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ABSTRACT Accurate localization in indoor environments with ultra-wideband (UWB) technology has
long attracted much attention. However, due to the presence of multipath components or non-line of sight
(NLOS) propagation of the radio signals, it has been converted to a critical challenge. Existing solutions use
many fixed anchors in the indoor environment. Particularly, large areas require many anchor points and in
the case of unexpected events that lead to the destruction of existing infrastructures, the fixed anchor points
cannot be used. In this paper, a novel localization framework based on the transmitting signal from a mobile
UWB sensor on the outside of the building and its received signal regarding the modified Saleh Valenzuela
(SV) channel model is presented. After preprocessing the received signals, two new procedures to reduce the
ranging error caused by multipath components are proposed. In the first procedure, two machine learning
algorithms including multi-layer perceptron (MLP) and support vector machine (SVM) using the extracted
features from the received UWB signal time and power vectors are implemented. Moreover, in the second
procedure, two deep learning algorithms including MLP and convolutional neural networks (CNNs) using
the received UWB signal time and power vectors are implemented to improve the performance of the indoor
localization system. The simulation results show that the architecture designed for the convolutional neural
network based on the hybrid dataset (the combination of the dataset related to received UWB signal time
and power vectors) provides a mean absolute error (MAE) of about 3 cm.

INDEX TERMS UWB, Multipath components, Indoor localization, Machine learning, Mobile sensor.

I. INTRODUCTION

INDOOR localization has attracted much attention since
people spend most of their time inside buildings. Some

critical applications and services based on indoor localization
such as emergency rescue, fire brigade, or incident manage-
ment need an easy-deployable localization system that can
provide high accuracy localization in indoor environments.
There are two effective methods to localize the target. In
the first method, it is assumed that the target’s position is
calculated using the navigation sensors and then provided to
a monitoring station. In the second method, the target does
not have these sensors, its position at the monitoring station
is calculated by transmitting radio signals. The problem of
localization becomes complicated when the operations need
to be carried out in a closed environment such as indoors.
Global navigation satellite systems (GNSS) are the most
widely used localization technology for outdoor applications.

In indoor environments, however, their signals can be easily
blocked, attenuated, or reflected. Localization through prein-
stalled radio infrastructures (e.g. Wi-Fi access points, RFID
or Bluetooth tags) have been applied in indoor environments,
but there is no guarantee that all of them have these radio
infrastructures and even if they do, may not be suitable for
accurate localization. The alternative approach is based on
UWB technology. The benefits of UWB technology include
high data rate, high time resolution, high bandwidth, low-
cost equipment, and power spectral density (PSD) level much
lower than Wi-Fi and Bluetooth, which makes it suitable for
indoor applications [1]–[4]. Although the UWB technology
has high time resolution versus multipath, in most cases,
because of existing multipath components and NLOS condi-
tions, the signals containing the target information, are com-
parable to noise levels and may be buried among the strong
multipath components. As a result, the need for complex
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algorithms and new approaches to detect the accurate special
target information is doubled. Most investigations have been
conducted on indoor localization using a UWB radar which
is installed inside of the building, or is static on the walls on
the outside of the building. However, it requires an expensive
infrastructure of many fixed anchor points (nodes with known
positions that can be used as a transceiver). Also, the number
of necessary anchor points increases by growing the size of
the area where UWB devices are deployed [5], [6] and the
fixed anchor points cannot be used in the case of unexpected
events that lead to the destruction of existing infrastructures.

In this paper, a novel method to resolve these issues is
suggested. Since mobile sensors have high flexibility and
mobility, they can be used as aerial anchor points with no
limitation on the number of them and the areas that they
can be flown. Also, they can be easily used in the case of
unexpected events. Hence, we use a mobile UWB sensor
and the proposed procedures to improve indoor localization
accuracy.

II. RELATED WORK
In previous similar investigations, authors often use Wi-Fi,
ZigBee, and Bluetooth technologies for indoor localization
[7]–[12]. In [7] the authors combined the received signal
strength indicator (RSSI) fingerprint and kernel-SVM learn-
ing approach for indoor localization based on Wi-Fi technol-
ogy. In this paper, by using the hybrid kernel instead of the
single kernel and increasing the size of the training set, indoor
localization performance was improved. Their simulation
results disclosed that by using the proposed algorithm, the
position estimation error is equal to 1.81 meters. The authors
in [8] proposed a principal component analysis-based support
vector machine (PCA-SVM) approach by using the received
signal strength (RSS) signals for indoor localization based
on Wi-Fi technology. Their results showed, the PCA-SVM
method provides a mean localization error of 1.37 meters,
which is a significant improvement compared to K-nearest
neighbor (KNN) and SVM methods, which have mean lo-
calization errors of 3.08 and 1.76 meters, respectively. In
[9] by using the RSS and channel state information (CSI),
the authors presented a deep learning approach for indoor
localization based on Wi-Fi signals. The indoor localization
was considered as a classification problem. Their simulation
results showed that by using CSI information and CNN
algorithm, a maximum localization error of 0.92 meter with
a probability of 99.97% was achieved. In [10] by using a
series of the RSSI measurements, the authors proposed recur-
rent neural networks (RNN) algorithms for indoor localiza-
tion based on Wi-Fi fingerprinting. Their simulation results
showed that by using the proposed long short-term memory
(LSTM) structure, an average localization error of 0.75 meter
can be achieved. In [11] an affordable indoor localization
system based on Bluetooth low energy (BLE) technology was
proposed to monitor the location of a target that carries a BLE
beacon. The location of the target inside the building by using
the RSSI and trilateration and fingerprinting based methods

was estimated. Their simulation result showed that by the
fingerprinting-based method, a localization accuracy above
90% was achieved. In [12], the design and implementation
of a wearable device for localization of Alzheimer’s patients,
based on the RSSI and ZigBee technology were presented. To
improve the localization accuracy, a back propagation-based
artificial neural network (BP-ANN) algorithm was used.
Their simulation result showed that the mean localization
error in the testing phase was 0.921 meter.

The basic problem of using the above technologies is
the need for long-term measurements and sophisticated cal-
ibration procedures. On the other hand, according to the
results provided in the related works, these technologies
cannot obtain a precision of a few centimeters for indoor
localization. It is noteworthy in most cases (such as unex-
pected accidents and natural disasters), a localization system
is needed to estimate a target’s position with an accuracy of
a few centimeters in the shortest possible time. The UWB
technology attracted great attention in indoor localization
problem because of its precision of a few centimeters, very
high bandwidth, wall penetration, high time resolution [13]
and [14]. However, the practical expansion of this technol-
ogy has many challenges, including multi-user interference,
multipath effects and NLOS propagation [15]–[18].

In the literature, authors use the multipath channel statis-
tics such as kurtosis, mean excess delay (MED), root mean
square (RMS) of delay spread, signal amplitude, and CSI to
identify the NLOS conditions or mitigate the ranging error
by machine learning algorithms including Gaussian process
(GP), SVM and MLP [19]–[21]. In [22] without feature
extraction and based on raw channel impulse response (CIR)
data and CNN algorithm, authors have shown that NLOS
conditions can be detected and consequently, the ranging er-
ror has reduced. Results in [22] showed that the performance
of the indoor localization system is improved by using the
predicted NLOS conditions and ranging error information,
in combination with least squares (LS) and weighted least
squares (WLS) location estimation algorithms. Authors in
[23] proposed a feature-based localization approach by using
a deep long short-term memory (DLSTM) algorithm for
UWB localization. Their results showed that by using the
extracted features from the user’s distance information and
the DLSTM algorithm, the mean localization error of 0.05
meter can be achieved. The authors in [24] proposed a deep
gated recurrent unit (DGRU) algorithm by using the time
series data generated from the UWB channel. Their simula-
tion result showed that the proposed GRU-based localization
method can achieve a root mean square error (RMSE) of 0.8
meters compared to their proposed CNN-based localization
method. In [25] a neural network structure based on a deep
auto encoder-back propagation (DAE-BP) algorithm by us-
ing time difference of arrival (TDOA) value of UWB received
signal have been proposed to provide high accuracy in indoor
localization problem. The simulation results showed that the
DAE-BP can reach mean square error (MSE) of 0.03 meter.
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FIGURE 1: In the proposed system, the mobile UWB sensor
flies to four known positions. At each position, the received
signals are preprocessed and then used to estimate the target
position.

III. MAIN RESULT AND ORGANIZATION
The main contributions of this paper are as follows:
• In the previous works, fixed UWB anchor points have

been used to localize people indoors. However, in this
paper, it is proposed to perform indoor localization more
effectively and efficiently by a mobile UWB sensor
outside a building.

• We consider direct and indirect rays reflected from the
target and the received signal is influenced by multipath
components. It is not necessary to have the line of sight
link in the channel model. Unlike the papers [19]–[22]
that use machine learning algorithms to identify NLOS
conditions or mitigate the ranging error, in our paper,
to alleviate the ranging error and estimation of target’s
position, two procedures are proposed. In the first pro-
cedure, some features are extracted from the received
UWB signal time and power vectors and used as the
input for each of the two machine learning algorithms
including MLP and SVM. In the second procedure,
the target’s position is estimated based on the received
UWB signal time and power vectors using MLP and
CNN algorithms (without feature extraction).

• By using simulation results we show that if both time
and power measurements of the received UWB signal
from the modified SV channel are used as input to
the CNN algorithm, a significant improvement in the
performance of the indoor localization system can be
achieved.

The rest of this paper is organized as follows: Section
IV describes the system model and data collection based on
the modified SV channel model. In section V, the proposed
procedures are discussed in detail. In section VI, the numer-
ical analysis of two suggested procedures is evaluated. Also,
validation of the second procedure with two related works
is performed. Finally, section VII is the conclusion of this
paper.

FIGURE 2: Flowchart for achieving the indoor localization by
machine learning based algorithms.

IV. SYSTEM MODEL

The desired model for indoor localization using a mobile
UWB sensor is presented in Fig. 1. In this figure, the mobile
UWB sensor (for example a small size quadrotor) as an
aerial anchor with height of 3 meters flies to four different
known positions outside of a building with dimensions of
20 × 20 × 2.5 m3 to to find the 2D position of a target
that is placed on the floor inside the building. It should be
noted that at least three anchor points are necessary for this
kind of localization. Using more anchor points, the accuracy
of the localization algorithms is increased, but on the other
hand, the computational complexity, flight time, and energy
consumption of the mobile sensor are also increased, which
are not desirable. Here, to achieve an appropriate accuracy
with low computational complexity, we have considered four
anchor points in our system model. Because the UWB tech-
nology is used for short-range indoor applications due to low
emission levels allowed [26], we assumed that the round trip
distance of the mobile UWB sensor from the target is less
than 20 meters. In this paper, the indoor localization problem
is formulated using machine learning algorithms, such as
SVM, MLP, and CNN, which can be solved in two phases:
off-line training and online localization phases. A flowchart
that includes both off-line training and online localization
phases is presented in Fig. 2. According to this figure, in
the off-line training phase, the target is placed randomly at
many different known positions (small blue points). For each
of these positions, the mobile UWB sensor sends and re-
ceives the signal at four known anchor points (black points).
After preprocessing of the data, the regressor (SVM, MLP,
and CNN) which describe the relationship between UWB
signal measurements and the corresponding target positions
is learned with the achieved training dataset. In the online
localization phase, the target is placed randomly at some
different unknown positions (red points). For each of these
positions, the mobile UWB sensor sends and receives a UWB
signal at four known anchor points (black points). After
preprocessing of testing data, the target location is estimated
by using the trained regressor.
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A. DATA COLLECTION

Since, as in [22], access to the laboratory environment is
not always possible, to create the raw synthetic dataset, it
is necessary to provide a suitable channel model. In the
following, the modified SV channel model based on the IEEE
802.15.4a channel model [27], is represented.

The impulse response of the modified SV channel model
is described as follows [28]:

h(t) =

L∑
l=0

K∑
k=0

βk,le
jθk,lδ(t− Tl − τk,l) (1)

where,L,K, Tl, τk,l , βk,l, and θk,l are the number of clusters
in the channel, the number of multipath components within
each cluster, the arrival time of the first path of the lth cluster,
and the arrival time, amplitude and phase shift of kth path
within the lth cluster, respectively. Also, δ(.) is the Dirac
delta function. The leader power of lth cluster (β0,l)

2 and the
arrival time of the first path of the lth cluster (Tl) calculated
as follows [29]:

20 log10 β(0,l) = pdBmt + 10 log10(
c2

(4πdfc)2
1

(1− ( w
2fc

)2)
)

(2)
and

Tl =
2 ‖xval − xt‖2

c
(3)

where pt, c, and d are the transmitter power, the speed
of light, and the distance between the transceiver and the
related virtual node, respectively. Also, w and fc indicate
the bandwidth and central frequency, respectively. Moreover,
xt and xval are the position of the transceiver and virtual
node respectively. Also, ‖.‖2 is the Euclidean norm operator.
According to [27] we assume that the arrival time of kth path
within the lth cluster (τk,l) is modeled by combining two
Poisson processes with signal reception rates λ1 and λ2 as
follows:

Pr(τk,l|τ(k−1),l) = αλ1 exp
[
−λ1(τl − τ(k−1),l)

]
+

(1− α)λ2 exp
[
−λ2(τl − τ(k−1),l)

] (4)

In this respect, α is the probability combination factor. The
average power of the kth path within the lth cluster (βk,l)

2

decreases linearly with time constant of γ from its own leader
power. Moreover, Nakagami distribution is used to model the
small-scale fading part of βk,l. In Nakagami distribution, the
shape parameter m is modeled as log-normally distributed
random variable whose logarithm has a mean of σm and stan-
dard deviation of µm. The channel phase shift is uniformly
distributed between [0, 2π]. It should be noted as we consider
only the amplitude of the received signal in our approach,
we do not need to consider the phase shift of the channel
component.

Fig. 3 shows an example of the outline of the modified
SV channel model. As shown in this figure, each cluster has
some multipath components and the signal power decreases
as time passes. Considering all of these information increase
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FIGURE 3: An example of the outline of the modified SV
channel model. The red asterisks are the clusters leader and
each cluster has some multipath components.

the complexity of localization algorithms. In this paper, it
is suggested to use the received raw UWB signals from the
modified SV channel up to the second cluster leader as inputs
to the localization algorithms to decrease the computational
complexity and have fewer multipath components in local-
ization algorithms input. The received UWB signal time and
power vectors in each cluster are calculated according to
algorithm 1.

Algorithm 1 Calculate the received UWB signal time and
power vectors

Input: pt, c, d, w, fc, xt, xval
Output: The received UWB signal time and power vectors

Calculate β0,l based on Equation (2)
Calculate Tl based on Equation (3)
Calculate RAY as the matrix to save the received signal
time and power of paths in each cluster as follows:
RAY (0, 1) = Tl
RAY (0, 2) = β0,l
k = 0
while RAY (k, 1) < Tl+1 do
k = k + 1
RAY (k, 1) = τk,l
RAY (k, 2) = 20 log10 β(0,l) −

RAY (k,1)
γ + ζ

end while

V. PROPOSED METHODS
Machine learning algorithms have gained a lot of attention
in recent years. The reason is that, they do not need complex
mathematical equations and achieve low energy consumption
and cost. Therefore, in this paper, two procedures based on
machine learning algorithms are presented to estimate the
target’s position indoors. In the first procedure, the location-
dependent useful information is extracted from the received
UWB signal time and power vectors and used as input for
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each of two machine learning algorithms including MLP and
SVM. In the second procedure, without feature extraction,
the received UWB signal time and power vectors are used
as inputs for two deep neural networks, including MLP and
CNN. In this section, the two proposed procedures, as well
as the designed architecture in each of them are described in
detail.

A. FIRST PROCEDURE
In this procedure, for the SVM and MLP algorithms, the
target is placed at N and M different random positions,
respectively. For each of these positions, the mobile UWB
sensor sends and receives the UWB signal at four known
anchor positions. For each algorithm, 60%, 20%, and 20%
of measurements for N or M target positions are selected
randomly for training, validation, and testing samples, re-
spectively. The validation samples are used to watch the
training procedure and prevent the network from overfitting.
Overfitting refers to the gap between the training loss and the
validation loss, which increases as the training loss decreases
after some training epochs. Regarding four anchor points,
each training sample contains a 28-feature vector including
the time delay of the first and second cluster leader, received
average power, maximum received power, the number of
multipaths, mean excess delay (MED) and kurtosis [20].
These features are extracted from the received UWB signal
time and power vectors. Also, to compare the performance
of the SVM and MLP algorithms, we use the mean absolute
error (MAE) criterion defined as follows:

MAE =

∑p
i=1 |s′i − si|

p
. (5)

where, p is the number of test samples, s and s′ denote the
actual and predicted target position, respectively.

1) Regression with SVM
SVM is a supervised learning method that applies to both
classification and regression problems. In this paper, indoor
localization is considered as a regression problem. The ob-
jective is to establish a functional dependence between the
feature vectors and the specific target position (the Cartesian
coordinate of the target) based on the training samples and
then to determine the position of the target test samples
according to their characteristics. Assume that a mobile
UWB sensor flies to four known positions with coordinates
(xi, yi), i ∈ (1, 2, 3, 4) as transceiver outside of the build-
ing. In the training phase, the target is randomly assigned
to N ′ positions with coordinates rn = (x́n, ýn), n ∈
(1, 2, . . . , N ′). The column vector of the extracted features
from the received UWB signal time and power vectors is
cn = [v1,n,v2,n, . . . ,v4,n]T , where vi,n represents the
feature vector with dimensions 1 × 28 for the ith anchor at
the nth position of the target. Therefore the training set can
be written as (cn, rn) n ∈ (1, 2, ..., N ′). On the other hand,
since the extracted features do not have the same range of
values, the learning operation may take a long time. Hence,

in order to have high accuracy and faster convergence, before
the model learning, the target positions and feature vector are
normalized separately such that all normalized values will
be between zero and one. Using the normalized samples, the
regression function for SVM learning model is expressed as
follows [20]:

f(cn) = 〈w, ψ(cn)〉+ b (6)

where, w ∈ R4 is the weight parameter vector and the inner
product operator is performed by 〈, 〉. Moreover, b ∈ R shows
the bias in the network. Due to the complexity of the signal
propagation within an environment, the relationship between
the feature vector and the locations is nonlinear, thus ψ(.)
is a nonlinear mapping function that maps the feature vector
from low dimension space to high dimension space. To obtain
optimal values of the weight parameter vector (w) in (6),
the author [7] proposes solving the following optimization
problem:

minimize
w,ξ,η

1

2
‖w‖22 + C

N ′∑
i=1

(ξi + ηi) (7)

s · t·


ri − 〈w, ψ(cn)〉 − b ≤ ε+ ξi

b+ 〈w, ψ(cn)〉 − ri ≤ ε+ ηi

ξi ≥ 0 , ηi ≥ 0

where ε and C are the deviation between the regression
function and the real position of ri, and the cost parameter,
respectively. Also, ξi, ηi are slack variables. The dual for-
mulation of the above SVM problem provides an alternative
to solve equation (7). Thus, kernel function approaches can
be used to map the data into higher-dimensional spaces.
Under the optimal conditions, the equation (6) is expressed
as follows [20]:

f(cn) =

N ′∑
j=1

αjϕ(cn, cj) + b∗ (8)

where ϕ(cn, cj) denotes the kernel function. The values of
αj and b∗ can be obtained by using the advanced convex
optimization facility such as the MATLAB LIBSVM toolbox
[31].

2) Regression with MLP

MLP is a class of feedforward deep or artificial neural net-
works. MLP network consists of three layers: input, hidden
and output. In this network, the stochastic gradient descent
(SGD) algorithm is used as the training algorithm [32]. The
basis of this method is to define a loss function between the
predicted and real location. Using the backpropagation (BP)
scheme [33], the error of each layer propagates from output
to input. Therefore all of the network parameters (weights
and biases) are updated iteratively. Generally, as the number
of hidden layers in the neural network increases, it becomes
more flexible to learn nonlinear relationships, but sometimes
it can cause some problems such as overfitting. Hence, in our
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Input: 1 × 28

Dense 64 neuron

Relu

Dense 64 neuron

Relu

Dense 64 neuron

Relu

Dense 16 neuron

Relu

Dense 2 neuron

Linear

FIGURE 4: The architecture used for MLP algorithm in the
first procedure

specific scenario, we need to find the right number of neurons
in fully connected (FC) or dense layer in MLP networks
by trial and error which does not lead to overfitting. Fig.
4 shows the designed architecture for this type of neural
network, which consists of four hidden layers with 64, 64,
64, and 16 neurons per dense layer, respectively. Since the
purpose of this paper is 2D target localization, the number of
neurons in the output layer is chosen as 2. Using the sigmoid
function (f(x) = 1

1+e−x ) in the hidden layers may lead to the
vanishing gradient problem. To avoid this problem, a rectified
linear unit (ReLu) function (f(x) = max (0, x)) is used
as the activation function in each hidden layer [34]. Also,
the linear activation function (f(x) = x) is not used in the
hidden layers, because the composition behind them will still
be equivalent to another linear unit and will not improve the
network structure. On the other hand, because the output of
the network is the continuous values of the target position,
the sigmoid or linear continuous activation function can be
used in the output layer. Moreover, we use adaptive moment
estimation (Adam) to update the parameters of the network
[35] because it needs relatively low memory and works well
even with the little tuning of hyperparameters and has fast
and reliable learning convergence versus SGD. To avoid
overfitting problem, the L2 regularization [36] is adopted.

B. SECOND PROCEDURE

In this procedure, for the MLP and CNN algorithms, the
target is placed at M different random positions. For each of
these positions, the mobile UWB sensor sends and receives
the UWB signal at four anchor positions. For each algorithm,
60%, 20%, and 20% of measurements for M target positions
are selected randomly for training, validation, and testing
samples, respectively. Here, six different cases can be con-

TABLE 1: The Hyper-parameter of MLP and CNN in the
second procedure

Hyper-parameter Value

Learning rate 0.001

Batch size 32

Epochs 100

TABLE 2: The number of neurons used in MLP algorithm in
the second procedure

Dataset Number of neurons

Received UWB signal time 32,32,32,32,16,2

Received UWB signal power 128,128,64,64,64,64,16,2

Hybrid data 256,256,256,2

sidered regarding three different datasets ( the received UWB
signal time and power vectors each with dimensions 1×544,
which are calculated according to Algorithm 1, and also their
concatenation (hybrid data) with dimensions 1 × 1088) and
two deep neural networks; MLP and CNN. Three different
criteria including MAE, the number of training parameters,
and the estimation time of each test data are used to compare
the performance of MLP and CNN algorithms. The second
and third criteria show the degree of network complexity.
The more complex the network, the higher computational
load. Of course, the lower computational load of the proposed
method, the lower need for expensive resources or CPU.
Also, the Hyper-parameters such as learning rate, batch size,
and the number of epochs, which are set before training, for
both of the MLP and CNN algorithms are presented in Table
1.

1) Regression with MLP
Similar to the previous section, the Relu and linear functions
are used as the activation function in the hidden and output
layers, respectively. Table 2 shows the best trial and error
results we obtained as the appropriate number of neurons
in each dataset which do not lead to overfitting. Because
the localization problem is in 2D coordinates, the number of
neurons in the last layer is chosen as 2.

2) Regression with CNN
In general, CNN consists of input, hidden and output layers.
The hidden layer of a CNN typically consists of a series
of sublayers such as convolution layers, pooling layers and
FC layers [37]. The convolution layers contain several filters.
Each of these filters can extract a specific property in different
locations of the input data. The pooling layers are used to
reduce the number of parameters. Spatial pooling also called
subsampling or downsampling, reduces the dimensionality

6 VOLUME 4,2020



Input: 1 × 544

Conv
Filter Number: 64
Fiter Size: 1 × 3
Relu Activation

Conv
Filter Number : 64
Fiter Size : 1 × 3
Relu Activation

MaxPool
Pool Size : 1 × 2

Conv
Filter Number : 64
Fiter Size : 1 × 3
Relu Activation

FC
Neuron Number : 16

Relu Activation

FC
Neuron Number : 2
Linear Activation

FIGURE 5: The designed architecture to the received UWB
signal time dataset in CNN algorithm

of data while retaining important information. After con-
volution and pooling layers, all data are flattened into a
vector and then are fed into FC layers like neural networks.
Similar to the MLP network, the Relu function is used in
the hidden layers to avoid vanishing gradient problem and
the linear activation function is used to perform regression
in the output layer. The learning process is similar to the
MLP as mentioned in subsection regression with MLP of the
first procedure section. In both networks, necessary actions
including; 1) using more training data, 2) reducing the net-
work’s capacity by removing layers or reducing the number
of elements in the hidden layers, and 3) applying L2 regular-
ization are performed to control overfitting. The appropriate
number and size of the filters in convolution layers «Conv»,
the size of pooling in the pooling layer «MaxPool» and the
number of neurons in each dense layer «FC» which do not
lead to overfitting, are shown in Fig. 5, Fig. 6 and Fig. 7 for
three different datasets.

VI. NUMERICAL ANALYSIS

To create synthetic datasets, at first, the target is placed at
1000, 60,000, and 60,000 different random positions, then
for each position of the target, according to Algorithm 1, the
received UWB signal time and power vectors are calculated
and are used as input to the SVM, MLP, and CNN algo-
rithms, respectively for indoor localization. In this section,
the numerical results of these algorithms in both procedures
are evaluated. Also to prove the validity and efficiency of the
used datasets, we investigate the indoor localization problem
based on the proposed approaches in [9], [22], [24].

Input: 1 × 544

Conv
Filter Number : 128
Fiter Size : 1 × 3
Relu Activation

Conv
Filter Number : 32
Fiter Size : 1 × 3
Relu Activation

MaxPool
Pool Size : 1 × 2

Conv
Filter Number : 32
Fiter Size : 1 × 3
Relu Activation

Conv
Filter Number : 16
Fiter Size : 1 × 3
Relu Activation

FC
Neuron Number : 64

Relu Activation

FC
Neuron Number : 2
Linear Activation

FIGURE 6: The designed architecture to the received UWB
signal power dataset in CNN algorithm

Input: 1 × 1088

Conv
Filter Number : 64
Fiter Size : 1 × 3
Relu Activation

Conv
Filter Number : 64
Fiter Size : 1 × 3
Relu Activation

MaxPool
Pool Size : 1 × 2

Conv
Filter Number : 32
Fiter Size : 1 × 3
Relu Activation

MaxPool
Pool Size : 1 × 2

Conv
Filter Number : 32
Fiter Size : 1 × 3
Relu Activation

MaxPool
Pool Size : 1 × 2

Conv
Filter Number : 16
Fiter Size : 1 × 3
Relu Activation

Conv
Filter Number : 16
Fiter Size : 1 × 3
Relu Activation

FC
Neuron Number : 64

Relu Activation

FC
Neuron Number : 2
Linear Activation

FIGURE 7: The designed architecture to hybrid dataset in
CNN algorithm
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FIGURE 8: Mean absolute error criterion in the SVM, MLP,
and CNN algorithms in both procedures

A. COMPARISON OF MLP AND SVM IN THE FIRST
PROCEDURE

As mentioned in the previous section, the extracted features
from the received UWB signal time and power vectors are
provided as inputs to the MLP and SVM algorithms. To
compare the performance of these algorithms, the MAE
criterion according to (5) is used. The MLP with one hidden
layer similar to SVM can only learn small spaces of data.
To learn more complex distributed data, we need to increase
the number of hidden layers of the MLP. Consequently,
as can be seen in Fig. 8, the MLP algorithm in the first
procedure provides less MAE than the SVM algorithm in
both dimensions of 2D Cartesian coordination.

B. EVALUATION OF MLP IN THE SECOND PROCEDURE

Table 3, shows the result of three criteria for the MLP
algorithm in the second procedure. Since the used neural
network has no significant complexity, the number of training
parameters and estimation time of each test data have an
acceptable value for the employed architecture. Therefore,
we only use the MAE criterion to evaluate the MLP net-
work for three datasets. Because the UWB signals have
high time resolution, according to MAE criteria, the received
UWB signal time measurements are more accurate than the
received UWB signal power measurements. On the other
hand, since the hybrid dataset uses the whole information of
both received UWB signal time and power measurements, it
provides the lowest MAE.

C. EVALUATION OF CNN IN THE SECOND PROCEDURE

In Table 4, the required time for estimating test data is a
very small fraction of the time and the number of network
parameters shows an acceptable value for the used architec-
ture. As a result, again the MAE criterion is used to compare
the performance of these three datasets. Similar to the MLP
algorithm results, the hybrid data set, gives the lowest MAE.

Start

Loading the
hybrid dataset

Normalizing
the dataset to
range (0, 1)

Splitting
dataset

Train
60%

Validation
20%

Test
20%

Defining the CNN
architecture and loss function

Parameter
initialization

Training the
CNN model

Loss calculation and update
weight matrix and bias

Validation loss increasing?

Stop training and save
CNN model parameters

Make prediction on test dataset
and calculate performance
metric (regression report)

End

No Yes

FIGURE 9: Flowchart of CNN algorithm for indoor localization
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TABLE 3: Evaluation of the MLP algorithm in the second
procedure

Datasets MAE [m] Number
parameters

Estimation
time [µs]

Received UWB
signal time

0.09 21170 14

Received UWB
signal power

0.20 108082 17

Hybrid data 0.08 408834 32

TABLE 4: Evaluation of the CNN algorithm in the second
procedure

Datasets MAE [m] Number
parameters

Estimation
time [µs]

Received UWB
signal time

0.04 299442 490

Received UWB
signal power

0.08 290066 570

Hybrid data 0.03 156514 1000

D. COMPARISON OF MLP AND CNN IN THE SECOND
PROCEDUE
In the MLP algorithm, all input samples are received as a
vector and mapped to the feature extraction space, while in
the CNN algorithm, the input data vectors are converted to a
square matrix then the algorithm filters are locally focused
on data sub-matrix and features of each local sub-matrix
are extracted individually. By considering the MAE criterion
for comparing the performance of these neural networks,
as in the Fig. 8, it can be seen that the CNN algorithm
shows better performance than the MLP algorithm in the
second procedure with the accuracy of 3 cm in each of two
dimensions. Moreover, in Fig. 9 the flowchart of the CNN
algorithm that has the best result for the hybrid dataset are
presented.

E. VALIDATION OF THE SECOND PROCEDURE WITH
THREE RELATED WORKS
To prove the efficiency of the used dataset in the second
procedure, as in [9], we consider the indoor localization
problem as a classification problem. Thus, the 60,000 random
locations of the target inside the cube-shaped environment
are converted into 16 classes and used as outputs to MLP
and CNN networks. Similar to the used architecture in [9]
but with little change and trial and error, the best results can
be seen in Table 5. However, even if we are more accurate
in predicting the target position, because of the large size of
the cube-shaped environment, the area of each block is large
and after classifying the center of each block as the target
location, we will achieve a large quantization error. On the

TABLE 5: Performance summary of various classification
methods

Classification
method

Number
parameters

prediction
Accuracy
(%)

MAE
[m]

MLP_Received
UWB signal
power

321232 87.68 1.53

MLP_Hybrid
data

458448 95.7 1.53

CNN_Received
UWB signal
power

85600 91.16 1.53

CNN_Hybrid
data

303904 97.98 1.53

MLP_RSS [9] 1782576 80.29 0.92

MLP_CSI [9] 1912176 99.93 0.92

CNN_RSS [9] 48288 82.32 0.92

CNN_CSI [9] 132928 99.98 0.92

other hand, if we reduce the area of the blocks we would
have to increase the number of blocks, so in the final layer
of the classification model, we would need a large number
of neurons, which in addition to the difficulty in training
would so increase the computational burden. To analyze
the localization performance we assume that the localization
error is equal to the distance between the actual position and
the estimated position. Assuming that the estimated position
is equal to the center of the estimated block, the highest and
lowest value of the MAE for hybrid data with the prediction
accuracy of 97.98% and 100% is equal to 62 cm in both
cases for x-coordinates, 247 and 245 cm for y-coordinates,
respectively. Based on these results, we conclude that the
proposed classification without regression method in [9] is
not suitable for the used dataset in this paper and leads to a
large ranging error.

To test the performance of the proposed localization error
reduction method in [22], a dataset with a measured range
between the mobile UWB sensor and target should be con-
structed. Due to lack of access to the DWM1000 IR-UWB
module, the measured range (d′) and actual distance (d)
between mobile UWB sensor and the target is computed as
follows:

d′ =
c ∗ t′

2
(9)

d =
c ∗ t

2
(10)

where c, t′, and t are the speed of light, the time length of
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TABLE 6: Accuracy of localization methods for the received
signal power dataset

Localization method MAE in this
work [m]

MAE in [22]
[m]

LS 4.16 1.05

LS_REG 0.31 0.35

WLS 3.58 0.68

WLS_REG 0.29 0.30

TABLE 7: Accuracy of localization methods for the hybrid
dataset

Localization method MAE in this
work [m]

LS_REG_HYBRID 0.10

WLS_REG_HYBRID 0.09

the first cluster, and the arrival time of the first cluster leader,
respectively. The best localization performance is achieved
when all of the used ranges in the position estimation are
within the LOS range. However, due to the presence of
multipath components, the measured ranges become positive
bias and the position estimation with these measurements
in LS and WLS estimators results in a MAE of several
meters. These results are presented in the LS and WLS rows
in Table 6. According to [22], the ranging error is defined
as the difference between the measured range and actual
distance (ε = d′ − d) and is used as outputs for training
the CNN-based regression model. Also, instead of using
the CIR measurements, the received UWB signal power,
and hybrid datasets are used as CNN network inputs. By
calculating the estimated ranging error and measured range,
the estimated distance (d̂ = d′ − ε̂) can be obtained. A
significant improvement in indoor localization is achieved if
the estimated distance is used in the LS and WLS estimators.
These results are shown in the LS_REG and WLS_REG rows
(two regression method based on LS and WLS algorithms) in
Table 6. However, as observed in the previous sections, since
the hybrid dataset uses all of the information, therefore ac-
cording to Table 7 it shows a lower MAE when the estimated
distance is used in the LS and WLS estimators.

To prove the efficiency and high accuracy of the used
sequential dataset (time and power vectors of the received
UWB signal) in the second procedure, as in [24] we consider
the indoor localization problem as a regression problem.
The architecture of the proposed GRU-LE model in [24] is
illustrated in Fig. 10. According to this figure, the model
consists of one input layer, two GRU layers, three fully
connected layers, and one regression layer. The output of
the model is the estimated 2D location of the target. The
input data, which is generated from the received UWB signal

FIGURE 10: The GRU-LE model architecture [24]: The input
is generated from algorithm 1, and the output is the 2D
position of the target.

time or power, is a matrix U q ∈ RI×K , q ∈ (1, 2, . . . , Q),
where I ∈ (1, 2, 3, 4) represents the number of known
positions of the mobile UWB sensor, and K represents the
number of time steps for each q training sample. Also, to
generate Q samples for the GRU-LE model, the target is
placed in Q different random positions. According to [24],
the input matrix of GRU-LE model can be considered as
U q = [i1,q, i2,q, . . . , iK,q], where ik,q ∈ RI×1 denotes the
input vector at kth time step as shown in in Fig. 10. As it is
shown, the number of GRU cells in each GRU layer are same
and equal to the number of time steps in the input matrix.
The number of units for each cell in the first and second GRU
layers and similarly, the number of units for the first two fully
connected layers is selected according to [24]. To estimate
the 2D position of the target, in the last fully connected layer,
two units are used. Finally in the regression layer of the
model, the mean square error between the predicted and real
position of the target is used as the loss function. To evaluate
the performance of the used sequential datasets based on
GRU-LE model in indoor localization problem, the RMSE
criterion is used as an evaluation metric, which is calculated
as follows:

RMSE =

√∑p
i=1(s′i − si)2

p
(11)

Table 8, shows the result of RMSE criterion for both se-
quential datasets in the proposed GRU-LE model in [24].
According to this table, a significant improvements compared
to [24] in the localization problem are observed by using both
sequential datasets.

Finally, the localization error of the proposed methods
and previous related works are summarized in Table 9. The
second and third columns of the table show the types of wire-
less technologies and machine learning-based techniques that
are used in indoor localization for each research paper. As
it is clear, localization methods based on Wi-Fi, Bluetooth,
and ZigBee technologies cannot obtain a precision of a
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TABLE 8: Evaluation of the sequential datasets in the GRL-
LE model

Sequential Dataset RMSE [m]

Received UWB signal
time

0.1

Received UWB signal
power

0.2

Received UWB signal in
[24]

0.8

few centimeters for indoor localization. On the other hand,
the MLP localization technique with extracted features and
the CNN localization technique with hybrid data show a
significant improvement in indoor localization. It should be
noted that by using both sequential datasets, better results in
indoor localization problem are observed compared to [24],
but our proposed approach nevertheless shows a significant
improvement over GRU-LE model in [24]. On the other
hand, by using hybrid dataset for training the proposed re-
gression model in [22], an acceptable accuracy in the indoor
localization problem is obtained using CNN combined with
the WLS localization technique. But due to the structural
differences in the used hybrid dataset and quantization error
in CNN-CSI localization technique, the proposed approach in
[9] does not provide higher accuracy in predicting the target
position within each class and therefore the target position
cannot be estimated with an accuracy of a few centimeters.

VII. CONCLUSION
In this paper, to reduce the installation cost of the expensive
anchor points in the large areas for indoor localization, the
use of a mobile UWB sensor, due to having high mobility
and low-cost features is presented. Moreover, two procedures
for reducing the indoor localization error are proposed using
SVM, MLP, CNN algorithms applied on the received UWB
signal time and power vectors. In the first procedure, the main
features were extracted from the received UWB signal time
and power vectors up to the second cluster leader (to have
fewer multipath components) and are used as inputs in MLP
and SVM algorithms. The simulation results show that the
MLP algorithm provides lower MAE than the SVM algo-
rithm because the MLP algorithm uses more hidden layers. In
the second procedure, three different datasets were extracted
from the received UWB signal time and power vectors up
to the second cluster leader and are used as inputs in the
MLP and CNN algorithms. Because the CNN algorithm
could extract meaningful information from the datasets, it
shows lower MAE than the MLP algorithm for the hybrid
dataset. Also by comparing the proposed approach with the
procedures in the literature, the accuracy and efficiency of
the used dataset in the second procedure are proved. In
this paper, we used synthetic dataset for investigating the

indoor localization problem. In the near future, by providing
real dataset achieved by using the mobile UWB sensor, we
will show the validity and high efficiency of our proposed
procedures in real environment.
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