% before 2050 against the baseline 

year 1990 (DEFRA, 2008). The improvements in household energy efficiency are 

believed to be central to meeting this CO2 emission reduction target (DEFRA 2004). 

The most recent call by the Committee on Climate Change, as an independent body to 

provide expert analysis, has been to consider an increase of this reduction to 80% (CCC, 

2008).  

 

The current increase in housing demand and the pressure on the British government to 

provide a fast, “greener”, but affordable housing solution, has led to prefabricated 

construction methods being re-examined and eventually re-introduced as a viable 

construction platform. In fact, the intention of using the modern prefabricated 

construction techniques has been reflected in the English Partnership’s requirement for 

developers. It was stipulated that at least 25% of the homes delivered should be built 

using this prefabricated construction methods. This was aimed at reducing the 

construction time, reducing waste through improved waste management during 

production stages, improving the quality of the finish product and to overcome skilled 

labour shortages.  

 

Despite the benefits stated, the use of modern prefabricated construction techniques in 

the UK are still considered new and its overall environmental knowledge are less than 

complete. Further exploration within this subject is thus necessary. 

 

1.2 Aim and objectives 

The use of renewable energy, increased investments in insulations and other energy 

efficiency initiatives over the last 30 years meant that the operational energy 

consumption of a typical house has since been considerably reduced. On the contrary, 

the development of initiatives to reduce the impacts arising from other stages 

throughout the life cycle of a particular house has been comparatively slow. It is 

therefore important to examine this particular area in greater detail. 
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The wall element within prefabricated timber frame house construction is specifically 

chosen for this research study. Timber was chosen as it is known to have a lower 

embodied energy consumption compared to other materials such as steel and concrete. 

Several studies shows that CO2 emission related to material use in construction sector 

can be reduced by 30-85% (Buchanan, 1996; Suzuki, 1995 and Koch, 1992). 

Nevertheless, its uses in the form of prefabricated wall panelling unit meant that they 

are built off site and transported to site as modules or panels. This requires more volume 

and may not be feasible to be transported in a maximum weight load per journey. This 

raises concerns regarding potential increase of environmental impact due to the 

diversity in transportation pattern compared to the traditional house construction. All in 

all, there is a need to establish a better understanding of the significance of embodied 

transport energy consumption associated with prefabricated timber house. 

 

The aim of the research therefore is to analyse the embodied transport energy 

consumption within prefabricated timber wall panelling unit by means of process flow 

analysis. 

 

The following objectives are adopted: 

1. To investigate the level of technological advancement within prefabricated 

house construction 

2. To identify the vital environmental impact factors associated with prefabricated 

timber wall panelling unit 

3. To develop a process flow model that depicts embodied transport energy system 

of a typical prefabricated timber wall panelling unit 

4. To develop a methodology that can be used to assess the embodied transport 

energy of prefabricated timber wall panelling. 

5. To evaluate the significance of embodied transport energy of prefabricated 

timber wall panelling system using a typical functional unit 
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1.3 Research methodologies 

1.3.1. Level of technological advancement within prefabricated house construction 

The purpose of this first objective is to identify and provide understanding of the 

various available prefabrication construction techniques, its history and current trend in 

the UK housing market. These were identified by consulting relevant studies, technical 

information and research papers. 

 

Literature review indicates that modern prefabricated construction techniques in the UK 

are at the early stage and research that focuses on its environmental implication is still 

considered to be very limited. 

 

Prefabricated timber wall element is adopted as a reference feature in this research as 

this type of wall construction is considered to be an alternative to traditional masonry 

wall construction. 

 

1.3.2. Environmental impact factors associated with prefabricated timber frame house 

construction 

The key environmental impact of prefabricated timber wall within this research was 

addressed and assessed on the natural environment basis rather than the social and 

economic view. This was identified using similar environmental criteria employed to 

assess building and its material components. 

 

Energy, transport and material resources were recognised as the major environmental 

impact factors associated with prefabricated timber wall. Further qualitative review in 

this objective indicates that there has been a drive to use timber material that are being 

acquired from certified forest which reduce the concern of over-exploited material 

resources, as part of the implementation of responsible sourcing for timber material. The 

improvement in build quality of prefabrication construction techniques also ensures 

consistent standards of building and services insulation thus ensuring that operational 

energy can then be reduced. The use of prefabricated construction techniques also 

suggests a better waste management and an increase in recycling opportunity. The 
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reduction in these areas however meant that the environmental impact caused by energy 

consumption that still dependent on fossil fuel, such as embodied energy; is at the 

increase and therefore is a significant area to be assessed in greater detail.  

 

Embodied transport energy has been considered to be the main environmental issue in 

need for further assessment as imported timber is used to construct prefabricated wall 

panelling and may contribute to the overall embodied energy. Traditionally, 

construction site is the point where materials are measured, cut and assembled into the 

finished building. Within prefabricated construction, the site is simply a location for 

final assembly of major components. This differing transportation patterns tightened the 

need to assess embodied transport energy of building constructed using prefabricated 

construction techniques in order to enhance greater understanding of its environmental 

performance. 

 

1.3.3. Process flow model 

The complexity in evaluating the significance of embodied transport energy within 

prefabricated timber wall element necessitates the need to generate a generic process 

flow model. The components associated within this generic forest to site process flow 

model were identified with the aid of primary and secondary data collection. The 

generic process flow model has been developed based on both material and transport 

process flow.  

 

A questionnaire survey has been designed and addressed to a list of Timber Research 

and Development Association (TRADA) accredited prefabricated timber wall 

manufacturer as a mode of collecting primary data. This was done to determine the most 

marketed prefabricated timber wall system within UK housing construction industry. 

Questionnaires were also designed to gather information on the origins of timbers being 

used, transport processes associated with the timber hauling and the amount of timber 

being transported on each stage from the forest to site. Due to companies’  

confidentiality, data gathered through these questionnaires were limited and therefore 

additional secondary data were collected in order to support the identification of 

components within its embodied transport energy. 
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The development of transport flow model was aimed to illustrate the transport 

movement and pattern of the associated material from the forest to the site as the 

finished product and the type of transport used throughout. The material flow model, on 

the other hand, aims to aid in illustrating how the various size and types of timber 

materials were transported from the forest to the site as the finish product. Together, the 

transport and material flow model were combined to create a generic flow model that 

can be used to determine the embodied transport energy of a particular prefabricated 

wall type. 

 

1.3.4. Embodied transport energy 

To achieve this objective, a Functional Unit (FU) was established and employed within 

the generic process flow model established earlier in Objective 3. There have been 

various types of prefabricated timber wall construction techniques available in the UK 

housing construction. For the purpose of this research, it was decided that the FU is 

based on the mostly marketed technique available at the time of questionnaire being 

carried out. 

 

Embodied transport energy per FU depends considerably on various factors. Due to the 

complexity in quantifying the embodied transport energy within the developed process 

flow model, a series of mathematical formulae were developed and employed to aid 

analyse the significance of the embodied transport energy associated within the FU. 

 

1.3.5.  The significance of embodied transport energy 

The significance of embodied transport energy within prefabricated timber wall 

panelling was assessed based on three different scenarios. These scenarios takes into 

account the differing loading amount associated throughout the hauling process from 

the forest to site stage. 

 

Through these scenarios, the model was then used to evaluate and measure the 

significance of embodied transport energy per FU. 
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1.4 Structure of thesis 

This thesis is composed of seven chapters. It begins with an introduction and ends with 

a conclusion as well as further work recommendations. This thesis is organised with the 

following layout: 

 

Chapter two presents an understanding of technological advancement within the current 

modern prefabricated construction methods, the history and current public perception 

towards prefabrication techniques. Through literature review, it was revealed there is 

currently a lack of research data that focuses specifically on the environmental 

performance of prefabricated house of which drives the necessity to conduct this 

research area in greater detail. 

 

Chapter Three provides an overview of the major environmental issues associated with 

prefabricated timber frame house throughout its life cycle. Within this chapter, 

embodied transport energy was emphasised as the major environmental issues that 

needed to be assessed further. To assess the embodied transport energy quantitatively, 

the third chapter highlights the importance of identifying the components associated 

with the embodied transport energy of the particular prefabricated wall panelling unit.  

 

With various types of prefabricated timber frame construction available, this research 

has placed its emphasis on the mostly used prefabricated timber wall panelling system 

within UK prefabricated housing construction. The components within the embodied 

transport energy of a typical prefabricated wall panelling unit were identified using 

primary and secondary data collection. The methodology and the outcome of the data 

collections are explained explicitly in Chapter Four. The components within the 

embodied transport energy were developed in the form of a process flow model, used to 

illustrate and provide greater understanding of the embodied transport energy and 

material flow of a typical prefabricated wall panelling unit.  
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A series of mathematical formulae were generated in order to analyse the process flow 

model. The methodologies in generating these mathematical formulae to support the 

embodied transport energy and material process flow model were explained further in 

Chapter Five. 

 

Chapter Six presents the validation and analysis of the embodied transport energy per 

given FU based on mathematical and process flow models developed in Chapter Four 

and Five respectively. The quantification and analysis of these process flow models 

were based on three different scenarios. The first scenario represents the situation in 

which the means of transports were fully loaded throughout the forest to site phase. The 

second scenarios, on the other hand, is based on a two bedroom case study of which 

represent the difference of embodied transport energy if the 40 tonne lorries transporting 

the finish product from assembly factory to site only carries loads that were equivalent 

to the number of required house per site. In addition to that, the third scenario is based 

on a worst case scenario, where the supplies of structural timbers to produce the 

particular prefabricated wall panelling were low. It is assumed that the amount of wall 

panelling and its associated timber materials transported from forest to site were 

equivalent to the number of houses required per site. 

 

The final chapter presents the overall research conclusion and further recommendations 

as a suggestion for improvements prior to the findings and limitation established within 

this research study. 
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1.5 Summary 

Table 1.1 demonstrates the frameworks and structure of thesis in matrix. Research methodology used in coloration with each stated objectives. As illustrated, this signifies the chapter corresponding to each of the 

objective. 

Table 1.1 Research framework and thesis layout 

  Chapters 

Objectives Methodology 1 2 3 4 5 6 7 

Objective 1 

To investigate the level of technological advancement within prefabricated house construction 

1. Review of current technological advancement within 
prefabricated house construction techniques 

2. Review of current research available  
3. Identify the area in need of further research 
4. Identify the suitable type of prefabricated house 

construction for assessment within this research 
 

 √      

Objective 2 

To identify the vital environmental impact factors associated with prefabricated timber wall panelling 

 

1. Review specific technological advancement within 
prefabricated timber frame house construction techniques 

2. Preliminary evaluation of environmental issues associated 
with prefabricated timber frame house 

3. Identify the specific environmental factors associated with 
prefabricated timber frame house 

  √     

Objective 3 

To develop a process flow model that depicts embodied transport energy system of a typical prefabricated timber wall panelling unit 

1. Identify the Goal and Scope of research 
2. Identify the components associated with embodied 

transport energy flow of a typical prefabricated timber 
frame house by means of questionnaire 

3. Identify the research Functional Unit based on the most 
commercialised type of prefabricated timber frame within 
the UK construction industry 

4. Identify system boundaries 

   √    

Objective 4 

To develop a methodology that can be used to assess the embodied transport energy of prefabricated timber wall panelling 

 

1. Review the existing studies and methodologies developed 
to assess embodied energy and embodied transport 
energy 

2. Identify assumptions used within research 
3. Develop a methodology to quantify the transport energy 

model 
4. Develop a methodology to quantify the material flow 

model 
5. Develop a methodology to quantify the set FU based on 

the transport and material flow model 

    √   

Objective 5 

To evaluate the significance of embodied transport energy of prefabricated timber wall panelling system using a typical functional unit 

1. Quantification and analysis of embodied transport energy 
of a set FU based on three different scenarios 

     √  

Objectives 1 – 5 with emphasis on findings established in Objective 5 Critical review of the findings, drawing of conclusions and 
recommendation of application in practice 

√ √ √ √ √ √ √ 

 



 

 

 

 

 

 

 

Chapter 2 

 

The Technological Advancement of Prefabricated 

Construction Techniques 
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CHAPTER 2: THE TECHNOLOGICAL ADVANCEMENT 
OF PREFABRICATED CONSTRUCTION TECHNIQUES 

2.1 Introduction 

This chapter presents an overview of prefabricated construction techniques and 

underlines the need for further environmental studies associated with prefabricated 

house construction. 

 

The chapter begins by highlighting the rationale of UK government’s initiatives to use 

prefabricated construction techniques for newly built houses, the general overview of 

the technological advancement of prefabricated construction techniques, the history as 

well as the current UK public perception of it.  

 

The relevant research literature associated with prefabricated housing construction is 

then reviewed to identify the current research trend of prefabricated construction 

techniques within the construction industry. This allows for a better understanding of 

the current major research trend and development as well as to identify other important 

areas of which to be assessed in greater detail. 

 

2.2 Prefabricated construction 

2.2.1 Background 

The recent interest in prefabricated house within the UK is driven by the growth in the 

number of households to meet the exceeding demand of housing supply in the UK. The 

Government is keen to address the shortfall by encouraging more affordable and 

sustainable house buildings. It is anticipated that good application of prefabricated 

construction methods is a way to help construction industry to meet the current need for 

housing supply (Egan, 1998). The UK Government is committed to promoting the use 

of prefabricated construction techniques in home buildings. Housing Corporation, for 

example, has a target that 25% of new build in the Registered Social Landlords’  sector 

should use prefabricated construction techniques. In addition to that, there is also an 

agreement being made between the Housing Corporation and English Partnerships to 
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build 1,300 key workers homes in South East England by 2005, half of which to be built 

by means of prefabricated construction techniques (POST, 2003). 

 

The aim of this construction is to lessen the construction time with the ability to reduce 

waste through better waste management in the factory, to overcome skilled labour 

shortages, and to provide a better health and safety towards a safer working 

environment in a controlled factory environment. The use of prefabricated construction 

techniques also aimed to reduce noise and dust pollution on site as well as to generate a 

better quality product. 

 

2.2.2 The construction types 

There are a variety of definitions used to describe prefabricated construction system. 

Key terms which also represents prefabricated construction techniques includes Modern 

Methods of Construction or MMC (Egan, 1998), Off Site Manufacturing  or OSM (DTI, 

2004), industrialisation (Richard, 2005), off-site assembly (Gibb, 1998), and pre-

assembly (CIRIA, 1999).  For the purpose of clarity and consistency, the term 

“prefabricated” is used in this thesis.  

 

Prefabricated houses elements are manufactured in parts and off-site. They are 

constructed in a specially designed factory aimed at reducing noise and dust pollutions, 

as well as speeding up construction time through standardisation. This allows 

manufacturers to provide an improved quality and more affordable finished product 

through the use of mass production techniques. Standardisation can be done with either 

the help of mechanisation (where motorised tooling are present to ease the work of 

manual labour), automation (where tooling takes over all tasks usually performed by 

manual labour, whereas the foreman is still needed), or robotisation (where tools takes 

control of the entire production line). 

 

In contrast to traditional houses, of which are masonry made, prefabricated house is 

constructed with its elements built in factory before being assembled on site. There is a 



Chapter 2: The technological advancement of prefabricated construction techniques 

14 

wide variety of construction materials that can be used for prefabricated housing 

construction such as bricks, concrete, timber, and steel. 

 

MMC can be categorised into three groups, as shown on Figure 2.1 below 

 

 

Figure 2.1 Types of MMC 

 

Prefabricated components and sub-assemblies are considered as common pre-assembly 

techniques and are usually in the shape of component manufacture such as bricks, tiles, 

door furniture and window frames. Whereas volumetric prefabrication, known as 

hybrid [Richard (2003 a and b)] or modularisation (CIRIA, 1999) is recognised as a 

pre-assembled unit that creates usable space, fully factory finished internally, installed 

within, or onto an independent structural frame. Plant rooms, toilet pods, and shower 

rooms are also included in this category.  

 

Non-volumetric prefabrication, also known additionally as Panellised, Meccano or Site 

Intensive Kit of Parts, consists of pre-assembled units which do not create usable space. 

This type of unit can be in the form of skeletal (structural frames), planar (cladding and 

wall panels) or complex units (bridge units and services). One well known example is 

the lightweight concrete as used by the Japanese construction industry. The pre-cast 

autoclave lightweight concrete (also known as PALC) has been developed by Misawa 

ceramics and made from an aerated lightweight concrete acting as structure air barrier, 

thermal insulation, vapour barrier, sound insulation as well as both interior and exterior 

finish when covered with an appropriate coating.  

 

MMC 

Prefabricated 

Components and Sub 

Assemblies 

Volumetric System Non Volumetric 

System/ Panellised 
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2.2.3 History and current perception of prefabricated construction 

Due to the perception of post war “prefab houses”, there is a negative impression of 

prefabricated housing construction from UK house buyers. This instead led to low 

demand for housing constructed using prefabrication methods even when housing 

supplies remain low; lower demand in prefabricated houses has also caused higher cost 

in providing prefabricated housing in the UK.  

 

Prefabricated systems for housing construction in the UK can be traced back to the early 

part of the 20th century (Philipson, 2001). The motivation for developing mass 

prefabrication techniques occurred after the First World War when the necessity for the 

provision of new housing could not be handled through the use of traditional building 

methods. But due to the gap between expectations and actual provision, which 

contributed to the perception of poor programme, prefabricated system virtually ceased 

not long after the Second World War (White, 1965).  

 

A condition survey undertaken by BRE in the 1980s and early 1990s revealed that while 

most prefabricated dwellings have performed structurally very well, a number of other 

minor structural and non-structural problems had been reported. These include 

corrosion of steel reinforcement rods in concrete columns, caused either by carbonation 

or the presence of cast-in chlorides in the concrete. The large panel system (LPS - one 

of the three types of concrete structures system), additionally, had also being reported to 

have weaknesses that could contribute to progressive collapse, as in the case of the 

Ronan Point Collapse. Many LPS have also suffered from problems relating to weather 

tightness. 

On the other hand, timber frame structure had problems which includes rot occurring in 

the roof trusses and roof sheets resulting in wet rot in the timber purlin, floor and ceiling 

joists that our of plumb, condensation and mould growth, rotten discovered in the 

timber framed cladding units. Due to the problems stated above and as a result of high 

profile failures that came from the building boom of the 50s and 60s, public opinions of 

the system declined.  
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The current need to increase housing supply in a faster construction time of which are 

also affordable and lower waste output has led to prefabricated construction methods 

being re-introduced. The recent public perception has since improved due to innovation 

introduced through modern prefab. Prefabrication supported with standardisation also 

provide an improvement in predictability and a better working environment in factories 

by minimising site activity of which lead to a risk reduction in health and safety. Other 

benefits include better quality in its finish product and reduction of on-site pollution. 

 

2.2.4 Review of current research trends on prefabricated construction 

techniques 

The previous review of historical development suggests that the concept of 

prefabricated construction techniques is not new to the UK construction industry. The 

re-introduction to prefabricated construction techniques occurred along with the need to 

meet the current housing demand of which is also affordable.  

 

Over the recent years, there have been numerous researches and interest in the area of 

prefabricated construction techniques. Most of these were centred on innovation, cost 

and automation areas. The literature reviews within this study concentrated specifically 

at a selection of key research projects and publications as it is outside the scope of this 

research to appraise the full international review of prefabricated construction 

techniques.   

 

Between 1997 and 2001, almost £5 million has been invested in the UK by the DETR 

and EPSRC in a research project that include pre-assembly in construction, of which 

£1.1 million covers the general innovation (including prefab construction) and the 

remainder looking at technological advancement on prefabricated system itself (Gibb, 

2001a).  

 

Other example of research projects within the UK includes those being carried out by 

Construction Industry Research and Information Association (CIRIA) [(CIRIA, (1997); 
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CIRIA (1999) and Gibb (2001)]. Prior to further detailed research and in collaboration 

with Department of Trade and Industry (DTI), a project toolkit for standardisation and 

pre-assembly was developed in order to provide understanding and ways to optimise the 

use of standardisation pre-assembly and modularisation. This toolkit is presented 

particularly to construction industry clients and their advisers to aid in the pre-contract 

decision making process. 

 

Pre-assembly research in the UK construction sector also includes those from EEC 

(Engineering Education Centre) at Loughborough University of whom had developed 

an interactive modelling tool known as IMMPREST (Information Management for 

Projects and Estates) an interactive model for measuring pre-assembly and 

standardisation benefit across the supply chain (Pasquire and Gibb, 2003) and 

COMPREST (Cost Model for Pre-assembly and Standardization) of which is a cost and 

value comparison tool for offsite construction (Pasquire and Gibb, 1999). This toolkit 

was designed as a tool to enable detailed costing evaluation and analysis. In terms of 

health and safety, a project called HASPREST (funded by EPSRC and DTI under 

Loughborough University) was developed to deliver improved understanding and 

greater awareness of the way prefabricated construction system affects occupational 

health and safety as well as facilitating effective management of the off-site process so 

as to improve the health and safety of all those involved.  

 

Prefabrication construction methods are still considered new in the UK with the 

majority of research and studies centred at improving the quality and benchmarking 

status of the UK industry against development in overseas countries such as Japan, 

Sweden and Germany. This technological advancement research concentrated on the 

possible new areas of progress, potentially disruptive technologies and operational 

efficiency. 

 

PREPARE (Preventive Environmental Protection Approaches in Europe), for example, 

is one of the many European research bodies who had created a series of programmes 

aimed at improving the efficiency in prefabrication methods. They are also working to 

develop prefabrication construction with optimal flexibility and functionality in order to 



Chapter 2: The technological advancement of prefabricated construction techniques 

18 

increase the quality of product and reducing production cost as well as reducing 

material input. 

 

Japan is known to have been the most quoted non-UK example of manufacturing 

techniques for construction. Much of the interest was generated following a project 

called OSTEMS, funded by CIRIA and DTI, which highlighted the scale of the new 

housing market in Japan. It is well known that the Japanese housing market is eight 

times larger compared to the UK built using prefabricated method [Bottom (1996) and 

Palmer et al (1998)]. Japanese prefabricated building has also been the stimulus for a 

European research project called Future Home, focussing instead on high-rise 

apartments. The output of the project has confirmed a 70% reduction in labour costs, 

20% reduction in material costs and an overall saving of 50% (Takada, 2000) rather 

than an increase of costs as experienced in UK construction industry (POST, 2003).  

 

CIRIA in its 1999 report stated that the Japanese prefabricated system, also known as 

mass customisation (Noguchi, 2003), has been delivered to a higher degree of choice 

and flexibility. This is caused by its construction industry of which is based on a 

consumer driven market and demand where competitive advantage is seen as providing 

an increased level of quality on consumer choice. However in the UK, where the 

industry is based on public sector (which is seen as more of a political gesture) than 

market demand led, this is untrue. 

 

Germany is another example where prefabrication techniques is well known and well 

accepted. This view is supported in one of the publication prepared by Venables et al in 

year 2004 on behalf of CIRIA. Similar to Japan, Germans housing has been delivered to 

a higher degree of choice, flexibility and quality with the public view in regards of 

prefabrication techniques being positive in contrast to the UK. The only different 

between Japanese and German’s prefabricated housing is on the techniques being 

employed. Rather than constructing prefabricated housing in the form of high rise 

buildings, the Germans uses prefabrication techniques to built chalet-detached 

residential housing types. 
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At the time when this research is carried out, research on modern prefabrication 

techniques tends to concentrate more on the health and safety, innovation, quality and 

cost aspects. Research that examined the environmental point of view, especially those 

within the UK, is still limited and many of which are still under development.  

 

It is believed that there have been various important environmental benefit associated 

with prefabrication techniques, one of which is on the reduction in production and 

construction waste. Pre-assembly components are produced using pre-programmed 

automated machinery, resulting in waste minimisation at the production stage. As pre-

assembly components are transported as finished product from the factory to site ready 

for site assembly, this resulted in further waste reduction at the construction stage. In 

addition to that, on-site noise and dust pollution also believed to be reduced due to 

controlled factory environment. 

 

EC Funds Eurohouse Research, a European oriented research scheme being developed 

with EC funding, is one example of research project of which specifically look at the 

environmental point of view in the use of prefabricated construction. It has been 

concluded that the use of prefabrication methods has achieved 50% reduction in the 

amount of water used for construction of a typical house, the use of quarried materials 

used in the construction and reduction in energy consumption (Building Design, 1999). 

 

Other more relevant environmental literatures are those published by Aldaberth (1996a 

and b), Mats (1997) and Sarja (1997). Aldaberth (1996a and b) provides a significant 

study of which concentrated towards the total energy use in the whole building life 

cycle instead of the operational stage only. The research has presented a method of 

calculating the total energy use throughout the life cycle of a particular dwelling. Her 

second publication was presented to put the method into practice by implementing case 

study using three timber prefabricated single unit dwellings located in Sweden. The 

study has concluded that “in order to save energy, it is essential to produce dwellings 

that require small amounts of energy during their management phases”. The findings 

shows that the energy used for manufacturing all the construction materials (including 

erection and renovation) has counted of approximately 15% of the total energy use. 

Moreover, Aldaberth’s research concluded that energy required for manufacturing heat-
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insulating materials for the dwellings (in this case mineral wool and polystyrene) 

corresponds to less than 2 years of energy use during actual occupation (for space 

heating, hot water and electricity). The study has also discovered that the transportation 

and process energy used during the erection and demolition of the dwellings comprises 

approximately 1% of the total energy requirement, which means that very little energy 

is used for such purposes and that even though the dwellings were prefabricated, the 

extra transportation requirements do not result in any significantly increased use of 

energy compared to the total energy requirement. Nonetheless, the publications made by 

Aldaberth have been about ten years old and therefore an up to date figures will need to 

be established. 

 

The literature review carried out in this chapter suggests that research concentrated at 

prefabrication methods, especially those within the UK, is very limited. It is of 

importance to carry out further research to justify any associated environmental factors 

contributor to better understand how UK prefabricated house perform environmentally.  

 

2.3  Summary 

This chapter is written as a background review of prefabricated construction techniques. 

It is compiled to provide a better understanding towards the current existing knowledge 

of the various technological advancement, the history and current perception of 

prefabricated construction techniques and the current research trends. 

 

The need to build more housing has led to the re-introduction of prefabricated 

construction techniques as a way to deliver better quality, improved efficiency, lower 

costs and faster construction. Nevertheless, this judgment is believed to be based on 

limited environmental understanding and without the necessary deeper understanding of 

its environmental performance. 

 

With the support of various literature reviews, it can be concluded that various 

researches has been performed in terms of general prefabricated construction. 

Nevertheless, most of these are centred on construction innovation and cost 
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effectiveness and only very limited studies of which focuses on the environmental 

aspects of prefabricated buildings especially those within UK. 

 

With the construction policy becoming increasingly focused towards prefabricated 

construction technologies, it has become a necessity to develop a programme of 

research to contextualise and analyse the environmental issues associated with modern 

prefabricated house. 

 

It is acknowledged that the large variety of materials used within prefabricated house 

construction meant that it is beyond the scope of this research to possibly analyse all of 

them. It is therefore essential that a particular type of prefabricated house construction is 

to be selected for this particular research study and that its associated environmental 

impact factors then being identified and assessed in greater detail. Prefabricated timber 

wall element is adopted as a reference feature in this research as this type of wall 

construction is considered to be an alternative to traditional masonry wall construction. 
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CHAPTER 3: THE ENVIRONMENTAL IMPACT 
FACTORS ASSOCIATED WITH PREFABRICATED 
TIMBER FRAME HOUSE 

3.1 Introduction 

The previous chapter introduced the technological advancement of prefabricated 

construction techniques and underlined the lack of environmental studies associated 

with prefabricated construction techniques.  

 

Among many various choices of materials available to build a prefabricated house, this 

research focuses exclusively at timber built-it houses. It is known that timber is a 

renewable material and is believed to retain lower embodied energy compared to other 

type of materials used. Nevertheless, as construction techniques of prefabricated houses 

differs to traditional on-site construction, its environmental attribution within 

prefabricated housing construction remains unclear. 

 

This chapter begins by providing the definition and technological advancement of 

current modern prefabricated timber house construction techniques. This follows with 

the identification of possible major environmental impact factors that may be associated 

within prefabricated timber frame. The most significant factor is then identified and to 

be assessed in greater detail. 

 

3.2 Prefabricated timber frame construction 

3.2.1 Definition 

Timber frame construction techniques is a method of building construction which relies 

on timber frame as a basic means of structural support (UKTFA, 2006). It is fabricated 

with the use of timber studs, rails and a wood-based sheathing to form a structural frame 

for the purpose of distributing all vertical and horizontal loads uniformly to the 

foundations.  
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Modern prefabricated timber frame housing may be broadly defined as a type of house 

of which has generally been constructed using factory manufactured wall panelling and 

comes in various types of construction. It is then transported to site ready for an on-site 

assembly. 

 

3.2.2 Types of Prefabricated Timber Frame Housing 

Prefabricated timber frame housing consists of various different structures. This takes a 

number of forms that are generally classified in as either a volumetric or non volumetric 

method.  

 

Non volumetric methods are divided into further categories: a light frame wall panelling 

system and a post and beam system. The breakdown of the system and the way it is 

being assembled are shown in Figure 3.1 below. 

 

 
Figure 3.1 Type of Prefabricated timber frame housing construction. 

 

3.2.2.1 Volumetric     

Volumetric method is generally known as a construction method where a particular 

building is constructed using a factory fabricated box units (also known as pod or 

Prefabricated Timber Frame House 

V olumetric Non - V olumetric 

 

Post and Beam Planar 

Small Large 
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module).  These modules are then formed into individual rooms or larger spaces, 

complete with finishes and services as shown in Figure 3.2 below.  

 

Figure 3.2 Modular construction method (picture courtesy of TRADA) 

Building assembly will require at least one crane. This type of building assembly 

method is most commonly suited to repetitive units such as hotels, hostels, medium rise 

flats or nursing homes. 

 

3.2.2.2 Non Volumetric 

 Non volumetric timber construction is divided into two categories, which are Post and 

Beam (also known as skeletal or structural frames) and Planar (also known as cladding 

or wall panels and can be in the small or large form) 

 

Figure 3.3 Post and Beam Construction Method (Picture courtesy of TRADA) 

 

Post and beam, the simplest use of non volumetric pre-assembly (seen in Figure 3.3), is 

described as a skeleton which is open to horizontal and vertical infill, designed to 

provide more adaptable solution and having most of its jointing and finishing on site. 
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Post and beam method can be in the form of continuous column, continuous beam or 

segmented components.  

 

The drawback of this however lies in its limitation to be used for a low-cost housing as 

they needed an additional vertical support beside the cross wall to provide a better 

acoustic insulation. This type of construction therefore tends to be more expensive 

compared to the usual load bearing construction.  

 

Huf Haus is one of the examples that fit into this category and constructed using 

laminated timber.  

   

Figure 3.4  Huf Haus Project in Surrey, UK 

 

Similar to other prefabricated housing company in Germany, it offers a “chalet” type 

design and based on the medieval German design. Huf Haus, like most other high-end 

German prefabricated houses, is characterised by an open plan living areas, large areas 

of glazing and mostly built with basements. 

 

Post and beam systems are usually aimed at the upper end of the market and its 

application in the UK is likely to be limited as the demand was on the fast but good 

quality affordable housing.  
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There have been other more advanced approaches to the simple columns and beams 

which uses a three dimensional system included within a single element. Nevertheless, 

it is relatively inefficient for shipping where dimensional variation is very limited. 

 

Planar (also known as Cladding and Wall Panels), on the other hand is the type of 

panelling which is well known as a continues load bearing flat components distributing 

the loads on one axis. This slows for more room for connections and contributing to 

soundproofing, but also limiting the planning on one axis. 

 

It is believed that factory made panel has greater flexibility compared to the simple 

prefabricated columns and beams. This is because prefab wall panel can be constructed 

to serve as structure and closure between one apartment and next. This type of timber 

construction known to have many advantages which include faster construction time 

and relatively low foundation loads. Factory environment also means that the 

construction and assembly is not weather sensitive and reduced the dependency on 

skilled labour/worker. 

 

Timber wall panelling can be constructed in either close or open panels (shown in 

Figure 3.5). Close Panel systems are constructed with the insulation material installed 

into the panel in the factory and retained with some other layer of material to “close” the 

panel. This type of system allows for more value to be added in the factory but often 

requires its building services to be pre-planned. As they are also heavier, they tend to 

require crane for the on-site assembly stages. 

 

Figure 3.5  Small and Large Panel Construction Methods (Pictures courtesy of TRADA) 



Chapter 3: The Environmental Impact Factors Associated with Prefabricated Timber Frame House 

28 

 

Open Panel system on the other hand, has a 35 year track record in the UK market. 

Research has shown that this system performs well against all types of measure and 

NHBC statistics even suggested an extremely low claims ratio in respect of defects 

(Palmer, 2000). It has the same components as close panel but with the insulation, 

external joinery and services installed on site. 

 

Open wall panelling unit is designed so that it can be incorporated as both external and 

internal walls within a typical prefabricated timber frame house. For the external walls, 

cladding, vapour control and insulation were added for aesthetic and protection from the 

weather. Further details relating to the typical prefabricated wall panelling system can 

be found on Appendix A, which shows in more detail, a typical external wall panelling 

construction taken from Space 4 prefabricated timber frame manufacturer website. 

 

In the UK, SIP (Structural Insulated Panels) is the latest system to appear on the market 

made from timber and consists of two sheet materials sandwiching a rigid foam core. 

This latest panelling system may have doors and windows as well as services conduits 

fitted into them in the factory. 

 

3.3 Major environmental impact factors associated with 

prefabricated timber frame housing 

3.3.1 Background 

The need for environmental assessment is largely driven by the intention of building 

design professionals and other project stakeholders to provide its client with an 

environmentally friendly and energy efficient buildings (Foliente et al, 2004).  

 

Environmental assessments are performed to examine any potential environmental risks 

and benefit associated with a certain type of materials, products or buildings. They are 

identified so that a suitable measure can be incorporated. These measures can be in the 

form of energy consumption and greenhouse gases reduction, conservation of natural 
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resources through waste minimisation, recycling and reuse of materials, preventing 

and/or minimising environmental pollution as well as improvement in health and safety 

environment for people to work and live in. 

 

There are several environmental criteria or performance indicators that are used to 

assess the sustainability of certain construction projects, buildings or materials. One 

known example, that of the research body The Movement for Innovations (M4i) who set 

up a performance indicator to measure the sustainability of construction projects. This 

performance indicator is divided into several criteria and looking specifically at 

operational energy use, embodied energy, transport energy, waste, water and species 

index per Hectare. Phillipson (2003) qualitatively identified the environmental factors 

associated with prefabrication construction techniques against the M4i indicator as 

presented in table 3.1 below. This qualitative assessment suggests that transport energy 

is considered as the only negative environmental factor related to prefabricated house 

construction in general. 

 

Table 3.1 Qualitative performance of prefabrication against the M4i Environmental Performance 
Indicators (Phillipson, 2003 p. 16, table 1) 

M4i Sustainability 
Indicator 

Effect of using prefabrication 

Operational energy Positive – Improvements in build quality ensure consistent standards of insulation and 
service insulation 

Embodied energy Positive – Reduced waste and increased recycling in off-site manufacture should reduce 
the embodied energy associated with the manufacture of a given part. 

Transport energy Negative – movement of prefabricated components will necessitate the transport of some 
additional volumes of air (particularly for volumetric solutions) 

Waste Positive – Manufacture of components in a factory environment should reduce much of 
the waste associated with site activity 

Water Positive – Manufacture of components that require water in their manufacture in factory 
environment allow more control, and potential for water recycling than would be found 
on site. 

Species per hectare Positive – Reduction of pollution onsite by undertaking manufacture in a controlled 
environment should limit the impact on existing species on site, whether or not 
prefabrication methods are used. 
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According to Phillipson (2003), the use of prefabricated construction will have a 

negative impact on the transport energy but will achieve a positive impact on the 

embodied energy. The assessment suggests that reduced waste and increased recycling 

in prefabricated construction techniques (of which is refer to as off-site manufacture by 

Phillipson, 2003) corresponds to the reduction of embodied energy associated with the 

manufacture of a given part. 

 

One major drawbacks associated with the M4i environmental indicators is that it does 

not take into account material resources believed to be an important environmental 

factor related to prefabricated timber frame house. This view is supported by Foliente et 

al (2004) who divided its environmental criteria assessment of which includes material 

resources as its environmental indicators. 

 

The approach taken by Phillipson however, was only intended as an initial qualitative 

assessment to underline the basic environmental factors associated with prefabricated 

construction in general, rather than a thorough detailed research. It is believed that due 

to the differing prefabricated construction techniques, it is necessary to assess the 

various prefabricated construction techniques on an individual basis in a greater detail to 

provide better understanding on the different environmental impact associated with 

different type of prefabricated construction techniques. 

 

From prefabricated timber house perspective, material resources and transport energy 

within the embodied energy are deemed to be the major associated environmental 

factors. Sections 3.3.2, 3.3.3 and 3.3.4 below describes the relevance of these 

environmental factors to prefabricated timber frame house in much greater detail. 

 

3.3.2 An overview of material resources 

There are various environmental advantages and disadvantages in the use of timber 

material itself. It is known however for its advantages as a renewable material with the 

lowest embodied energy consumption and CO2 emissions of any commercially available 

building material (Forintek et al., 2001). One of the low CO2 emission contributors was 
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associated with the “carbon sink” ability that forest has, of which occurs when 

photosynthesis take place. Another contributor to the rather low amount of CO2 

emission is through the use of wood residues and recovered wood in the production of 

wood products. 

 

The environmental impact caused by the use of timber materials in housing construction 

in particular might be less than other materials such as steel or concrete. However, that 

does not mean that timber is 100 percent sustainable. During its life span, for example, 

poor environmental management and awareness may contribute to various 

environmental impacts such as pollutant run-off into land and water of which were 

originated from fertilizers and pesticides. In addition to that, the conversion of forest 

lands for other purpose and over-harvesting will lead to deforestation. This will cause 

among many things, the loss of biodiversity as well as a net increase in atmospheric 

CO2, often associated with the global climate change.  

 

In general, logging stages and lumber production may also cause environmental impact 

such as soil erosion, altering the flow of water and solubility of nutrients and a further 

pollutant run-off into land and water caused by cutter chain oils. 

 

The fear of pollutant run off, however, can be reduced by the use of environmental 

friendly pesticides and fertilizer. In addition to that, the fear of deforestation can also be 

eliminated by making sure that only sustainably certified timber are being utilised for 

UK prefabricated house construction. 

 

A number of initiatives have been taken to allow for better forest management in light 

of deforestation. The Forest Stewardship Council (also known as FSC) has developed 

certification systems to allow forest management operations to be evaluated against 

performance based standards. This certification enables forest product manufacturers 

and traders to source materials from certified sources and to be passed on through the 

supply chain as certified timbers. This trail of information is also known as Chain of 

Custody (CoC) of which provide the path taken by products from the forest (or in the 

case of recycled materials, from the reclamation site) to the customer. This certification 
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also includes each successive stage of processing, transformation, manufacturing and 

distribution where progress to the next stage of the supply chain involves a change of 

ownership. 

 

The awareness to use timber from legal and sustainably managed forestry has been 

acknowledged by the UK Government within their timber procurement policy. 

According to the executive summary of UK Government timber products advice note 

published on 1st August 2008, the new revision of the UK Government timber 

procurement policy that will take into effect from 1st April 2009 will tighten its current 

2005 timber policy so that it requires:  

 

“.. Only timber and timber products originating either from independently variable 

legal and sustainable sources or from a licensed Forest Law Enforcement, Governance 

and Trade (FLEGT) partner will be demanded for use on the Government estate”. 

(Proforest, 2008) 

 

This step forward taken by the UK Government is regarded as a positive example for 

private sector construction industry in the UK to follow suit. 

 

3.3.3 An overview of embodied energy 

The building industry is a main consumer of energy resources from the extraction of 

raw material for building components to the energy required to operate the particular 

building through to its end of life stage. It is believed that buildings themselves are 

responsible for over 43% of the European’s energy consumption and 46% of the UK’s 

CO2 emission (DTI, 2002). 

 

Energy consumption itself does not necessarily cause a burden on the environment. It is 

considered more in terms of its contribution to fossil fuel depletion or in terms of its 

contribution to embodied CO2 emissions that lead to greenhouse gases and global 

warming.  
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The increase in sustainable designs such as improved insulations, the use of energy 

efficient appliances and the increased use of renewable energy means that operational 

energy consumption can thus be reduced. It is understood that this will increase the 

proportion of environmental concern in other part of building or material’s life cycle. 

 

With the fact that embodied energy could account for up to 40% of the total energy 

consumption throughout the life cycle of residential buildings [Cole (1996), Adalberth 

(1996) and Chen et al (2001)], it is increasingly of importance to analyse this further. 

 

In the perspective of UK prefabricated timber frame house, transport energy within the 

embodied energy is considered as one of the environmental factors where prefabricated 

construction techniques could perform worse than traditional construction. In the case of 

volumetric construction, in particular, the transport of components to site necessitates 

the movement of some volumes of air which is not as efficient as the delivery of 

building materials for traditional masonry construction. Due to the scarcity of 

prefabricated manufacturers within the UK (of which is less than traditional masonry 

supplier), it is believed that their transport efficiency will also be dictated based on the 

location of the factory. This has drawn the need for this research to focus particularly in 

assessing and analysing the embodied transport energy attributed within prefabricated 

timber frame house in greater detail. 

 

3.3.3.1 Definition of embodied energy 

The use of embodied energy term itself is open to different interpretations.  Different 

methodologies produce different understandings of the scale and scope of application 

and the type of energy embodied. It is still the case that embodied energy figures are 

often quoted and published without explicitly stating the scale and scope in generating 

the particular total embodied energy figure. 
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In general, embodied energy is defined as:  

“the quantity of energy sequestered or embodied in the product or service resulting 

from the many stages of its production, from mining through enrichment, transporting, 

processing and production to the usable product” [Alcorn, 1998] 

 

Within this research study, embodied energy is regarded as the “upstream” or “front-

end” component of the full life cycle analysis of a home. It will not include the 

operation and disposal of the building materials as this would be considered in a full life 

cycle approach instead. 

 

3.3.3.2 Methodologies to measure embodied energy 

According to an in-depth study carried out by Lawson  (1996), embodied energy can be 

measured based on either GER (Gross Energy Requirement) or PER (Process Energy 

Requirement). 

 

GER is a way of measuring all the net energy inputs. These includes not only the main 

stages of the life cycle but also the support service and transport to the building site, 

including the transport of the workers, equipment and materials as well as the embodied 

energy of the urban infrastructure (such as road, drains, water and energy supply). GER 

also includes the calculation of construction of the plant used in the extraction and 

processing of the raw materials and the repair action needed for damage caused by the 

component manufacturing process. Due to the various factors that are needed to be 

taken into consideration, GER is generally impractical to employ and its boundaries 

require to be stated clearly to prevent uncertainty. 

 

PER on the other hand, is known as a readily assessable method which provides a firmer 

basis for material comparison. It is known as a measure of the energy directly related to 

the manufacture of the material and hence allowing it to be quantified in a more 

straightforward manner. PER would include the energy used in transporting the raw 

materials to the factory but not energy used to transport the final product to the building 
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site. The components within PER relates directly to GER and may account for between 

50-80% of the GER (Baird, 1994). 

 

3.3.3.3 Embodied energy in the context of prefabricated timber frame house 

There have been various published embodied energy figures for common building 

materials and timber material in particular. Most of them were based on PER 

measurement. Nevertheless, there is an inconsistency towards these various figures as 

those that has been included within the analysis and the way of which the result is being 

generated is not always clearly identified. In addition to that, Miller (2001) indicates 

that transportation component within the embodied energy are often being omitted or 

considered only using gross simplification. 

 

It is recognised that transportation energy embodied within a material is often small 

compared to the total embodied energy of a material as a whole. Nevertheless, the 

reduction of waste and increased recycling through the use of prefabricated construction 

techniques indicates that embodied energy associated with the manufacture of a given 

part can be reduced, thus increasing the proportion of transport energy embodied 

instead. In addition to that, with the differing transportation pattern of prefabricated 

house construction techniques to the traditional on-site masonry house construction, the 

need to specifically analyse the embodied transport energy consumed within 

prefabricated timber frame house in greater detail has become increasingly important. 

 

3.3.4 An overview of embodied transport energy 

In the context of sustainable development, transport is considered to be one of the major 

factors affecting the energy consumption of a particular development both direct and 

indirectly. In the UK alone, the Department for Transport (DfT) suggests that freight 

transport through road accounts for 86% of total movement (DfT, 2006). Building 

materials are recognised as the main commodity of freight transport. 
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Transport statistics gathered from DfT in 2006 also reported that freight moved by road 

has reached 150 billion tonne kilometres in 1995. This figure has increased to 163 

billion tonne kilometres by 2005 (DfT, 2006). The increase in this particular activity has 

cause further concern over the environmental impacts associated with air quality and 

fossil fuel depletion. The major contributor to air pollution was by the production of 

hazardous substances such as PM10, Carbon Monoxide, Carbon Dioxide, Nitrogen 

Oxide, Ground Level Ozone, Volatile Organic Compounds, Toxic Organic Micro 

pollutants, Particulate Lead and Acid Rain), visual intrusion, congestion, noise, energy 

use and accident damage.  

 

Researchers at the Argonne National laboratory from The University of Chicago in the 

United States has also stated that some of the additional environmental impact 

contributed by heavy duty lorries and trains comes from them spending a great deal of 

time running their engines when stopped. The practice, known as idling causes, lose 

energy to wind resistance (aerodynamic losses) and operation of components such as 

pumps and compressors (parasitic losses) (Argonne National Laboratory, 2005). 

Although HGVs are a relatively small percentage of overall traffic, their effect is seen to 

be disproportionately high. The impact it caused is therefore worrying. 

 

James and Hopkinson (2001) and Bos (1998) stated that the environment and social 

impacts of transport stages has been shown to be influenced by several aspects: 

• The size and characteristics of the vehicles and thus the composition of the 

vehicle fleet 

• Whether the traffic under concern is traffic inside or outside the built up areas, 

traffic on the main routes or traffic on secondary and tertiary roads, etc 

• Whether values include refinery energy requirements and emissions or not 

• The average load factors 

• The amount (weight) of goods transported 

• The distance that they are transported 

• The mode (e.g. rail, air, road or water) and sub-mode (e.g. articulated lorry) used 

to transport them. 



Chapter 3: The Environmental Impact Factors Associated with Prefabricated Timber Frame House 

37 

• The power source of the transport unit and their performance 

• The nature of infrastructure 

• The number of handling operations required. 

 

This means that the length of transportation chains, the type of transportation and its 

loading limitation may significantly affect how a building and its material performed 

environmentally. 

 

3.3.4.1 Embodied transport energy in the context of prefabricated timber frame house 

In contrast to masonry houses, prefabricated houses require its components to be 

transported from the prefabrication manufacturing factory to site more as a finished 

product. The factory assembled structures therefore convey a load limit per transport 

journey hence there is the possibility that it may need more frequent transportation to 

site compared to traditional masonry house. 

 

In addition to that, the numbers of pre-assembly factories within the UK are still 

considered to be limited compared to factories supplying building materials for masonry 

houses which can usually be obtained from a local supplier.  

 

Another major concern lies in the dependency of UK construction industry towards 

imported structural timber. A statistic figure generated by the Timber Trade Federation 

(TTF, 2007) in 2007 suggests that 67% of total timber and panel consumption by 

volume has been imported from other countries.  

 

All these factors believed to have an impact associated with embodied transport energy 

within a particular prefabricated timber frame house. 
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3.4 Summary 

Prefabricated timber house perspective, material resources, embodied energy and 

transport energy within the embodied energy are deemed to be major environmental 

factors. The relevance of these environmental factors to prefabricated timber frame 

house was explained and reviewed in greater detail within this chapter. 

 

The reduction of waste and increased recycling in off-site manufacturing plants 

indicates that embodied energy associated with the manufacturing of a given part can be 

reduced. With the implementation of legal and sustainably managed timber on the 

increase, the concerns associated with material resources therefore decreases. 

Nevertheless, these resulted in the proportion of environmental impact associated with 

transport energy within the context of prefabricated timber frame house to be on the 

increase.  

 

The reduction in transport energy in general is considered of high importance due to its 

high dependency on the utilisation of finite fossil fuels, which subsequently resulted in 

them displaying a direct correlation to environmental impact. 

 

The need to assess the embodied transport energy within prefabricated timber frame 

housing was due to the significant difference between the transport patterns of a 

traditional construction site and one using the latter type of construction techniques. 

Traditionally the construction site is the point where materials are measured, cut and 

assembled into the finished building. With prefabricated construction techniques, the 

site is simply a location for final assembly of major components.  

This means that, in the case of volumetric construction, in particular, the transport of 

components to site necessitates the movement of some volumes of air which is not as 

efficient as the delivery of building materials for traditional masonry construction, of 

which usually are transported on full load mode.  

 

In addition to that, due to the scarcity of prefabricated manufacturers within the UK (of 

which is less than traditional masonry supplier) and the high dependency of UK 
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construction industry towards imported timber, it is believed that their transport 

efficiency will be dictated based on the location of the factory and source of timber. 

 

The qualitative review accomplished within this chapter has successfully revealed that 

embodied transport energy plays an important role within prefabricated timber frame 

house, and that the embodied transport energy analysis warrants a more detailed focus 

within this research study. 
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CHAPTER 4: DEVELOPMENT OF THE EMBODIED 
TRANSPORT ENERGY PROCESS MODEL 

4.1 Introduction 

Chapter three establishes that embodied transport energy is a major environmental 

impact factor contributor within prefabricated timber frame housing construction. The 

importance of environmental impacts is believed to be clearer when the materials or 

buildings intended were examined from a life cycle approach, usually known as Life 

Cycle Assessment (LCA).  

 

In order to assess the transport energy embodied within a generic prefabricated timber 

frame house, this research study employed a partial life cycle assessment approach. It 

covered stages from the forest as the raw material acquisition stage to development site.  

 

The assessment of embodied transport energy of a particular prefabricated timber frame 

housing alone is recognised to be of a complex things to do. Hence, a generic model is 

developed for the purpose of this assessment. The methodology and framework for the 

development of this model is specified and defined within this chapter in greater detail. 

 

4.2 Life Cycle Assessment approach 

Life Cycle Assessment (LCA) has evolved from energy analysis work of the 1960s and 

1970s [Slesser (1974) and Boustead (1979)], and was originally designed to improve 

efficiency of industrial processes (CIRIA, 1995). Energy Analysis, also known as 

Process Energy Analysis (PEA) [Bos, 1998] or Cumulative Energy Demand [Verein 

Deutscher Ingenieure, 1997] was established to perform an analysis of the energy use of 

certain human action. 

 

Life Cycle Assessment (LCA), also referred to as ‘cradle to grave’ or ‘cradle to cradle’  

analysis, is a systematic concept to consider the environmental effects of building 

products before and after they become part of a building. The process associated with 

the manufacturing of materials, their installation and use in buildings, and their eventual 
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reuse, recycling or disposal at the time buildings are renovated or demolished are all 

evaluated.  

 

LCA is applied to a whole product (a house or a unit) or to an individual element or 

process included in the particular product and commonly employed to consider a range 

of environmental impacts such as resource depletion, energy and water use, greenhouse 

emissions, and waste generation.  

 

The comprehensive definition of Life Cycle Assessment is: 

“A compilation and evaluation of inputs, outputs and associated potential 

environmental impacts of a product throughout its life cycle (i.e. cradle to grave)” 

[ISO14040, 1997, p.2]  

 

There has been various work carried out in the arena of LCA, of which attempting to 

achieve a refinement and standardization of LCA, specifically in the area of 

methodology. Organisations such as The Society of Environmental Toxicology and 

Chemistry (SETAC), Environmental Protection Agency (EPA) and Eco Balance 

provide unique differences in its individual approach to LCA. Nevertheless, it appears 

that the major components within the methodologies do not differ much. For instance, 

most LCA methods generally begins with a scoping and goal definition component that 

defines the purpose of the study. Other common methodology stage is an inventory 

analysis, an evaluation of the inputs and outputs of the product, and process or activity 

that is the subject of study. Most methodologies encourage an improvement component 

based on the inventory discharges and impacts on the environment.   

 

LCA methodology has progressed enormously and the International Organization for 

Standardization (ISO) has published a series of Standards on LCA in the form of 

ISO14000 series. ISO 14040 in particular provides information on LCA principles, 

requirements and the general framework. The Life-Cycle Assessment framework as laid 

down in this standard is shown in Figure 4.1 below: 
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Figure 4.1 LCA phases framework as laid down in ISO 14040:1997 (taken from 
www.boustead-consulting.co.uk/iso14040.htm) 

 

4.3 Partial LCA approach for embodied energy assessment 

LCA has been considered as the most holistic and objective approach. It is because of 

this that this particular research chooses the partial life cycle assessment approach as a 

way to assess the embodied transport energy associated within prefabricated timber 

frame house. 

 

Figure 4.2 illustrates the energy consumption and possible transportation energy flow 

throughout the life cycle of prefabricated timber frame housing. 

http://www.boustead-consulting.co.uk/iso14040.htm
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Figure 4.2 Possible energy consumption and transportation flow throughout the life cycle of a typical prefabricated timber frame house 
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The flow diagram above illustrates the possible energy consumed at each stage 

throughout the life cycle of prefabricated timber frame house and the possible 

transportation flow associated within it. It starts from the forestry and continues to 

timber sawmills, all the way to the factory and finally onto site. Transport also occurs at 

the end of the building life where the material waste is either transported to various 

recycling facilities, landfills or further development sites for reuse.  

 

The possible transport flow illustrated in Figure 4.2 suggests that the location of factory, 

forests and site can be considered as an influencing factor in the overall embodied 

transport energy consumption of a particular building or product. The number of pre-

assembly factories associated with the production and manufacturing of elements within 

prefabricated timber frame house also plays an important role. Transporting 

prefabricated components and its associated material from one factory to the other for 

further assembly process is believed to contribute further onto the total embodied 

transport energy of a particular prefabricated building or houses.  

 

The limited research publication that focuses on the life cycle of prefabricated timber 

frame house in the UK and its embodied transport energy in particular has drawn the 

need to generate process flow model that is unique to the research. All the components 

and stages within the process flow model were identified using primary and secondary 

data collection.  

 



Chapter 4: Development of the Embodied Transport Energy Process Model 

 

46 

It is understood that building is divided into several elements and it is beyond the scope 

of this research to analyse the embodied transport energy associated in every elements 

within prefabricated timber frame house construction.  

4.4 Data collection 

4.4.1 The use of questionnaire as a form of primary data collection 

Questionnaires were chosen as a way to gather primary data collection. It is produced to 

determine the most commercialised type of prefabricated timber frame house. The first 

aim in the development of the questionnaires was to undertake an exploratory 

investigation to gain further understanding into the transportation and material flow 

associated with various prefabricated timber house techniques.  

 

The questionnaires were carried out on the 6th of November 2006 and were distributed 

to a number of TRADA (Timber Research and Development Association) accredited 

prefabricated timber frame housing manufacturers through post, with the enclosed 

covering letter explaining the purpose of the questionnaire. Further details regarding the 

questions asked can be found on Appendix B. 

 

The structured questionnaires in this research were produced and aimed at all the 

addressee in the same order with the same wording. The questionnaires were divided 

into three sections.  

 

The first section of the questionnaire was developed to identify the most common 

prefabricated construction type used in the UK at the time of research, the second 

section of which is designed to identify the transport processes throughout the cradle to 

site stage of the particular prefabricated construction type. The aim of this second 

section is to reveal the origin and type of timber used, to identify whether there is more 

than one factory involved in the production of the finish product and to establish the 

most common transport processes undergone, the means of transport and the related 

distances on each stage. Finally, the third section was designed to reveal the amount of 

associated timber materials being transported from the forest to site. 
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4.4.2 The outcome of the questionnaire 

Questionnaires were distributed to fifteen TRADA accredited timber frame 

manufacturer with a 50% response rate. Table 4.1 below demonstrates the summary of 

the data collected. 

 

4.4.2.1 Trends in prefabricated timber frame construction for housing development 

Data gathered from the questionnaires at the time of research indicates that non 

volumetric open wall panelling unit was the most common construction system used by 

TRADA prefabricated timber frame housing manufacturers. 

 

The data collated highlights a very small percentage of manufacturers producing 

Structural Insulated Panels (SIPS), post and beam as well as modular timber frame 

construction type. The responses gathered suggested that open wall panelling unit was 

the most commercialised prefabricated construction techniques within the UK. It also 

indicates that 37.5% of the manufacturers who responded back were also supplying 

Structural Insulated Panels (SIPS) and only 25% of them were supplying post and beam 

construction. Based on the responses gather, it was concluded that open wall panelling 

system was the most commercialised construction at the time questionnaires were 

answered. 

 

The use of open wall panelling construction meant that the wall panelling units will be 

transported to site without its fittings, windows or doors, insulation, vapour barrier and 

plasterboard which in turn will be supplied and transported separately by the main 

contractor. It is also clear from the responses received that the foundations were 

supplied or arranged by other companies or client themselves. 
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Table 4.1 Outcome of primary data collection 
No. Name of 

Companies 
Timber Construction Type Used Source of 

Timber 
Type of 

transport 
Transport 

Loads 
Foundations 
supplied by 

others 

Transportation 
Processes 

Distance 
limitation 
for client 

  Panelling Post&Beam Pod    Y/N  (miles) 

1 Guildford 
Timber Frame 
Ltd 

(West 
Sussex, 
Billinghurst) 

Open/SIPS √  Sweden Rigid 
HGVs 

Arctic 
HGVs 

Full load Y Sweden 
sawmill – 
Goteborg 
harbour – 
Kent harbour 
– Billinghurst 
factory – on 
site 

50-
100miles 

2 Thomas 
Mitchell 
Homes Ltd 

(Thornton, 
Fife) 

Open   Norway HGVs Full load Y Europe 
sawmill – 
Europe 
harbour – UK 
harbour – 
factory - site 

No limits 

3 Timber 
Developments 
Ltd 

(Wales, 
Spain, 
Manchester) 

Open   Europe HGVs Full load Y Europe 
sawmill – 
Europe 
harbour – UK 
harbour -  

<150miles 

4 Space 4 Ltd 

(Birmingham) 

Open/SIPS   Sweden HGVs Full load Y Sweden-
Goteborg 
harbour-
Tilbury docks-
factory 
(Birmingham)-
site 

100 miles 

5 Acacia Timber 
Ltd 

(Huddersfield) 

Open/SIPS   Sweden, 
Finland, 
Canada 

HGVs Full load Y Europe 
harbour – Hull 
(Huddersfield) 
harbour – 
factory - site 

Average 
40 miles 

6 Westframe 

(Leicester) 

Open √  Sweden HGVs Full load Y Sweden 
sawmill – 
Goteborg 
port– Sileby 
port – factory - 
site 

Average 
50 miles 

 

7 Creative 
Estates 

(Swindon) 

Open   Scanbaltic 
states 

HGVs Full load Yes Scanbaltic line 
– Newport 
harbour – 
Swindon 
factory - site 

200 miles 

8 Custom 
Homes 

Open/SIPS   Scotland HGVs Full load Yes Various but 
within UK 

No limits 
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4.4.2.2 Material Resources 

From the reply of the questionnaires, the majority of the structural timber used for 

prefabricated timber frame house construction is softwood timber of which is being 

imported from various European countries and manufactured based on Canadian 

Lumber Standards (CLS).  

 

4.4.2.3. Production and transport processes 

Data collected suggests that structural timber studs used for prefabricated timber frame 

house were felled and rough sawn before transported directly from the timber supplier 

to an assembly factory in the UK to be vacuum treated against fungal and insects (also 

known as vac-vac protim treated). This structural timber is then cut to length before 

being assembled, ready to be transported as the finished product to the site for the final 

assembly. Nevertheless, as most of the prefabricated timber manufacturer obtained their 

timber studs and plywood from third party merchants with third party transport 

arrangement, information surrounding the transport processes and distances from the 

European sawmills to the European port proof to be limited and often difficult to obtain 

due to company’s confidential policy. 

 

The outcome of the primary data collected from the questionnaire indicates that the 

transportation process from the acquisition of timber from the forest to the site as the 

finished product was carried out mainly by road transport rather than train. Articulated 

40 foot lorries with gross weights of 40 tonne per lorry is generally used as the means of 

transport and are believed to carry full load whenever possible. Rigid lorries are only 

used when access to site is limited. It was also noted that containerised shipping were 

used to transport the timber materials from the designated European port to the nearest 

UK port. 

 

 

Another similarity in the answers received from the respondents suggests that most of 

them own at least one pre-assembly factory of which is located within the UK to serve 
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local clients with transport distance from the factory to development site ranges 

between 50-150miles.  

 

4.5 The development of the process flow model 

Based on the data collated from the questionnaires, this research aims to concentrate on 

the production of transport flow analysis of an open wall panelling system.  

 

Based on the outcome of the questionnaires, the basic embodied transportation energy 

flow was developed and broken down into six stages as illustrated in Figure 4.3 below. 

Data gathered from the timber prefabricated manufacturer suggests that its structural 

timber was originated from European countries. It is assumed that plywood and studs 

associated with prefabricated timber open wall transportation flow is transported onto 

two different sawmills and therefore this has been divided and counted as two separate 

transport energy. From the plywood and studs sawmills, this associated timber materials 

are then transported onto the nearest European port and imported onto the UK before 

being hauled onto the pre-assembly factory ready to be processed and assembled as 

prefabricated timber open wall panelling units. The finished products were then 

transported to site ready for on-site assembly. 

 



Chapter 4: Development of the Embodied Transport Energy Process Model 

 

51 

 

Figure 4.3 Transport process flow model being employed within this research study 
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Despite the availability of data showing the process from the forest to site, it is 

acknowledged that as manufacturer out sourced their studs and plywood supplier, 

tracing the exact information from the forest to the nearest UK port is a complex task to 

perform.  

 

Some of the data required from between the manufacturers to develop the suitable mode 

for the embodied transport energy flow of the particular systems was also proven to be 

limited and inconsistent between one another. One of the differences lie in delivery 

arrangement in regards of its vehicle loading amount on the return journey. Space 4, for 

example, which uses Wincanton logistic company to distribute their wall panelling to 

site has stated that they tends to carry full load on their return journey to minimise the 

transportation impact. Nevertheless, this does not necessarily mean that similar 

arrangements were taken by other manufacturers and its logistic companies. 

 

4.5.1 System boundaries 

The embodied transport energy and associated transportation flow for projects may vary 

widely depending on the varying system environmental envelope and hence it is 

important that a system boundary correctly determines which process stages are to be 

included in this particular research study. 

 

4.5.1.1  Location of sawmills 

Swedish timbers derives from a variety of out-sourced sawmill companies and forests 

locations. This in turn results in a high number of possible transport combinations. The 

employment or out-sourcing of sawmill depends on the best suited scale of production 

and other factors of which are not easily measured (MacGregor; 1956). Transportation 

energy consumption are also highly dependent on the amount of timber productivity per 

sawmill. The lower productivity of timber also means that the requirement of mills with 

larger procurement areas for some volume requirement thus increasing the energy 

consumption during the transportation stages. 



Chapter 4: Development of the Embodied Transport Energy Process Model 

 

53 

Due to this limitation, establishing the transport routes and distance in order to quantify 

the transportation energy embodied from forestry to the nearest Swedish port is believed 

to be one of the most complex routing problems since there are no straight answers 

towards the choice of routes taken in the timber transportation. It is understood that 

different companies may plan their logistic transportation needs through different 

means. Some companies allow their drivers to decide their own schedules, while others 

schedule at a higher level in the company.  

 

This research boundaries were set on the Swedish timber located in the South side of 

the country where better developed road network and higher timber growing rate are 

considered as a benefit and more environmentally friendly approach to be imported to 

other countries. The average distance as referred to in Swedish Statistical Yearbook of 

Forestry (Swedish Forestry Agency, 2004) and personal communication gathered from 

Mikael Frisk (Frisk, 2007) were used in this research study. Based on both references, 

transportation from Swedish forest to the saw mills is estimated to be 93km, as sawmills 

are typically located close to the forest and transportation from sawmills to the port of 

Goteborg to be 189km (Frisk, 2007). 

 

4.5.2.2  Types of lorries used from the forest to site 

 In terms of lorries weight and size restrictions, Sweden has a larger gross lorry weight 

allowance, up to a maximum gross weight vehicle of 60 tonne (40tonne net load) 

compared to UK or other European countries which only allowed a maximum weight of 

44 tonne (24tonne net load). 

 

Two means of transport, 60 and 40 tonne gross vehicle lorries were used as an 

assumption in this research study. The 60 tonne gross vehicle lorry as shown on Figure 

4.4 was used as an assumption during the transportation stages between forestry to the 

plywood and studs sawmills and as described Palmgren (2005), consists of three blocks 

and two axles with self loading function. 
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Figure 4.4 Logging Truck (Palmgreen, 2005) 

 

 

The timber material in the form of plywood and studs that were being packaged in the 

standardised 40 feet ISO container (also known as FEU) are then transported from the 

sawmills to the nearest Swedish port using 40 tonne gross weight lorry where it is 

assumed to return to the garage empty loaded. This assumption is based on data 

gathered from the returned questionnaires which has indicated that the plywood and 

studs transported from the nearest UK port were transported to the manufacturing 

factory in a 40 feet and 40 tonne gross weight lorry. 

 

The research takes into account that the vehicles used for the manufacturing processes 

are fully loaded. However, the use of independent haulage manufacturers has resulted in 

rather limited information that can be gathered in regards of its return journey. This has 

resulted in the research assumption requirement of a worst case scenario, where 

delivery vehicle returning empty to their starting point. This means that the delivery 

distance to be doubled to represents the total distance travelled per delivery. 

 

It is understood that in certain towns and cities, permits are required to travel in 

restricted areas and load restrictions may vary too. In this research these varieties has 

been neglected and best scenarios applied where the heavy goods vehicles will travel on 

the best and nearest possible routes. 

10 tonne 18 tonne 18 tonne 18 tonne 

GVW 60 tonne 

24 m 
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In general, energy consumptions during road freight transport might also be greatly 

dependent on traffic jam during transportation processes as well as the time the driver 

spent during resting time on the road. Despite it being acknowledged, this point will not 

be included in the system boundaries. 

 

Secondary energies such as the consumption by the drivers and the environmental 

impacts caused by the infrastructures or their fabrication were also neglected since they 

are considered to be insignificant compared to the impact generated by the product that 

uses these infrastructures. 

 

In terms of material flow analysis from forestry to the plywood and studs sawmills, this 

research assumes that there will be at least two different fully loaded 60 tonne lorries 

carrying logs heading to plywood and sawn wood sawmill.  

 

4.5.2.3  Type of ship used to transport the associated timber materials 

Calculations to determine the amount of studs and plywood in FEUs transported per 

ship can be very complicated as these varies widely depending on various factors such 

as vessel types and its energy intensity, as well as the amount of load it can carry. 

 

The wide varieties of published energy intensity data that could be applied to generate 

the shipping transport energy within this research were noted. West et al (1994), for 

example, stated that the energy efficiency of a ship is 0.25 MJ/tonne km, where as 

Kanyama and Carlsson (2001) differ slightly at 0.18 MJ/tonne km. International 

Chambers of Shipping (ICS, 2005), on the other hand, reported a value of 0.12MJ/tonne 

km for a 1,226 TEU containerised vessels travelling at 18.5knots.  

 

With various range of published data available but with limited primary data obtainable, 

there was a restraint in determining the exact published data to be used for this 
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particular research quantification. Further assumption had to be drawn for this research 

which assumes that 1,226 TEU containerised vessels with net tonnage of 6720 tonne 

travelling at 18.5knots were used to transport the associated timber materials to produce 

the particular functional unit (please see Appendix C2.3 for further details of typical 

1,226 TEU containerised vessels used within this research). It is also assumed that 25% 

of its full load has been allocated to transport 12mm thickness plywood and the other 

25% of its full load has been allocated to transport the S60 studs. 

 

4.5.2.4  Return factors 

The development of the research model to quantify the embodied transportation energy 

relies on an assumption that ship used to transport the associated timber materials was 

fully loaded. Nevertheless, while the containerised ships are assumed to return back 

fully loaded as well, lorries were assumed to return empty loaded. 

 

4.5.2 The establishment of transport energy flow model 

Based on the system boundaries set above, transport energy flow of which is unique to 

this research is generated. Figure 4.5 illustrates the possible transport process flow in 

greater detail. This transport energy flow has used an assumption that timber being 

analysed within this research is originated from Swedish forests. With the aid of 60 

tonne lorry type, the logs as the raw timber material were conveyed from the forests to 

the Swedish plywood and studs sawmill to produce the desired number of plywood 

sheets and studs. 40 tonne lorry were used to haul the studs and the sheets of plywood 

from both sawmills to the nearest European port, assumed to be Goteborg, before being 

imported to the UK using a containerised ship. The journey from the nearest UK port 

continues to the prefabricated open wall panel factory where the studs and sheets of 

plywood were assembled onto prefabricated timber open wall panelling unit before then 

finally conveyed to the site ready for on-site assembly. The transport routes within this 

transport process flow were based on the factory locations of TRADA manufacturers’  

who responded back.   

 



Chapter 4: Development of the Embodied Transport Energy Process Model 

 

57 

 

Figure 4.5 Possible transport routes for the prefabricated timber wall element and its associated timber materials from forest to site 
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4.5.3 The establishment of raw material flow 

In order to estimate the transport energy required by a particular prefabricated timber 

wall unit, it is essential to also reveal the process flow of the associated timber material 

used to produce the particular prefabricated timber wall element. 

 

The characteristics of the timber material products transported in terms of its shapes, 

density and the composition or packaging of the goods, may vary in each stage. It 

depends on the supply and demand as well as the location of its factory and the timber 

origin. This research study therefore underlines the importance to establish a model to 

illustrate the raw material flow throughout the cradle to site gate undergone in the given 

functional unit before quantifying the amount of raw materials required per panel.  

 

Due to the limitations of data gathered during the questionnaires, further assumption 

taken from available published literature to help in the generation of mathematical 

formulae has been used to aid the quantification of the transport energy flow, the 

material flow and the equivalent transport energy per panel. 

 

Figure 4.6 shows how raw material were transformed and transported as wall panelling 

ready to be assembled on site. 

 

At the cradle gate, the raw timber material was in the form of logs. The logging process 

involved trees being cut and transported to the roadside with the top and limbs intact. 

The trees are then de-limbed, topped, and cutting it into the optimal length, also known 

as bucked, at the landing. This method requires the branches and other woody material 

(also known as slash) to be treated at the landing. In areas with access to cogeneration 

facilities, the slash can be chipped and used for the production of clean electricity or 

heat. Logs that were piled and sorted for plywood and studs sawmill and of which were 

located on the roadside were then picked up by 60 tonne lorry type to be transported to 

the plywood and studs sawmill. 
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Figure 4.6 Material flow analysis for the given route 

 



Chapter 4: Development of the Embodied Transport Energy Process Model 

 

60 

At the sawmill gate, there were two processes being differentiated in this part. One of 

which is process for studs and the other is processes undergone for plywood. In terms of 

stud, logs were being examined and cut to various lengths in what is called a log 

merchandising operation. Machinery, as shown in Figure 4.7 below, was used to 

remove the bark of the log (also known as de-barker), and to include a saw which was 

used to break-down the round logs (known as head saw). The machinery also to have a 

system for handling logs during the sawing process in the form of carriage or conveyor 

to then pass it on to the trimming boards to produce a smooth parallel edges. Finally this 

will be cut and trimmed on a cutting board to square and precise lengths. 

 

Figure 4.7 Small sawmills process. (Haygreen and Bowyer, 1996) 

 

There are several possible sawing patterns that can be used as shown further in Figure 

4.8, taken from Berge (2002) publication. It can be in the form of sawing through and 

through, boxing the heart, true quarter cutting and/or quarter cutting. Boxing the heart 

works well with the circular saw and is almost the only method used today. A number 

of panelling that may be produced from different type of sawing pattern is also shown at 

the bottom of Figure 4.8. 
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Figure 4.8 (a) Different methods of dividing up timber; (b) qualities of panelling and planks 
(Berge, 2002) 

 

The production stage of plywood is more complicated than stud production. The quality 

of a particular log will also play a major role since the more flaws a log has, the more 

wastage it will produce and the less plies it will generate. The quality of plies can also 

be affected by peeler log temperature. 

 

As the amount of plywood production dependent highly on various factors during its 

production stages, it is important to recognise its production stages. A range of 

coniferous species is used in plywood manufacturing and each has special 

characteristics that may affect the performance level of the final product. It is common 

that veneer of different species can be combined but with the facing to come from the 

same species. 

 

Based on the method of production, it can be classified as rotary-cut (cut on a lathe by 

rotating a log against a knife blade in a peeling operation), sliced (cut with a knife blade 
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sheet by sheet from a log section, or flitch), or sawn (produced with a special tapered 

saw). Figure 4.9 shows a rotary method and several flitch methods. 

 

Figure 4.9 Methods used to produce plywood (Metrohardwoods, 2007) 

 

In the rotary cut method, the log is mounted centrally in the lathe and turned against a 

razor sharp blade, like unwinding a roll of paper. Rotary cut veneer is exceptionally 

wide. Flitch method, on the other hand is where the half log is mounted with the heart 

side flat against the flitch table of the slicer and the slicing is done parallel to a line 

through the center of the log. This produces a variegated figure.  

 

More than 90 percent of all veneer is rotary-cut, but figured woods producing veneer for 

furniture and other decorative purposes are sliced. Sawn veneer is seldom produced, 

because it is a wasteful operation. 

 

Softwood plywood has raw material graded as “peelers”. The first stage of plywood 

production is involving the peeler logs to be delivered to the veneer mill and sorted by 

grade and species. It then is debarked and carried into the mill on a chain conveyor 

where a huge circular saw cuts them into sections about 2.5m to 2.6m long, suitable for 

making standard 2.4 m long sheets with the log sections known as peeler blocks. 

 

Before the veneer can be cut, often the peeler blocks are heated and conditioned by 

steaming or soaked in hot water to soften the wood prior to peeling. This process takes 
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12-40 hours depending on the type of wood, the diameter of the block, and other 

factors. This is done to reduce the possible veneer breakage and results in smoother and 

higher quality veneer. 

 

The heated peeler blocks are then transported to the peeler lathe. To maximise veneer 

yield, each peeler block is gripped on the ends at the block’s geometric centre. While 

rotating at high speed, the block is fed against a stationary knife parallel to its length 

and peeled into plies with desired thicknesses. When the diameter of the block is 

reduced to about 127 to 51mm, the remaining piece of wood, known as the peeler core, 

is ejected from the lathe and a new peeler log is fed into place. Peeler core may then be 

sawn into standard 38 x 89 mm lumber, used for fence posts and landscape timbers or 

chipped for use as pulp chips or fuel. The ribbon of the veneer will then be cut into 

pieces under the clipper knife at 1.25m or 0.64m intervals, except when a narrower, a 

blemish free piece of veneer can be produced. 

 

The plies were dried, graded and glued together. These plies were then trimmed, 

patched and assembled by taping or edge gluing into sheets large enough to make 

plywood panels. Following the final grading, plywood is piled in the standard quantity 

units called lifts, about 75cm high. The lifts are securely bound with steel strapping for 

protection and ease of handling. They are labelled for type, grade and size of panel. The 

lifts are delivered to the warehouse for storage or shipment. In most cases, only about 

50-75% of the usable volume of wood in a tree is converted into plywood. 

 

The processes undergone during the logging and manufacturing processes has 

concluded that during the transformation from logs to plywood sheet and studs, where 

logs were firstly un-barked and then transformed to the required size and dimension of 

plywood sheet and studs, there were material losses during the process hence it is 

important to make sure that its waste factor were taken into account when the 

mathematical formulae were established to quantify the flow material analysis later on. 

 



Chapter 4: Development of the Embodied Transport Energy Process Model 

 

64 

4.6 Summary 

The assessment of embodied transport energy of a particular prefabricated timber wall 

panelling unit could be carried out with the aid of process flow model. The model 

illustrates the way in which prefabricated wall panelling unit were produced and 

transported from the forest to site.  

 

Questionnaires have been used to collect primary data and was used to define the 

boundaries and guiderails that govern the development of the embodied transport 

energy process flow model e.g. the type of prefabricated housing construction mostly 

used in the UK, the origin of the raw timber materials and the means of transport 

employed to haul the associated timber materials from forest to the construction site.  

 

The questionnaires were developed as the primary data collection and were sent to a 

number of TRADA accredited prefabricated timber frame manufacturers. Eight replies 

out of fifteen TRADA accredited prefabricated timber frame manufacturers were 

recorded. The 50% response back was proven to be useful and the outcome suggests 

that, at the point of questionnaire being received, most UK prefabricated timber frame 

house was constructed using open wall panelling system. Response also verified the fact 

that the majority of raw timber used to produce prefabricated timber wall unit were 

imported from other countries and that all road haulage was carried out using lorries. 

The majority of response also suggests that most of them tend to have only one 

assembly factory with the distance between the assembly factories to site within the 50-

100 miles radius. 
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Nevertheless, there are some limitations in gathering primary data collection using this 

technique: 

• Questionnaires which were being post mailed did not allow the opportunity for 

further investigation and the answers were to be accepted as final. There were no 

opportunities to clarify ambiguities. 

• The quality of feedback received varied between the companies as their timber 

materials were being subcontracted from third parties timber merchants and 

freight logistics. Possibly confidential policies may also be a factor 

 

Because not all data required to generate the embodied transport energy were obtainable 

through the primary data collection alone, a further desk study was called for and 

assumptions were made based on the available literature. 

 

The following system boundaries and assumptions were considered when generating the 

transport and material flow analysis: 

1. The focus in this research is on timber materials used to construct the internal 

and external open wall panelling unit and not other materials that were also 

present in the wall panelling unit such as cladding, vapour control layer, 

plasterboard lining and insulation which were also part of the external wall 

construction.  

2. Although it is also of importance to investigate the environmental impact and 

transportation energy embodied in the glue and nails used during the production 

of plywood and the construction of wall panelling, they are outside the scope of 

this study and has not been included within this research study. 

3. The two year research study concentrates particularly at the direct embodied 

transport energy and does not include the transport energy consumption when 

cranes and labours are being transported to site. 
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4.  It is understood that transport energy also occurs during the end of life and of 

which could include potential waste recovery and recycling stages. This has 

been excluded from this research as the recent prefabricated timber frame 

housing construction are still considered new to the market and therefore its 

exact life span is still unknown and very much dependent on assumption. 

5. Infrastructure and transport systems vary from one region to another. This 

research aims to analyse timber materials of which being originated from 

Sweden as the outcome of the primary data collection established in section 

4.4.2 earlier concluded that the majority of timber materials for UK 

prefabricated timber wall panelling unit are being originated from Sweden. 

 

Figure 4.10 shows the transport and material flow model for the production and delivery 

of panels to site. It is understood that analysing the embodied transport energy of 

prefabricated timber frame wall panelling unit is a complex thing to do. It is therefore of 

importance that appropriate mathematical equations are developed beforehand to aid in 

the quantification and analysis process. 
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Figure 4.10 Detailed transport and material flow 

 



 

 

 

 

 

 

 

Chapter 5 

 

Embodied Transport Energy Analysis Methodology 



Chapter 5: Embodied transport energy analysis methodology 

69 

CHAPTER 5: EMBODIED TRANSPORT ENERGY 
ANALYSIS METHODOLOGY 

5.1 Introduction 

Chapter five is written and set to explore the quantification technique undertaken to 

assess the process flow created earlier in Chapter 4. A set of mathematical equations 

were developed for each and every stages illustrated within the process flow. These 

mathematical equations are developed to present further understanding on the 

correlation between the loading quantities, the choice of transport used, the transport 

distances and the origin of timber to the total embodied transport energy of a particular 

prefabricated timber wall panelling. An overview of the available techniques is firstly 

explained, and the most suitable techniques were adopted and developed further. 

 

In order to generate an embodied transport energy flow analysis, a Functional Unit (FU) 

is established and defined within this research as an open wall panelling unit measuring 

3600mm x 2400mm. 

 

The mathematical equations developed were divided into three sections. They were set 

to aid in the quantification of transport energy, the associated timber materials per 

means of transport per stage and the total embodied transport energy per FU. They are 

developed based on a combination of road and maritime transport. These theoretical 

transport and material analysis were then applied to the illustrated processes flow to 

evaluate the significance of embodied transport energy per FU further. 

 



Chapter 5: Embodied transport energy analysis methodology 

70 

5.2 Functional Unit 

Data collected from the questionnaire concludes that prefabricated timber open wall 

panelling system is the most commercialised type of prefabricated timber house 

construction type at the time of questionnaire being distributed.  

 

The functional unit used in this research, as shown in Figure 5.1 below, consists of: 

• 3 number of 1200 x 2400mm plywood sheathing with thickness of 12mm,  

• 7 number of vertical 38 x 89 x 2400mm studs, 600mm c/c 

• 2 number of horizontal 38 x 89 x 3600mm studs 

 

Figure 5.1 Details of a typical 3600 x 2400mm prefabricated timber open wall panelling unit 
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5.3 Methods to quantify the transport energy flow 

Transport energy consumed depends greatly on how the goods were moved, the 

variation in transportation weight and the haulage length. 

 

5.3.1 An overview of available techniques employed to quantify embodied 

transport energy 

There have been various mathematical models developed to assess embodied transport 

energy within a particular building or material life cycle and of which has been made 

available for a number of years [(Bos, 1998), (Lensink, 2005), (Adalberth, 1996), (Chen 

et al, 2001), (Howard et al, 1999), (Miller, 1996), (Flanagan, 2000), (Anderson and 

Edwards, 2000)].These calculations are commonly developed in order to generate the 

overall embodied energy of a particular building or material life cycle.  

 

This section reviewed the methodologies developed by Adalberth (1996), Chen et al 

(2001), Flanagan (2000) and Anderson and Edward (2000) in greater detail. The 

mathematical models within this research were produced based on these three particular 

publications. The expressions within all the equations reviewed here were adapted for 

the purpose of this research. 

 

Adalberth (1996) transport energy calculations (as shown in Equation 5.1 below) has 

taken into account the estimated transport distance between manufacturers and building 

sites during construction and renovation. Transport from the building site to a waste 

disposal site during renovation and demolition has also been taken into account.  

Nevertheless, transport of the raw and semi-manufactured material is included within 

the manufacturing energy category rather than within this transport energy. 
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The transport energy correlation for Adalberth (1996) is presented as follow: 
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Equation 5.1 

Where 

E transport, the transport energy (measured in kWh), n = the number of materials, mi = the 

amount of building materials (tonne), Wi = factor of waste of the material i produced 

during erection of buildings (%), di = distance from manufacturer to site (or factory) 

(km), and Tc = energy required for the conveyance concerned (Kwh/tonne km) 

 

Based on Tillman et al (1991), Adalberth has taken into account the difference in 

transport energy use between lorries for long and short distance transportation. Tillman 

(1991) mentioned that lorries used for long distances tend to carry larger loads, whereas 

lorries on short distance trips normally carries smaller loads and often take place on 

streets and roads in cities as oppose to country roads, hence requiring more fuel. 

 

Transport energy consumption can be measured either in kWh or Joules. Adalberth 

(1996) uses kWh as the unit to measure the transportation energy whereas Flanagan 

(2000), Anderson and Edward (2000) as well as Chen et al (2001), on the other hand, 

used Joules to represent the transportation energy embodied. 

 

To estimate the transportation energy embodied in the life cycle of a particular building, 

paper presented by Chen et al (2001) has developed the following equations: 
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Equation 5.2 

Where Etransport  is the energy required for transportation of the building materials and 

elements (MJ/kg.km), jw  is a factor of waste of the materials j produced, jµ  is a 
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replacement factor for building elements j during the lifespan of a building. m j
 is the 

amount of building material j (kg), dT  is the energy used in demolishing buildings and 

transporting the demolished building components from building site to landfill, 

subscript t refers to transportation, and cT  refer to the average energy use for 

transportation of material to the building site (MJ/kg).  

 

Tc may be obtained by: 
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Equation 5.3 

Where M ij  is the amount of building material or component j imported from country i,  

T lc,  is the energy use for transportation of building materials by means of conveyance l 

(MJ/kg.km) and d l  is the transportation distance by the conveyance l (km). 

 

Chen et al (2001) has emphasised the importance of quantifying the transportation 

energy embodied in it as most of the raw building materials used in Hong Kong are 

often imported which may results in a significant impact on the embodied energy 

consumed by buildings in Hong Kong. Because of this a mathematical model was 

produced to quantify the energy attributed during the transportation of building 

materials and its components to and from the building site.  

 

Both Chen et al (2001) and Adalberth (1996) acknowledged the need to take into 

account the waste factor of materials, and the average energy used for transportation of 

materials to building sites. 

 

While Adalberth (1996) took into account the renovation factor during the 

transportation stages and the effect life span of buildings and its materials are on the 

whole life cycle performance, Chen et al (2001) does not taken this into consideration. 

Chen et al (2001), on the other hand, considered the transportation energy consumed 
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during demolition in transporting demolished building components from building sites 

to landfills, whereas Adalberth only accounts this as a different type of energy 

consumption. 

 

The transport energy per kg of material established by BRE (Anderson and Edwards, 

2000) and Flanagan (2000), however, only focused specifically at the transport energy 

use, the loading, distances and return factors. The particular transport energy does not 

include within its calculation the replacement factor nor the waste factor of the 

particular materials being transported. The equation based on Anderson and Edwards 

(2000) as well as Flanagan (2000) were as follow: 
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Equation 5.4 

Where Etransport  is the transport energy (MJ/kg), T c  is the specific transport energy 

(MJ/tonne.km), d  is the transportation distance by (km) and r is the return factor. 

 

It was decided that the best method to be adopted in this research is the methodology set 

by both Flanagan (2000) and Anderson and Edwards (2000). These equations have 

therefore been applied directly to the embodied transport energy mathematical model 

within this research. This mathematical model is then adopted further to represent the 

transport energy per panel. 
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5.3.3 Road transport 

Road transport energy is highly dependent on variables such as return factor, types of 

fuel used, fuel consumption per lorry and its calorific value. 

 

The total transport energy for a lorry can be expressed as follow: 
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Equation 5.5 

Where ELt refers to the total transportation energy per lorry (GJ), d is the distance from 

a to b (km), Fc is the fuel consumption (litre/100 km), ρfuel with value of  0.831 kg/litre, 

c which is the net calorific value of 0.0434GJ/kg and r is the return factor. 

 

The distances of the road travelled were established based on the best route journeys as 

evaluated by the use of Microsoft AutoRoute computer software. Calculating the road 

distances using this method, however, had an implication owing to the fact that it does 

not take into account the restricted routes for heavy traffic and heavy goods vehicles, 

which could result in detours to prevent noise and other pollution on certain roads. 

Despite this being noted, data gathered during questionnaire are limited which prevents 

the more detailed version of distance calculation being used. 

 

Net calorific value, rather than gross calorific value, was employed in this research to 

aid the generation of transport energy calculation. Net calorific value is known to 

corresponds to the case where water remains as a vapour and hence it is considered as a 

better indication of the “useful heat” available from the fuel. The very same reason was 

also given by Hinchcliffe (2004). 

 

The fuel consumption value within this research is expressed in litre/100km. DfT 

(1997) suggested that fuel consumption values varies considerably depending on the 

type of lorries, traffic, roads, driving behaviours and many more. For further details on 

the various available data on fuel consumption, please refer to Appendix F. 
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The assumption established earlier in section 4.5.2.2 states that for the road transport 

energy model, lorries with a gross weight of either 60 and 40 tonne were used as the 

means of transport. Fully loaded 60 tonne lorries are assumed to be used as the main 

transportation vehicle for shipping logs from forestry to the plywood and studs sawmill, 

whereas the 40 tonne lorries are used for the remaining road-level transport stages 

beginning from the plywood stages and sawn wood sawmills to the nearest Swedish 

port and also from the designated UK port to the site.  

 

For this particular research, fuel consumption data and the return factors employed were 

based on the most recent data taken from Volvo (2006) and detailed in Table 5.1 below. 

 

Table 5.1 Fuel consumption and return factors based on data provided by Volvo (2006) 

Type of 

lorry 

Fuel consumption on 

full load 

(litre/100km)* 

Fuel consumption on 

empty load 

(litre/100km)* 

Average Fuel 

consumption 

(litre/100km) 

Return Factor 

 Min Max Min Max Full 

load 

(a) 

Empty 

load 

(b) 

a
ba )( +

=  

60 tonne 45 53 29 35 48 32 1.66 

40 tonne 29 35 21 26 32 23.5 1.73 

 

5.3.4  Maritime transport 

Shipping remains by far the most efficient means of transportation, in both energy 

efficiency as well as cost. It has been reported by International Maritime Organization 

and International Chamber of Shipping (IMO, 2007 and ICS, 2005) that energy 

consumption of road transport by lorries lies in the range of 0.0007 to 0.0012 MJ/kg.km 

and by comparison whereas the consumption of a 3,000 dead weight tonnage (dwt) 

coastal tanker at 14 knots is about 0.0003MJ/kg km and a medium size 18.4 knots 

container ship, which was used in this research, is about 0.00012 MJ/kg km. Shipping is 
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also known to have a relatively small contributor to the total volume of atmospheric 

emissions compared to road vehicles. 

 

Shipping transport energy within this research is quantified using equation established 

below: 

 

mrd EE fsst ⋅⋅⋅=  

 

 

Equation 5.6 

Where Est = Shipping transport energy, d = distance from one port to another (km), Efs = 

Energy intensity of a particular containerised ship (MJ/tonne.km), m = loading amount 

of S60s and/or plywood per ship (tonne), r = return factor (value of 1.0 as it returned 

fully loaded) 

 

In terms of maritime shipping distances, predefined routes must be followed and are 

calculated based on nautical miles using Maritime route software of which has taken 

into account the sea distances on a certain cargo shipping maritime line. To apply this 

shipping distance into the transport energy calculation, the nautical miles were then 

converted into kilometres. 

 

The energy intensity data of 0.12MJ/tonne km is used to generate the shipping transport 

energy within this research. It is noted that this particular value was in accordance to the 

recent published data by ICS (2005). 

 

5.4 Methods to quantify the material flow 

In terms of material flow analysis, it has been identified that the prefabricated timber 

wall panel used as the functional unit contained two different structural timber 

materials, consists of studs and plywood.  
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5.4.1 Assumptions made for the material quantification 

5.4.1.1 Waste Factor 

The characteristics of the timber material products transported (for example their shape, 

density and the composition or packaging of the goods) varies in each stage. It is 

therefore of importance to firstly quantify the equivalent amount of raw materials 

required per panel, its waste factor and the quantity of associated timber materials being 

conveyed on each of the transport stage.  

 

Wood waste occurred during the conversion from logs to a particular structural building 

part in particular during storage, transport and installation of the final product. It 

represents the amount of wastage that the material undergoes and the amount of 

resources lost. It is normally expressed as a percentage (%) of the required amount and 

varies depending on the quality and size of logs, the machinery used to produce the 

particular studs and plywood, sawing pattern chosen and many other aspects.  

 

Figure 5.2 illustrates a typical material flow and waste factor that may occur during the 

cradle to site stages based on Hakkinen (1998). While Hakkinen (1998) employed the 

use of percentage to illustrate the basic material and energy flows in the production of 

timber constructions in general and its waste factors attributed per stages in particular, 

Swedish Forestry Agency has produced a conversion figure of 0.88 to convert the logs, 

presented in the unit of m3 f pb (cubic metre solid volume including bark) to the 

equivalent log after de-bark in the sawmill, presented in the unit of m3 f ub (cubic metre 

solid volume excluding bark). 
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Figure 5.2 Basic material and energy flows in the production of timber constructions adapted for 
Hakkinnen, 1998 

 

The waste factor in this research has taken into account the conversion of logs to studs 

and sheets of plywood. Because prefabricated construction uses automated system, 

wastage was considered as minimum during the production and assembly of the finish 

product and therefore its waste factor was considered as negligible at the manufacturing 

stage. It has also been assumed that there is no waste occurs during transportation stage. 

 

5.4.1.2 Studs production per log 

The sizes and lengths of timbers used to produce a 38 x 89mm CLS stud varies widely 

and is very complicated to determine. They depend considerably on the quality of the 

tree, the type of timber logs used and its growing rate. These can range between 102-

800mm diameter. MacGregor (1956), for example, stated that standard log can reach an 

average of around 4.5metre high with 203mm diameter, whereas Green (2005) stated 

that Douglas Fir, one of the European softwood species that can also be used to produce 

CLS stud has its diameter ranges between 102-184mm diameter.  
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Keyworth (1987) on the other hand, stated that spruce-pine-fir, another type of 

European softwood species that were used to produce CLS stud, is available in diameter 

widths of up to 300mm and lengths up to 9m. In addition to that, a European research 

project carried out by Biomatnet (1997) for FAIR, an Agriculture and Fisheries 

programme for European scale, has revealed that a typical Norwegian Spruce used to 

produce CLS stud, has a stem diameter of about 250mm, and total height of 23m. It has 

been noted, however that most Canadian Lumber Standard timber imported into the UK 

is kiln dried at source to approximately 19% moisture content (Keyworth, 1987). 

 

There is difficulty and limitation in estimating studs produced per log. There is a high 

possibility that not all logs transported in a fully loaded lorry from the forestry to the 

studs sawmill were able to be transformed into S60 studs. It was recognised that several 

lengths and dimensions may be produced from a log. In a real scenario, a log may be 

converted to various sizes of studs which are highly dependent on various factors such 

as the supply and demand for a particular dimension of timber materials needed.  

 

For the purpose of this research study, it was assumed that the softwood trees being 

harvested from the particular Swedish forestry were cut into average 6m length logs and 

then fully loaded onto a 60 tonne lorry to be sent onto a designated sawmill and that all 

the logs transported on a fully loaded lorry to the stud were used to produce S60 studs. 

 

5.4.1.3 Plywood production per log 

Plywood can be made from either softwood or hardwood. It is defined as a structural 

material in the form of a flat panel made of layers of sheets of which are known as plies 

or veneer that are glued together and united under pressure to create a panel with an 

adhesive bond between plies. It usually is bonded with the grain of adjoining layers at 

right angles to each other. 

 

Plywood export markets are usually manufactured in several sizes such as 1220 x 

2400mm, 1820 x 2800mm, 1250 x 2500mm, 310 x 1820mm and 1220 x 2775mm.  
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Further details of its construction and other technical details are available in Appendix 

C1.1. The dimension of plywood used in the functional unit within this research was 

assumed to be 2440 x 1220mm. This assumption was based on the dimension of 

plywood sheet generally used in the construction of the open wall panelling unit 

according to TRADA (2006). 

 

5.4.1.4  Production and transportation of studs 

To clarify the quantification of studs during the material flow analysis the 38 x 89mm 

studs with length of 6m, 2.4m and 3.6m are referred to as S60, S24 and S36 

respectively. Since a S60 stud can be divided into S24 and S36 studs as shown in Figure 

5.3 below, this research notes that the amount of S24 and S36 per fully loaded vehicle 

will be equivalent to the amount of S60 per fully loaded vehicle. 

 

 

Figure 5.3  Dividing S60 into S24 and S36 

 

The results from the questionnaires concludes that studs and plywood were transported 

using an ISO standardised 40ft container (also called FEU), hauled on the road from the 

sawmill to the nearest Swedish port by 40tonne lorry and then transported using 

containerised ship from the particular Swedish port to the nearest possible UK port 

before being picked up in the UK using another 40tonne lorry to be distributed to the 

manufacturing factory (ies). 
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It is to be acknowledged that in practical scenario, there might be more than one type of 

studs being transported on each FEU and that it might not be entirely fully loaded to 

allow some space for movement etc. This however is not within the scope of this study 

and therefore the allocation percentage attributable to the particular studs and sheets of 

plywood has not been taken into account during the quantification process. This 

research has made an assumption that 100% of the studs and sheets of plywood 

transported in each means of transport is uniform in size, type and weight. 

 

5.4.2 Estimating the amount of logs per lorry 

Waste occurs in two different stages. The first appears at the logging stage, and second, 

at the conversion of logs into studs or sheets of plywood. During these two stages, wood 

wastages are generated when timber logs were de-barked and converted into studs and 

sheets of plywood. 

 

Because the de-barking process occurs at the sawmill level, the total volume of logs 

transported from forest to the sawmill tends to be bigger compared to its useful volume 

associated in the production of the S60 studs and the sheets of plywood. In order to 

incorporate these waste factors into the material flow analysis, data published by 

Swedish Forestry Agency (2006) was used. To convert the un-barked logs into the 

equivalent barked volume, Swedish Forestry Agency (2006) has stated that 1m3 of solid 

volume including bark (m3 f pb) is equivalent to 0.88 m3 solid volume of log excluding 

bark (m3 f ub).  

 

However, because logs retained different diameter and length from one another, the 

number of studs per log may vary widely. It is therefore not possible to establish the 

equivalent number of studs per log based on the total number of logs in a fully loaded 

lorry. The total volume, rather than the number of logs, of un-barked logs on the fully 

loaded lorry were to be firstly established instead.  

 

Assuming the lorry is fully loaded with logs, the total volume of un-barked logs on a 

fully loaded lorry can be determined using the following equation: 



Chapter 5: Embodied transport energy analysis methodology 

83 

 

 

ρ
WV L

pb =  

 

 

Equation 5.7 

Where  

V pb
  is total equivalent of un-barked logs per fully loaded lorry (m3 f pb) 

W L   is total net load weight when lorry is fully loaded (kg) 

ρ   is density of the chosen tree type (kg/m3) 

  

Once the total volume of un-barked logs per fully loaded lorry has been established, the 

total equivalent of barked volume of log per fully loaded lorry can be determined using 

the following equation: 

 

fVV pbub
×=  

 

 

Equation 5.8 

Where  

V ub   is total equivalent volume of barked log per fully loaded lorry (m3 f ub) 

V pb
  is total equivalent volume of un-barked log per fully loaded lorry (m3 f pb) 

f   is conversion factor 

Determining the equivalent amount of un-barked logs required to produce certain 

dimensions of plywood sheet and S60 studs means that the equivalent number of 

plywood sheet and S60 studs produced per fully loaded lorry were established using the 

conversation factor given also by the Swedish Forestry Agency (2006). To convert the 

barked logs onto the equivalent volume of sawn wood or plywood produced, Swedish 

Forestry Agency (2006) also stated that sawn wood softwood has a raw material that is 

equivalent to 2.1m3 f ub/m3 

 



Chapter 5: Embodied transport energy analysis methodology 

84 

 

Therefore, the total equivalent volume of barked logs needed per stud and plywood, 

also known as vubs  and vubp
, were calculated with the following equation: 

 

fVV ppubp
×=  

 

 

Equation 5.9 

Where  

V ubp
 is the equivalent of logs barked volume required to produce a 1.2 x 2.4m sheet of  plywood  

(m3 f ub) 

V p
 is the volume of 1.2 x 2.4m sheet of plywood (m3) 

f p
 is the conversion factor of 2.5m3 f ub 

 

 

fVV ssubs
×=  

 

 

Equation 5.10 

 

Where  

V ubs  is the equivalent of logs barked volume required to produce S60 stud (m3 f ub) 

V s  is the volume of S60 stud (m3) 

f s
 is the conversion factor of 2.1m3 f ub 

 

Once the total equivalent volumes of barked log per fully loaded lorry were obtained, 

the corresponded number of studs and plywood produced from it were established with 

the following equations: 

 

v
VN

ubs

ub
s =  

 

 

Equation 5.11 
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v
VN

ubp

ub
p =  

 

 

Equation 5.12 

Where  

N s  is the total equivalent number of studs produce per fully loaded lorry 

vubs   is the total equivalent volume of barked logs needed per stud 

N p
 is the total equivalent number of plywood produce per fully loaded lorry 

vubp
 is the total equivalent volume of barked logs needed per plywood 

V ub   is the total volume of barked logs per fully loaded lorry 

 

5.4.3 Estimating the amount of studs per FEU container 

The amount of studs on each FEU container was based on an assumption that each 

container is fully loaded. 

 

 

Figure 5.4 Estimating the quantity of S60 studs per FEU container 

 

Figure 5.4 above shows an estimation on how 38x89mm studs with standardised length 

of 6000mm can be loaded into an FEU with an overall dimension of 2350 x 12030mm 

and 2400mm height. Rough calculation has suggested that if fully loaded, each FEU 

container can hold maximum of 3276 studs. 
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The weight of studs is also influenced by two main factors – the size of studs and the 

wood species. Weight of studs per FEU container can be established when density of 

wood species used and the size of the particular studs are known. 

 

For a stud with a density of 450kg/m3 and a stud dimension of 38 x 89 x 6000mm 

length, its weight is equal 9kg. If a fully loaded FEU container consists of 3276 studs of 

38 x 89 x 6000mm, the weight per FEU is 29, 812kg (an equivalent of 30 tonne). 

Further detailed calculation can be found on Appendix C2.2. 

 

5.4.4 Estimating the amount of plywood per FEU container 

It is recognised that the amount of plywood in an FEU container will be highly 

dependent on various factors such as the size of plywood in a particular FEU container, 

its required thicknesses, and the amount of plies required per plywood and the amount 

of plywood per packaging.  

 

The weight of plywood panel is influenced by two main factors – the panel compression 

during the manufacturing process and the wood species. Due to variations between 

brands, the weight of plywood is not constantly proportional to thickness. Further 

details can be found on Appendix C2.2 

 

Assuming the dimensions of the plywood sheet used in this research is 2440 x 1220mm, 

a possible number of plywood sheets that can be loaded per FEU container can be 

assumed as shown in Figure 5.5 below: 
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Figure 5.5 Estimating the quantity of plywood sheet per FEU container 

 

Assuming that plywood will be fully loaded on each FEU container, with one plywood 

packaging equals to 85 plywood and each FEU able to contain 10 plywood packaging, 

the total number of 2440x1220mm sheet of plywood with thickness of 12mm per FEU 

container to be equivalent to 850 number of plywood sheet and weighted a total of 

13,600kg (an equivalent of 14tonne). Further detailed calculations can be found on 

Appendix C2.2. 

 

5.4.5 Estimating the amount of plywood and studs FEU containers per 

ship 

During shipping, the abbreviation "TEU" is occasionally used for "Twenty foot 

Equivalent Unit" and refers to a 20ft container. A 40ft container (FEU) used to transport 

the associated timber materials on the road is an equivalent to two TEUs. 

 

To estimate the amount of studs and plywood carried in FEUs transported per ship, it is 

necessary to first comprehend the amount of plywood and studs per FEU container, the 

amount of FEUs allowed per ship and the percentage of FEUs in the ship of which 

consists of plywood and studs.  

 

Since each type of containerised FEU have different weights, depending on the type of 

loading it carries, the amount and percentage of FEUs consisting of plywood and studs 

per ship are assessed based on the weight of each FEU containing studs and each FEU 

containing plywood. This is then added to see how many FEUs containing plywood and 

studs can be carried for maximum loading. 



Chapter 5: Embodied transport energy analysis methodology 

88 

 

As discussed earlier in section 5.3.4, the type of ship used to transport the S60 studs and 

plywood sheets from one port to another was a fully loaded 1,226 TEU containerised 

vessel with gross weight of 6,720 tonne. This is under the assumption that 25% of its 

full load has been allocated to transport 12mm thickness plywood and the other 25% of 

its full load has been allocated to transport the S60 studs. 

 

The number of FEUs containing sheets of plywood and the S60 studs along with its 

allocated weight per fully loaded ship are determined on the possible amount of 

plywood sheets and studs per FEU containers, which has been established earlier in 

section 5.4.3.2 and 5.4.3.3. Based on the weight of a plywood and S60 FEU container 

and based on the weight allocation per fully loaded ship, it has been determined that the 

fully loaded ship will be able to transport an equivalent of 120 FEU containers that 

consists of plywood sheets and a further 56 FEU containers consists of S60 studs. 

Further detailed calculation can be found on Appendix C2.2 

 

5.5 Application of Components to the FU 

The purpose of mathematical equations being developed in this chapter is to enable the 

prediction of total embodied transport energy consumed per FU based on a generic 

process flow model. In order to do this, a series of mathematical equations were 

developed to aid estimate the transport energy and material quantity per means of 

transport and applicable for each transport stage from forest to site. 

 

The mathematical equations developed to quantify the embodied transport energy per 

FU are based on the assumption and boundaries set in Section 5.4.1. The transport flow 

analysis and its associated material flow analysis has been derived from an assumption 

that timber material used to construct the particular open wall panelling unit comes 

from Sweden and transported using fully loaded 60 tonne lorry at the forest to sawmill 

stage and 40 tonne lorry for the rest of the journey to site with an additional aid of 1226 

TEU containerised ship to import the timber materials from Goteborg port in Sweden to 

the nearest UK port. 
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Studs and plywood that came from a Swedish forestry as logs are transported and fully 

loaded on a 60 tonne lorry and then distributed to two separate sawmills to process this 

logs onto the suitable size plywood and S60 studs. The finished products that arrive as 

1.2 x 2.4m plywood and S60 studs from two different sawmills are then transported to 

Goteborg port using 40 foot 40 tonne lorries.  

 

Using containerised ships with net load of 1226 TEU per ship and net weight equivalent 

to 6720 tonne, the plywood and S60 studs are then hauled in a number of 40 foot long 

ISO standardised container (also known as FEU) from Goteborg to a UK port. The 

amount of materials transported per shipping vessel are based on the assumption that 

ship are fully loaded and of which 50% of  its load were to carry S60 studs and the other 

50% of its load were to carry plywood.  

 

From the nearest UK port, the FEU containing S60 studs and plywood were picked up 

by 40 tonne lorries and transported to the manufacturing factory where the S60 studs 

will be cut to 2.4m and 3.6m length, along with the plywood, to construct the required 

number of panel for the particular house. From the assembly factory, the finished 

products were then transported using 40 tonne lorries again to the site ready for on-site 

assembly. 
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The predicted total embodied transport energy per FU was carried out as follow: 

 

1. Total embodied transport energy per panel 

Total ETE (GJ/panel)  

= TE per stage  

= TE forest to sawmill stage + TE sawmill to Goteborg port + TE Goteborg port to UK port + TE UK port to 

assembly factory + TE Assembly factory to site 

Equation 5.13 

 

2. Transport energy per panel per stage 

TE per stage (MJ/panel)  

= 7(Te S24) + 2(Te S36) + 3(Te plywood sheet) 

 
Equation 5.14 

Where  

Te S24   transport energy to transport S24 studs per stage 

Te S36   transport energy to transport S36 studs per stage 

Te plywood sheet  transport energy to transport the plywood sheets per stage 

 

3. Allocation of Te S24 and Te S36 

Despite the number of S24 and S36 studs transported on each means of transport will be 

identical to S60 studs, their weight and size are actually different. This will indirectly 

lead to a difference in its transportation energy. In other words, transport energy per S60 

stud is not equivalent to transportation energy per S24 and S36 studs. To establish the 

transportation energy per S24 and S36 stud, the transportation energy per S60 stud is 

broken down where 40% of transportation energy per S60 stud represents the 

transportation energy per S24 stud and the other 60% of transportation energy per S60 

stud contributed to the transportation energy per S36, which can be explain in the 

following equations:  
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Te24 = 40% (Te S60) 

Te36 = 60% (Te S60) 

 

 
 

Equation 5.15 

Where Te S60 = total embodied transport energy per S60 calculated from forest to site stage. 

 

4. Embodied transport energy per S60 and per sheet of plywood per stage 

For road transport 
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Equation 5.16 
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Equation 5.17 

Where ELt = transport energy per S60 or per plywood sheet, Ns or Np = equivalent 

number of S60 and 12mm sheet of plywood per fully loaded 60 or 40 tonne lorry, d = 

distance from a to b (km), Fc = fuel consumption (litre/100km), r = return factor, ρfuel = 

0.831 kg/litre, c = calorific value (GJ/kg).  

 

The number of plywood sheets and S60 studs per fully loaded lorry from forest to 

sawmill stage was taken into account as waste factor associated with converting the 

un-barked logs onto barked logs. The waste factor was also incorporated within the 

present conversion of barked logs onto the associated plywood sheets as well as the 

S60 studs at the sawmill stage. Road transport between S60 and plywood sawmills 

to Goteborg port and from UK port to site is considered to be negligible and 

therefore not included. 
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For maritime transport 

Np

mrd EE fs
st

⋅⋅⋅
=  

 
Equation 5.18 

Ns

mrd EE fs
st

⋅⋅⋅
=  

 
Equation 5.19 

Where  

Est   Shipping transport energy,  

d   distance from one port to another (km),  

Efs   Energy intensity of a particular containerised ship (MJ/tonne.km),  

m   net weight of load per fully loaded ship (tonne),  

r  return factor (value of 1.0 as it returned fully loaded)  

Ns or Np equivalent number of S60 and 12mm sheet of plywood per fully loaded 60 or 40 tonne 

lorry 

 

Within the research, waste factor is incorporated on the embodied transport energy per 

functional unit calculation at the forest to sawmill stage. Any waste that occurs at 

assembly factory level is considered to be negligible and therefore omitted from the 

calculation.  
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5.6 Conclusion 

This chapter describes how a series of mathematical equations has been developed 

based on both transport energy as well as material flow diagram established earlier in 

Chapter 4. The mathematical equations to represent the quantification methodology for 

the embodied transport energy and its associated timber materials per given FU were 

developed based on the existing methodologies that has been established through the 

adaption of equations that has been developed by Flanagan (2000) and Anderson and 

Edward (2000) and revised to represent the prefabricated panelling structure. The 

application methodology of these components based on the set FU has been laid out in 

detail within section 5.5. 

 

As the quantification and analysis of transport energy embodied within the set FU and 

its associated timber material is known to be a complex thing to do, a step by step 

detailed systematic procedure and assumption used within the quantification of the 

process flow has been developed in this chapter and summarised as follow: 

• review and incorporate the most appropriate methods to quantify the transport 

energy per stage 

• develop a set of mathematical equations to aid in quantifying the transport 

energy flow per stages 

• develop a set of mathematical equations to aid in quantifying the material flow 

process for a given FU 

• develop a set of mathematical equations to aid in quantifying the transport 

energy flow for a given FU 

• The total embodied transport energy per FU was then identified as the sum of 

the equivalent transport energy per FU per stage. 

 

The methodology to quantify and analyse the material flow has taken into account 

components such as waste factor that occurs especially at the stage where logs were 

converted into studs and sheets of plywood prior to the pre-assembly of the 

prefabricated timber wall panelling unit. The reliability and applicability of it is then 

tested and evaluated further in Chapter Six. 



 

 

 

 

 

 

 

Chapter Six 

 

Results and Discussions 
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CHAPTER 6: RESULTS AND DISCUSSION 

6.1 Introduction 

Chapter 6 is established with the purpose to present, interpret and analyse the embodied 

transport energy per given FU. These results were generated based on the flow model 

and quantification methods established earlier in Chapter 4 and 5 respectively. 

 

In order to demonstrate the way embodied transport energy may vary within the set 

variables, the embodied transport energy per FU were established based on three sets of 

scenarios. 

 

This chapter is laid out to firstly explained the quantification and analysis of the 

material process flow and followed by the embodied transport energy analysis based on 

the varying scenarios. 

 

6.2 Material flow analysis 

The evaluation of embodied transport energy for prefabricated timber open wall 

panelling were prepared, first by quantifying the transport energy consumed to haul the 

raw material of the wall panel from forest to sawmill per fully loaded 60 tonne lorry. 

This form of raw material was in the form of logs.  

 

The second stage of the quantification involves the evaluation of transport energy 

consumed per plywood and S60 studs during the haulage stage from both the plywood 

and studs sawmill to the designated Swedish port. During this stage, 40 tonne fully 

loaded lorries were used as opposed to the 60 tonne lorries.  

 

The third stage of quantification comprised of the number of FEU containers containing 

plywood and S60 studs being hauled onto a containerised ship. During this stage, it is 



 

Chapter 6: Results and discussions 

96 

assumed that the containerised ship has 50% of its load filled with FEU containing 

plywood and the other 50% with FEU containing S60 studs.  

 

For the fourth stage, 40 tonne fully loaded lorries were used again to pick up the FEU 

containers of plywood and S60s from the designated UK port and haul this to the 

manufacturing factory to be assembled into certain amount of desired open wall panel.  

 

The final stage has the finished product in the form of prefabricated open wall panels 

transported using 40 tonne lorries to site based on full load. The transportation energy 

per various timber forms evaluated on each stages were then converted further to 

achieve the transportation energy per given FU.  

 

The stages and figures used to quantify the equivalent amount of studs and plywood 

sheet transported per fully loaded 60 tonne lorry were summaries below: 

1. Determine the total volume of logs transported per fully loaded lorry using 

equation 5.7 and with an assumption that: 

W L   is total net load weight when lorry is fully loaded (= 4,000kg) 

ρ    is density of the spruce (= 450kg/m3) 

 

2. Determine the equivalent of barked logs in a fully loaded 60 tonne lorry  

(m3 f ub) using equation 5.8 and with an assumption that: 

f   is conversion factor of 1.14m3 

 



 

Chapter 6: Results and discussions 

97 

 

3. Determine the equivalent amount of barked logs required to produce the 1.2 x 

2.4m sheet of plywood and S60 studs using equation 5.9 and 5.10, with an 

assumption that: 

f p
 is the conversion factor of 2.5m3 f ub 

and 

f s
 is the conversion factor of 2.1m3 f ub 

 

4. Finally, to establish the equivalent number of plywood sheet that can be 

produced per fully loaded 60 tonne lorry, equation 5.11 and 5.12 was used, 

 

6.2.1 Forest to sawmill stage 

At the forest to sawmill stage, logs were transported using timber lorries from the forest 

to the plywood and studs sawmill. These logs were de-barked at the plywood and studs 

sawmills before being converted to either studs or sheets of plywood.  

 

To establish the total volume of logs transported on a fully loaded timber lorry, 

equation 5.7 was used. A figure of 88.9m3 solid volume of timber (which includes 

barks) was generated based on this equation. Because not 100% of logs transported on 

this timber lorry will be used to produce stud and plywood due to the de-barking 

activity in sawmill, it is necessary to determine the equivalent of barked logs volume 

per fully loaded timber lorry.  

 

Using equation 5.8, the total volume of barked logs per fully loaded timber lorry was 

generated to be an equivalent to 78.2m3. 

 

Based on equation 5.9 and 5.10, the equivalent amount of barked logs required to 

produce the plywood and S60 studs were established. 
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 Finally, the equivalent number of plywood sheets and S60 studs that can be produced 

per fully loaded 60 tonne lorry was generated based on equation 5.11 and 5.12 which is 

an equivalent to 1861 number of S60 and 108 sheets of 12mm thick plywood. For 

further details of calculation, please refer to Appendix C2.1 

 

6.2.2 Sawmill to Goteborg Port stage and UK port to assembly factory 

stage 

During the sawmill to Goteborg port and from UK port to the particular UK assembling 

factory stages, plywood and S60 studs were transported using FEU containers on 40 

tonne lorries and picked up at the chosen UK port using another 40 tonne lorries that 

will carry it to the manufacturing factory.  

 

The loading amount of plywood transported per 40 tonne lorry and the amount of S60s 

transported per 40 tonne lorry from the particular UK port to manufacturing factory will 

be the same as transporting the plywood and S60 per fully loaded 40 tonne lorry from 

the plywood and studs sawmill to Swedish port. Based on the assumption that each 40 

tonne lorry transporting a fully loaded FEU container and using the calculation methods 

established in sections 5.5.2 and 5.5.3 to determine the estimated number of plywood 

and S60 studs respectively, results indicate that there is an equivalent of 850 sheet of 

plywood per and 3276 number of S60 studs for every 40 tonne fully loaded lorry used 

to transport both the studs and plywood product separately. Please refer to Appendix 

C2.2 for a more detailed calculation. 

 

6.2.3  Goteborg Port to UK port stage 

During the transportation stage between Goteborg Port and the nearest UK port, the 

studs (in the form of S60) and sheets of plywood were loaded and transported using 

containerised ship in a certain number of FEU containers. 
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Within each FEU container carrying sheets of plywood, it has been assumed that they 

come per package and that each sheets of plywood package contains 85 sheets of 

plywood. Based on this assumption, the maximum number of plywood per FEU has 

therefore been quantified as equal to 850.  

 

The total amount of plywood and S60 containers on each of the containerised ship will 

vary widely depending on the cargo companies used, the particular demand of studs and 

plywood, particular size and weight allowance of containerised ship used and many 

other things.  

 

This research is based on an assumption that 1226 TEU containerised ship was used to 

transport the sheets of plywood and studs FEU containers. The 1226 TEU assumed to 

have a net load of 6720 tonne and that 50% of the load was appointed for FEU 

containing plywood whereas the other 50% load carried were FEU for S60s. Presuming 

that the 1226 TEU containerised ship is fully loaded, the amount of plywood and S60 

that can be transported per journey is 204,000 and 366,912 correspondingly. Please 

refer to Appendix C2.2 for details of calculation. 

 

6.2.4 Assembly factory to site stage 

In the factory, S60 will be cut into S24 and S36 and combined with the plywood to 

make a suitable panels needed to be then transported to site. The amount of panels 

transported to site will be depending highly on the number of panels needed to construct 

a house and a number of house required per development.  

 

Figure 6.1 below summarises and illustrates the material flow with the equivalent 

number of wall panelling and its associated timber materials on each of the transport 

stage process. 
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Figure 6.1  Material flow analysis based on full load means of transport
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6.3 Embodied transport energy flow analysis 

The embodied transport energy flow analysis within this research was quantified with 

its distance range based on the outcome of the questionnaire in section 4.4.2 earlier. 

Due to companies’ confidential policy and limited access of information from the third 

party logistic, the distance range from the Goteborg Port to the assembly factories was 

set based on the location of the particular assembly factory and the nearest UK port to 

this particular assembly whilst the distance from the forest to Goteborg port was based 

on secondary published data.  

 

Transport energy flow model specific for detailed quantification was then established 

based on these distances. Further details on the range of distances per stage can be 

found on Appendix B3. 

 

Embodied transport energy per FU was then determined against the quantification 

methodology established in section 5.3.3 and 5.3.4 and in accordance to the type of 

means of transport incorporated on the particular stage. The detailed calculation for the 

material flow analysis and total embodied transport energy for full load transport can be 

found on Appendix C and D2 respectively. 
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Based on these range of distances, the possible embodied transport energy consumed 

per stage was generated in Table 6.1.  

Table 6.1 Average embodied transport energy based on the average distance per stage 

Means of 
transport 

based on 

minimum 
distance 

(km) 

 

Minimum
TE(GJ) 

based on 

maximum 
distance 

 (km) 

Maximum 

TE (GJ) 

based on 

average 
distance  

(km) 

Average 

TE (GJ) 

 

60tonne 
GWV lorries 93 2.718 93 2.718 93 2.718 

40 tonne 
GWV lorries 189 3.837 189 3.837 189 3.837 

1226 TEU 
vessel 926 373.363 1860 749.952 1393 561.658 

40 tonne 
GWV lorries 64 1.299 234 4.751 149 3.025 

40 tonne 
GWV lorries 80 1.624 160 3.248 120 2.436 

Total TE (GJ)  328.842  764.506  573.674 

 

6.3.1 Scenarios associated with transport energy process flow analysis 

The significance of embodied transport energy within prefabricated timber wall 

panelling unit depends on a number of variables. One of the most important variables is 

the transport loading capacity associated within the forest to site stage.  

 

The loading capacity dependent highly to the form in which prefabricated timber wall 

panelling unit was being transported throughout the forest to site stage. In order to 

assess the significance of the embodied transport energy per FU, the generic forest to 

site process flow model was firstly divided into three sections, as shown on Figure 6.2. 

These sections were divided based on the material form in which prefabricated timber 

wall panelling unit is constructed. 
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The splits were then incorporated onto the different scenarios as shown in table 6.2 

below and illustrated further in Figure 6.2 and 6.3. 

Table 6.2 Loading scenarios and sections within the process flow analysis 

Loading Scenarios Section Timber form Stage 

1 2 3 

I Logs Forest to sawmill Full Full Partial 

II Sheets of plywood and studs Sawmill to assembly factory Full Full Partial 

III Prefabricated wall panelling unit Assembly factory to site Full Partial Partial 

 

The first scenario demonstrates the embodied transport energy consumed per FU where 

means of transport has been set to carry full load all the way from the forest to the site. 

It is understood that full load capacity will provides the opportunity to maximise 

efficiency. Nevertheless, invariable of goods transportation is influenced not only by the 

potential maximum carrying capacity of a vehicle but also by volume. These were 

demonstrated further in the second and third scenarios.  

 

The second scenario endeavours to reveal the embodied transport energy consumed per 

FU based on the set two bedroom house model and where its vehicle was set to carry 

full load from forest to assembly factory but with the loading capacity from factory to 

site being dictated by the number of house being built on the particular site.  

 

The third scenario represents the worst case scenario when demand is low and where 

loading from forest to site depends fully on the number of house being built on the 

particular site. 
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Figure 6.2 Range of distances used for further quantification 
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Figure 6.3 Diagram illustrating the difference of loading capacity between Scenario 1,2 and 3 
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6.3.1.1 Transport energy flow analysis per FU based on the first scenario 

In this first scenario, means of transport per journey from forest to site stage has been 

assumed to be fully loaded. The total embodied transport energy per FU were 

established and broken down further in Table 6.3. For further details of the calculation, 

please refer to Appendix D2. 

 

Table 6.3 Quantification of embodied transport energy (TE) (MJ/per panel) based on full load 
transport 

Stages TE per S60 TE per S24 TE per S36 TE per plywood TE per panel 

 (MJ/S60) (MJ/S24) (MJ/S36) (MJ/plywood) (MJ/panel) 

Forest to Sawmill 1.46 0.58 0.88 25.2 81.3 

Sawmill to Port A 1.17 0.47 0.70 4.51 18.2 

Port A to Port B 1.02 – 2.04 0.41 – 0.82 0.61 – 1.23 1.83 – 3.68 9.56 – 19.21 

Port B to Factory 0.31 – 1.14 0.13 – 0.46 0.19 – 0.68 1.20 – 4.39 4.85-17.74 

Factory to Site     8.13-16.27 

 

The breakdown of these transport energy from the forest to site were illustrated in 

Figure 6.4 and 6.5. Figure 6.4 shows transport energy consumption per stage based on 

the associated timber materials whereas the second figure (Figure 6.5) were based on 

transport energy consumption per panel. Figure 6.5 has been broken down further into 

two parts with the top part indicates the embodied transport energy per panel per stage 

based on the shortest and longest distances and the bottom part based on the averaging 

distance. 
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Figure 6.4 Embodied transport flow analysis based on prefabricated wall panelling unit and its associated timber materials 
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Figure 6.5 Embodied transport flow analysis 

 



Chapter 6: Results and discussions 

109 

The bar chart below (Figure 6.6) was produced based on the data established and 

illustrated in Table 6.1 and Figure 6.5 respectively. It demonstrates the range of 

embodied transport energy consumption per panel based on the set distances data and 

based on the assumption that vehicles were carrying full load throughout the journey 

but return empty for the road transport.  

 
Figure 6.6  Transport energy per panel based on full load (GJ/panel) 

From the bar chart illustrated above, it is apparent that the forest-to-sawmill stage 

consumed the highest transportation energy per equivalent panel. This is the stage 

during which logs were hauled from forestry to sawmill and where the conversion to the 

desired studs and plywood take place. The highest transportation energy figure at the 

forest stage, despite the use of 60 tonne fully loaded lorries, believed to be due to waste 

factor of converting logs onto plywood and studs as well as to negligible waste factor at 

the later stages. 
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Figure 6.7 below represents the percentage breakdown of embodied transport energy 

consumed per equivalent panel per stage. 

 

 

Figure 6.7  Percentage of transport energy consumed from cradle to site stage for the given 
functional unit 

 

The pie chart above has indicated that almost 60% of the total transport energy 

embodied at the forest to site stage was consumed on the forest to sawmill stage 

whereas the rest of the 40% transport energy consumption were consumed almost 

equally on other stages. 
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6.3.1.2 Transport energy flow analysis per FU based on second and third scenarios 

Up to this point, the quantification of transport energy flow analysis in this research was 

based on the fully loaded transport mode throughout the forest to site stage. This 

method of quantification provides the best possible transportation energy value for the 

given FU. In the real life scenario however, fully loaded means of transport might not 

always be the case especially at the factory to site stage.  

 

Two additional scenarios were therefore established in order to identify the significance 

of loading capacity throughout the forest to site stage to the overall transport energy 

consumption per FU. The second scenario derived from a situation where transport 

carries full load from forest to factory but part load from factory to site, depending on 

the number of houses constructed on a particular site whilst the third scenario 

demonstrate the worst case scenario where transport carries partial load throughout the 

forest to site stage. The illustration and summary of these scenarios can be found on 

Figure 6.7.  

 

The model house in the form of a two bedroom house was produced in order to 

demonstrate a more practical scenario in quantifying the transportation energy 

embodied from the manufacturing factory to the site.  

 

The model house was set to give comparison in the significance of embodied transport 

energy per FU if transport load dependent fully on the number of house to be developed 

on site and to justify the difference in embodied transport energy based on the worst 

case scenario when made to order were necessary and where means of transport 

carrying load throughout forest to site stage are equal to the number of house needed in 

a particular development.. 
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In order to quantify the transport energy of an open wall panelling unit in greater detail, 

a two bedroom terrace house has been set within this research as a typical model house.  

The decision to choose two bedroom terraced house for this research comes from the 

consideration of the highest demand and need to supply certain size and type of 

affordable housing properties to tackle the increase in population especially in the South 

East England area, where the intense housing pressure lies. It was also based on the 

most preferred type of house currently desired and required for the new development 

[(Craine and Mason (2006) and Housing Strategy Team (2005)]. 

  

In addition to that, terrace house type is chosen as the model house due to the growing 

preference compared to other type of housings as it has the ability to be built in a dense 

area, where easy access to amenities would lead to a more sustainable way in reducing 

the need to use private transportation (Blamey, 2006), hence ensuring the reduction of 

carbon footprint.  

 

Figure 6.8 shows the layout of the model home used in this research as a two bedroom 

end of terrace house designed for single family with four person occupancy. For further 

details of the house plan, please refer to Appendix E. 
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Figure 6.8  Floor plan of the studied home (in mm). This drawing is for illustrative purposes 
only and not to be scaled. 
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Described earlier, the FU employed in this model house is in the form of a prefabricated 

timber open wall panel system, each with a given dimension of 3.6m width x 2.4m 

height. Figure 6.9 and 6.10 shown and underlined number of internal and external wall 

panels needed for the studied home. The blue colour represents one panel with the 

dimension of 3.6m width x 2.4m height, and the yellow colour represents ½ panel, with 

the dimension of 1.2m x 2.4m height. 

 

 

Figure 6.9  Estimated number of internal wall panels needed for the two bedroom studied 
house 
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Figure 6.10 Estimated number of external walls panels needed for the two bedroom studied home 

 

From the estimation on Figure 6.9 and 6.10 above, the amount of external walls for the 

two storey two bedroom end of terrace house used as the studied house were 18 panels 

with additional amount of 6 panels needed for internal walls, bringing a total of 24 

panels needed for 1 house. Further details of the calculation can be found on Appendix 

F. 

 

As referred to earlier, this research concentrates on prefabricated open wall panel which 

consists of 7 number of vertical studs measuring 38 x 89 x 2400mm (S24), 2 number of 

horizontal studs measuring 38 x 89 x 3600mm (S36) and 3 conifer plywood with 

thickness of 12mm measuring 1200 x 2400mm in width and height. With the studied 

home needing 24 panels, the amount of studs and plywood required for the wall panel 

systems used to construct the whole house are as follows: 

• 168 number of S24 

• 48 number of S36 

• 72 number of 12mm thickness plywood. 
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Assuming that the transport load from cradle to assembly factory was based on full load 

and the transport load from assembly factory to site was based on a development which 

only require one house (an equivalent of 24 panels), the breakdown of transport energy 

on each stage from the forest to site were as described in Table 6.4 below: 

 

Table 6.4 The quantification of embodied transport energy (MJ/panel) based on one house 
development.  

 

From Table 6.3 above, a bar chart as seen on Fig 6.11 below was produced to compare 

the data per transport stages. As illustrated the shipping transportation to haul several 

number of FEU containing the timber materials in the form of S60 and plywood has the 

lowest transport energy embodied both per S60 and plywood as well as its equivalent 

transport energy per panel. 

 

Stages TE per S60 TE per S24 TE per S36 TE per plywood TE per panel 

 (MJ/S60) (MJ/S24) (MJ/S36) (MJ/plywood) (MJ/panel) 

Forest to Sawmill 1.32 0.53 0.79 22.7 73.5 

Sawmill to Port A 0.92 0.37 0.55 3.55 14.33 

Port A to Port B 1.02 – 2.04 0.41 – 0.82 0.61 – 1.23 1.83 – 3.68 9.56 – 19.21 

Port B to Factory 0.31 – 1.14 0.13 – 0.46 0.19 – 0.68 1.20 – 4.39 4.85-17.74 

Factory to Site     67.7 – 135.3 
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Figure 6.11 Transport energy per stage based on one house development 

 

It is apparent that the highest transport energy equivalent to one panel occurs at the 

beginning and the end of the cradle to site stages. The site stage, which signified the 

part when panels for one house development were transported as the finished product 

from the factory to site using 40 tonne articulated lorry, has been illustrated as 

contributing to the highest transport energy consumption throughout the cradle to site 

phase.  

 

This result might be explained by the fact that a one house development needed only 24 

wall panels, which is only 15% of the amount of panels that can be transported on a 

40tonne lorry from the factory to site which triggered 6.5 times more transport energy 

consumption compared to a 40tonne lorry transporting open wall panels on a full load 

from the factory to the development site. Similar to quantification done earlier in this 

chapter, the high energy consumption that taken place during the cradle site were 

caused by the less equivalent amount of plywood sheet and S60 studs that were able to 

be produced from the logs that was fully loaded onto the 60 tonne lorry.  
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Compared to the amount of equivalent plywood and S60 studs that were transported 

during the sawmill to factory gate, only an equivalent of 1861 number of S60 studs and 

108 sheets of plywood were transported at the cradle to sawmill stage. This is around 

56% and a sheer 13% of the amount of S60 and plywood sheet transported on the fully 

loaded 40 tonne lorry from both of the sawmills to the Goteborg Port in Sweden.  

 

Figure 6.12 below shows the analysis of the total transport energy embodied in a one 

house development. 

 

Figure 6.12  Cumulative Transport Energy per panel for 1 house 

 

Illustrated in Figure 6.12 is the cumulative transport energy based on shortest, average 

and longest possible distance. Based on the graph, the total transport energy per panel 

for 1 house is 0.230 GJ/panel on the average distance, ±  0.047GJ/panel. Further details 

can be found in Appendix G. 

 

In terms of transport energy per panel from factory to site stage, to achieve the lowest 

transport energy per panel, it is necessary to transport the maximum possible load 

allowed per 40 tonne lorry. As presented in Figure 6.13 below, to achieve the best 
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minimum transport energy per panel, a 40 tonne lorry has to transport a maximum of 6 

½ house (an equivalent of 157 panels).  

 

 

Figure 6.13  Range of total embodied transport energy value per lorry from factory to site 
based on the maximum, average and shortest possible distance. 

 

Transporting just one panel to site is illustrated as the worst case scenario when a 

replacement panel needed to be sent to site. Even though it is highly improbable, the bar 

chart on Figure 6.15 demonstrates that transporting just one panel to site will result in 

almost 160 times more transport energy consumption compared to a full load transport. 

 

The quantification done in this research so far was based on the assumption that all the 

transport mode used throughout the cradle to factory stage were carrying full load. It 

was assumed that the excess transport load was kept in the factory for future use. Figure 

6.14 below, on the other hand, shows the variations initiated based on average distances 

if the transport mode only hauling the amount of timber materials equivalent to the one 

needed per development from the cradle to site gate. 
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Figure 6.14  (Above) Comparison of cumulative transport energy per stages to transport 1 
house. (Below) Comparison of cumulative transport energy per stages to transport 5 houses. 

 

The first graph illustrated on Figure 6.14 (above) illustrates a comparison of cumulative 

transport energy for one house development based on cradle to site full load transport 

against cradle to site made to order scenario. The second graph (illustrated below it) 
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shows a comparison of cumulative transport energy for five house development to 

compare the full load transport against made to order scenario.  

 

Based on the one house development, there was a significant difference of 

0.651GJ/panel if made to order scenario were chosen instead of full load transport 

method. The difference decreases to 0.097GJ/panel at the five house development. The 

graph indicated the point that the higher the number of house production per 

development is, the lesser the total transport energy per panel will be. Further details 

can be found in Appendix G and H. 

 

Despite the huge difference in cumulative transport energy per panel between fully 

loaded transport mode and transport based on made to order scenario for a development 

which contain only one house, it can be seen on Figure 6.14 that the difference was 

narrowed down in transporting 5 houses. In this case, it can be explained that while 

fully loaded transport mode is still remain the lowest, the higher the demand for housing 

supply per development, the lower its transportation energy embodied will be.  

 

An analysis was carried out in this research study to investigate how the total 

transportation energy per given functional unit may differ according to number of house 

supplied and constructed per development. This study used an assumption that the 

amount of wall panels transported to site is equal and direct throughout the cradle to site 

stages, which means that none were stored in the sawmills, manufacturing factory or 

any other holding depots. 
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Figure 6.15 shows the result of the analysis which illustrates the range of cumulative 

transport energy per panel based on made to order scenario on the average distance. The 

graphs demonstrates the total transport energy per given functional unit in a 

development ranges between one to 100 houses development. 

 

 

Figure 6.15 Cumulative transport energy per panel based on “made to order” – for average 
distance per stage. 

 

As the graph illustrates the higher the demand of houses per development is, the lower 

the total transport energy per panel will be. The higher the number of houses demand 

per development also means a lesser difference in transportation energy per stages for 

the given functional unit. 
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Table 6.5 and 6.6 illustrates how transport energy per panel may differ based on one 

panel transport, number of house per development, and based on made to order 

scenario. 

Table 6.5 Transport energy based on full load (GJ/panel), for different housing development 
quantity. 

Stages 1 panel 1 house 5 houses 10 houses 50 houses 100 houses 

Forest to Sawmill 0.08133 0.08133 0.08133 0.08133 0.08133 0.08133 

Sawmill to Goteborg 

Port 0.01823 0.01823 0.01823 0.01823 0.01823 0.01823 

Goteborg Port to UK 

Port 0.01438 0.01438 0.01438 0.01438 0.01438 0.01438 

UK Port to Factory 0.01437 0.01437 0.01437 0.01437 0.01437 0.01437 

Factory to Site 2.43626 0.10151 0.0203 0.0203 0.0203 0.0203 

Total Transport Energy 

(GJ/panel) 

2.57 

 

0.23 

 

0.149 

 

0.1486 

 

0.1486 

 

0.1486 

 

 
Table 6.6 Transport energy based on partial load scenario (GJ/panel)  

Stages 1 panel 1 house 5 houses 10 houses 50 houses 100 houses 

Forest to Sawmill 4.27045 0.29117 0.10353 0.08573 0.08347 0.08234 

Sawmill to Goteborg 

Port 6.02975 0.25124 0.05025 0.02512 0.02147 0.01987 

Goteborg Port to UK 

Port 0.01404 0.01404 0.01404 0.01404 0.01404 0.01404 

UK Port to Factory 4.75361 0.19807 0.03961 0.01981 0.01693 0.01567 

Factory to Site 1.91521 0.0798 0.01596 0.01596 0.01596 0.01596 

Total Transport Energy 

(GJ/panel) 16.98 0.834 0.2234 0.1607 0.1519 0.1479 
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The results obtained from Table 6.4 and 6.5 above shows that for full load transport, 

assuming that all stages is based on direct transportation, has the range for transport 

energy per panel lower compared to made to order scenario. Full load transport has its 

transport energy per panel vary between 0.14861GJ/panel to 2.56457GJ/panel whereas 

for made to order scenario, transport energy per panel may vary between 

0.147873GJ/panel to 16.98305 GJ/panel.  

 

However, this research has acknowledged the difficulty in direct comparison between 

the fully loaded cumulative transport energy to those based on made to order. It is 

understood that the amount of timber materials transported per stages depends highly on 

the amount of timber materials available and stored on the sawmill and manufacturing 

factory before it is used to construct certain number of open wall panelling for a 

particular house development. It will also depend on the market demand of the 

particular size of plywood and studs. 

 

This research also concludes that even though the energy requirement per panel per 

studied house has been established, it is not possible to multiply this transportation 

energy per panel as one lorry will be able to transport more than one house. Until it 

reaches the maximum loading, its energy consumption per panel will be different and 

this will also greatly depends on the number of houses needed to be constructed per 

development.  

 

6.4 Summary and Discussion 

6.4.1 Energy comparison between embodied transport energy and 

operational energy 

Table 6.7 below shows the various calculated energy consumed on each process within 

the forest to site stage. Some of the energy consumption figures such as the timber 

logging as well as the plywood and studs production were obtained based on published 

data of which then converted further to represent the energy consumed per FU. The 

calculated figure of the operational stage, on the other hand, was based on an 

assumption that the site development is located in South East of England with degree 
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days data taken based on the current year 2007. The transport energy figure compared 

here was based on three different situations: the first of which represents the worst case 

scenario where means of transport were carrying partial load throughout the journey 

which is an equivalent to one panel, the second  which represents the transport energy 

for one house based on the full loaded means of transport throughout the forest to 

factory stage and the third of which represents the transport energy of fully loaded 

means of transport throughout the forest to site stage. 

 

Table 6.7 Comparison of energy consumption from the forest to operational stage 

  MJ/Panel GJ/Panel 

Timber logging 132.7 0.13 

Manufacturing energy for plywood and kiln dried studs 4842.4 4.84 

Manufacturing energy for plywood and air dried studs 4784.12 4.78 

Total TE based on full load transport throughout (Scenario 1) 149 0.15 

Total TE for one house development (Scenario 2) 230 0.23 

Total TE for one panel throughout (Scenario 3) 16980 16.98 

Operational energy over the 60 years lifetime 79994.73 80 

Annual operational energy 1333.246 1.333246 
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Comparison graphs were generated based on the figure established in Table 6.7 above. 

Figure 6.16 below illustrates energy comparison that includes operational energy based 

on the 60 years of the building lifetime. The graph revealed that the biggest energy 

consumption is on the operational energy consumed throughout the 60 years of the 

building lifetime. Nevertheless, because most of energy consumed during the first year 

of building life, the comparison of the energy consumed to the 60 years life of building 

could not, therefore, be considered as accurate. 

 

 
Figure 6.16 Energy comparison including the 60 years of the building’s lifetime operational energy 

GJ/panel 
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Figure 6.17 Energy comparisons excluding the 60 years of the building’s lifetime operational 
energy 

 

Figure 6.17, on the other hand, illustrates a comparison of energy consumption based on 

an annual operational energy. Based on the first year of the building lifetime, this graph 

demonstrates that the highest energy consumption occur in the worst case scenario as 

set within Scenario 3, with transport arrangement throughout the forest to site carries 

partial load that is an equivalent to one panel. This shows that transport energy plays an 

important role throughout the life cycle of prefabricated house. Careful consideration 

needs to be taken into account to make sure that means of transport will always carry 

full load and to ensure mass production rather than supply based on “made to order” 

request. 

 

6.4.2 Variables affecting the transport energy consumption 

Distances and the loading capacity per means of transport were considered to be the 

significance factors that mostly contribute to the output variability. The calorific values, 

fuel density and fuel consumption for both road and sea transport used within this 

research were drawn from published data sources and therefore their usage in the 

mathematical model to generate the embodied transport energy per functional unit could 

be relied on for the purpose of this investigation. Assuming that the range of distances 

GJ/panel 
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used in this research remains the same, the impact on the model’s output was found to 

be dependent highly on the loading per stage.  

 

Three scenarios were established within this research earlier in the chapter. The first 

scenario represents the embodied transport energy per functional unit if full load 

transport were accommodated throughout the forest to site stage. The second situation 

was established based on a particular model house to signify the embodied transport 

energy consumed per functional unit if the means of transport were carrying full load up 

to the point of assembly factory but where the loading transport from the factory to site 

were based on the number of house required on site. When analysis was based on the 

particular model house, the flow output shows a high dependency of embodied transport 

energy per FU to the number of house required per site development. 

 

For the first scenario, some of the figures presented earlier on table 6.1 displayed the 

minimum and maximum values for each of the stages depending on the shortest and 

longest possible distances gathered during the primary data collection which ranges 

between a total of 122-153MJ/panel.  Analysis carried out based on this scenario were 

aimed to provide an idea of ranges of embodied transport energy to be expected with 

varying distance characteristics and when the means of transport were assumed to carry 

full load at all the stages from the forest to site.  

 

The scenario set above provided the best possible transportation energy value for the 

given functional unit. Fully loaded lorry was noted to be able to transport around six 

houses per journey from the assembly factory to site. There is a case where a full load 

transport is not always possible especially at the assembly factory to site stage. This has 

driven the need to produce further case study to draw out the significance of it. Figures 

produced and presented on table 6.2 shows the total embodied transport energy for a 

case where there is only one house to be developed per site. Table 6.4 also shows that, 

for a one house development, there was about 0.604GJ/panel embodied transport energy 

difference just by having the loading capacity which is equivalent to one house from the 

forest to site compared to full load transport from forest to assembly factory.  
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The third scenario was based on the worst case scenario where it takes into 

consideration  the possible low supply of plywood and studs for the particular open wall 

panelling unit assessed within this research study and hence the associated materials 

needed to be transported direct from the forest to the site. Assuming that this is the 

worst case scenario, transporting just one panel for replacement will consumed a total 

embodied transport energy of 16.98GJ/panel, whereas the for a one house development, 

there is a possible of 0.834GJ/panel embodied transport energy consumption. This is an 

additional of 16.831GJ/panel and 0.685 GJ/panel respectively compared to the means of 

transport carrying full load from forest to site. This scenario represents the significance 

of embodied transport energy when there is low supply of structural timber material to 

construct the open wall panelling unit.  
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CHAPTER 7: CONCLUSION AND FUTURE WORK 

7.1 Introduction 

Chapter seven is the concluding chapter, where the work accomplished through this 

research is reviewed. It started by firstly providing the summary of the research, 

followed by the examining the achievement of each objectives and finally establishing 

the key findings of research. Finally, the overall conclusion is drawn along with 

recommendations for further work. 

 

7.2 The Research Process and Outcomes 

This research aims to assess the embodied transport energy consumption within 

prefabricated timber wall panelling unit in order to provide better understanding on the 

effect of transport and loading pattern to the overall transport energy of a particular 

prefabricated element. The first objective in pursuing this aim is to review the 

technological advancement of prefabricated construction and its current status 

particularly within the UK construction industry. The review of the technological 

advancement and current available research in Chapter two revealed various benefits in 

the use of prefabricated construction techniques. Nevertheless, research on this 

construction method in the UK is currently limited. Attention was drawn to the lack of 

environmental studies within prefabricated construction techniques hence the 

importance of further exploration within this research area. 

 

The second objective was to investigate and identify the major environmental factors 

within prefabricated timber wall element. The qualitative review suggested that the 

major environmental contributors within prefabricated construction techniques are 

material resources consumption, energy and transportation. 

 

Transport energy is considered to be the most important environmental impact 

contributor among other fossil fuel dependent energy consumption within the 

construction industry. This is particularly significant within prefabricated timber wall 

construction due to the necessity and requirement of movement of prefabricated 
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components such as timber (which are mainly obtainable from European sources) as 

well the lack of off-site manufacturing plants.  

 

The factory assembled components also requires the transport of some additional 

volumes of air particular for volumetric system which gives rise to the possibility of a 

more frequent transportation to site resulting in a possibility of a higher embodied 

transport energy consumption. 

 

The third objective of the research was to develop a process flow model to evaluate the 

significance of embodied transport energy of prefabricated timber wall element. Data 

associated with the generation of the transport and material process flow model was 

gathered primarily through questionnaire of which being distributed to a number of 

TRADA accredited prefabricated timber manufacturer. 

 

The outcome of the questionnaire indicates prefabricated timber open wall panelling 

system as the most marketed prefabricated timber wall system in the UK. Questionnaire 

also reveals that most of the manufacturer tends to only involve one assembly factory 

and the average distance from a factory to site to be an average of 50-100 miles radius. 

But most importantly, the questionnaire also substantiates the high dependency on 

imported timber. The outcome of the questionnaire as the primary data has been used to 

define the boundaries and to act as a base to identify the components associated within 

the transport and material process flow model. 

 

The significance of embodied transport energy in accordance to the transport loading 

capacity within prefabricated timber wall element was then established based on the 

process flow model. First, a Functional Unit (FU) was identified as a reference unit in 

order to quantify the performance of the process flow model. The FU was based on the 

most common prefabricated timber frame system used in the UK.  In this case, the FU is 

defined as a 2.4 x 3.6m prefabricated timber open wall panelling and consists of seven 

numbers of studs that are 2.4m length (S24), two numbers of studs that are 3.6m length 

(S36) and three number of 12mm plywood sheet.  
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A set of mathematical equations were then formulated based on this FU. These 

mathematical equations were designed to represent the embodied transport energy per 

FU. The development of the mathematical equations was described further in Chapter 

five and the validation of the process flow model against the generated mathematical 

equations was described in Chapter six. When in use, the process flow model proven to 

function successfully. The effect on differing transport and loading patterns also provide 

further understanding on how the transport embodied energy may differ. 

 

Results generated from the validation were based on three different scenarios and 

analysed to underline the significance of embodied transport energy in accordance to 

the differing transport loading capacity. This specific process flow model is then used to 

illustrate the significance of embodied transport energy based on the given FU. The 

significance of embodied transport energy of the given FU was carried out based on 

three different scenarios. The first was presented with an assumption that vehicles were 

fully loaded throughout the journey, whereas the second and third scenarios were based 

on an assumption where a particular development will require certain amount of two 

bedroom house. The second scenario is based on the assumption that transport from 

forest to the assembly factory is fully loaded whilst the transport from the assembly 

factory to site depends on the quantity of two bedroom house on construction per 

development. The third and worst case scenario where demand of prefabricated timber 

frame house is assumed to be low and represents the embodied transport energy per FU 

when partial-load transport is incorporated from the forest to site and of which are 

dependent on the number of two bedroom house required per development. This has 

been summarised further in table 7.1 

 

Table 7.1 Three type of scenarios used within research 

 Load from Forest to Assembly 

Factory 

Load from Assembly Factory to Site 

1st case Full Full 

2nd case Full Partial 

3rd case Partial Partial 
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From the evaluation of embodied transport energy based on the first case scenario, it is 

clear that the highest transport energy consumed per FU occurs at the forest to sawmill 

stage and that it contributes to 60% of the total embodied transport energy. It is believed 

that at this stage, the high transport energy figure per FU was due to high wastage factor 

during the conversion of logs to plywood.  

 

Further evaluation and analysis was then carried out based on the second scenario and 

of which a two bedroom house was presented as the model house. Result shows that 

transport energy for a one house development is 6.5 times higher than transport energy 

of a fully loaded transport at the factory to site stage alone.  

 

The third scenario was based on the worst case scenario where it takes into 

consideration of the possible low supply of plywood and studs required to construct 

open wall panelling units which resulted in the need to transport the associated timber 

material based on “made to order” scenario. The worst case scenario evaluation shows 

that transporting an equivalent of one panel per transport from the forest to site will 

consume a total embodied transport energy of 16.98GJ/panel, which is an additional of 

16.83 GJ/panel compared to transport carrying full load from the forest to site stage. 

The third case scenario also shows total embodied transport energy for one house 

development which is an equivalent to 0.834GJ/panel (about 0.685 GJ/panel more than 

transport carrying full load from the forest to site). 

 

Results generated based on the three different scenarios were then evaluated against a 

range of energy consumed at the manufacturing, sawmilling and logging stages to 

demonstrate the significance of transport energy to other embodied energy stages. 

 

When comparing the embodied transport energy to other processes that also contributes 

to the total embodied energy of a typical prefabricated timber wall panelling unit, it was 

noted that the manufacturing processes of studs and plywood tends to be much higher 

than the total embodied transport energy figures generated within this research except 

for the worst case scenario where it represents the total embodied transport energy for 
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transport load that is equivalent to one panel throughout the forest to site stage. The 

evaluation for this worst case scenario indicates that total embodied transport energy for 

an equivalent of one panel loading transport can be four times higher compared to 

plywood and studs manufacturing energy. 

 

7.3 Conclusion and Outcomes of Research 

With prefabricated housing considered to be reasonably new to the market, research 

carried out has so far been limited and incomplete, hence its impact on the environment 

merit investigation. Interest in this research lies specifically at examining and evaluating 

the significance of embodied transport energy within a generic prefabricated timber 

wall panelling unit. While it is understood that timber is known to have lower embodied 

energy consumption compared to other building material such as concrete and steel, 

timbers used by the UK construction industry tends to be imported from other countries. 

This further increases the embodied transport energy consumption within prefabricated 

timber frame house and highlights the importance of concentrating into this research 

area in greater detail. 

 

This research aims to determine the embodied transport energy consumption associated 

within prefabricated timber wall panelling unit by means of process flow analysis. The 

processes involved were selected based on partial LCA approach. Due to the 

complexity, a systematic process flow model was generated to ensure transparency of 

the method applied in analysing the embodied transport energy associated within it.   

 

Current literature review indicates that modern prefabricated construction techniques in 

the UK is at the early stage, hence there were very limited research available - 

especially those that focuses on its environmental implication. 

 

Current literature review indicates that there have been various types of prefabricated 

timber frame construction associated with UK housing construction. Prefabricated 

timber wall element is adopted as a reference feature in this research as this type of wall 

construction is considered to be an alternative to traditional masonry wall construction. 
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Energy, transport and material resources were recognised as the major environmental 

impact factors associated with prefabricated timber wall. The divergence in 

prefabricated construction transportation pattern compared to traditional on site 

construction tightened the need to assess embodied transport energy of building 

constructed using prefabricated timber wall panel in order to enhance greater 

understanding of its environmental performance. 

 

The complexity in evaluating the significance of embodied transport energy within 

prefabricated timber wall element necessitates the need to generate a generic process 

flow model. The components associated within this generic forest to site process flow 

model were identified with the aid of primary and secondary data collection. The 

generic process flow model was developed based on both material and transport process 

flow. This established process flow model was then evaluated further with the aid of 

mathematical formulae.  

 

As demonstrated throughout the present study, the process flow analysis concluded that 

it is more environmentally friendly to deploy prefabricated timber frame construction 

into a large development where vehicles tend to carry full load. This study has also 

shown that there is a difference of 16.83 GJ/panel in the overall embodied transport 

energy per panel just by differing the loading amount from full load to partial load 

throughout the forest to site stage. Results indicate that transport and loading pattern are 

the significant factors contributing to transport energy associated with prefabricated 

element in general and prefabricated timber wall panelling in particular. Through this 

process flow model analysis, it can also be concluded that issue of transport energy is 

not simplistic and must not be overlooked especially when imported materials were 

used. 

 

The developed process flow model analysis has proven to be an effective platform to 

provide a better understanding on the significance of embodied energy associated with 

the set variables. A robust process flow model has been developed based on the primary 

data obtained from UK existing practice. The process flow analysis was carried out in a 
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clear and concise way for other professional to pick up and advance the environmental 

analysis in this area further and can also be used to aid in providing a better 

environmental decision making. In addition to that, the process flow model in this 

research can be served as a basis for future studies and may be applied to other 

prefabricated house system elsewhere in the world.  

 

Given the magnitude of the implication for the environment, embodied transport energy 

of a prefabricated timber wall panelling unit used within prefabricated housing 

construction remains an issue of importance that needed to be explored further.  

 

7.4 Recommendations for further work 

This research has developed a system to enable the analysis of embodied transport 

energy consumption within prefabricated timber wall panelling unit in particular. The 

strength of the developed process flow model is in its flexibility to be used and adapted 

to a variety of situation which can be used to establish optimum outcome. The flow 

model was also designed and developed for use on site specific scenario and can be 

used to specific material, suppliers and efficiency of distribution and delivery route. It 

has also been identified as a valuable approach for improving environmental 

understanding by way of transport and loading pattern analysis. However, the full 

potential of the methodology has yet to be realised. It is recognised that although model 

and method has been applied to current practise, there may be a need for this process 

flow model to be further validated by using further in-depth case studies in a variety of 

transport patterns, locations and differing prefabricated construction element. Further 

research and development is therefore necessary of which are proposed as follow: 

 

7.4.1 Complete environmental impact life cycle analysis 

In the longer term, a full UK specific LCA procedure which also includes the end of life 

stage should be developed. Prefabrication method principles such as Design for 

Assembly” (DfA) and Design for Deconstruction (DfD) offer opportunities to extend 

building life spans and maximise the embodied energy invested. It was therefore 
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important to investigate the possible amount of energy saved if this method is 

incorporated onto a life cycle assessment. 

 

The lack of published research examining the LCA of prefabricated housing in the UK 

meant that there is further need in developing a comparison study of the various 

materials and types used within prefabricated housing construction. The assessment 

framework developed and used in this research would provide a comprehensive basis 

for gathering the range of data necessary and for quantifying the embodied transport 

energy of various prefabricated house construction types. 

 

7.4.2 Comparison between transport energy of prefab timber transport 

energy to traditional masonry house 

Transport energy for various materials varies widely depending on the source of raw 

materials, transport load, and location of supplier. Unfortunately due to limited research 

available, further research needed to be carried out in order to compare the transport 

energy of prefabricated timber wall panelling unit to a traditional masonry wall.  

 

7.4.3 The inclusion of ancillary material 

Ancillary material such as nails, screws and other connectors is highest for timber panel 

construction. It is therefore of importance to take this into consideration at the future 

work especially when comparing a prefabricated timber wall element to other type such 

as concrete wall panelling. 

 

7.4.4 Development of automated mathematical model for a wider 

implementation 

Chapter 5 describes the complex relationships between material consumption, means of 

transport and its loading capacity as well as geographical areas. It explains how loading 

capacity per means of transport and the demand for prefabricated timber open wall 

panelling unit having a direct impact on the overall total embodied transport energy of 
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the particular prefabricated timber system. This relationship is explained in Chapter 5 

and quantified further in Chapter 6. Nevertheless, the material flow and quantification 

established within this research is unique to that of open wall panelling unit and the 

choice of transport mode, as well as the geographical location set within the transport 

processes is unique to those open wall panelling unit produced by UK prefabricated 

timber frame house manufacturer.  

 

A further development of mathematical model that can then be used for wider 

implementation is important. The anticipated tool would be software based and would 

follow the structure of the system framework and of which enabling the calculation of 

transport energy based on identified variables. 

 

It was noted earlier in Chapter 1 that prefabricated system can be applied for various 

reason. In the UK, prefabricated construction used with automation can be implemented 

to tackle the lack of skilled labour. Whereas in developing country such as Indonesia, 

prefabricated construction can be implemented to provide new job opportunities and 

faster as well as better affordable housing supply. 

  

The use of prefabricated timber techniques for housing construction in Indonesia, for 

example, seems to be beneficial at first glance due to the country’s local timber source. 

Nevertheless its uses requires further evaluation in order to make sure that further strain 

isn’t put onto the already depleting timber materials source in country. Rapid 

deforestation from the late 19th Century (in the form of slash and burn activities as well 

as illegal logging) in Indonesia were mainly caused by poor management. These has 

inevitably triggered not only an extensive air pollution, but also causing landslides and 

flash floods as well as disturbance in ground water level thus triggering the depletion of 

local timber resources in Indonesia. It would be interesting to assess the effects of 

prefabricated timber frame construction for house in Indonesia.  

 

It is understood that the use of prefabricated construction techniques to accommodate 

housing demand in Indonesia will generate a different environmental impact compared 

to the UK. In Indonesia, the need for housing concentrates primarily in Jakarta as its 
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capital city, whereas most of Indonesian forestry are located on another islands such as 

Sumatra and Borneo where its road infrastructure are still undeveloped fully. This may 

cause a difference in embodied energy consumption due to the use of other alternative 

means of transport, varying distances, the diversion routes or the limitation in certain 

material resources. 

 

On that basis, it is noted that this research work could be extended further to improve 

the environmental knowledge in the use of other various types of prefabricated 

construction techniques for construction development in countries with different 

geography and socioeconomic background. These would establish a wider 

understanding to the causes and effects if certain types of prefabricated construction 

techniques were implemented in the UK and how it varied when it is being 

implemented in other countries with different socioeconomic and geographical 

background. 

 

7.4.5 Expansion of the existing questionnaire 

The questionnaire has been developed and compiled at the early stage of research and at 

the time when information of the life cycle of prefabricated element in the UK proven 

to be very limited. For future work, it is recommended to revise the questionnaire based 

on the knowledge that has been obtained through this research. 

 

7.4.6 Integration of the developed process flow model with Computer 

Aided Design (CAD) 

Design, technology and innovation play an important role in prefabricated construction 

and its element. Due to the inhomogeneous requirement and difficulties in incorporating 

design synthesis with qualitative information required within a particular LCA tool, it is 

understood that research concentrating in the integration of CAD and LCA software 

within the construction sector is very limited and many of them are still under 

development. It is believed that the integration of the developed process flow model 

with CAD will aid in providing an LCA decision making tool of which also taken into 

consideration the design, technology and innovation aspects. 
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7.4.7 Incorporate Multi-criteria Decision Analysis (MCDA) to the develop 

process flow model 

MCDA methods are becoming increasingly relevant in assessing issues related to 

environmental assessment of products and processes. Similar to other LCA 

methodology tools, data stored and analysed in this developed process flow model often 

precise and straightforward, in spite of a huge amount of uncertainty and imprecision 

related to data, models and human judgments on which they are based. Therefore the 

use of uncertainty modelling formalisms and the building of decision support 

frameworks allowing the efficient interpretation of the assessment results and data in an 

uncertain environment are highly needed. This area is identified to be a potential further 

work from this research. 

 

Finally, the main recommendation for future work from the present research is in 

providing a simple and user-friendly methodology that can be used to aid provide 

decision making within the construction industry. A series of real case studies approach 

will also provide a greater detailed results and sensitivity analysis of which can be used 

as a best practice benchmark. 
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APPENDIX A. TYPICAL EXTERNAL WALL CONSTRUCTION DETAILS FOR PREFABRICATED TIMBER FRAME HOUSE 
CONSTRUCTION 

Cavity side of panel to be located to provide 50mm min vented clear cavity between 

external leaf and sheathing 

treated s/w stud panels with insulation between studs, 500 gauge PE on internal face of 

panel and 10mm cement particle board on cavity side of panel 

a plasterboard for houses or 2 number plasterboards 

Bottom panel plate 

25mm batten zone 

6mm continuous bead of LaFarge intumescent acoustic sealant or equiv 

Floor construction to client details – supplied by client 

Foundation to clients details – supplied by client 

Stainless steel timber frame wall ties at max 375mm vertical and 600mm horizontal 

centres inclined away from sheathing so that slope is maintained following differential 

movement between masonry and timber frame –supplied by client 

3 course cavity tray to clients detail – supplied by client 

DPC to BS 743 or BBA approval min 150mm above external ground level – supplied 

by client 

CCP treated s/w sole plate 

Solid concrete commons number of to suit finished 

floor construction detail – supplied by client 
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APPENDIX B. PRIMARY DATA COLLECTION 

Appendix B1 Questionnaire design 

1. Name of Company 

___________________________________________________________________

_________________________________________________________________ 

 

2. Location of Company 

___________________________________________________________________

___________________________________________________________________

________________________________________________________________ 

 

3. Size of Company 

__________________________________________________________________ 

 

4. Location of factories (if it is on different location to the head office) 

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

____________________________________________________________ 

 

5. Type of timber frame prefabrication provided  

(please circled as appropriate) 

a. (panelling)   (Yes/No) 

b. (post and beam)  (Yes/No) 

c. (modular)  (Yes/No) 
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6. Type of timber used (please circle as appropriate) 

a. Softwood (Yes/No) 

b. Hardwood (Yes/No) 

c. Timber Species __________________________________________ 

d. Technical Specification if applicable  

(i.e. CLS 140mm x 38mm for external wall studs) 

__________________________________________________________ 

__________________________________________________________ 

 

7. Type of foundation used for the particular dwellings constructed (choose as 

appropriate) 

a. For Apartments 

i. Prefabricated Foundation Systems with the use of precast 

concrete piles (Yes/No) 

ii. Strip Foundations (Yes/No) 

iii. Pad Foundations (Yes/No) 

iv. Raft Foundations (Yes/No) 

v. Pile Foundations (Yes/No) 

b. For bungalows 

i. Prefabricated Foundation Systems with the use of precast 

concrete piles   (Yes/No) 

ii. Strip Foundations (Yes/No) 

iii. Pad Foundations (Yes/No) 

iv. Raft Foundations (Yes/No) 

v. Pile Foundations (Yes/No) 
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8. Amount of house/apartment unit per production 

(i.e equivalent to 3-5 manufacturing days per house or 1-2 manufacturing day per 

apartment unit) 

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

_______________________________________________________________ 

 

9. Amount of timber used per production (m3) (estimated) 

a. Between ________(m3) to ________m3 per house 

b. Between ________(m3) to _________m3 per apartment 

 

10. Where does the timber being harvested from 

a. If it’s from another country, please state the country and the town name 

_____________________________________________________________

_____________________________________________________________

__________________________________________________________ 

b. If it’s from the UK, please state the location 

_____________________________________________________________

_____________________________________________________________

__________________________________________________________ 
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11. Processes undergone from acquiring the raw timber material into structures 

ready for manufacturing and produced as the final product 

a. From the forest to sawmilling 

_____________________________________________________________

_____________________________________________________________

__________________________________________________________ 

b. From the sawmilling to factory(ies) 

_____________________________________________________________

_____________________________________________________________

__________________________________________________________ 

 

c. In the factory(ies) to produce final product 

(i.e. cross cut to length, cut ends treated with preservative, etc) 

_____________________________________________________________

_____________________________________________________________

_____________________________________________________________

_________________________________________________________ 

 

12. Location for each process stages 

a. From the forest to sawmilling 

_____________________________________________________________

_____________________________________________________________

__________________________________________________________ 

b. From the sawmilling to factory(ies) 

_____________________________________________________________

_____________________________________________________________

__________________________________________________________ 
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c. In the factory(ies) to produce final product 

(i.e. cross cut to length, cut ends treated with preservative, etc) 

_____________________________________________________________

_____________________________________________________________

_____________________________________________________________

_________________________________________________________ 

 

13. Routes, types of transport and average load of transportation used for each 

process stages 

a. Routes taken from timber sawmilling to factory(ies) and to the site 

assembly point 

_____________________________________________________________

_____________________________________________________________

_____________________________________________________________

_____________________________________________________________

_____________________________________________________________

_______________________________________________________ 

 

b. Types of transportation used from timber sawmilling to factory(ies) and 

to the site assembly point 

i. Light Good Vehicles (Yes/No) 

ii. Rigid HGVs  (Yes/No) 

iii. Articulated HGVs (Yes/No) 

 

c. Transport load for each process stages 

_____________________________________________________________

__________________________________________________________ 
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14. Please state (if there is any) whether your company have a policy of only dealing 

with local client or whether there is any distance limitation on project you have 

received from clients 

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

_____________________________________________________________ 



Appendix B 

169 

Appendix B2 List of the Participating Manufacturers 

 

Space 4 

Guildford Timber Frame 

Acacia Timber 

Thomas Mitchell Homes Ltd 

Timber Development Ltd 

Westframe 

Creative Estates 

Custom Homes 
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Appendix B3 Distances on each stages of the transportation flow from the forest to site gate. 
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APPENDIX C. THE QUANTIFICATION METHODOLOGY 
FOR MATERIAL FLOW ANALYSIS 

Appendix C1.0 - Definition 

Log = lg 

Panel = P 

Plywood = ply 

Studs = S 

 

S24 = 89 x 38 x 2400 studs 

S36 = 89 x 38 x 3600 studs 

S60 = 89 x 38 x 6000 studs 

 

1 panel = p = 7(S24) + 2 (S36) + 3 (ply) 

 

ρ of plywood conifer sheet with thick veneer = 460kg/m3 

ρ of stud = 450kg/m3 

For a 12mm thickness plywood sheet, weight/area ratio = 5.5kg/m2 

weight s24 3.65256 kg 
 s36 5.47884 kg 
 ply 0.1584 kg 
 1panel 37.0008 kg 
  0.037001 tonne 

m3 f pb = m3 solid volume including bark 

m3 f ub = m3 solid volume excluding bark 

 

1m3 f pb = 0.88m3 f ub 

1m3 of sawnwood = 2.1m3 f ub 

1m3 of plywood = 2.5m3 f ub 



Appendix C 

172 

Appendix C1.1 – Plywood 

Plywood, also known as an engineered wood, is defined as a type of engineered wood 

made from thin sheets of wood veneer, called plies or veneers. The layers are glued 

together, each with its grain at right angles to adjacent layers for greater strength. There 

are usually an odd number of plies, as the symmetry makes the board less prone to 

warping. The grain on the outside surfaces runs in the same direction and the plies are 

bonded under heat and pressure with strong adhesives such as phenol formaldehyde 

resin, making plywood a type of composite material. 

 

The outer layers of plywood are known respectively as the face and the back. The face 

is the surface that is to be used or seen, while the back remains unused or hidden. The 

centre layer is known as the core. In plywood with five or more plies, the inter-mediate 

layers are known as the crossbands. The weight of plywood panel is influenced by two 

main factors – the panel compression during the manufacturing process and the wood 

species. Due to variation between brands, the weight of plywood is not constantly 

proportional to thickness. Table 4 below shows the general amount of plies required for 

particular nominal plywood thickness necessitated. 

 

Table 4.4  Number of plies per required plywood thicknesses and its weight/m2  

(TRADA, 2007) 

Thickness (mm) Number of plies Weight/m2 

9 3  

12 4 5.5 

15 5 6.9 

18 6 8.3 

21 7 9.7 

24 8 11.0 

27 9 12.4 

30 10 13.8 
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Typical weights taken from Finnforest database (shown on Table 4.5) are divided into 

four different categories: 

• Birch: which consists of birch veneer throughout the construction 

• Combi: two birch veneers on each face and alternate inner veneers of conifer 

and birch 

• Combi mirror: one birch veneer on each face and alternate inner veneers of 

conifer and birch 

• Conifer: Conifer veneers throughout the construction. Face veneers of spruce or 

occasionally pine. 

 

Table 4.5 Weight (kg/m2) of various sheet of plywood 

Plywood Birch Combi, Combi Mirror Conifer  

(thin veneers) 

Conifer  

(thick veneers) 

Face Birch Birch Conifer Conifer 

Core Birch Birch and conifer Conifer Conifer 

Nominal 

thicknesses 

(mm) 

No. of 

plies 

Weight 

kg/m2 

No. of 

plies 

Weight 

kg/m2 

No. of 

plies 

Weight 

kg/m2 

No. of 

plies 

Weight 

kg/m2 

6.5 5 4.4 5 4.0 5 3.4   

9 7 6.1 7 5.6 7 4.7 3 4.1 

12 9 8.2 9 7.4 9 6.2 5/4 5.5 

 

Lighter panel is always opted first. For the builder, a lighter panel means an easier 

handling requirement and installation. For the distributor, the heavier product will cost 

more to ship hence the lighter it is, the cheaper it will be.  
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Plywood weight is dependent highly on the type of wood used as its raw material*. The 

nominal thickness of birch and conifer veneer is 1.4mm and thick conifers veneers 

range from 2.0-3.2 mm thickness. 

 

One example is spruce plywood production based on Finnforest products, constructed 

from 3mm thick structural veneer thickness, which will have different amount of 

plywood needed depending on the required nominal thicknesses, ways in which it was 

packaged for the distribution and the required panel sizes. Table 4.5 below shows the 

variety of plies needed per required plywood thicknesses and its weight per m2. 

 

                                                

* Density of Birch 680kg/m3, combi 620kg/m3, conifer (thin veneers) 520 kg/m3 and conifer (thick 

veneer) 460kg/m3. 
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Appendix C2.0 – Material quantification methodology from the forest 

to site 

Appendix C2.1 - Material quantification from forest to sawmills 

Assuming that maximum allowable net load per 60 tonne lorry = 40 tonne = 40,000kg 

 

And if ρ of spruce = 450kg/m3 

 

Total volume of logs per 60 tonne lorry  

= 
ρ

netload  

= 3/450
000,40

mkg
kg  

= 88.9m3 f pb 

 

Due to de-barking in sawmill the total volume of logs per 60tonne lorry will be 

converted onto an equivalent volume of logs excluding the barks. 

= total volume of logs per 60 tonne lorry un-barked x 0.88 

= 88.9 x 0.88 

= 78.2 m3 f ub 

 

STUDS  

If volume of S60  

= 0.089 x 0.038 x 6 

= 0.02m3 

 

Amount of barked logs that a S60 will require 

= 0.02 m3 x 2.1 m3 f ub 
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= 0.042m3 f ub 

 

Therefore, the quantity of S60 if fully loaded onto a 60 tonne lorry 

= 
042.0

2.78  

= 1861 number of S60 

 

PLYWOOD 

If weight/area ratio of a 12mm thickness plywood sheet = 5.5kg/m2 

The weight of 12mm thickness plywood sheet 

= 5.5 x 12.2 x 2.4 

= 16.1kg 

 

If volume of the plywood sheet 

= 12.2 x 2.4 x 0.01 

= 0.288m3, 

 

The amount of barked logs that the sheet of plywood requires 

= 0.288 x 2.5 

= 0.72 m3f ub 

 

The quantity of plywood sheet able to be transported per 60 tonne lorry 

= 
72.0
2.78  

= 108 plywood sheet 



Appendix C 

177 

Appendix C2.2 – Material quantification from Sawmills to Goteborg 

Port and from nearest UK port to Factory 

This research has used an assumption that S60s and plywood sheets were transported 

from the sawn wood and plywood sawmill to Goteborg Port and from the nearest UK 

port to the factory in a 40feet containers (also known as FEU container) and on a 40 

tonne GWV lorry. 

 

The size and dimension of the FEU used in this research were based on the Hapag 

Lloyd’s 40ft FEU standard container (Hapag Lloyd, 2006) as seen below: 

 

Figure C1.0 40’ (FEU) Standard Container from Hapag-Lloyd 
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Table C1.0 General details of the FEU standard container from Hapag Lloyd 

 

 

STUDS  

 

Figure C1.1 Estimating the quantity of S60 studs in an FEU container 

 

Based on the Hapag Lloyd FEU standard container and with the use of rough estimation 

as seen earlier in Figure 4.8, an estimated of 3276 number of S60 can be carried per 

FEU container from the sawn wood sawmill to the Goteborg port. 

 

If 1FEU  3276 number of S60 studs, 

Wood density = 450kg/m3, 

Weight per S60 = 450 x (0.038 x 0.089 x 6) = 9kg 

Weight per FEU = 3276 x 9 = 29,812kg = 29.8 tonne (≈30 tonne) 
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PLYWOOD 

 

Figure C1.2 Estimating the quantity of plywood sheet in an FEU container 

 

If each veneer assumed to be 3mm thick and each plywood thickness is 12mm, the 

number of veneer per 12mm thickness plywood will be 4. 

 

Assuming that there are 85 number of 12mm plywood sheet per packaging and 10 

packaging per FEU container, there is a possible of 850 number of 12mm thick 

plywood sheets on every FEU container being carried from the plywood sawmill to the 

Goteborg Port. 

 

If 1 FEU = 850 number of 12mm plywood sheets, 

And if weight per 1220 x 2400mm plywood sheet = 5.5kg/m2 x 2.4 x 1.2 = 16kg 

Weight per FEU = 860 x 16 = 13,600kg = 13.6 tonne (≈14 tonne) 
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Appendix C2.3 – Material quantification from Goteborg port to a 

designated UK port 

During shipping, a common measure of freight volume is TEU† which is the volume 

occupied by one ISO twenty foot container. Therefore 1 FEU = 2 TEUs. 

 

This research has established the quantity of S60 and plywood sheets based on the 

assumption that a medium size container ship with net load of 1226TEU, as seen on 

Figure C1.0 below, was used to transport these timber materials from the Goteborg Port 

to the nearest UK port. The containerised ship has a maximum net load of 6720tonne 

and was assumed to be fully loaded and travelling at 18.5 knots. 

 

 

Figure C1.3 1226 TEU containerised ship  

(taken from http://www.student-techniek.nl/bedrijven/damen_down.html, access date 

21st March 2007) 

 

Assuming that the ship is fully loaded and 25% of the load was allocated to transport 

S60 studs and another 25% of the load was assigned to transport 12mm plywood sheets, 

the number of FEUS containers holding S60 and 12mm plywood sheets are as follow: 

 

                                                

† TEU is defined as volume equivalent to that occupied by one ISO twenty foot container. 

http://www.student-techniek.nl/bedrijven/damen_down.html
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Total loading weight of ship = 25% weight allocated for S60s + 25% weight allocated 

for 12mm plywood sheets + 50% weight allocated for others. 

 

Assuming that ship is fully loaded, 

6720tonne = 25% weight for S60s + 25% weight for 12mm plywood sheets + 50% for 

others 

3360 tonne = x (S60) + y (Ply) 

If x= number of FEU containers containing S60 and if 1 FEU container = 30 tonne, 

Number of S60 FEU container = 1680/30 = 56 FEUs 

 

If y = number of FEU containers containing Ply and if 1 FEU container = 14 tonne, 

Number of FEU container containing 12mm plywood sheets = 1680/14 = 120 FEUs 
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APPENDIX D. THE QUANTIFICATION OF EMBODIED 
TRANSPORT ENERGY PER PANEL 

Appendix D1.0 – Published data used in the embodied transport 

energy quantification 

abbreviations description value unit 
Road Transport    
d distance vary km 
ρ of diesel fuel density 0.831 kg/litre 
c calorific value 43.4  GJ/tonne 
  0.0434 GJ/kg 
Maritime Transport    
Fe fuel efficiency 0.12 MJ/tonne km 
  0.00012 GJ/ tonne km 
  Full net load of ship 6720 tonne 

 

Fuel consumption 
(FC) 

(Volvo 
2006) 

      

Type of vehicles Loading 
Type 

Range of Fuel 
Consumption 
 

(litre/100km) 
Average 
(litre/100km) 

(litre/km) Return 
Factor 

60 tonne GWV 
arctic 

Full Load 43  53 48  0.48 1.67 

 Empty 
Load 

29  35  32 l 0.32  

       
       
40 tonne GWV 
arctic 

Full Load 29  35  32  0.32 1.73 

 Empty 
Load 

21  26  23.5  0.235  

              

Assuming that, 

1 house = 24 panels 

Maximum loading capacity per lorry from factory to site = 6 houses (an equivalent to 

144 panels) 

Te per stage (MJ/panel)= 7(Te S24) + 2(TeS36) + 3(Te plywood sheet) 

Where,  

Te S24 = 40% (Te S60) 

Te S36 = 60% (Te S60) 

Te S60 = total embodied transport energy per S60 calculated from forest to site stage. 
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Appendix D2.0 – Total embodied energy per panel based on fully loaded means of transport from forest to assembly factories 

 

 

Based on average distance 

    
Amount of materials 

equivalent to (per vehicle) Transport Energy (GJ) 

Stages 
Means of 
Transport 

d 
(km) 

cum d 
(km) 

S60 
studs Plywd Panel 

Full 
load 

Per S60 
studs 

Per S24 
studs 

Per S36 
studs Per ply 

Per 
Panel 

Cum TE 
for 1 
panel 

Cum TE 
for 
1house 

Cum TE 
for 2 
house 

Cum TE 
for 3 
house 

Cum TE 
for 4 
house 

Cum TE 
for 5 
house 

Cum TE 
for 6 
house 

Forestry to Sawmill 
60tonne 
GWV lorries 93 93 1861 108   2.718 0.00146 0.00058 0.00088 0.02516 0.0813 0.08133 0.08133 0.08133 0.08133 0.08133 0.08133 0.08133 

Sawmill to Port A 
40 tonne 
GWV lorries 189 282 3276 850   3.837 0.00117 0.00047 0.00070 0.00451 0.0182 0.09956 0.09956 0.09956 0.09956 0.09956 0.09956 0.09956 

Port A to Port B 
1226 TEU 
vessel 1393 1675 366912 204000   561.658 0.00153 0.00061 0.00092 0.00275 0.0144 0.11394 0.11394 0.11394 0.11394 0.11394 0.11394 0.11394 

Port B to assembly 
factory 

40 tonne 
GWV lorries 149 1824 3276 850   3.025 0.00092 0.00037 0.00055 0.00356 0.0144 0.12831 0.12831 0.12831 0.12831 0.12831 0.12831 0.12831 

Assembly factory to 
site 

40 tonne 
GWV lorries 120 1944    1 2.436     2.4363 2.5646 0.2298 0.1791 0.1622 0.1537 0.1486 0.1452 

for 1 house      24 2.436     0.1015        
for 2 houses      48 2.436     0.0508        
for 3 houses      72 2.436     0.0338        
for 4 houses      96 2.436     0.0254        
for 5 houses      120 2.436     0.0203        
for 6 houses      144 2.436     0.0169        
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Based on the shortest available distance 

                    

    
Amount of materials 

equivalent to (per vehicle) Transport Energy (GJ) 

Stages 
Means of 
Transport 

distance 
(km) 

cum 
distance 
(km) 

S60 
studs Plywood Panel Full load 

Per S60 
studs 

Per S24 
studs 

Per S36 
studs 

Per 
plywood 

Per 
Panel 

Cum 
TE for 1 
panel 

Cum 
TE for 
1house 

Cum 
TE for 2 
house 

Cum 
TE for 3 
house 

Cum 
TE for 4 
house 

Cum 
TE for 5 
house 

Cum 
TE for 6 
house 

Forestry to Sawmill 
60tonne 
GWV lorries 93 93 1861 108  2.718 0.0015 0.0006 0.0009 0.0252 0.0813 0.0813 0.0813 0.0813 0.0813 0.0813 0.0813 0.0813 

Sawmill to Port A 
40 tonne 
GWV lorries 189 282 3276 850  3.837 0.0012 0.0005 0.0007 0.0045 0.0182 0.0996 0.0996 0.0996 0.0996 0.0996 0.0996 0.0996 

Port A to Port B 
1226 TEU 
vessel 926 1208 366912 204000  373.363 0.0010 0.0004 0.0006 0.0018 0.0096 0.1091 0.1091 0.1091 0.1091 0.1091 0.1091 0.1091 

Port B to assembly 
factory 

40 tonne 
GWV lorries 64 1272 3276 850  1.299 0.0004 0.0002 0.0002 0.0015 0.0062 0.1153 0.1153 0.1153 0.1153 0.1153 0.1153 0.1153 

Assembly factory to 
site 

40 tonne 
GWV lorries 80 1352    1 1.624         1.6242 1.7395 0.1830 0.1491 0.1378 0.1322 0.1288 0.1266 

for 1 house      24 1.624     0.0677        
for 2 house      48 1.624     0.0338        
for 3 house      72 1.624     0.0226        
for 4 house      96 1.624     0.0169        
for 5 house      120 1.624     0.0135        
for 6 house      144 1.624     0.0113        

 

Based on the longest available distance 

                    

    
Amount of materials 

equivalent to (per vehicle) Transport Energy (GJ)  

Stages 
Means of 
Transport 

distance 
(km) 

cum 
distance 
(km) 

S60 
studs Plywood Panel Full load 

Per S60 
studs 

Per S24 
studs 

Per S36 
studs 

Per 
plywood 

Per 
Panel 

Cum 
TE for 1 
panel 

Cum 
TE for 
1house 

Cum 
TE for 2 
house 

Cum 
TE for 3 
house 

Cum 
TE for 4 
house 

Cum 
TE for 5 
house 

Cum 
TE for 6 
house 

Forestry to Sawmill 
60tonne 
GWV lorries 93 93 1861 108   2.717557315 0.0015 0.0006 0.0009 0.0252 0.0813 0.0813 0.0813 0.0813 0.0813 0.0813 0.0813 0.0813 

Sawmill to Port A 
40 tonne 
GWV lorries 189 282 3276 850  3.837 0.0012 0.0005 0.0007 0.0045 0.0182 0.0996 0.0996 0.0996 0.0996 0.0996 0.0996 0.0996 

Port A to Port B 
1226 TEU 
vessel 1860 2142 366912 204000  749.952 0.0020 0.0008 0.0012 0.0037 0.0192 0.1188 0.1188 0.1188 0.1188 0.1188 0.1188 0.1188 

Port B to assembly 
factory 

40 tonne 
GWV lorries 234 2376 3276 850  4.751 0.0015 0.0006 0.0009 0.0056 0.0226 0.1413 0.1413 0.1413 0.1413 0.1413 0.1413 0.1413 

Assembly factory to 
site 

40 tonne 
GWV lorries 160 2536    1 3.248     3.2483 3.3897 0.2767 0.2090 0.1864 0.1752 0.1684 0.1639 

for 1 house       24 3.248     0.1353        
for 2 house      48 3.248     0.0677        
for 3 house      72 3.248     0.0451        
for 4 house      96 3.248     0.0338        
for 5 house      120 1.624     0.0271        
for 6 house      144 1.624     0.0226        
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Appendix D3.0 – Total embodied energy per panel with loading from forest to site dependent on “made to order” scenarios 
BASED ON AVERAGE 
DISTANCE                      

 Distance c.d. 
Amount of material equivalent to 

(per full loaded vehicle) Te for full load (GJ) Amount of material transported Number of vehicles needed Te for required vehicles (GJ) Te Cum T e 

For 1 house (km) (km) S60 Plywood Panel S60 Plywood Panel S60 Plywood Panel S60 Plywood Panel S60 Plywood Panel Per S60 Per S24 Per S36 Per Plywood Per Panel 
Per 
Panel 

Foresty to sawmill 93 93 1861 108   2.718 2.718   168 72   1 1   2.718 5.435   0.01618 0.00647 0.00971 0.07549 0.29117 0.2912 

Sawmill to port A 189 282 3276 850  3.837 3.837   168 72  1 1   3.837 3.837   0.02284 0.00914 0.01370 0.05329 0.25124 0.5424 

Port A to Port B 1393 1675 366912 204000  1123.315    168 72  1    0.253 0.193   0.00150 0.00060 0.00090 0.00267 0.01404 0.5564 

Port B to Factory 149 1824 3276 850  3.025 3.025   168 72  1 1   3.025 3.025   0.01801 0.00720 0.01080 0.04201 0.19807 0.7545 

Factory to Site 120 1944     156     1.915     24     1     1.915         0.07980 0.8343 

 Distance c.d. 
Amount of material equivalent to 

(per full loaded vehicle) Te for full load (GJ) Amount of material transported Number of vehicles needed Te for required vehicles (GJ) Te Cum T e 

For 5 house (km) (km) S60 Plywood Panel S60 Plywood Panel S60 Plywood Panel S60 Plywood Panel S60 Plywood Panel Per S60 Per S24 Per S36 Per Plywood Per Panel 
Per 
Panel 

Foresty to sawmill 93 93 1861 108   2.718 2.718   840 360   1 4   2.718 10.870   0.00324 0.00129 0.00194 0.03020 0.10353 0.1035 

Sawmill to port A 189 282 3276 850  3.837 3.837   840 360  1 1   3.837 3.837   0.00457 0.00183 0.00274 0.01066 0.05025 0.1538 

Port A to Port B 1393 1675 366912 204000  1123.315    840 360  1    1.264 0.963   0.00150 0.00060 0.00090 0.00267 0.01404 0.1678 

Port B to Factory 149 1824 3276 850  3.025 3.025   840 360  1 1   3.025 3.025   0.00360 0.00144 0.00216 0.00840 0.03961 0.2074 

Factory to Site 120 1944     156     1.915     120     1     1.915         0.01596 0.2234 

 Distance c.d. 
Amount of material equivalent to 

(per full loaded vehicle) Te for full load (GJ) Amount of material transported Number of vehicles needed Te for required lorry Te Cum T e 

For 10 houses (km) (km) S60 Plywood Panel S60 Plywood Panel S60 Plywood Panel S60 Plywood Panel S60 Plywood Panel Per S60 Per S24 Per S36 Per Plywood Per Panel 
Per 
Panel 

Foresty to sawmill 93 93 1861 108   2.718 2.718   1680 720   1 7   2.718 19.023   0.00162 0.00065 0.00097 0.02642 0.08573 0.0857 

Sawmill to port A 189 282 3276 850  3.837 3.837   1680 720  1 1   3.837 3.837   0.00228 0.00091 0.00137 0.00533 0.02512 0.1109 

Port A to Port B 1393 1675 366912 204000  1123.315    1680 720  1    2.527 1.926   0.00150 0.00060 0.00090 0.00267 0.01404 0.1249 

Port B to Factory 149 1824 3276 850  3.025 3.025   1680 720  1 1   3.025 3.025   0.00180 0.00072 0.00108 0.00420 0.01981 0.1447 

Factory to Site 120 1944     156     1.915     240     2     3.830         0.01596 0.1607 

 Distance c.d. 
Amount of material equivalent to 

(per full loaded vehicle) Te for full load Amount of material transported Number of vehicles needed Te for required lorry Te Cum T e 

For 50 houses (km) (km) S60 Plywood Panel S60 Plywood Panel S60 Plywood Panel S60 Plywood Panel S60 Plywood Panel Per S60 Per S24 Per S36 Per Plywood Per Panel 
Per 
Panel 

Foresty to sawmill 93 93 1861 108   2.718 2.718   8400 3600   5 34   13.588 92.397   0.00162 0.00065 0.00097 0.02567 0.08347 0.0835 

Sawmill to port A 189 282 3276 850  3.837 3.837   8400 3600  3 5   11.511 19.186   0.00137 0.00055 0.00082 0.00533 0.02147 0.1049 

Port A to Port B 1393 1675 366912 204000  1123.315    8400 3600  1    12.637 9.628   0.00150 0.00060 0.00090 0.00267 0.01404 0.1190 

Port B to Factory 149 1824 3276 850  3.025 3.025   8400 3600  3 5   9.075 15.125   0.00108 0.00043 0.00065 0.00420 0.01693 0.1359 

Factory to Site 120 1944     156     1.915     1200     10     19.152         0.01596 0.1519 

 Distance c.d. 
Amount of material equivalent to 

(per full loaded vehicle) Te for full load Amount of material transported Number of vehicles needed Te for required lorry Te Cum T e 

For 100 houses (km) (km) S60 Plywood Panel S60 Plywood Panel S60 Plywood Panel S60 Plywood Panel S60 Plywood Panel Per S60 Per S24 Per S36 Per Plywood Per Panel 
Per 
Panel 

Foresty to sawmill 93 93 1861 108   2.718 2.718   16800 7200   10 67   27.176 182.076   0.00162 0.00065 0.00097 0.02529 0.08234 0.0823 

Sawmill to port A 189 282 3276 850  3.837 3.837   16800 7200  6 9   23.023 34.534   0.00137 0.00055 0.00082 0.00480 0.01987 0.1022 

Port A to Port B 1393 1675 366912 204000  1123.315    16800 7200  1    25.275 19.257   0.00150 0.00060 0.00090 0.00267 0.01404 0.1162 

Port B to Factory 149 1824 3276 850  3.025 3.025   16800 7200  6 9   18.150 27.225   0.00108 0.00043 0.00065 0.00378 0.01567 0.1319 

Factory to Site 120 1944     156     1.915     2400     20     38.304         0.01596 0.1479 
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BASED ON SHORTEST 
DISTANCE                       

 Distance c.d. 
Amount of material equivalent 

to (per full loaded vehicle) Te for full load (GJ) Amount of material 
transported Number of vehicles needed Te for full load vehicles (GJ) Te  Cum T e 

For 1 house (km) (km) S60 Plywood Panel S60 Plywood Panel S60 Plywood Panel S60 Plywood Panel S60 Plywood Panel Per S60 Per S24 Per S36 Per Plywood Per Panel Per Panel 

Foresty to sawmill 93 93 1861 108   2.718 2.718   168 72   1 1   2.718 2.718   0.01618 0.00647 0.00971 0.03774 0.17794 0.1779 

Sawmill to port A 189 282 3276 850   3.837 3.837   168 72   1 1   3.837 3.837   0.02284 0.00914 0.01370 0.05329 0.25124 0.4292 

Port A to Port B 926 
120

8 366912 204000   746.726     168 72   1     0.168 0.128   0.00100 0.00040 0.00060 0.00178 0.00933 0.4385 

Port B to Factory 64 
127

2 3276 850   1.299 1.299   168 72   1 1   1.299 1.299   0.00773 0.00309 0.00464 0.01805 0.08508 0.5236 

Factory to Site 80 
135

2     156     1.624     24     1     1.624         0.06767 0.5913 

 Distance c.d. 
Amount of material equivalent 

to (per full loaded vehicle) Te for full load (GJ) Amount of material 
transported Number of vehicles needed Te for required vehicles (GJ) Te Cum T e 

For 5 house (km) (km) S60  Plywood Panel S60 Plywood Panel S60 Plywood Panel S60 Plywood Panel S60 Plywood Panel Per S60 Per S24 Per S36 Per Plywood Per Panel Per Panel 

Foresty to sawmill 93 93 1861 108   2.718 2.718   840 360   1 4   2.718 10.870   0.00324 0.00129 0.00194 0.03020 0.10353 0.1035 

Sawmill to port A 189 282 3276 850  3.837 3.837   840 360  1 1   3.837 3.837   0.00457 0.00183 0.00274 0.01066 0.05025 0.1538 

Port A to Port B 926 
120

8 366912 204000  746.726    840 360  1    0.840 0.640   0.00100 0.00040 0.00060 0.00178 0.00933 0.1631 

Port B to Factory 64 
127

2 3276 850  1.299 1.299   840 360  1 1   1.299 1.299   0.00155 0.00062 0.00093 0.00361 0.01702 0.1801 

Factory to Site 80 
135

2     156     1.624     120     1     1.624         0.01353 0.1937 

 Distance c.d. 
Amount of material equivalent 

to (per full loaded vehicle) Te for full load (GJ) Amount of material 
transported Number of vehicles needed Te for full load vehicles (GJ) Te  Cum T e 

For 10 houses (km) (km) S60  Plywood Panel S60 Plywood Panel S60 Plywood Panel S60 Plywood Panel S60 Plywood Panel Per S60 Per S24 Per S36 Per Plywood Per Panel Per Panel 

Foresty to sawmill 93 93 1861 108   2.718 2.718   1680 720   1 7   2.718 19.023   0.00162 0.00065 0.00097 0.02642 0.08573 0.0857 

Sawmill to port A 189 282 3276 850  3.837 3.837   1680 720  1 1   3.837 3.837   0.00228 0.00091 0.00137 0.00533 0.02512 0.1109 

Port A to Port B 926 
120

8 366912 204000  746.726    1680 720  1    1.680 1.280   0.00100 0.00040 0.00060 0.00178 0.00933 0.1202 

Port B to Factory 64 
127

2 3276 850  1.299 1.299   1680 720  1 1   1.299 1.299   0.00077 0.00031 0.00046 0.00180 0.00851 0.1287 

Factory to Site 80 
135

2     156     1.624     240     2     3.248         0.01353 0.1422 

 Distance c.d. 
Amount of material equivalent 

to (per full loaded vehicle) Te for full load Amount of material 
transported Number of vehicles needed Te for required lorry Te Cum T e 

For 50 houses (km) (km) S60  Plywood Panel S60 Plywood Panel S60 Plywood Panel S60 Plywood Panel S60 Plywood Panel Per S60 Per S24 Per S36 Per Plywood Per Panel Per Panel 

Foresty to sawmill 93 93 1861 108   2.718 2.718   8400 3600   5 34   13.588 92.397   0.00162 0.00065 0.00097 0.02567 0.08347 0.0835 

Sawmill to port A 189 282 3276 850  3.837 3.837   8400 3600  3 5   11.511 19.186   0.00137 0.00055 0.00082 0.00533 0.02147 0.1049 

Port A to Port B 926 
120

8 366912 204000  746.726    8400 3600  1    8.401 6.401   0.00100 0.00040 0.00060 0.00178 0.00933 0.1143 

Port B to Factory 64 
127

2 3276 850  1.299 1.299   8400 3600  3 5   3.898 6.497   0.00046 0.00019 0.00028 0.00180 0.00727 0.1215 

Factory to Site 80 
135

2     156     1.624     1200     10     16.242         0.01353 0.1351 

 Distance c.d. 
Amount of material equivalent 

to (per full loaded vehicle) Te for full load Amount of material 
transported Number of vehicles needed Te for required lorry Te Cum T e 

For 100 houses (km) (km) S60  Plywood Panel S60 Plywood Panel S60 Plywood Panel S60 Plywood Panel S60 Plywood Panel Per S60 Per S24 Per S36 Per Plywood Per Panel Per Panel 

Foresty to sawmill 93 93 1861 108   2.718 2.718   16800 7200   10 67   27.176 182.076   0.00162 0.00065 0.00097 0.02529 0.08234 0.0823 

Sawmill to port A 189 282 3276 850  3.837 3.837   16800 7200  6 9   23.023 34.534   0.00137 0.00055 0.00082 0.00480 0.01987 0.1022 

Port A to Port B 926 
120

8 366912 204000  746.726    16800 7200  1    16.801 12.801   0.00100 0.00040 0.00060 0.00178 0.00933 0.1115 

Port B to Factory 64 
127

2 3276 850  1.299 1.299   16800 7200  6 9   7.796 11.694   0.00046 0.00019 0.00028 0.00162 0.00673 0.1183 

Factory to Site 80 
135

2     156     1.624     2400     20     32.483         0.01353 0.1318 
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BASED ON THE LONGEST 
DISTANCE                      

 Distance c.d. 
Amount of material equivalent to (per full 

loaded vehicle) Te for full load (GJ) Amount of material transported Number of vehicles 
needed Te for required vehicles (GJ) Te Cum T e 

For 1 house (km) (km) S60 needed Plywood Panel S60 Plywood Panel S60 Plywood Panel S60 Plywood Panel S60 Plywood Panel Per S60 Per S24 Per S36 Per Plywood Per Panel 
Per 
Panel 

Foresty to sawmill 93 93 1861 108   2.718 2.718   168 72   1 1   2.718 2.718   0.01618 0.00647 0.00971 0.03774 0.17794 0.1779 

Sawmill to port A 189 282 3276 850  3.837 3.837   168 72  1 1   3.837 3.837   0.02284 0.00914 0.01370 0.05329 0.25124 0.4292 

Port A to Port B 1860 2142 366912 204000  1499.904    168 72  1    0.337 0.257   0.00201 0.00080 0.00121 0.00201 0.01406 0.4432 

Port B to Factory 234 2376 3276 850  4.751 4.751   168 72  1 1   4.751 4.751   0.02828 0.01131 0.01697 0.06598 0.31106 0.7543 

Factory to Site 160 2536     156     2.554     24     1     2.554         0.10640 0.8607 

 Distance c.d. 
Amount of material equivalent to (per full 

loaded vehicle) Te for full load (GJ) Amount of material transported Number of vehicles 
needed Te for required vehicles (GJ) Te cum T e 

For 5 house (km) (km) S60 needed Plywood Panel S60 Plywood Panel S60 Plywood Panel S60 Plywood Panel S60 Plywood Panel Per S60 Per S24 Per S36 Per Plywood Per Panel 
Per 
Panel 

Foresty to sawmill 93 93 1861 108   2.718 2.718   1239.84 504   1 4   2.718 10.870   0.00219 0.00088 0.00132 0.02157 0.07347 0.0735 

Sawmill to port A 189 282 3276 850  3.837 3.837   840 360  1 1   3.837 3.837   0.00457 0.00183 0.00274 0.01066 0.05025 0.1237 

Port A to Port B 1860 2142 366912 204000  1499.904    840 360  1    1.943 1.286   0.00231 0.00093 0.00139 0.00357 0.01997 0.1437 

Port B to Factory 234 2376 3276 850  4.751 4.751   840 360  1 1   4.751 4.751   0.00566 0.00226 0.00339 0.01320 0.06221 0.2059 

Factory to Site 160 2536     156     2.554     120     1     2.554         0.02128 0.2272 

 Distance c.d. 
Amount of material equivalent to (per full 

loaded vehicle) Te for full load (GJ) Amount of material transported Number of vehicles 
needed Te for required vehicles (GJ) Te Cum T e 

For 10 house (km) (km) S60 needed Plywood Panel S60 Plywood Panel S60 Plywood Panel S60 Plywood Panel S60 Plywood Panel Per S60 Per S24 Per S36 Per Plywood Per Panel 
Per 
Panel 

Foresty to sawmill 93 93 1861 108   2.718 2.718   2479.68 1008   1 7   5.435 19.023   0.00219 0.00088 0.00132 0.01887 0.06538 0.0654 

Sawmill to port A 189 282 3276 850  3.837 3.837   1680 720  1 1   3.837 3.837   0.00228 0.00091 0.00137 0.00533 0.02512 0.0905 

Port A to Port B 1860 2142 366912 204000  1499.904    1680 720  1    3.375 2.571   0.00201 0.00080 0.00121 0.00357 0.01875 0.1093 

Port B to Factory 234 2376 3276 850  4.751 4.751   1680 720  1 1   4.751 4.751   0.00283 0.00113 0.00170 0.00660 0.03111 0.1404 

Factory to Site 160 2536     156     2.554     240     2     5.107         0.02128 0.1616 

 Distance c.d. 
Amount of material equivalent to (per full 

loaded vehicle) Te for full load (GJ) Amount of material transported Number of vehicles 
needed Te for required vehicles (GJ) Te Cum T e 

For 50 house (km) (km) S60 needed Plywood Panel S60 Plywood Panel S60 Plywood Panel S60 Plywood Panel S60 Plywood Panel Per S60 Per S24 Per S36 Per Plywood Per Panel 
Per 
Panel 

Foresty to sawmill 93 93 1861 108   2.718 2.718   12398.4 5040   5 34   13.588 92.397   0.00110 0.00044 0.00066 0.01833 0.05938 0.0594 

Sawmill to port A 189 282 3276 850  3.837 3.837   8400 3600  3 5   11.511 19.186   0.00137 0.00055 0.00082 0.00533 0.02147 0.0809 

Port A to Port B 1860 2142 366912 204000  1499.904    8400 3600  1    16.874 12.856   0.00201 0.00080 0.00121 0.00357 0.01875 0.0996 

Port B to Factory 234 2376 3276 850  4.751 4.751   8400 3600  3 5   14.252 23.754   0.00170 0.00068 0.00102 0.00660 0.02658 0.1262 

Factory to Site 160 2536     156     2.554     1200     10     25.536         0.02128 0.1475 

 Distance c.d. 
Amount of material equivalent to (per full 

loaded vehicle) Te for full load (GJ) Amount of material transported Number of vehicles 
needed Te for required vehicles (GJ) Te Cum T e 

For 100 house (km) (km) S60 needed Plywood Panel S60 Plywood Panel S60 Plywood Panel S60 Plywood Panel S60 Plywood Panel Per S60 Per S24 Per S36 Per Plywood Per Panel 
Per 
Panel 

Foresty to sawmill 93 93 1861 108   2.718 2.718   24796.8 10080   10 67   27.176 182.076   0.00110 0.00044 0.00066 0.01806 0.05857 0.0586 

Sawmill to port A 189 282 3276 850  3.837 3.837   16800 7200  6 9   23.023 34.534   0.00137 0.00055 0.00082 0.00480 0.01987 0.0784 

Port A to Port B 1860 2142 366912 204000  1499.904    16800 7200  1    33.748 25.713   0.00201 0.00080 0.00121 0.00357 0.01875 0.0972 

Port B to Factory 234 2376 3276 850  4.751 4.751   16800 7200  6 9   28.504 42.756   0.00170 0.00068 0.00102 0.00594 0.02460 0.1218 

Factory to Site 160 2536     156     2.554     2400     20     51.072         0.02128 0.1431 
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APPENDIX E. FUEL CONSUMPTION FIGURES 
Fuel consumption is defined as the amount of fuel required to move a vehicle over a 

given distance and can be expressed in one of two ways: 

• Based on the amount of fuel used per unit distance (L/100km). The lower the 

value, the more economic a vehicle is, as it means the less fuel it needs to travel 

a certain distance. 

• Based on the distance travelled per unit volume of fuel used (either in km per 

litre - km/L or miles per gallon – mpg). In this case, the higher the value, the 

more energy efficient a vehicle is, as it means the more distance it can travel 

with a certain volume of fuel. 

 

Fuel consumption varies considerably depending of the type of traffic, roads, driving 

behaviour, and many more.  

 

DETR (1997), for example, has differentiated the fuel consumption value based on the 

gross weight of the particular lorries and whether it was designed as a rigid or an 

articulated types. It ranges between 23.9-39.2litre/100km.  

 

On the other hand, data published in 2002 by Institute for Energy (IFEU) and 

Association for Study of Combined Transport (SGKV) has differentiated that fuel 

consumption based on gross weight and whether it is hauling an empty or full load. 

Based on IFEU and SGKV (2002), a typical 40 feet lorry has a fuel consumption value 

of 39.2litre/100km when it is fully loaded and 29.3litre/100km when it is empty.  

 



Appendix D 

189 

Table E.1 below shows the various fuel consumption values based on various references 

Fuel consumption based on DETR (1997) 

 Rigid 

<7.5t 

Rigid 

7.5-14t 

Rigid 

14-17t 

Rigid 

17-25t 

Rigid 

25t + 

Arctic 

≤ 30t 

Arctic 

30-33t 

Arctic 

33t 

Litres/ 100 km 23.9 26.4 31.7 41.5 43.5 35.8 35.8 39.2 

         

Fuel consumption based on V olvo (2006) 

 Trucks, 
distribution 

traffic 

8.5t 

Trucks, 
regular 
traffic 

14t 

Tractor and 
semi trailer, 

long haul traffic 

26t 

Truck with 
trailer, long 
haul traffic 

40t 

Litres/100km 
(empty) 

20-25 25-30 21-26 20-32 

Litres/100km 
(full load) 

25-30 30-40 29-35 43-53 

     

 

Fuel consumption based on IFEU and SGKV (2002) 

 Trucks/Lorry 

40t 

Litre/100km 
(empty) 

29.3 

Litre/100km 

(full load) 

39.2 

  

 

Fuel consumption based on DTI (2006) 

 Trucks/Lorry 

60t 

Litre/100km 46.9 
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APPENDIX F. DETAILED BREAKDOWN OF THE EMBODIED ENERY CONSUMPTION PER STAGE 
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APPENDIX G. QUANTIFICATION OF OPERATIONAL 
ENERGY 
 

Dwelling data 

Ground floor area 58.32 m2 

Glazed openings Assumed to be 25% of total floor area 

(=29.16m2) 

Wall area (net) 155.52m2 

Roof area 58.32 m2 

Volume of building 279.9 m3 

 

Standard U values of construction elements for domestic buildings (Building 

Regulations ADL1, 2002) 

Building element U Values (W/m2K) 

Pitched roof with insulation between 

rafters 

0.2 

Prefabricated timber Walls 0.3 

Floors 0.25 

Glazed openings 2.2 

Assuming that passive vents and fans are installed on the particular dwelling, N 

(number if air changes) – 10m3/hour 
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UA Calculation 

Element Area (m2) U-Value (W/m2K) UA (W/K) 

Roof 58.32 0.2 11.664 

Walls 29.16 0.3 8.748 

Floors 155.52 0.25 38.88 

Glazed openings 58.32 2.2 128.304 

  ΣUA 187.6 
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Degree Day data for Year 2007 for South East England (source: Vilnis Vesma, Degree 

Days Direct, 2008) 

January 268 

February 258 

March 260 

April 124 

May 109 

June 38 

July 31 

August 39 

September 67 

October 166 

November 248 

December 332 

Total DD 1940 
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The annual energy consumption (MJ) 

= [(ΣUA x Degree days of the particular year x 24 x 3600) + (0.33NV x Degree days of 

the particular year x 24 x 3600)]/1,000,000 

= [(187.6 x 1940 x 24 x 3600) +
1,000,000

3600 x 24 x 1940 x 10 x 0.33   

= 31997.89 MJ = 32 GJ 

 

Operational energy consumption during the house lifetime (60 years) 

= (31997.89 x 60)/24 panel) 

= 79994.7 MJ/panel = 79.99473 GJ/panel  

≈ 80GJ/panel 

 


