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Abstract 

Doctor of Philosophy 

By D. M. Mahesh Panditha Dissanayake 

Mooring chains used to stabilise offshore floating platforms are often subjected to harsh 

environmental conditions on a daily basis, i.e. high tidal waves, storms etc. Chain breakage 

can lead to vessel drift and serious damage such as riser rupture, production shutdown and 

hydrocarbon release. Therefore, integrity assessment of chain links is vital, and regular 

inspection is mandatory for offshore structures. Currently, structural health monitoring of 

chain links is conducted using either remotely operated vehicles (ROVs), which are 

associated with high costs, or by manual means, which increases the risk to human 

operators. The development of climbing robots for mooring chain applications is still in 

its infancy due to the operational complexity and geometrical features of the chain. This 

thesis presents a Cartesian legged magnetic adhesion tracked-wheel crawler robot 

developed for mooring chain inspection. The crawler robot presented in this study is 

suitable for mooring chain climbing in air and the technique can be adapted for underwater 

use. The proposed robot addresses straight mooring chain climbing and a misaligned 

scenario that is commonly evident in in-situ conditions. The robot can be used as a 

platform to convey equipment, i.e. tools for non-destructive testing/evaluation 

applications. The application of ultrasound for in-service mooring chain inspection is still 

in the early stages due to lack of accessibility, in-field operational complexity and the 

geometrical features of mooring systems. With the advancement of robotic/automated 

systems (i.e. chain-climbing robotic mechanisms), interest in in-situ ultrasound inspection 

has increased. Currently, ultrasound inspection is confined to the weld area of the chain 

links. However, according to recent studies on fatigue and residual stresses, ultrasound 

inspection of the chain crown should be further investigated. A new automated application 

for ultrasonic phased-array full-matrix capture is discussed in this thesis for investigation 

of the chain crown. The concept of the chain-climbing robot and the inspection technique 

are validated with laboratory-based climbing experiments and presented in this thesis.
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1.1 Introduction to the problem  

The history of the mooring chain began in 1808, with advances in the shipping industry, 

when it became necessary to maintain a floating structure within a given (pre-specified) 

position. An exponential increase in floating oil and gas production systems has been 

recorded around the world due to the high demand associated with energy consumption. 

In total, 277 floating production units (FPU) were recorded by November 2013 and 62% 

of these were categorised as floating production storage and offloading (FPSO) [1]. 

Permanent mooring systems were introduced to the floating production units in order to 

keep them safe and steady during in-service operations, i.e. to prevent platform drift due 

to tidal forces, wind, storms etc. The components of a typical deep-water mooring chain 

installation are illustrated in Figure 1-1. The shape of a mooring line (i.e. catenary 

curvature) depends on the force applied to the mooring line at the fairland, the unit weight 

of the mooring line, the length of the suspended mooring line, the operational water depth 

and the horizontal distance between attachments. This research focuses on the tethering 

mooring chains; in particular, chain segments that are connected all the way from ≈30m 

below the surface up through the splash zone to air underneath the turret. This part of the 

chain segment is likely to be straight. However, misalignments are presented in the 

mooring line due to in-situ forces. 

 

The requirement of mandatory structural health assessments raised as a result of the in-

situ conditions to which mooring chains are subjected on a regular basis, such as high tidal 

waves, storms, hurricanes, the effect of salt water and harsh environmental conditions. 

Chain overload, out-of-plane bending, wear effect between chain links, corrosion and 

manufacturing defects are the main reasons for mooring breakage. A break in the mooring 

chains can lead to significant damage such as vessel drift, riser rupture, production 

Figure 1-1: Components of a typical deep water mooring installation [150]   
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shutdown and hydrocarbon release etc. [D5]. Examples of the possible damage to mooring 

chain links are illustrated in Figure 1-2. As an example, $1.8 billion had to be spent on the 

‘Gryphon Alpha’ to resume operations after a mooring failure [2]. In the period 2001–

2011, 21 accidents were recorded with eight multiple line breakages (system failures) [3]. 

Modern mooring systems are designed to handle a single breakage, but multiple breakages 

can easily lead to a catastrophic incident. An in-depth analysis of mooring breakage 

between 2001–2011 was conducted in [3], and a detailed summary was presented, as 

illustrated in Figure 1-3. 

 

 

According to the analysis carried out in Figure 1-3, it is significant that the ‘chain’ part of 

a mooring system is vulnerable and mandatory regular inspection is required. According 

to the reported data from the North Sea (1980–2001), every 4.7 years, a floating production 

Figure 1-2: (a) Sample of ‘North Carr’ link failure; (b) General corrosion of a mooring link (after 

16-year service) [5] 

(a) (b) 

Figure 1-3: Mooring incident analysis (based on reported incidents between 2001–2011) [3] 
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system has experienced a mooring failure [4]. Approximately £2M–10.5M in losses can 

occur due to a single mooring failure [5]. After considering the potential damage to 

humans, as well as the environment, periodic inspection became mandatory for mooring 

systems [4]. Chain inspection intervals are determined according to service time in the 

water, i.e. a mooring system that has been in operation for 0–3 years should be inspected 

every 36 months; 4–10-year chain links should be inspected every 24 months; and systems 

that are over 10 years should be inspected every eight months [6].  

1.2 Motivation  

1.2.1 Research Gap 1 - automated climbing platform  

Mooring chains are not designed to be self-monitoring their condition; therefore, mooring 

integrity management of FPSO needs to be addressed with a capability to handle in-situ 

conditions, because most offshore oil production systems cannot be moved for inspection 

or repair, i.e. permanent mooring arrangements. The most common inspection method is 

manual non-destructive testing (NDT) using trained divers; however, due to health and 

safety concerns, divers are not permitted to inspect a chain in the splash zone area [4]. 

Removing and replacing mooring chains for inspection is a costly and unreliable method 

due to the difficult operational in-situ conditions. Due to the limited access and inspection 

costs of conventional inspection techniques (i.e. ROV inspection, chain removal, divers), 

in-service applications have been introduced, including climbing and crawling robots. 

Because of the complicated climbing structures presented by mooring chains, few attempts 

have been recorded regarding the development of chain-climbing robots; in other words, 

the chain structure is discontinuous, curved, orthogonal and consists of uneven surfaces. 

Most of chain climbing robots are research based and unable to extend beyond the initial 

laboratory experimental stage. Moreover, when considering climbing and crawling robots, 

chain climbing can be introduced as an area that needs to be developed further. When 

considering the state-of-the-art chain inspection/climbing mechanisms, development of a 

new lightweight robotic mechanism/platform that can climb mooring chains both in air 

and in water is needed. 

1.2.1 Research gap 2- automated inspection (Mooring chain crown NDT) 

According to the existing literature on chain inspection (i.e. mooring chain NDT), only a 

few attempts have been made to automate the NDT process. Compared to the evolution of 

automated NDT, chain inspection has not been developed to the level of 
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commercialisation. The current state-of-the-art automated chain inspection mechanisms 

are designed to investigate the weld area of a chain link. At TWI Cambridge, a study was 

carried out to understand stresses between mooring chain links and potential fatigue 

damage. Residual stresses around the interlink contact zone were analysed during this 

research and potential fatigue damage around the crown of the chain link was investigated. 

In the current automated studies, the primary concern was to investigate the weld area of 

the chain. According to the findings in [7] [8], chain crown investigation was also 

identified as crucial. The capability of using conventional NDT techniques for crown 

inspection is limited due to the complex geometrical features, i.e. curved, round, 

overlapping with the orthogonal chain link, rusted etc. Therefore, a novel automated 

friendly NDT technique that can cope with in-situ conditions is needed.  

1.3 Aims and Objectives  

The focus of this research is to mitigate the challenges set out by the conventional mooring 

integrity assessment.  The proposed solution will ensure the structural health integrity of 

FPSO mooring chains by introducing new automated platform and an inspection 

technique.  

The primary aim of this thesis is to design and prototype a new light weight, fast moving, 

robotic platform which can be applicable for both air and underwater. The design of 

climbing robots depends on the application field. However, the primary common 

requirement of all climbing robots is the need to maintain secure and required surface 

attachment climbing on the given structure.  

Design and prototype of a new inspection method for chain crown can be introduced as 

the second main aim of this research. Inspection of chain crown can be introduced as an 

emerging NDT requirement. The aim is to establish an automated technique which is 

capable of chain crown inspections both in air an underwater.  

The individual objectives required to achieve the research aims include: 

• Investigation of the robotic requirements for chain climbing and chain inspection. 

Due to the challenging architecture presented by the mooring chains, it is essential 

to understand the requirements before the development of the robot. Mooring chain 

crown inspection has not been studied thoroughly. Therefore, an extensive 

investigation should be carried out to obtain requirements. 
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• Design and prototype of the chain inspection platform. As it was mentioned 

previously, only a few attempts have been made in order to establish automated 

chain climbing techniques. First of all, a study should be carried out to design an 

orthogonal chain climbing platform. Followed by misalignment climbing / 

adaptation. Straight mooring chain climbing is considered in this research. 

However, some misalignments are inevitable.  

• Design and prototype of an automated chain crown inspection mechanism. As it 

was mentioned previously, chain crown inspection has not been studied compared 

to the chain weld inspection. Therefore, a suitable inspection should be selected 

and automation capabilities should be investigated.  

• Laboratory trials for both chain climbing and inspection should be carried out in 

order to prove the concepts.  

 

1.4 Contribution to Knowledge  

1.4.1 Magnetic Adhesion Tracked-wheel Crawler  

An industrial need was identified in the literature for automated mooring chain climbing, 

i.e. a climbing robot. Due to the complex geometry and challenging operational conditions, 

few studies have been conducted on chain climbing. Few robotic/automated attempts have 

been studied in the literature on chain climbing. In addition, according to the published 

literature, a successful technique that is capable of working both in the air and underwater 

has not been identified. Arm, gripper and slider techniques have been used in past chain 

climbing attempts, but magnetic adhesion and tracked-wheel principles have not been 

used. Therefore, an orthogonally positioned magnetic adhesion tracked-wheel robot has 

been developed. The proposed lightweight, easily deployable robotic climber was tested 

in air. The demonstrated technique can be adapted for underwater use. The feasibility of 

using orthogonally placed magnetic adhesion tracked crawler units to climb mooring 

chains has been established. 

1.4.2. Adaptable Climbing Robot for Misaligned Chains  

A vertically hanging mooring chain is considered in this research. However, some 

misalignments are inevitable, i.e. chain twist. According to the recorded literature, 

misalignment climbing has not been considered to date. Therefore, a modification was 

added to overcome misalignments. A combination of two locomotion mechanisms has 
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been used to cope with the misalignments. As a result of this study, a robotic platform that 

can eliminate concerns relating to misaligned mooring chain climbing has been 

established. 

1.4.3. Automated Ultrasound Inspection Technique for Chain Crown Inspection  

When considering in-service ultrasound inspection of mooring chains, the crown is not a 

state-of-the-art inspection procedure due to the operational difficulty. Ultrasound 

inspection of the chain weld area is mandatory, but the chain crown is also identified as a 

crucial area for inspection. State-of-the-art ultrasound mooring chain integrity assessments 

are still at the laboratory stage due to the in-field operational complexities and geometrical 

features of the chain. As an outcome of this study, a novel application of FMC/phased 

array for chain crown inspection is suggested as a contribution to the knowledge.  

1.5 Overall research methodology used in this study  

Moring chain used in this investigation is illustrated in Figure 1-4 and Figure 1-5. 

Moreover, Figure 1-4 demonstrates the un even, corroded, curved and orthogonal surfaces 

of the mooring chain. Where Figure 1-5 illustrates the physical dimensions. 

First, a comprehensive literature survey was carried out to understand the current state-of-

the-art automated chain-climbing techniques. Due to the operation complexity, few 

attempts have been made to date. A design evaluation of climbing robots was conducted 

in order to select a suitable locomotion mechanism and an adhesion principle. According 

to the literature, ‘tracked-wheel’ locomotion and ‘magnetic adhesion’ were identified as 

techniques that have not been used for chain climbing. Therefore, the magnetic adhesion 

tracked-wheel mechanism is proposed in this study. This work has been presented at the 

peer-reviewed conference, the 20th International CLAWAR [D5]  and the 2017 NSIRC 

conference[D6], and is also documented in Chapter 2. 

Second, the design phase of the climbing robot was carried out. Permanent magnetic 

adhesion was investigated in the literature in relation to steel surface climbing, i.e. ship 

hull climbing, wall climbing. However, due to the significant curvature of the mooring 

chain, a bespoke magnetic adhesion module that can be fitted in the tracked-wheel unit 

was designed. Finite element analysis (FEA) was used during adhesion module 

optimisation and robot structural design. The magnetic adhesion results were validated 

with the use of a test rig. Then, a prototype of the magnetic adhesion tracked-wheel robot 
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was built and tested on a chain segment. Within this part of the research, the feasibility of 

using orthogonally placed, magnetic adhesion tracked crawler units to climb mooring 

chains was established. This contribution to the knowledge was presented at the peer-

reviewed IEEE International Conference on Industrial and Information Systems (ICIIS) 

[D4], published in the peer-reviewed journal, Proceedings of the Institution of Mechanical 

Engineers, Part I: Journal of Systems and Control Engineering [D1], and in Chapter 3-4. 

A further investigation was carried out regarding in-situ robotic climbing. The climbing 

robot described in Chapters 3–4 was designed to climb a vertically aligned mooring chain, 

i.e. laboratory conditions; mooring chain links are orthogonal to each other. According to 

information from field operators, misalignments occur in the chain during vertical hanging 

(i.e. chain twist and tilt). Therefore, a misalignment adaptation technique was added to the 

existing design. During the locomotion study in Chapter 2, ‘legged’ locomotion was 

identified as a suitable technique to overcome surface discontinuities and abnormalities. 

Therefore, tracked-wheel locomotion was combined with a Cartesian type legged 

mechanism to overcome misalignments. The climbing experiments were carried out on a 

misaligned chain segment. Finally, a feasibility study was conducted to establish a 

misalignment detection mechanism (i.e. ultrasound FEA study and an experimental setup). 

As a result of this study, the idea of an orthogonally placed Cartesian legged magnetic 

adhesion tracked-wheel robotic platform that can eliminate concerns related to misaligned 

mooring chain climbing has been established. This work was presented at the 2018 NSIRC 

conference[D7], in the peer-reviewed journal, Industrial Robot [D2] and in Chapter 5. 

Finally, an automated chain inspection mechanism was introduced. Ultrasound inspection 

for the chain weld area is mandatory and is a part of the standard practice. According to 

recent investigations, the chain crown is also identified as a crucial area for inspection. 

Mooring chain integrity assessment with phased array is still in its infancy due to in-field 

operational complexities and the geometrical features of the chain. Therefore, this part of 

the research was carried out as a feasibility study for a novel NDT application. The full 

matrix capture (FMC) data acquisition technique was used in the interest of enhancing the 

quality of the NDT images. Mooring integrity inspection needed to be conducted in both 

air and underwater. Therefore, a continuous water supply wedge was designed in order to 

provide a marine coupling environment in the air. A five-axis automated manipulator was 

designed to simulate the automatic inspection capability. Within this study, a novel 

application of FMC/phased array is demonstrated for chain crown inspection, and 
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laboratory experiments were carried out with the use of an automated manipulator. This 

contribution to the knowledge was presented in the peer-reviewed journal, IEEE 

Access[D3] and in Chapter 6. 

 

1.6 Thesis Outline 

Chapter 2 presents a review of previously published work, i.e. literature on automated 

mooring chain-climbing robotic attempts. Each subsection concludes with an 

identification of the gaps in the current knowledge and practice. This chapter also includes 

a review of the commonly used robotic locomotion mechanisms and adhesion techniques. 

Next, a design for a novel magnetic adhesion tracked-wheel is proposed and documented 

in Chapter 3. This consists of the design for a bespoke magnetic adhesion module and a 

tracked-wheel unit. 

Figure 1-5: Schematic of the chain used in this research 

 

Figure 1-4: (a) Mooring chain sample.  (b)Mooring chain’s rusted, uneven, curved orthogon chain 

clinks (sample image) 

 

(a) (b) 
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The prototype of the novel crawler robot is presented in Chapter 4, i.e. the very first 

approach to using magnetic adhesion and tracked wheels for chain climbing. The FEA 

used in the adhesion module design (in Chapter 3) is validated in this chapter. The 

experimental climbing tests are presented at the end of this chapter, i.e. vertically aligned 

mooring chain climbing.  

Then, mooring chain misalignments that are commonly evident in vertical hanging are 

discussed. Required changes to the existing crawler robot are presented, with a 

mathematical explanation. A modification was added to the robot leg to mitigate 

misalignments. The proposed robot was prototyped and tested, as discussed in Chapter 5. 

In order to estimate misalignments, an ultrasound-based feasibility study and laboratory 

experiments were conducted, and these are presented at the end of the chapter. 

Due to the complex geometry and lack of literature, mooring chain crown inspection has 

not been studied in depth to date. Therefore, a novel automated application of ultrasound 

full matrix capture for chain crown inspection is presented in Chapter 6. The technique 

presented in Chapter 6 is the first automated chain crown inspection mechanism that uses 

an ultrasound phased array along with full matrix capture. 

Finally, in Chapter 7, the work presented in the thesis is reviewed and concluded, with 

recommendations for further work, i.e. further development of the robot and NDT robotic 

manipulator integration.
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2.1 Overview  

With the significant developments in automation, the connection between industry and 

robotics has strengthened. A wide range of robotic applications have been introduced in 

the manufacturing and distribution industry to minimise the physical effort required by 

humans. With the advancements in the industry and its requirements, robotics applications 

have become advanced and innovative. When considering structural health monitoring, 

the involvement of robotics is considerably low due to the complex non-destructive testing 

(NDT) requirements. Structural health monitoring is often carried out using manual means, 

which increases downtime and jeopardises the health and safety of NDT operators. Most 

applications that require structural health monitoring/testing are categorised under 

operator safety-critical structures. The deployment of human NDT operators involves 

downtime for reasons of health and safety. Moreover, the cost of an experienced operator 

is considerably high [9]. Therefore, robots have been introduced as NDT tool carriers (i.e. 

inspection robots are used for ship hulls [10], mooring chains [D1], long weld lines [11], 

oil storage tanks [12], wind blades [13], subsea risers [14] etc.). Robotic platforms that can 

perform structural assessments can negate the effects of hazardous working environments 

for humans. Due to the in-situ operational quality of robotic platforms, inspection 

downtime can be minimised. 

The primary goal of this chapter is to present the literature survey to find the technical 

requirements for a chain-climbing robot. Only a few chain-climbing attempts have been 

recorded in the history of robotics, and each robot is evaluated in this chapter to understand 

its capabilities and limitations. The selection of the locomotion and adhesion mechanism 

is vital when it comes to climbing robots. Therefore, commonly used techniques are 

evaluated with examples. Several design review studies have been carried out in the field 

of wall climbing (examples can be seen in [15] [16] [9]), but mooring chain climbing is 

different due to its physical structure. Therefore, this chapter presents a classification of 

robots with consideration of locomotion and adhesion principles.  
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2.2 State-of-the-art chain-climbing/inspection approaches  

Due to the complexity of the mooring chain structure, only a few attempts have been made 

to establish a robotic/automated system that can operate both in air and underwater. Most 

of these are at the research stage and are unable to extend beyond the initial experimental 

stage; in other words, most of the mechanisms are still at the development stage. Current 

automated climbing mechanisms are listed below: 

‘MoorInspect’, presented in [17] [18] [19], was a European Commission (EP) framework 

programme, a collaborative project that began in October 2011. This project aimed to 

prototype an accurate medium-range ultrasonic testing system that could be used to 

determine the defects in mooring chains in working conditions [18]. A robot that could 

climb mooring chains in both  air and water was developed in order to deliver the NDT 

unit to the chain. Two paws were introduced to the robot to simulate a human-like climbing 

method (see Figure 2-1). Two arms/paws were used to pull the robot up the chain by 

pushing against the chain’s crowns at the same time. The outer structure of the robot was 

longer than a single link because it was necessary to touch both consecutive chain crowns 

at the same time for a single movement. The weight of the robot (only) was 450kg in the 

air [20] Moreover, when considering the weight of the NDT collar, it can be assumed that 

the net weight of the system was over 600kg [21].  

The aim of the project presented in [22] was to develop an automated inspection system 

that could be used to investigate mooring chains in FPSOs (illustrated in Figure 2-2). The 

chain-climbing robot was developed by CYBERNETICSTM for subsea cleaning and 

inspection of anchor chains. The climbing method used in this robot was influenced by the 

human-like climbing method. Two claws were used as the locomotion mechanism (i.e. one 

Figure 2-1: MoorInspect climbing robot and guided-wave inspection attachments [17] 
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claw was used to hold the chain link while the other claw was placed on the next chain 

link). The control system was powered by hydraulic and electric supplies from an external 

ROV. The robot was equipped with a vision system and an image-processing unit for NDT. 

A man–machine interface was introduced to the system. In this way, an additional human 

inspector was able to be involved in the integrity evaluation process [22]. 

 

 

The automated mechanism presented in [23] was developed (see Figure 2-3) to investigate 

stud-less mooring chains (111mm to 185mm). During the manufacturing process for the 

chain links, the ‘flash butt welding’ method was used to join the bent steel bars. According 

to the project specifications, welded area investigation was considered the main objective. 

Establishing an ‘in-line’ inspection system was introduced as the secondary objective: a 

system that could be used for ultrasonic inspections without hindering production. This 

(a) (b) 

Figure 2-3: Automated weld inspection mechanism [23]. (a) Prototyped version. (b) testing  

(a) (b) 

Figure 2-2: The anchor chain-climbing and inspection mechanism [22].(a) robot. (b) testing 
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system was able to detect flaws in the welding zone on both sides and generate visual 

warnings. Apart from the abovementioned real-time flaw detection, a hard copy of the 

inspection results was provided to an operator for further investigation. In the interest of 

detecting inner-plane imperfection, each pair of transducers was configured in both pulse-

echo and transmit-receive modes.  

The conceptual climbing mechanism illustrated in Figure 2-4 was designed to overcome 

the limitations of in-situ mooring chain inspection [24]. The main idea was to develop a 

system that could be operated without bringing the chain on board (removing the chain for 

inspection is very expensive and can cause production delays). A nozzle that directed a 

high-pressure water stream was attached to the robot for cleaning/removing marine growth 

and rust scale [24]. During the first part of the project, a crawling mechanism was 

developed; however, according to the TWI’s analysis of the project, the robot’s crawling 

system was unable to perform as expected. The fundamental motorised climbing 

mechanism relied on passive friction; however, due to the in-situ condition of the chain 

surfaces, relying on friction (friction due to a grip) was not suitable. Therefore, the robot’s 

locomotion mechanism was changed to an independently controlled, gravity-assisted cable 

system. 

 

The ‘CIRUS’ chain inspection mechanism presented in [25] was designed as a robotic 

inspection system that could be used at the chain-manufacturing stage (see Figure 2-5). 

Providing an automated solution to the weld inspection at the manufacturing stage was the 

primary concern of this project, i.e. not an in-situ climbing mechanism. The proposed 

Figure 2-4: Chain test inspection robot [24]. (a) conceptual design 1. (b) conceptual design 2 

(a) (b) 



Chapter 2: Automated chain climbing literature review & Design review 

17 

 

system consisted of a chain position mechanism and an ultrasound inspection mechanism. 

The chain position mechanism was designed in order to place the chain in the inspection 

module. 

 

The inchworm – Stewart platform chain-climbing mechanism proposed in [26] [27] was 

designed as a combination of two locomotion mechanisms (see Figure 2-6). The inchworm 

locomotion was proposed to climb the chain and the Stewart platform was used to change 

the orientation of the robot. This teleoperated climbing robot is still at the laboratory 

prototype stage and should be tested for climbing. Currently, the robot is designed to work 

underwater; in order to demonstrate in-air usage, the weight of the robot will need to be 

reduced (i.e. the current weight ≈100kg). 

 

ROVs are the most commonly used industrial practice when it is necessary to conduct a 

task in subsea conditions. Most mooring-related ROV assessments are carried out using 

visual inspection. Visual inspection mechanisms are teleoperated and can be attached to 

Figure 2-6: RIMCAW chain climbing robot [26] 

Figure 2-5: The CIRUS manufacturing chain inspection robot  (a) CAD design (b) field test [25] 

(a) (b) 
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an ROV that can take the device close to the chain. The Welapetega chain-inspection 

system (presented in  [28] [29]) was designed to measure the dimensions of a mooring 

chain link when the chain is under working conditions. The system is powered by an ROV 

and a semi-automated measuring device (see Figure 2-7(a)). Another ROV-assisted chain 

inspection mechanism is presented in [30]. A gas spring measuring mechanism was 

designed to record the mooring chain’s physical measurements when dragged along the 

chain surface by an ROV (see Figure 2-7(b)). 

2.3 Other mooring-integrity-related studies  

At TWI Cambridge, numerical/experimental analysis was carried out to understand the 

stresses between mooring chain links and potential fatigue damage. Residual stresses 

around the interlink contact zone were analysed during the research and potential fatigue 

damage around the chain crown was investigated [31]. A study was carried out in [32] to 

reduce the uncertainty of mooring lines by introducing a new technology that can measure 

mooring line angle and line tensions. A frictionless theory that predicts the resultant torque 

and ‘lifts’ in the link is presented in [33]. Safety management in floating platforms 

(Deepwater stations) is discussed in terms of the design and risk assessment details of 

mooring systems in [34]. Another study was conducted to determine the rate of wear of 

mooring chains in [35]. The presented test results are based on various axial loadings and 

specific angular displacements using dry/wet mooring chains. A method to determine the 

corrosion loss of low-alloy steel chains is presented in [36] (considering water 

temperature, salinity, water velocity, and surface roughness). The effects of 

Figure 2-7: (a) Welapetega chain inspection system [28];  (b) gas spring inspection tool [30]  

(a) (b) 
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microbiologically influenced corrosion (MIC) and pitting corrosion on mooring chains are 

investigated in [37] .  

 

2.4 General robotics locomotion principles  

When considering the mechanical aspects of a robot, locomotion can be viewed as one of 

the most important concepts because the entire structure of the robot depends on the 

locomotion. There are several types of locomotion mechanism used in robotics and, in 

order to select the most suitable mechanism (for a specific task), it is necessary to 

understand the behaviours (manoeuvrability), pay load, working conditions, adhesion 

mechanism, and mechanical/electrical/controlling limitations. The shape of the structure 

and the size of the robot depend highly on the selected locomotion. Therefore, it is vital to 

consider different locomotion techniques and evaluate these according to the specified 

task, i.e. mooring chain climbing. 

2.4.1 Legged-arm locomotion  

Legged robots have been used in robotic applications when there is a discontinuous space 

or discontinuous path to travel. Individual leg manoeuvrability has been used in these types 

of robot to walk along uneven, discontinuous, non-homogeneous terrains (i.e. when the 

robot has to step over an obstacle). The number of legs is decided according to the 

complexity of the task and also stability. Several controllable active joints can be 

introduced to a leg after considering the end effector requirements and the stability of the 

Figure 2-8: Illustration of a micro biped robot with vacuum 

suction cups for non-destructive structure inspection [39] 

 

Figure 2-9: Illustration of a six-legged robot with 

electromagnetic end effector [152] 
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robot. Additional legs/arms can enhance the payload capacity and the stability, but this 

also increases the weight of the system [38]. Examples of legged robots include two-legged 

robots (biped) [39] [40], four-legged robots [41] [42], and six-legged robots [43] [44]. 

Vacuum suction cups, grasping grippers, or magnetic devices as the end effector of the 

robot leg are the most common practices in legged climbing robots, i.e. the biped robot 

design for NDT applications illustrated in Figure 2-8 uses vacuum suction cups and the 

six-legged robot illustrated in Figure 2-9 uses electromagnetic grippers. Planning the gait 

(pattern of movement of the limbs) can be identified as the most challenging area of legged 

robot design (e.g. the six-legged robot gait planning presented in [45] and the fuzzy multi-

sensor data fusion system for a legged robot presented in [46]).  

2.4.2 Tracked/wheeled locomotion 

Tracked and wheeled locomotion can be seen as the most common locomotion 

mechanisms in robotics because they involve less mechanical complexity and faster 

movement (relatively). Tracked robots are often used for maintenance and inspection 

purposes due to their rigidity, stability, surface adaptation, and payload capacity. Examples 

of magnetic adhesion tracked robots are presented in [47] [48] [49] [50]. Tracks can be 

designed according to a given purpose; e.g. a robot with four magnetic tracks designed to 

crawl along curved surfaces is presented in [51] (see Figure 2-10(a)). Triangular tracked 

robots are very popular when it is necessary to make inner plane transitions (e.g. as 

presented in  [49]). Rotation about a point can be performed by driving tracks separately 

(i.e. using a differential drive) and this feature enhances the manoeuvrability of the robot 

[47] [48].  

Figure 2-10: (a) Adaptive tracked climbing robot [51]; (b) CROMSCI negative pressure-assisted wheeled 

robot [59] 

(a) 
(b) 
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Wheeled locomotion is similar to tracked locomotion when considering the degree of 

freedom, mechanical attachments, motor drivers etc. However, in tracked locomotion, an 

extended flat traction area between the track and the climbing surface is considered. 

Therefore, tracked climbing robots are suitable for driving over obstacles and rough 

uneven surfaces (i.e. a mooring chain surface). When considering vertical axis climbing, 

it is necessary to take into account the traction force. To increase the gripping/traction 

force of a wheeled robot, the number of wheels can be increased. However, compared to 

tracks, wheels are more flexible in steering. Some wheeled wall-climbing robots use 

magnetic wheels as both adhesion and locomotion mechanisms (examples of magnetic 

wheeled robots are presented in [52] [53] [54] [55] [56] [57]). Some robots use a surface 

adaptive mechanism for adhesion, such as the six-wheeled robots with adaptable magnet 

suckers studied in [58]. Vacuum and negative-pressure concepts are also being used with 

wheeled-type robots (see Figure 2-10(b)) [59] [60]. 

2.4.3 Sliding frame locomotion 

Sliding frame, sliding structure robots (e.g. [61] [62] [63] [64]) are another example of a 

common locomotion mechanism that uses magnetic [65] or pneumatic [66] [67] adhesion. 

The shape of the sliding structure and the adhesion mechanism are dictated by the 

application (e.g. the robot used to clean the spherical surface of the National Grand Theatre 

in China, presented in [68] (see Figure 2-11(a)). In this robot, clutches were introduced as 

grippers). A grit-blasting robot is another example; this robot uses a permanent magnetic 

adhesion mechanism [69] ((see Figure 2-11(b)) with slider structures. Sliding frame robots 

are usually constructed with two structures that can make linear or rotational moments 

relative to each other. Both structures are supplied with their own adhesion mechanisms 

and by sliding on each other enable the robot to move. To speed up the movement, it is 

necessary to increase the physical parameters of the structures. Therefore, in most cases, 

these robots are relatively slow and large.  
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2.4.4 Wire and rail locomotion 

Locomotion that involves wires and rails is used mainly for maintenance and cleaning 

activities due to the straightforward dynamics. The robot schematic illustrated in Figure 2-

12(a) is an example of this category [70]. This system uses a conveyor belt that connects 

ground and roof to move along the surface in order to conduct NDT. Although this type of 

mechanism allows additional payload capacity and stability in the robot, the overall system 

is ineffective when considering a complex, taller, or underwater structure (when there is 

no place to position conveyor belts). More wire-driven applications are studied in [71] 

[72]. 

Figure 2-11: (a) Sider robot used to clean spherical surfaces [68]; (b) slider robot for grit blasting [69] 

(a) (b) 

Figure 2-12: (a) Block diagram of the tile-wall robot system [70]; (b) robotic cleaning system for glass 

facade [71] 

(a) (b) 
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2.4.5 Hybrid locomotion 

When the terrain/climbing structure is significantly complicated, a combination of 

techniques is known as hybrid locomotion is used. In most cases, a combination of the 

previously discussed locomotion techniques is used in this method. Combining multiple 

locomotive mechanisms to utilise the best qualities of each is the main advantage of this 

concept. However, it also significantly increases the control complexity. For example, the 

robot presented in Figure 2-13(a) [73] merges legged locomotion and wheel locomotion 

to move up and down and overcome disturbances/obstacles of 10–12cm [74]. Before the 

combination of locomotives, only obstacles under 1cm could be overcome.  

The robotic platform illustrated in Figure 2-13(b) is equipped with three vacuum suction 

adhesion modules that are connected by a rigid attachment that has a unique rotation joint. 

In this example, it is clear that a combination of locomotion can enhance the climbing 

Figure 2-14: Façade-cleaning operation using the SIRIUSc robot and its base station on the roof of a 

high-rise building [75] 

Figure 2-13: (a) Alicia 1 single adhesion modular; (b) Alicia 3’s obstacle avoidance procedure [153] 

(a) (b) 
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capabilities of the robot. The robot SIRIUSc [75] is another hybrid locomotion mechanism 

(see Figure 2-14). Previously discussed wire and sliding frame mechanisms are combined 

to build the facade-cleaning robot. 

 

2.5 Adhesion mechanisms 

An adhesion mechanism is the next most crucial mechanical feature that should be 

considered during the design and planning because the rest of the robot structure needs to 

be designed accordingly, i.e. locomotion and adhesion dictate the structure, weight, control 

etc., of a climbing robot. However, there is a correlation between the locomotion and 

adhesion mechanisms. Therefore, it is imperative to consider both locomotion and the 

relevant adhesion mechanism during the initial stage of the design. Moreover, the required 

payload, locomotion, environment, manoeuvrability etc., need to be considered in the 

design of the adhesion mechanism. The following section illustrates the most commonly 

used adhesion principles. 

2.5.1 Vacuum adhesion  

Negative pressure suction, commonly known as vacuum adhesion, is often used in wall-

climbing robots due to surface adaptability (especially when considering non-

ferromagnetic surfaces). Three different methods of implementation can be considered: 1) 

whole or cavity en-suited with the robot body [76] [77] [78] acts as a suction cup (vortex-

type climbing robots); 2) suction cups are attached to the locomotion mechanism (i.e. end 

of the leg) [39] [43] [79]; 3) suction cups are mounted under the chassis of the main body 

[80]. Similarly, it is possible to categorise negative-pressure developing techniques into 

seven main categories: 1) suction engine [59] [81]; 2) vacuum generator with pipes [79]; 

3) a hydraulic generator connected to the robot by a hose in the tether link [82]; 4) a plunger 

pump driven by a DC motor [43]; 5) a spinning-motor-driven centrifugal impeller [76] 

[77] [83] [84]; 6) common passive suction cups [85]; 7) a vibration mechanism to generate 

adhesion [86]. The vibration mechanism is also known as vibration suction [87] [40] [88] 

[89]. 
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However, when considering rough surfaces, vacuum adhesion demonstrates poor results 

because surface quality is very important for suction mechanisms. Moreover, due to air 

leakage from rough surfaces, the vacuum adhesion method may not be suitable in cases in 

which there is an uneven surface (e.g. the mooring chain surface is rough and uneven).  

 

2.5.2 Magnetic adhesion  

Due to the magnetising properties of rare earth magnets, this adhesion mechanism can only 

be used when the robot operates on a ferromagnetic surface. Both electromagnets and 

permanent magnets are used in this adhesion mechanism. Due to its high reliability, 

efficiency, and payload capacity, magnetic adhesion has been adopted in various types of 

climbing robot. The adhesion of the mechanism can be pre-determined according to the 

properties of the magnet, the magnet–surface air gap, magnet orientation, and magnet 

placement. In the studies presented in [90] [91] [92] [93], properties of permanent 

magnetic adhesion were examined with respect to physical parameters such as the air gap, 

the thickness of the back iron plate, magnet orientations etc. As an example, to achieve a 

significant increase in the adhesion force, an iron plate was introduced, and magnets were 

arranged as a yoke (see Figure 2-16(a)). 

Several types of magnetic mechanism are used in practical applications: 1) permanent 

magnets or electromagnets fixed at the ends of the legs [94] [44]; 2) tracks equipped with 

multiple integrated magnets [47] [51] [49] [50]; 3) magnetic wheels [95] [96] [54] [97]; 4) 

magnets installed under the robot body (non-contact) [58] [98]. In general practice, 

physical parameters such as the size of the magnet, properties of the backplate, magnet–

surface airgap, type of magnet, and magnet–magnet gap are changed in order to achieve a 

given force.  

Figure 2-15: (a)Vortex-type suction mechanism assisted robot [77]; (b) suction cups – tracked crawler 

robot [151] 

(a) (b) 
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The number of winding turns, the radius of the core, and the amount of current that passes 

through the winding determine the capacity/adhesion force of an electromagnet; e.g. the 

electromagnetic adhesion legged robot design presented in [99]. When compared to 

permanent magnets, the usage of an electromagnet in climbing robots is low due to the 

complexity and uncertainty of power supplies. The requirement of high voltage and large 

windings makes the electromagnetic adhesion technique less attractive for industrial 

applications [9].  

 

2.5.3 Dry adhesion 

Van Der Waals force adhesion, which is commonly known in robotics as the dry adhesion 

method, is based on the residual attract/repulse forces of molecules. ‘Gecko feet’ are the 

main inspiration behind the dry adhesion technique in robotics. Moreover, the Van Der 

Waals force between a given surface and microscopic fibres is used in most gecko-inspired 

robots.  

Examples of dry adhesion robots are: 1) a gecko-inspired robot with four legs [100] [101] 

(see Figure 2-17(a)).; 2) a tracked locomotion climbing robot [102]; 3) a tracked robot with 

a flat, sticky polymer (pressure-sensitive Vytaflex-10 Smooth-on Inc.) on belts [103]; 4) a 

leg-wheeled robot consisting of four legs and a passive wheel [104]; 5) a multi-spoke 

structural wheeled-leg locomotion robot with pressure-sensitive adhesive fibres attached 

to each spoke [105] [106] (see Figure 2-17(b)).; 6) a six-legged robot with 

polydimethylsiloxane (PDMS) attached under the feet [107].  

Figure 2-16: (a) Permeant magnet  – yoke climbing robot example [9]; (b) electromagnet-assisted climbing 

robot example [154] 

(a) (b) 
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Robots that are assisted with these types of adhesion mechanism are not designed to carry 

a payload (considerably large payloads such as ultrasound probes, NDT systems etc.,).  

 

2.5.4. Electrostatic adhesion 

Compared to other adhesion mechanisms, electrostatic adhesion is a relatively new 

technique in the field of robotics. The wide range of material compatibility in this 

technique has attracted robot developers and researchers. The robot must create an 

electrostatic charge that needs to be the opposite of the surface’s charge. The ‘opposite 

charges attract’ principle is used to stick the robot structure to a given surface. An example 

of an electrostatic tracked wall-climbing robot is presented in [108]. It uses lithium 

batteries to drive two DC motors and excite the electrostatic adhesion force on the 

compliant interdigital electrode panel. A four-legged robot with a climbing gait similar to 

a real gecko is presented in [109] (see Figure 2-18). Low noise, low power consumption, 

lightweight, simplicity, and a less complicated structure are the main advantages of this 

design. However, in order to carry an industrial inspection payload, the method needs to 

be developed further. Currently, this technique is not used for underwater activities. 

Figure 2-17: (a) Gecko-inspired robot with four legs [101]; (b) adhesive fibres attached climbing 

robot [105]. 

(a) (b) 
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2.5.5 Other adhesion mechanisms  

Oswald et al. used a hot melt adhesion technique to develop a climbing robot in [110] (see 

Figure 2-16(b)). A temperature-dependent material was employed as the adhesive and the 

solid–liquid state transformation in the material was used as the attachment technique. The 

entire process is temperature dependent, so delays can be expected during this process and 

surface damage can be observed.  

Claw and gripper methods are used in robotics to conduct specific tasks such as tree 

climbing, rock climbing etc. In common practice, when a robot has to deal with uneven, 

non-ferromagnetic, and non-electrostatic surfaces, claws and grippers are used. Examples 

of claws include: the four-legged climbing robot CLIBO has been developed in [111] (see 

Figure 2-16(b)).. Examples of grippers include: a robot with two grippers fixed at the ends 

of two arms is presented in [112].  

Figure 2-18: (a) Tracked locomotion wall-climbing robot with electrostatic adhesives [108]; (b) four-

legged gecko-type robot [109] 

(a) (b) 

Figure 2-19: (a) Illustration of the hot-melt adhesive robot [110]; (b) climbing robot using claws as 

adhesives [111] 

(a) (b) 
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2.6 Summery of the state-of- the-art  

According to the literature, only a few attempts have been made to develop a robotic 

system that can climb mooring chains due to the complex geometry (i.e. orthogonal chain 

orientations and in-situ chain conditions). Most climbing robots are designed to address 

single geometric features such as discontinuity, plane changing, underwater climbing, in-

air climbing, crawling on a curved surface, moving on a rough terrain etc. However, in the 

chain-climbing application, all of the abovementioned challenges are involved.  

2.6.1 Climbing robots evaluation  

The heavy and longer climbing robots discussed above are not easily deployable when 

considering the offshore environment, catenary curvature and link misalignments. These 

climbing robots are deployed manually using divers and boats. It is not practically possible 

to handle a significant weight in a small boat with divers (without lifting equipment). Due 

to the geometric features of the mooring chain (i.e. two curves moveable orthogonal links), 

it is essential to account for link–link misalignments. FPSO chain links in operating 

conditions are estimated to experience misalignments in the range of 2–10 degrees. During 

tidal waves and sudden environmental changes, it is possible for the misalignment to be as 

much as 24 degrees [113]. When the robot structure is longer than a single chain link, 

crawling along the catenary curvature is difficult. The gravity-assisted crawling 

mechanism can cause issues during underwater inspections due to the upward buoyancy 

forces. Moreover, these systems were tested on ideal chain links, so misalignments were 

not considered. 

 2.6.2 Automated manufacturing stage inspection robots evaluation  

The abovementioned chain inspection systems can be used to investigate the weld area 

when the chain links are at the manufacturing stage. However, these automated systems 

were unable to investigate chain links that  were already in use because a climbing or 

moving method was not introduced in each system. Therefore, handling can be viewed as 

the main problem with these designs. Moreover, these systems were unable to check the 

chain crown area, where the integrity can be highly compromised due to residual stress 

[31].  

2.6.3 ROV-assisted inspection robots evaluation  

ROVs are unable to access the chain in the air. Therefore, these systems can only be used 

underwater. Moreover, accessing the splash zone may not be possible with an ROV due to 
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the limitations associated with underwater ROV manipulation. Measuring the relevant 

points of the chain may not be practically possible due to marine growth on the chain 

surface. Moreover, marine growth can profoundly influence the corrosion rate, which can 

reduce the residual strength by 25% [37]. Microbiologically influenced corrosion can 

occur under the rust layer. There are different types of mooring chain corrosion due to the 

variations in water temperature, salinity, pH value, dissolved oxygen, water velocity, and 

steel composition. These factors can influence the internal corrosion growth rate; 

therefore, measuring the size of the chain is not suitable to evaluate the integrity of a 

working chain link. According to the history of mooring chain accidents, ROV inspection 

cannot be viewed as a reliable method [113]. 

2.6.4 Summary of the state-of-the-art chain-climbing robots  

When considering the literature review, only a few robots have been established for chain 

climbing. Human-influenced climbing methods/sliding structures [17] [22], cable/gravity-

assisted crawling methods [24], ROV-assisted methods [28] [30], and automated 

inspection techniques [25] [23], are not able to provide a practical approach that can cover 

the entire chain in working conditions, i.e. underwater, in air, misalignments, catenary 

curvature, in-situ environmental changes etc. The multi-locomotion approach discussed in 

[26] has not been tested and is still at the laboratory design stage. When considering the 

necessity of mooring chain inspection, a lightweight, fast, automated, in-situ friendly 

robotic approach is needed. Studies on the state-of-the-art automated chain climbing 

techniques were discussed at the beginning of this chapter, along with a critical evaluation. 

Locomotion and adhesion techniques were discussed with examples to obtain a basic idea 

of the most commonly used robotic climbing techniques.  

The next chapter in this thesis is carried out in order to develop novel mooring chain 

climbing robot. Specifications of the mooring chain which has been used in this study is 

illustrated in the Figure 1-4 & Figure 1-5. 
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3.1 Chapter overview  

As discussed previously, mooring chain or chain climbing is a climbing area that has not 

been investigated in depth compared to wall climbing. Only a few attempts have been 

made to establish a robotic/automated system that can operate both in air and underwater. 

Most are at the research stage and unable to extend beyond the initial laboratory 

experimental stage. The complicated nature of the mooring chain’s physical architecture 

is the main reason for the lack of investigation. For example, mooring chains are made of 

two sets of curved iron rings that are kept orthogonal to each other. Therefore, a robot 

should be able to cope with a link–link discontinuity as well as link orthogonality. 

Platforms that use mooring chains for stability are often subjected to high tidal waves, 

storms, and hurricanes on a regular basis. Therefore, the selected robotic mechanism 

(locomotion, adhesion, and physical structure of the robot) should be able to handle in-situ 

conditions. Moreover, the locomotion and adhesion mechanism should be able to handle 

underwater and as well as in air conditions. Due to the orthogonal arrangement of mooring 

chain links, different types of mooring chain misalignment (discussed in Chapter 5) are 

presented. This chapter aims to establish a climbing principle for a vertically aligned 

mooring chain.  

As discussed in the literature review, the idea of magnetic adhesion tracked wheels for 

mooring chain climbing has not been studied. The establishment of a primary 

climbing/crawling mechanism that can handle the discontinuity and orthogonality is 

discussed in this chapter, with the use of computer-aided designs (CAD). Magnetic 

adhesion for wall climbing and steel-plate-type surface climbing has been discussed 

previously, and the basic principles of magnetic adhesion modules with different 

orientations have been determined in literature. Due to the unusual structure (curved, 

rusted etc.) of chain links, a bespoke magnetic adhesion module was designed and 

optimised with the use of finite element analyse. To understand the structural behaviour 

against loads (crawler weights and payloads), numerical modelling was carried out and is 

discussed. Motor requirements were studied after establishing the adhesion module and 

structure of the robot. The main aim of this chapter is to establish a novel climbing 

application for vertically aligned mooring chains using magnetic adhesion and tracked-

wheel principles. The adhesion technique, motor calculations, structural design, and 

tracked-wheel design presented in this chapter have been used as design parameters during 

the prototype of the climbing robot. 
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3.2 Overall Design requirements / Specifications  

According to the available literature, the scientific community has become more interested 

in the development of climbing robots for industry, e.g. ship wall climbing, steel plate 

climbing etc. Only a few robotic/automated studies have been conducted on chain 

climbing due to its structural complexity [D1] [D4]. On the other hand, the requirement of 

chain climbing (mooring chain climbing) is an industry-related task and requirements are 

based on inspection needs. Mooring chains are made using thick iron rods, which usually 

hang vertically. Requirements for a climbing robot depend on the application and the 

method of task execution. Detailed discussion of general climbing robot requirements is 

presented in [9]. The following points were identified as primary design parameters.  

➢ Locomotion requirement: due to the mooring chain’s unusual climbing surface, 

selecting a suitable climbing mechanism is challenging. The ability to change 

surfaces between orthogonal chain links is considered as a requirement, because 

mooring chains are discontinuous, being made with two sets of links that are kept 

orthogonal to each other (see Figure 1-4 and Figure 1-5). Therefore, the 

crawling/climbing robot needs to cope with this discontinuity. Changing from 

one plane to another is a highly investigated as well as challenging area in 

climbing robotics. Due to the orthogonal arrangement of mooring chain links, 3D 

plane changing is difficult. The chain link shown in Figure 1-4 demonstrates 

rusted and uneven surfaces as mooring chains are often subjected to extensive 

environmental change such as tidal waves, wind, and storms. Therefore, the 

locomotion method should be able to handle the robustness of mooring chains. 

The adaptability of the locomotion is vital when considering the relative motion 

of chain links (commonly known as link misalignments). Misalignments are 

discussed in Chapter 5 and in [19]. 

➢ Adhesion mechanism: the adhesion mechanism of a climbing robot should be 

selected according to the application. Mooring chains are made using thick iron 

rods, and the surface of the chain link is uneven, rough, and corroded due to in-

situ conditions. Therefore, the selected adhesion mechanism should be 

handled/adapted accordingly. When considering in-situ conditions, mooring 

chains are an amphibious structure, and the adhesion mechanism must be able to 

work in both underwater as well as in air. 
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➢ Payload capability: conducting a structural health monitoring assessment is the 

primary task of a mooring-chain-climbing robot (the real industrial need). 

Therefore, the robot should be able to provide an appropriate environment for 

NDT applications, i.e. it should be possible to place the NDT device on the robot. 

Payload capacity and instrument placement on the structure depend on the NDT 

application, i.e. if ultrasound is the selected assessment method, the robot should 

be able to carry a UT probe and the probe manipulator. 

➢ Safety mechanism: this is a non-functional design parameter. The climbing 

robot needs to be agile and robust (structural hardness) to minimise any 

damage/impact due to in-situ conditions. Mooring chains are used in the sea; 

therefore, safety must be taken into account during adhesion mechanism 

selection, i.e. in case of emergency power failure, the robot should be able to 

maintain its position without creating structural damage by losing grip. 

➢ Energy consumption: the energy consumption of a climbing robot determines 

its efficiency. Locomotion and adhesion mechanisms are the primary energy 

consumers of a climbing robot. For example, the vacuum suction mechanism has 

higher energy consumption compared to passive permanent magnetic adhesion. 

However, the magnetic adhesion mechanism can only be employed on a 

ferromagnetic surface. Distance power transmission via an umbilical cable can 

be used for a mooring-chain-climbing robot; however, in order to maximise 

efficiency, locomotion and adhesion should be selected accordingly. 

➢ Deployment: as mentioned previously, mooring chain climbing is an industry-

related activity, i.e. chain-climbing robots are used as a platform to convey NDT 

equipment. Therefore, easy deployment ability and retrievability should be 

considered during the robot frame design phase. A structure/frame that needs to 

be deployed around a chain link is not practical due to the in-situ mooring chain 

conditions. The overall weight of the robot should be minimised in order to ease 

in-situ deployment. As discussed previously, large heavy robot structures are not 

suitable for in-situ mooring environments. Therefore, deployment and the overall 

structural specifications should be considered during the initial design stage. 

In summery a fast moving (Climbing speed depends on the inspection speed), light weight 

(should be allow users an easy deployment without using lifting equipment Approx. 50kg 

or less), easily deployable robotic structure should be developed. 
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3.3 Selection of locomotion and adhesion mechanism 

The Chapter 2 design review considered different capabilities as well as limitations in both 

the adhesion and locomotion mechanisms that are commonly used in climbing robots. In 

order to compare the locomotion mechanism with the design parameters, technical 

properties are tabulated as follows (Table 3-1). 

Table 3-1: Comparison summary of commonly used locomotion mechanisms  

Compared 

parameter 

Legged/arm/limb 

locomotion  

Sliding frame 

locomotion  

Wheel 

locomotion  

Tracked 

locomotion  

Wire-/rope-

assisted 

locomotion 

mechanism  

Motion  Not continuous 

motion  

Frame has 

continuous 

motion, but 

adhesion is 

non-

continuous  

Smooth and 

continuous 

Smooth and 

continuous 

Continuous  

Speed Slow due to limb 

movements  

Slow Comparatively 

fast (depends 

on the motor 

speed) 

Comparatively 

fast (depends 

on the motor 

speed) 

Comparatively 

fast (depends 

on the motor 

speed) 

Movement  DOF depends on 

number of legs 

(multiple DOF|) 

Usually two 

(planer 

displacements) 

Robot can 

usually be 

manipulated in 

any direction 

by using 

differential 

drive mode 

Robot can 

usually be 

manipulated in 

any direction 

by using 

differential 

drive mode 

Usually two 

(planer 

displacements) 

Payload 

capacity 

Low, due to the 

strength of the 

limbs/joints  

Moderate – 

usually 

depends on the 

adhesion 

capability  

Usually a high 

payload. 

Depends on 

the adhesion 

capability  

Usually a high 

payload. 

Depends on 

the adhesion 

capability  

Very high. 

Robot is 

supported by 

cables 

Adaptability  Suitable for 

rough, uneven 

and discontinuous 

surfaces  

Mainly used 

on even 

surfaces  

Suitable for 

uneven and 

rough surfaces  

Suitable for 

uneven and 

rough surfaces 

Can be used 

on any surface 

but subjected 

to pulling 

mechanism 

placements 

Complexity  Highly complex 

control system 

due to complex 

motion/gait 

planning  

Moderate 

complexity  

Less 

complexity, 

but can be 

increased 

according to 

the task 

Less 

complexity, 

but can be 

increased 

according to 

the task 

Very simple  
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The commonly used adhesion mechanisms discussed previously are evaluated in Table 

3-2, considering the suitable surface types, payload, and reliability. 

Table 3-2: Comparison summary of commonly used adhesion mechanisms 

Parameter  Vacuum 

chamber 

(vortex-type 

model) 

Suction cups  Electromagnets  Permanent 

magnets 

Adhesion 

mechanism 

based on 

biological 

models and 

others 

Suitable 

surface type 

Can be used 

on non-porous 

surfaces (any 

material). 

Surface must 

be even and 

smooth 

Can be used 

on non-

porous 

surfaces such 

as plane steel, 

glass. Surface 

must be even 

and smooth 

Ferromagnetic 

surface (ferrous 

surfaces only). 

Surface quality 

is not important  

Ferromagnetic 

surface 

(ferrous 

surfaces only). 

Surface quality 

is not 

important 

Various 

surfaces 

according to 

adhesion 

properties 

Payload Relatively 

high but less 

than suction 

cups. 

Adhesion 

depends on 

the vacuum  

High payload. 

Depends on 

the suction 

capability  

These can carry 

a moderate 

payload 

depending on 

the size of the 

electromagnet, 

coil properties, 

current etc. 

Very high, 

depending on 

the magnet 

properties and 

the thickness 

of the surface 

Usually very 

low and 

depends on the 

mechanical 

design of the 

climbing 

system 

Reliability Moderate. 

This requires 

a good seal to 

avoid air 

leakage  

Good and 

overall 

reliability 

depends on 

the reliability 

of suction and 

surface 

The energy 

consumption of 

this technique is 

higher  

Reliability is 

very high due 

to the passive 

adhesion 

quality of 

magnets 

Low when 

considering 

industrial 

structural 

health 

monitoring 

applications 

   

Before selecting adhesion and locomotion mechanisms that are suitable for mooring chain 

climbing, the following state-of-the-art climbing robot summary was studied. According 

to the literature on chain-climbing robots, locomotion and adhesion mechanisms can be 

categorised as follows (refer Table 3-3): 
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Table 3-3: Summary of state-of-the-art robotic chain-climbing mechanisms  

Robot/robots Locomotion 

mechanism  

Adhesion mechanism  Possible issues  

[17] [22] [26] Sliding frame 

mechanism  

Grippers that can be 

rested on the chain 

crown or surface  

Due to the sliding frame climbing 

mechanism, robot must be longer than 

2–3 chain links, resulting in increasing 

the weight of the robot. Robot may not 

able to achieve the catenary curvature. 

Entire motion depends on the surface 

quality/friction 

[28] [30] ROV-assisted 

method 

Springs, automated 

robot arm/grippers 

The entire locomotion mechanism 

depends on the control capability of the 

ROV operation. Usually ROVs are 

expensive and unable to access the 

splash zone and the in-air part of the 

chain 

[24] Gravity-

assisted crawler 

– cable 

mechanism  

Gripping mechanism  Gravity cannot be taken as a reliable 

method of transportation when 

considering underwater use due to 

buoyancy forces. The cable-assisted 

mechanism is unable to provide a 

practical approach due to the cable 

attachment near mooring chains 

 

The design review identified and explored numerous locomotion mechanisms and 

adhesion principles that are used commonly in industry and research. When considering 

the discussed locomotion requirements (for mooring chain climbing), wheeled, tracked, 

and legged locomotion techniques seem more suitable. According to the investigation 

carried out in Table 3-1, the tracked-wheel locomotion mechanism is one of the 

mechanisms that has not been investigated for mooring chain climbing, i.e. sliding frame 

locomotion and the cable-assisted mechanism have already been studied in the literature 

and the limitations/capabilities of these mechanisms have been demonstrated. The 

mechanical and control components needed for wheeled or tracked systems are similar. 

However, the passive adaptation of tracks provides an additional traction advantage over 

wheeled mechanisms. Magnetic wheel approach was considered during the selection. 

However, due to the mechanical complexities it was not selected (i.e. Set of wheels should 

be introduced in order to maintain the balance and it will increase the weight and the 
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complexity, the adhesion of the wheels cannot be optimised as it is set up during the 

manufacturing process). As discussed previously, mooring chain surfaces are rough, 

corroded, slippery, and uneven. Therefore, using a locomotion mechanism that can adapt 

to an uneven surface is an advantage. However, the tracked locomotion mechanism is 

unable to overcome significant surface discontinuities (discontinuities that are bigger than 

the size of the track). 

 In order to climb mooring chains, the locomotion must be able to handle discontinuities 

caused by the chain’s physical construction, e.g. discontinued misaligned and orthogonal 

chain link pattern. According to the locomotion review above, legged locomotion has been 

used to climb surfaces with discontinuities. However, when considering mooring chain 

architecture, a locomotion mechanism that has qualities of both tracked-wheel and legged 

mechanisms (for adaptation) is needed, i.e. a hybrid locomotion or an adaptable tracked-

wheel mechanism.  

When considering the previously discussed adhesion mechanisms for chain climbing, 

friction-related mechanisms (used in sliding frames) and arm-related grippers have been 

studied. Permanent magnetic adhesion, which provides a higher adhesion force by 

consuming zero energy, has not been studied in relation to chain climbing. Other adhesion 

mechanisms, such as suction cups, electrostatic adhesion, and hot melt, cannot be used for 

mooring chain climbing due to the chain’s physical conditions (such as amphibious 

condition and uneven, curved surface). The reliability of electromagnets depends on the 

power supply. In case of power failure, the robotic system may not be able to recover. Due 

to the passive adhesion capability of permanent magnets, surface contact is not required. 

This quality of passive magnetic adhesion can be used against the uneven, curved, rusted, 

and ferromagnetic surfaces of mooring chains. Moreover, magnetic adhesion is not 

affected by water or air. Serval studies have been conducted to establish the connection 

between magnets, magnets orientations, and adhesion forces for wall/steel plate climbing. 

Even though adhesion between the magnet and the mooring chains is similar to steel plate 

adhesion, a bespoke study needs to be carried out to understand the feasibility of this 

technique.  
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3.4 Conceptual idea for the use of tracked-wheel units 

3.4.1 Orthogonal tracked-wheel placement concept 

The physical orientation of a mooring chain was considered when establishing the basic 

idea of climbing. To establish a fundamental climbing/crawling principle, the orientation 

of a chain was considered as ideal, i.e. the face angle of two consecutive chain links is 90 

degrees, and the chain is hanging in a vertical plane (no horizontal or vertical moment), as 

illustrated in Figure 3-1. 

 

According to the above explained chain link orientation, the basic idea of the mechanism 

was established. In the literature, magnetic adhesion robots are identified as ‘high payload 

carrying robots’, with high stability when considering harsh environmental conditions [9]. 

Moreover, mooring chains are made of iron; therefore, the use of a magnetic adhesion 

mechanism for crawling was considered due to the mechanical advantages. The initial idea 

was established by considering mooring links as iron rods and introducing two tracked-

wheel units to represent one plane of chain links, as illustrated in Figure 3-2. 

Moreover, in order to travel along the mooring chain, it is necessary to turn the tracked-

wheel units 90 degrees at the end of the chain link (to travel along the orthogonal chain 

link). In the literature search, a number of robots with the facility of changing platforms 

were investigated. Plane/platform-changing mechanisms are used in complex climbing 

robots, such as walls, trees, rocks etc. Most of these robots are built from different parts 

connected by mechanical hinges (modular robots) or complex walking mechanisms (multi-

leg climbing robots). Therefore, it is possible to change the current platform by 

walking/crawling onto the new plane using the front part/legs of the robot, maintaining 

Figure 3-1: Vertically aligned mooring chains and orthogonal chain links  
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balance by keeping the other part/legs on the current platform. Using the abovementioned 

‘hinge-modular’ operation, it is possible to change planes. However, a hinge could not be 

introduced into this design due to the following practical issues. 1) The centres of the link 

planes are in line, but the link surfaces (crawling areas) do not coincide with each other. 

As a result, it is difficult to place a hinge to set up a platform change. 2) At least two 

tracked-wheel units need to be on the parallel plane to maintain the balance of the robot 

structure. 3) One of the primary targets of the research is to develop a fast, lightweight, 

and reliable mooring-chain-climbing mechanism to use for NDT. Therefore, the robot 

must be able to carry a reasonable payload. Having at least two sets of tracked wheels in 

contact with the chain enhances the payload capacity and stability. 4) Mooring chains are 

usually half immersed in seawater and half in air; as such, links are often subjected to bad 

weather, climate, temperature, and seawater changes. Therefore, the surface of a mooring 

chain link is not smooth and crawling on it can cause slipping. Using a passive or 

controllable hinge operation will decrease the structural strength of the robot. 

 

 

After understanding the above concerns, an idea for a set of orthogonal tracked-wheel units 

was established, rather than changing planes (as illustrated in Figure 3-3). According to 

this concept, one set of two tracked wheels move on one link while another set moves on 

an adjacent orthogonal link (see Figure 3-3). Each orthogonal set of tracked-wheel units 

enables the robot to move along the chain. According to the illustrated tracked-wheel 

placement, each set of crawlers should be able to support the movement of the robot when 

it passes the relevant parallel platforms (with respect to each set of crawlers). Due to the 

Figure 3-2: Two tracked-wheel units placed on a chain link  
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proposed orthogonal placement, it is not necessary to change the planes when it is moving 

along the chain. 

 

3.4.2 Tracked-wheel unit placement (tracked-wheel orientation) 

A design study was carried out to understand the optimum tracked-wheel position on a 

chain link while maintaining the proposed orthogonal tracked-wheel concept. The concept 

illustrated in Figure 3-4(a) satisfies the orthogonal tracked-wheel representation, but it is 

clear that the gap between the orthogonal tracked wheels is significantly low (see Figure 

3-4(b)). When considering the mechanical properties, less space between crawlers is a 

disadvantage, because the crawlers need to be attached to the main structure and the 

magnetic adhesion module needs to be attached to the crawlers. 

 

Figure 3-3: Orthogonal tracked-wheel placement on a mooring chain   

Figure 3-4: (a) Tracked-wheel placement; (b) practical issues of tracked-wheel 

placement 

(a) (b) 
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After considering the design mentioned above, the following orientation was designed (see 

Figure 3-5). According to Figure 3-5, it is significant that the parallel tracked-wheel 

concept changed, but the orthogonal placement was still the same. To achieve space 

between the orthogonal units, one of the parallel tracked wheels was moved to the side of 

the link. With the new tracked-wheel placement, the space between the orthogonal units 

increased. It is necessary to ensure there is a reasonable space between the tracked wheels 

so that collisions do not occur when there is a misalignment in the chain links (chain 

misalignment is discussed in Chapter 5). Moreover, in this design, there is enough space 

left on both sides of the tracked-wheel unit to allow for magnet attachment or motor 

holders.  

When considering the disadvantages of the tracked-wheel placement in the above design, 

it is significant that the parallel tracked-wheel units are not symmetrical and do not rest on 

the same plane of the link. As determined earlier, magnetic adhesion was selected as an 

adhesion agent in this study. Magnetic adhesion depends on the ferromagnetic surface 

area, which is parallel to the adhesion module. Tracked-wheel units placed on the side of 

the chain links leave the surface earlier, as illustrated in Figure 3-6. This can cause an 

imbalance in adhesion forces and the crawling pattern, i.e. losing grip on one side can 

cause the entire structure to turn or a change in the crawling pattern. 

 

 

Figure 3-5: Tracked-wheel placement orientation – 02 
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After considering the above tracked-wheel arrangements, the requirement for a new design 

with the following capabilities was raised. 1) Arrangement should be able to hold the 

tracked wheels in an orthogonal position. 2) There should be sufficient space between the 

tracked wheels. 3) The main frame of the robot should be able to hold tracked-wheel units 

and should enable easy deployment. The outer frame/deployment design is not discussed 

at this stage of the study, but it is important to consider during the tracked-wheel 

placement, i.e. placing tracked-wheel units around the mooring chain will not enable 

smooth deployment. Therefore, at least one side of the chain should remain open (un-

enclosed by the structure/tracked wheels). (4) The tracked wheel should be able to provide 

stable locomotion throughout the climbing. Therefore, a new tracked-wheel orientation 

was proposed that can fulfil the above requirements. The arrangement presented in 

Figure3-7 shows four tracked-wheel units (see Figure 3-7(a)), but one orthogonal set is 

lagging the other. The orthogonal tracked-wheel set in A and B lags when compared to the 

position of C and D (see Figure 3-7(b–c)). All four tracked-wheel units are placed on the 

chain according to the orthogonal placement concept and without covering the entire chain 

cross-section. This will ease the deployment ability of the robot. Therefore, this design 

was considered as the selected orthogonal placement for the rest of the study. 

 

Figure 3-6: Uneven contact time explanation  
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3.5 Design idea for tracked-wheel unit and adhesion module placement  

3.5.1 Basic idea for a tracked-wheel unit 

The design of the robot locomotion mechanism and placement of the adhesion mechanism 

were considered in this study, i.e. tracked-wheel locomotion and permanent magnet 

adhesion. It was necessary to construct or find an available tracked-wheel unit with 

suitable design specifications. The selected/constructed tracked-wheel unit should be able 

to carry the adhesion module to generate the required locomotion movement (adhesion 

and locomotion requirements are discussed later in this study). Initially, the maximum size 

of the tracked-wheel unit was stated as follows:  

1. The tracked-wheel unit should be able to rest comfortably on the curved chain surface. 

Therefore, the width was selected accordingly, as illustrated in Figure 3-8(a), i.e. a wider 

track provides a higher traction force on a flat surface. However, mooring chains are 

curved and increasing the width does not provide a traction advantage (due to the curvature 

of the chain surface). In the illustrated diagram, a 40mm-wide tracked-wheel unit is placed 

on the curvature of a 133mm-wide mooring chain. A 40mm maximum width was selected 

after considering the tracked-wheel mechanical components (mechanical design is 

discussed later in this chapter). 

Figure 3-7: (a) Orthogonal tracked-wheel placement – 03; (b) side A – tracked-wheel placement; (b) side 

B – tracked-wheel placement; (d) tracked-wheel placement cross-section  

 

(a) (b) (c) (d) 
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2. In order to avoid disturbances due to small misalignments in the chain links, the length 

of the tracked-wheel unit was selected as illustrated in Figure 3-8(b). Vertically aligned 

chain orientation was considered in this study. However, to minimise the impact during a 

change from one parallel misaligned plane to another parallel plane, the length of the 

tracked wheel was required to be less than the gap between the planes.  

 

3.5.2 Adhesion module placement according to the tracked-wheel unit 

The placement of the adhesion module was considered with the use of the abovementioned 

maximum tracked-wheel unit sizes. Due to the curvature of the mooring chain, it is 

necessary to place the adhesion module perpendicular to the tangent surface of the chain 

link. To understand the behaviour of permanent magnetic adhesion with the chain surface 

tangent, the following numerical modelling study was conducted. The design of the 

adhesion module according to the robot’s requirements is discussed later in this chapter. 

This part of the study was conducted to understand the importance of magnet placement 

on the chain surface. Therefore, magnet arrangement and optimisation techniques are not 

discussed in this section. The properties of a commercially available magnet were 

modelled using COMSOL Multiphysics to understand the change in magnetic adhesion 

force with chain surface–magnet misalignment. 

A stationary simulation was conducted in COMSOL Multiphysics with the use of the 

‘magnet field, no current’ (MFNC) module. A free tetrahedral mesh was created with a 

maximum element size of 10mm and a minimum element size of 0.1mm. The parametric 

data presented in Table 3-4 were used in the numerical modelling. The CAD layouts 

Figure 3-8: Basic tracked-wheel unit dimensions; (a) tracked-wheel unit placement on the 

chain surface; (b) tracked-wheel unit length with respect to the chain link–link distances  

 

(a) (b) 
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presented in Figure 3-9 (a.1, b.1, and c.1) were used in the FEA study and the 

corresponding magnetic flux density distribution was plotted as in Figure 3-9 (a.2, b.2, and 

c.2). Magnetic adhesion forces according to the misaligned distances were recorded, as 

illustrated in Figure 3-10. 

 

 

Parameter  Parameter value  

Magnet relative permeability 1.05 

Residual flux density (Br) 1.45 T 

Magnet size/backplate size L 40mm, W 20mm, H 5mm/L 

100mm, H 15mm, W 35mm 

Iron relative permeability 4,000 

 

 

 

Figure 3-9: Effect of adhesion module-chain surface position; (a.1, b.1, c.1) adhesion module – chain 

link surface layout; (a.2, b.2, c.2) corresponding magnetic flux density across the chain link  

 

Table 3-4: COMSOL numerical model parameters 

(a.1) 

(a.2) 

(b.1) 

(b.2) 

(c.1) 

(c.2) 
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When considering the results in Figure 3-10, a ≈ 9N drop in adhesion force was recorded 

when the magnet moved 10mm away from the position in Figure 3-9(a.1) and a ≈ 80.6% 

drop when it moved up to 40mm (see Figure 3-9(c.2)). Similar to the force, a reduction in 

the magnetic flux density across the chain cross-section can be seen in Figure 3-9(c.2) 

compared to Figure 3-9(a.2). Therefore, the importance of placing the adhesion module 

perpendicular to the chain’s tangent surface is significant. 

 

After considering the above numerical model analysis, the magnet placement/magnet 

holder design was carried out. The rigidity of the magnet attachment was considered as a 

serious factor because the tracked wheels needed to be attached to the main frame under 

vertical gravity force and horizontal magnetic adhesion force. Due to the limited inside 

space, a magnet holder was designed to be placed on the outside of the locomotion unit. A 

design for a lightweight and adjustable external holder was needed in order to place the 

magnet outside the tracked-wheel unit. A conceptual design was proposed, as illustrated 

in Figure 3-11(a). 

Figure 3-10: Effect of magnetic adhesion force vs magnet misalignment  
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According to the above conceptual design, the adhesion module holder/backplate was 

attached to the tracked wheel with aluminium brackets and adjustable nuts. The adjustable 

nuts could be used to move the holder up and down. Due to the thin cover plates of the 

tracked wheels and the lack of space, aluminium welding was proposed as the attachment 

method between the aluminium brackets and the crawler cover. The above design allowed 

to change the angle of the adhesion module according to the tangent requirement.  

The design in Figure 3-11(b) needed a custom-built aluminium part that was difficult to 

prototype. Therefore, to reduce the effort of the prototype, the same model was 

reconstructed with MISUMI configurable aluminium extrusions. During the 

reconstructions, the size of the magnets was estimated according to the spaces available. 

Figure 3-11. (a): Conceptual design of the tracked-wheel unit and adhesion module holder 

(b): Mechanical design of the tracked-wheel unit with adhesion module holder  

 

(a) 

(b) 
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Moreover, in the previous design, the magnets were exposed to the outer environment. 

According to the specifications of the research, the robot must be able to investigate in 

working environment conditions. Therefore, an aluminium cover was introduced to the 

new design to function as a sleeve for the magnets (illustrated in Figure 3-11(b)). 

The prototype of the above design is discussed in Chapter 4 (see Chapter 4, Figure 4-1). 

An evaluation of the above-designed magnet holder (adhesion module holder) was carried 

out using the prototyped module and the following advantages were identified: 1) the 

tangent angle and height of the adhesion module could be changed as expected; 2) the 

adhesion module was placed inside the holder sleeve and was able to create an adhesion 

force along the entire length of the tracked-wheel unit. However, the issue illustrated in 

Figure 3-12 caused an imbalance in the tracked-wheel unit during the experiments.  

Balance in each tracked-wheel unit was essential because the balance of the robot structure 

was based on the individual tracked-wheel units. Therefore, support was added to the 

prototyped structure using an additional wheelset. The design illustrated in Figure 3-13 

was constructed according to the actual sizes of the parts. An A-shaped aluminium 

attachment was used to create the appropriate angle between the wheel attachment and the 

support wheel. It was necessary to keep the wheel at an angle to the tracked-wheel unit. 

Therefore, the side crawler was able to provide additional support while the crawler moved 

in a straight line along the link surface. To evaluate this idea, a prototype was created and 

tested. The prototype of the above design is discussed in Chapter 4 (see Chapter 4, Figure 

4-3). Introducing more than one support wheel to the structure was necessary because a 

single support wheel would not be sufficient for some parts of the crawl. For example, the 

Figure 3-12: External adhesion module placement issue no 1  
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support wheel was unable to provide the expected support during link transitions, i.e. when 

the tracked wheel was about to enter or leave a chain link. Therefore, the idea of a set of 

support wheels was considered. The drawback illustrated in Figure 3-13 was observed 

during the design investigations. The tracked-wheel unit was designed to crawl on the 

chain link surface; however, it began to share the load with the support wheels and, thus, 

the orientation began to change during the experiments. The illustrated issue was 

considered a major concern because it could cause collisions between the tracked wheel 

and the orthogonal chain link. 

 

3.5.3 Finalising the magnetic adhesion module placement 

The previously discussed placements were based on the external adhesion module concept. 

According to the observations, the idea of an external adhesion module was unable to 

provide a suitable arrangement. As mentioned at the beginning of this chapter, the external 

mechanism was considered due to the less-complicated tracked-wheel modifications 

(when using an off-the-shelf tracked-wheel unit). However, after reviewing the permanent 

magnet study (see Figure 3-9), the necessity of having a complicated external attachment 

was raised, i.e. height changer and angle changer to make it tangent to the surface. The 

complicated support attachments made the tracked-wheel unit vulnerable, bigger, and 

heavier. Therefore, a new allocation arrangement was considered. When considering the 

studied magnet behaviour, it was important that the centre of the tracked-wheel unit and 

the magnet arrangement should be in line to extract the maximum adhesion force (see 

Figure 3-9). Moreover, having an inline adhesion force enhanced the stability of the 

Figure 3-13: External adhesion module placement with the support wheels  
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tracked-wheel unit. Therefore, embedding the adhesion module into the tracked-wheel unit 

was considered (see Figure 3-14). The following advantages were gained when the 

adhesion module was embedded. 1) The height between the magnetic adhesion module 

and chain surface became a constant (reduction of a variable parameter). 2) The embedded 

adhesion module was in the middle of the tracked-wheel unit; as such, it was already 

placed on the tangent surface. Therefore, excess weight due to the external adjustments 

was avoided. 3) The stability of a single tracked-wheel module was enhanced due to the 

inline symmetric adhesion force. 4) It is possible to introduce a compact, lightweight, less-

complicated tracked-wheel module with adhesion embedded, i.e. no additional 

attachments, wheels. 

 

3.6 Design of the tracked-wheel unit 

The selection of the locomotion method was carried out using the information provided in 

previous research [9] and Table 2-1 (Chapter 2). Due to the harsh operational conditions 

(i.e. rough, curved, uneven, amphibious nature) of the mooring chains, it was convenient 

to use a track-wheeled locomotion mechanism [D1] [D4]. The tracked-wheel model was 

selected because passive track adaptation according to uneven surfaces gives an additional 

traction advantage, the payload capacity is reasonably high, and the control complexity is 

comparatively low (discussed in Chapter 2).  

The CAD models presented in Figure 3-15 were designed by considering the specifications 

discussed in the above section, i.e. to avoid the effect of parallel misalignments of the chain 

links, the total length of the track should remain less than the gap between two parallel 

links, and the width of the tracked-wheel unit should allow the robot to settle on the 

mooring chain surface with appropriate contact and should also provide an allocated space 

Figure 3-14: Embedded adhesion module placement   

 

(a) (b) 
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for the adhesion module. As mentioned previously, configurable aluminium extrusions 

were used to design the tracked-wheel unit holder/attachments. 

 

Two large aluminium wheels were introduced to drive the track and a tension wheel was 

added to the design to keep the rubber track in tension. Introducing two tension wheels to 

the top and the bottom could enhance the effect of the tension wheels. However, to 

preserve space for the adhesion module, only one tension wheel was added, as illustrated 

in Figure 3-16. ‘Allocated space for the adhesion module’, marked in Figure 3-16(b), was 

used to place the adhesion module. As mentioned previously, the adhesion module was 

made with permanent magnets. Therefore, the internal components of the tracked-wheel 

unit were designed using aluminium because of its non-ferromagnetic nature. If the wheels 

were made from ferromagnetic materials, motion could be disturbed due to the effect of 

the permanent magnets. 

 

 

 

 

Figure 3-15: CAD models of the proposed tracked-wheel unit    

 

(a) 

(b) 

(c) 
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3.7 Design of the magnetic adhesion module  

According to the adhesion principle study and comparison carried out in Chapter 3.3 

(Table 3-2), permanent magnets were selected as the adhesion mechanism. The following 

advantages were identified as the main reason for the selection of magnetic adhesion. 1) 

Passive adhesion capability – magnetic adhesion does not require input from an external 

source; therefore, the reliability of the adhesion module is comparatively high. 2) Suitable 

for application – mooring chains are made using thick iron rods and it is ideal to employ a 

permanent magnetic adhesion system. In addition to that, this adhesion mechanism is 

capable of working underwater. 3. Magnetic adhesion is the most suitable adhesion 

mechanism when the surface is uneven, curved, and ferromagnetic because of its non-

contact and passive adhesion qualities. 

3.7.1 Background study of magnetic adhesion for climbing robot  

The development of a permanent magnetic adhesion module and adhesion force 

optimisation techniques has been studied in the literature [91] [9] [58]. Previously 

published studies were conducted in relation to wall climbing, i.e. steel walls, steel plates, 

concrete walls etc. Due to the mooring chain’s curved surface and limited adhesion module 

space, a bespoke adhesion module was designed. In order to establish the basic design 

Figure 3-16: Engineering CAD models of the tracked-wheel unit    

(a) 

(b) 

(c) 
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parameters, a background summary of magnetic adhesion force optimisation is discussed 

here.  

The introduction of a high-permeability yoke/backplate to enhance the magnetic adhesion 

by reducing flux leakage has been studied in the literature in terms of various design 

parameters, i.e. size of the magnet, magnet orientation, number of magnet sets, size of the 

yoke/backplate, distance between the magnets, material of the yoke etc. The background 

theory of the design parameters used in this research is discussed below. 

The effect of distance between the magnets was studied and the results are illustrated in 

Figure 3-17. Numerical modelling, as well as experimental data, was recorded to 

understand the effect. Figure 3-17(b) presents the adhesion results from two different 

magnet sets. According to the illustrated results, the optimum adhesion force was 

generated when the length of the magnet was equal to the distance between the magnets. 

According to the previously published results [9], bringing magnets closer or distant than 

the magnet length reduced the adhesion force significantly. 

Adhesion capability has been studied in the literature to select the most effective physical 

parameters of a magnet. Comparisons of the adhesion effect has been studied by varying 

the magnet width and magnet thickness. When considering the previously studied results 

[9] illustrated in Figure 3-18, these confirm that an increase in the magnet thickness has a 

greater effect on the adhesion force when compared to an increase in the magnet width. 

This can be introduced as another key feature used in the adhesion module optimisation, 

i.e. to enhance the adhesion force of a given magnet set, thicker magnets can be introduced. 

Moreover, an increase in the width causes an increase in the backplate in order to shield 

Figure 3-17: Adhesion force vs distance between magnets [9]    

 

(a) (b) 
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the magnetic flux. Therefore, this increases the net weight of the system but an increase in 

thickness does not require additional yoke changes.  

The use of a high-permeability yoke for adhesion module optimisation has been studied in 

the literature [9] [90]. An increase in adhesion force with the backplate was studied in the 

adhesion design module section. The thickness effect of the yoke/backplate with respect 

to the adhesion force is recorded in the literature (see Figure 3-19). According to the 

previously published results [9] [90], it is significant that increasing the thickness of the 

yoke increased the adhesion capability up to a particular value, then began to settle down.  

Reducing magnetic flux leakage was the primary purpose of the backplate/yoke in the 

studied adhesion module. Therefore, the use of a high-permeability material for the yoke 

was essential. The effect of adhesion forces according to various high-permeability 

ferromagnetic materials were studied and presented in the literature [9], as illustrated in 

Figure 3-20. Iron was selected as the best material for the yoke. According to the illustrated 

Figure 3-18: Adhesion force vs magnet physical parameters [9]    

 

Figure 3-19: Adhesion force vs yoke thickness; (a) study no 1 [9]; (b) study no 2 [90] 

 

(a) (b) 
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figure, it is significant that the adhesion forces generated with commercially available iron 

also changed with its impurity level, i.e. materials with a higher percentage of iron 

provided a higher effect. 

 

Magnet arrangement formations have been studied in [90], and the adhesion forces were 

recorded, as illustrated in Figure 3-21. According to the studied formations, the N-S-N/S-

N-S arrangement with a yoke was identified as the most commonly used/suggested magnet 

arrangement. The magnet arrangement and the size of the yoke depends on the robot’s 

footprint. For example, if the robot has a rectangular narrow footprint, the arrangement in 

Figure 3-21(a) is suitable, and the arrangement in (c) can be used for a wider square-type 

footprint. Therefore, the magnet arrangement must be able to cope with the design of the 

robot’s magnetic adhesion footprint. In 

addition, it is essential to consider the 

effect of the air gap during the adhesion 

module design. According to the 

previously mentioned permanent magnet 

adhesion module studies, there is a 

significant drop in forces when the air gap 

is higher than the 1–5mm region. The 

results/parametric studies presented in the 

abovementioned studies were used to 

develop a bespoke mooring-chain-

climbing adhesion module, i.e. backplate, 

magnet arrangement, air gap, distance 

between magnets, and yoke materials.   

Figure 3-20: Adhesion force vs yoke materials [9]  

Figure 3-21: Adhesion force vs magnet 

arrangements [90]  

(a) (b) (c) 
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3.7.2 Design of the magnetic adhesion module  

Designing the best adhesion module according to the adhesion force requirements is the 

most common practice in robot design. In this study, force requirements, as well as 

available space, were considered as design parameters. The available space for the 

adhesion module was considered as the primary design constraint. As discussed 

previously, the adhesion module should be able to fit inside the tracked-wheel module. i.e. 

Space constraints were studied before selecting magnets, backplate etc. The allocated 

space for the adhesion module was recognised as illustrated in Figure 3-22, and 35mm, 

100mm, and 40mm cuboid-shaped spaces were considered for the adhesion module 

placement. 

 

Figure 3-22: (a, b, c) Allocated space for the adhesion module; (d) adhesion module space limits  

 

(a) 

(b) 

(c) 

(d) 
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A backplate/yoke has been used in climbing robots as an adhesion force enhancement 

technique. Optimising an adhesion module to achieve a given force using a given space 

was considered as a main design task in this part of the study. Initially, a backplate was 

introduced to the design. The yoke/backplate was introduced after considering the 

following advantages: 1) optimisation of the adhesion module; 2) the use of the same 

backplate to hold and keep the magnets in place; 3) the same yoke/backplate can be used 

to cluster the body plates of the tracked-wheel unit. According to the previously published 

studies [9] [90], 10-20mm thickness of the backplates was used. The backplate thickness 

was set to 15mm because it was used to hold the magnets and used as the attachment of 

the tracked-wheel frame. i.e. To ease the attachment of the tracked-wheel unit and the 

backplate, 15mm was selected as the thickness. A width of 40mm was chosen for the 

magnetic adhesion unit; however, due to the mechanical clearances/attachments, a width 

of 30mm was considered for the backplate design, as illustrated in Figure 3-23. Hereafter, 

the dimensions and space illustrated in Figure 3-23 are used when referring to the adhesion 

module. 

 

3.7.3 Adhesion module requirement study  

Before the parametric design of the adhesion module, it was necessary to 

calculate/estimate the required adhesion force that should be provided by each tracked-

wheel module. The required adhesion force was calculated in the literature [9] for a wall-

climbing robot, and this was adopted for this study. Vertical chain climbing was 

considered in this chapter; therefore, the adhesion calculation was conducted by 

Figure 3-23: Adhesion module space limits  

 

(a) 

(b) 

(c) 

(d) 
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considering a single tracked-wheel unit and a plane, as illustrated in Figure 3-24. Although 

vertical climbing is discussed in this study, an inclination was introduced to the climbing 

surface to generalise the formula. 

 

The main force/parameters used for the calculations were the weight of the robot (W), the 

inclination angle of the climbing surface (Ø), the coefficient of friction between the track 

and the climbing surface (µ), as well as the reaction force from normal to the surface (R), 

and the required adhesion force for slide avoidance (Fa). 

Considering the equilibrium (parallel to the plane) of the tracked-wheel unit, the following 

can be obtained:   

Eq 3-1 

Therefore, the reaction force (N) can be derived as follows: 

 

Eq 3-2 

Considering the equilibrium (perpendicular to the plane) of the tracked-wheel unit: 

Eq 3-3 

Therefore, the reaction force (N) can be derived as follows: 

Eq 3-4 

Considering Eq 3-3 and Eq 3-4: 

Eq 3-5 

Figure 3-24: Adhesion requirement force diagram  

 

∑ 𝐹𝑥 = 𝑊 𝑠𝑖𝑛Ø −  µ𝑁 = 0 

𝑁 =
𝑊 sin Ø

µ
 

∑ 𝐹𝑦 = 𝑊 𝑐𝑜𝑠Ø + 𝐹𝑎 − 𝑁 = 0 

𝑁 = 𝑊 𝑐𝑜𝑠Ø +  𝐹𝑎 

𝑊 𝑠𝑖𝑛Ø

µ
= 𝑤 𝑐𝑜𝑠Ø + 𝐹𝑎 

N µN 
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Therefore, rearranging Eq3-5, the generalise adhesion force requirement equation can be 

formed: 

Eq 3-6 

 

Vertical climbing was considered in this study; therefore, the inclination angle Ø =90. The 

general adhesion force equation can be re-simplified as: 

Eq 3-7 

 

To calculate the required adhesion force, Eq 3-7 can be used. In order to use Eq 3-7, the 

weight of the robot should be a known parameter. The weight of the full robot structure 

was discussed in the prototype chapter (see Chapter 4, Figure 4-17). The Calculation is as 

follows; 

Eq 3-8 

 

According to Eq 3-8, the required minimum total adhesion force was calculated as 

382.46N when the weight of the robot was considered as ≈ 19.5kg. (Downward force due 

to weight = 19.5 × 9.81 = 191.229 ≈ 191.23N (gravitation acceleration was considered as 

9.81m/s-2)). The friction coefficient (µ) between the rubber track surface was considered 

as 0.5 (0.5 was extracted from the manufactures data sheet). Therefore, the minimum total 

adhesion force (Fa) was calculated as Eq 3-8: 

According to the proposed orthogonal tracked-wheel locomotion mechanism, at least two 

tracked-wheel units support the movement; therefore, each tracked-wheel unit’s minimum 

adhesion requirement can be calculated as follows: 

Eq 3-9 

Where, x is the minimum number of tracked-wheel units in contact with the surface at a 

given location. According to Eq 3-9, each tracked-wheel unit should be able to provide a 

minimum adhesion force of 191.23N. The tracked-wheel contact with respect to the 

adhesion force was studied in the permanent magnet FEA section (i.e. later in this chapter).  

𝐹𝑎 ≥
𝑊 𝑠𝑖𝑛Ø

µ
− 𝑤 𝑐𝑜𝑠Ø 

𝐹𝑎 ≥
𝑊 

µ
 

𝐹𝑎 =
191.23(𝑁) sin(90˚)

0.5
− 191.23 𝑐𝑜𝑠(90˚) = 382.46𝑁 

𝐹𝑎(𝑝𝑒𝑟 𝑒𝑎𝑐ℎ 𝑡𝑟𝑎𝑐𝑘𝑒𝑑−𝑤ℎ𝑒𝑒𝑙) =
𝐹𝑎

𝑥
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3.7.4 Permanent magnet adhesion numerical modelling studies  

The challenge in this study was to design an adhesion module to obtain a given adhesion 

force within a limited space. Therefore, the quality of the magnet was considered, and a 

study was carried out to find commercially available magnet materials that are suitable for 

heavy-duty purposes. Neodymium magnet (NdFeB, NIB, or Neo magnet) were considered 

as rare-earth magnets  are widely used in industry due to their adhesion capability. The 

tetragonal crystalline structures of neodymium (Nd), iron (Fe), and boron (B) are used for 

this alloy and these magnets are the strongest commercially available magnets. The 

magnetic properties of a rare-earth magnet can vary with the working temperature and 

their maximum energy product (magnetic flux output per unit volume). Therefore, 

different types of neodymium magnet are available; i.e. N35-N52, N33M-N48M, N30H-

N45H, N30SH-N42SH, N30UH-N35UH,  N28EH-N35EH. The numerical value (e.g. 40, 

42, 45) stands for the maximum energy product of the magnet (in MGOe) and the letters 

(e.g. N, M, H, SH, UH EH) indicate the maximum working temperature, such as 80°C, 

100°C, 120°C, 150°C, 180°C or 200°C. For example, N35M can produce 35MGOes and 

is capable of working at 100°C. The N52 magnet range (works up to 80°C) was selected 

for this study because it is the strongest commercially available magnet grade. A higher-

grade magnet can generate a considerably higher adhesion force compared to a lower-

grade magnet of the same size (due to the higher magnetic flux output per unit volume). 

To design a magnetic adhesion module ‘available space for magnet’ named area in Figure 

3-22(b) was considered. As discussed in detail in the literature, the effect of the backplate 

was studied. The effect of adhesion force was studied using two magnets setups: 1) setup 

without the backplate (see Figure 3-25); 2) setup with the backplate (see Figure 3-26). 

Figure 3-25(c) shows the FEA layout used in COMSOL to study the ‘no backplate model’, 

and it illustrates the magnet orientation, sizes of magnets, and polarity. Figure 3-26 (c) 

illustrates the FEA layout used to study the ‘backplate model’. Magnet, air, and chain 

surface parameters were kept the same in both simulations. Magnet layouts in the models 

were designed according to the previously mentioned studies. The length of the adhesion 

module was 100mm, as determined in Figure 3-22(d). According to the previous studies 

[9], the space between the magnets should be same as the length of the magnet. Moreover, 

N-S-N-type or S-N-S-type polarity have been studied in the literature for better adhesion. 

Therefore, at least three sets of magnets should be placed within the 100mm length and 

the space between them should be equal to the length. Three magnets consume two spaces 
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between them. This leads to a division of the 100mm space into five equal parts of 20mm. 

Therefore, the length of the magnet was set to 20mm. In addition, the commercial 

availability of permanent magnets was also considered. A 9mm air gap was introduced 

between the magnet–chain surface due to the mechanical clearance of the tracked-wheel 

unit (this will be discussed in Chapter 4). 

The model layouts illustrated in Figure 3-25 and Figure 3-26 were designed using CAD 

software SolidWorks, then imported to FEA software COMSOL for numerical modelling. 

A stationary simulation was conducted in COMSOL Multiphysics with the use of the 

MFNC module. The free tetrahedral mesh was created using the mesh data from Table 3-

2. The data presented in Table 3-3 was used for numerical modelling. 

 

Figure 3-25: Adhesion module study 01 – no backplate FEA layout   

 

(a) (b) (c) 

Figure 3-26: Adhesion module study 02 – with backplate FEA layout   

 

(a) (b) (c) 
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The adhesion force generated on the mooring chain specimen was recorded during the 

simulation studies. To visualise the effect of the backplate, magnetic flux density/flux lines 

were plotted, as illustrated in Figure 3-27. 

Table 3-2  Mesh Data use for numerical modelling  

Parameter  Value  

Mesh type Free tetrahedral mesh 

Max element size 10mm 

Minimum element size  0.6mm 

Maximum element growth rate 1.35 

Curvature factor 0.3 

Resolution of narrow regions  0.85 

 

Figure 3-27: Adhesion module study results comparison: (a.1) no backplate magnetic flux density; (a.2) no 

backplate magnetic flux distribution 2D; (a.3) no backplate magnetic flux density distribution 3D; (b.1) 

backplate magnetic flux density; (b.2) backplate magnetic flux distribution 2D; (b.3) plate magnetic flux 

density distribution 3D 

(a.1) (a.2) (a.3) 

(b.1) (b.2) (b.3) 
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Table 3-3: COMSOL numerical module parameters 

Parameter Value  

1. Magnet type 

2. Residual flux density (Br) 

3. Coercive force (Hcb) of magnet 

4. Intrinsic coercive force (Hcj)  

5. Maximum energy product (BH) max 

6. Max operating temperature 

N52 [114] 

14.3–14.8KGs .14.5 was used in the FEA 

≥796kA/m 

≥876kA/m 

398–422MGOe 

80˚C 

Magnet relative permeability 1.05 

Magnet size/backplate size L 40mm, W 20mm, H 5mm / L 

100mm, H 15mm, W 30mm 

Iron relative permeability 4,000 

 

A 28.698N force was recorded between the chain surface and the magnet during the 

simulation with no backplate. This adhesion force was increased to 88.94N by introducing 

the backplate. From Figure 3-27 (a.2) and (b.2), it can be seen that it is significant that the 

backplate was able to reduce magnetic flux leakage by shielding the back of the magnet. 

The backplate was able to work as a closed circuit at the back of the magnet set; therefore, 

the density of magnetic flux towards the chain surface is higher in Figure 3-27 (b.3) 

compared to (a.3). This shielding effect raised the adhesion force by ≈ 60N. Therefore, the 

setup with the backplate was selected as the adhesion module design base. The 

abovementioned adhesion module base was able to enhance the force significantly, but the 

required 191.23N (design requirement) was not achieved. Therefore, previously published 

[9] magnet thickness increase technique was used to obtain the required force. According 

to the literature [9], an increase in magnet thickness has a more significant impact on 

adhesion force compared to an increase in width. An N52 commercially available super-

strength magnet with a thickness of 5mm was used in the abovementioned base FEA 

experiment. Therefore, adding layers of magnets to increase the thickness was considered, 

as illustrated in Figure 3-28. 

The magnet-backplate combination illustrated in Figure 3-28 (a) was tested previously in 

order to understand the need for the backplate. Numerical modelling studies were carried 

out according to the schematic illustrated in Figure 3-28(b), (c), and (d). The generated 

adhesion forces were recorded as in Figure 3-29. 
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Considering the above-recorded adhesion forces, magnet set (d) (see Figure 3-28) was able 

to generate an adhesion force of 219.16, which was slightly above the requirement 

(estimated adhesion requirement). Moreover, the thickness of this setup complied with the 

allowable space mentioned earlier. Therefore, this magnet-backplate combination was 

selected as the adhesion module for this study. Figure 3-30 illustrates the COMSOL FEA 

layout and the magnetic flux density of the selected magnet set. As mentioned previously, 

a 9mm air gap was introduced to the simulation due to the mechanical clearance between 

the bottom of the tracked-wheel unit and the chain contact surface. The parameters 

presented in Table 3-2 and Table 3-3 were used in the numerical modelling. Aluminium 

Figure 3-28: Thickness increase magnet layouts; (a) 5mm thickness; (b) 10 mm thickness; (c) 15mm 

thickness; (d) 20mm 

(a) (b) 

(c) (d) 

Figure 3-29: Thickness increase magnet layouts vs obtained adhesion forcers  
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was suggested for the outer structure during the design of the tracked-wheel unit and this 

is also a nonferromagnetic material. Therefore, aluminium parts in the tracked-wheel unit 

did not interfere with the adhesion forces, i.e. the relative permeability of aluminium is 

closer to the relative permeability of air, which is ≈ 1. Therefore, in order to simplify, only 

the chain surface and the adhesion module were considered in the FEA studies.  

 

 

 

 

 

 

 

Figure 3-30: Selected magnet – back place model; (a) and (b) FEA layouts; (c) and (d) 

results   

 

(a) (b) 

(c) (d) 
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3.7.5 Magnetic adhesion during climbing – numerical modelling  

 

The numerical modelling studies were conducted by considering a chain link specimen, 

which is similar to a thick iron rod. The physical geometry of the mooring chain is 

complicated compared to a rod due to the curved surfaces at the end of the links and the 

orthogonal link placement (as explained in Figure 3-31). Therefore, it was essential to 

study the variations in adhesion forces generated from each tracked-wheel module, i.e. 

tracked-wheel modules were placed in different orthogonal positions because contact time 

with the chain changes during climbing. To understand the adhesion behaviour, a 

numerical modelling study was conducted with all four tracked-wheel units. A mooring 

chain segment with three links was modelled in CAD, and the magnetic adhesion modules 

were placed in orthogonal positions (as proposed earlier), as illustrated in Figure 3-32. 

Adhesion module placement, as well as the distance between each adhesion module set 

was kept precisely the same as the tracked-wheel design proposed previously. In order to 

simulate the adhesion forces during chain transitions, three link chain segments were 

selected, i.e. three links consist of two link-to-link transitions. For the simulation, the 

parameters listed in Table 3-3 and the mesh data presented in Table 3-2 were used. The 

designed CAD files were imported to the COMSOL stationary simulation of the MFNC 

module for FEA analysis. A variable distance parameter P1 was declared (see Figure 3-

32(b)) and magnetic adhesion simulation was carried out by varying the adhesion module 

positions along the chain links. Adhesion modules were placed orthogonal to each other 

and the forces were recorded according to the directions, i.e. adhesion modules were kept 

Figure 3-31: Complex, curved, and orthogonal behaviour of mooring chain surface 
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in y and z directions, so the forces were recorded considering the same directions (see 

Figure 3-33). Forces acting on the chain due to the magnetic adhesion were considered and 

the results were plotted against the corresponding positions on the chain surface. The start 

position, labelled in Figure 3-32(b), was set as the 0 position and the distances were 

measured from that point. 

Figure 3-33: Directional adhesion forces vs tracked-wheel position on the chain    

Figure 3-32: CAD model layout of the climbing adhesion simulation  

(a) (b) (c) 
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According to the recorded results, it is significant that the adhesion force began to drop 

when a tracked-wheel unit entered/left a chain link but that, simultaneously, the 

corresponding orthogonal adhesion module started to gain the adhesion force. In order to 

understand the abovementioned effect, the total adhesion force was plotted against the 

tracked-wheel position on the chain (see Figure 3-34).  

 

According to the above total adhesion force study, an adhesion force of a minimum of ≈ 

443N and a maximum of ≈488N was generated during climbing. Moreover, the required 

adhesion force was ≈ 382.46N and it is significant that the proposed mechanism was 

capable of delivering the required force throughout the climb. When considering the total 

adhesion force graph in Figure 3-34, significant force variations can be seen. In order to 

understand the reasons for the variation, the physical placement of the adhesion module 

on the chain were studied. In Figure 3-35, A, B, C… illustrates the physical positions of 

the adhesion module, which are mentioned in Figure 3-34. The B, D, F, and G positions 

in Figure 3-34 are the recorded peak adhesion values. When considering the physical 

positions of B, D, F, and G in Figure 3-35, it is significant that the contribution of more 

than two adhesion modules helped the system. The A, C, E, G, and I points were marked 

as low adhesion points compared to others (but the adhesion force was higher than the 

requirement). When considering the physical conditions in Figure 3-35, it is significant 

Figure 3-34: Total adhesion forces vs tracked-wheel position on the chain    
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that only two adhesion modules were in contact with the chain surface. Therefore, the net 

adhesion force was recorded at a low value.  

The abovementioned numerical modelling results were based on the adhesion module 

geometry illustrated in the Figure 3-32(c). The distance between the two adhesion module 

sets was considered as ≈ 216mm.  

Therefore, another study was conducted to understand 

the behaviour of the adhesion forces and distance 

between the two modules. For this, the adhesion 

modules were placed closer than in the previous test, as 

illustrated in the layout (see Figure 3-36). Similarly, 

parameter p1 was varied, as before, and the adhesion 

forces were recorded as presented in Figure 3-37.  

Figure 3-35: Corresponding tracked-wheel places of Figure 3-34 

Figure 3-36: Distance between 

orthogamy adhesion modules  
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Figure 3-37: (a) Directional adhesion force; (b) total 

adhesion force 

(a) 

(b) 
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When considering the results presented in Figure 3-37(a), a similar curve shape of 

adhesion force variation (directional component) was obtained. When considering the total 

adhesion force in Figure 3-37(b), this demonstrates a peak adhesion of 487.89N and a 

minimum adhesion of 433.17N, which is higher than the requirement. From this study, it 

was possible to conclude that the distance between orthogonal adhesion module sets did 

not impact the overall adhesion force. To simplify the prototype procedure, the distance 

between the orthogonal adhesion modules were maintained at 216mm (for this study). If 

the value increased more than this, the overall length of the tracked-wheel crawler robot 

increased, which would cause manoeuvrability and deployment difficulties.  

3.8 Motor requirement calculations 

As discussed previously, the tracked-wheel locomotion mechanism was selected for this 

study. The designed/proposed tracked-wheel system needed to be externally driven by a 

motor. The motor torque calculation for magnetic adhesion climbing robots has been 

studied in the literature [9] , the torque is calculated as follows, 

 
Eq 3-10 

The main parameters required for the torque to drive the robot (τ) are the robot’s weight – 

surface distance (d), the wheel – surface coefficient of friction (μ), robot weight (w), and 

magnetic adhesion force (Fm). The previously published equation, Eq 3-10, was adapted 

according to the physical quantities of the tracked-wheel unit as follows (refer figure 3-

39). To simplify, a single tracked-wheel unit was considered with the full structural weight. 

Eq 3-11 

 

Eq 3-12 

 

Figure 3-38: Torque calculation force diagram (used in [91] [9]) 

𝜏 = 𝑊 𝑑 +  µ  𝐹𝑚 𝑟 

𝑑 = (𝑟1 − 𝑟2)
𝑤 − 𝑤𝑐

𝑤𝑐 + 𝑤𝑡
+ 𝑟2 

𝜏 = 𝑤 [(𝑟1 − 𝑟2)
𝑤 − 𝑤𝑐

𝑤𝑐 + 𝑤𝑡
+ 𝑟2] + µ𝐹𝑚𝑅 
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 Eq 3-12 was adopted according to Figure 3-39. The distance (d) in Eq 3-10 (the weight of 

the robot to the surface) was calculated by considering the equilibrium position of the 

weight (refer Eq 3-11). Therefore, the required motor torque equation can be expressed Eq 

3-12. Where Fm is the magnetic adhesion force generated by the adhesion module 

(calculated in section 3.5.3) and R is the effective radius of the tracked-wheel unit. The 

required speed of the robotic platform can be calculated as follows:  

Eq 3-13 

where SRPM is the rounds per minutes of the gearbox + motor combination, R is the 

effective radius of the tracked wheel, and S is the net speed (per minute) of the robot. 

According to the orthogonal tracked-wheel concept of climbing, at least two sets of 

tracked-wheel units contribute to the motion at a given point. Therefore, each crawler 

should be capable of delivering half of the torque, which is calculated in Eq 3-12. The 

speed of the robot and the motor torque were calculated in the prototype section (Chapter 

4). The inspection methods were not presented at this stage of the research, but the speed 

of the robot needed to be allocated according to NDT inspection requirements.      

  

3.9 Structural analysis of the strength of the frame  

As the final design parameter of the tracked-wheel climbing robot, the robot’s outer 

structure was designed. A numerical modelling study was carried out to understand the 

behaviour of the structure when the tracked-wheel units were in place. The importance of 

deployment was discussed as a requirement in Chapter 2. Therefore, easy deployment 

ability and retrievability were considered during the robot frame design phase. A 

structure/frame that needed to be deployed around a chain link was not practical due to the 

in-situ mooring chain conditions. Therefore, a lightweight L-shaped frame that could be 

Figure 3-39: Motor torque valuation force diagram  

𝑆 = 𝑆𝑅𝑃𝑀 × 2𝜋𝑅 
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placed easily on the chain link was considered. The CAD design presented in Figure 3-40 

was designed to hold the orthogonal crawlers that could fit on the specified chain link (for 

chain link dimensions, see Figure 2-21). The un-enclosed characteristic of the L-shaped 

design allows robot operators to easily deploy/retrieve the robot on/off the chain, as 

illustrated in Figure 3-40 (b, c, and d).  

According to the climbing concept, at a given point, two tracked-wheel units are attached 

to the chain while the other two are suspended in air. It was necessary to understand the 

displacement behaviour of the unattached tracked-wheel units in 3D space. If the 

displacement of the unattached units was significant (which could disturb the linear 

trajectory of motion), vertical climbing could be disturbed because they needed to be 

placed on the next chain surface. Therefore, FEA was conducted to understand the 

displacement behaviour of the unattached tracked-wheel units. In order to conduct the 

numerical modelling, an L-shaped frame was designed using SolidWorks CAD software, 

and the solid model was imported into the FEA Static structural module in the ANSYS 

workbench. The study was carried out with a mesh of a maximum element size of 20mm 

and a minimum element size of 0.1mm. The material properties assumed for the study are 

Figure 3-40: Main frame of the robot and deployment; (a) deployment using an 

operator/diver; (b) deployment step 1; (c) deployment step 3; (d) deployment step 4  

(a) (b) (c) 
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presented in Table 3-4. The layout presented in Figure 3-41(a) was used in the study under 

gravity forces. The tracked-wheel displacements in 3D space are presented in Figure 3-41. 

Table 3-4: Frame design/modelling parameters 

Parameter Parameter value 

Material  EN AC-51400 cast aluminium 

Density 2.7g/cm3 

Young’s modulus  70GPa 

Tensile strength: Ultimate 200MPa 

Tensile strength: Yield 120Mpa 

Poisson’s ratio 0.33 

 

Figure 3-41: Structural deformation analysis 1: no payload; (a) model layout; (b) y 

axis deformation; (c) x axis deformation; (d) z axis deformation 

(a) (b)   

(c) 
(d)   
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The displacements in 3D space were recorded as illustrated in Figure 3-41(b, c, and d). 

According to the study, maximum displacement occurred along the x axis (see Figure 3-

41(c)), which was 0.394mm and was relatively low when compared to the width of the 

chain link (≈ 133mm). 

Structural health monitoring of mooring chains was the primary objective of this robotic 

platform. Therefore, it was vital to understand the behaviour of the frame when carrying a 

payload. The payload was assumed to be the weight of the NDT instrumentation, such as 

the ultrasonic probe/probe manipulator, camera etc. A payload of 100N was equally 

distributed and added to both sides of the frame (see Figure 3-42(a): layout of the model). 

The static structural module in the ANSYS workbench was used in this study. The material 

properties assumed for the study are presented in Table 3-4. The layout presented in Figure 

3-42(a) was used in the study. The tracked-wheel displacements in 3D space were recorded 

Figure 3-42: Structural deformation analysis 2: with 100N payload; (a) model 

layout; (b) y axis deformation; (c) x axis deformation; (d) z axis deformation 

(a)   (b)   

(c)   (d)   
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and are presented in Figure 3-42(b, c, and d). According to the study, maximum 

displacement occurred along the x axis (see Figure 3-42(c)).  

The displacement recorded was 0.814 mm, which was still a relatively low value when 

compared to the width of the chain link (≈ 133mm). Therefore, it is possible to conclude 

that the proposed L-shaped frame/tracked-wheel unit displacements were significantly low 

and the impact of tracked-wheel orientation due to the structural displacement was 

negligible. 

According to the design of the locomotion, the robot should be attached to the chain 

surface with a minimum of two tracked-wheel units. The following structural deformation 

study was extended by considering following variations (see Figures 3-41, 3-42, 3-43, 3-

Figure 3-43: Structural deformation analysis 3: with 100N payload; (a) model 

layout; (b) y axis deformation; (c) x axis deformation; (d) z axis deformation 

(a)   (b)   

(c)   (d)   
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44, 3-45, and 3-46); i.e. contact tracked-wheel pairs were varied and corresponding 

numerical modelling studies were carried out. 

 When considering all of the layouts and the FEA results, the maximum deformation 

observed was ≈ 5.2mm on the z axis, as shown in Figure 3-43(d) (with a payload of 100N). 

When considering the length of the structure and the chain surface, ≈ 2.2mm on x axis was 

negligible (chain link sizes are illustrated in Chapter 2, Figure 2-21).  

 

 

 

 

Figure 3-44: Structural deformation analysis 3: with 100N payload; (a) model layout; (b) 

y axis deformation; (c) x axis deformation; (d) z axis deformation 

 

(a)   (b)   

(c)   (d)   
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Figure 3-45: Structural deformation analysis 5: with 100N payload; (a) model 

layout; (b) y axis deformation; (c) x axis deformation; (d) z axis deformation 

(a)   (b)   

(c)   (d)   
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3.10 Chapter summary and proposed design  

 3.10.1 Summary of the design 

The locomotion idea was to use two sets of tracked-wheel units maintained in an 

orthogonal position to match the orthogonal links of a mooring chain (see Figure 3-47). 

One tracked-wheel unit moves on one chain link while the other moves onto an adjacent 

orthogonal chain link. Therefore, each orthogonal set of tracked-wheel units enables the 

robot to move continuously along the chain. Units A and D (see Figure 3-48(a)) represent 

parallel wheels that move on parallel tracks of a link on one side, while units B and C 

Figure 3-46: Structural deformation analysis 6: with 100N payload; (a) model layout; 

(b) y axis deformation; (c) x axis deformation; (d) z axis deformation 

(a)   (b)   

(c)   (d)   
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represent parallel wheels that move on parallel tracks on the orthogonal links. During the 

climbing process, A–D and B–C tracked-wheel units engage with the relevant chain 

surfaces to support the motion, as illustrated in Figure 3-48(b). Permanent magnets were 

considered due to their zero-energy consumption and the amphibious nature of mooring 

chains. The positioning of the adhesion module on uncertain surfaces was minimised due 

to the passive adhesion quality of the permanent magnets. 

 

Figure 3-47: Tracked-wheel robot design and placement on the chain; (a) cross-

section view; (b) side view of the design  

(a)   (b)   

Figure 3-48: Robot crawling explanation; (a) tracked-wheel placement; (b) 

climbing sequence 

(a)   (b)   
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3.10.2 Overall summary of the chapter  

The physical nature of the mooring chain and the in-situ environmental conditions create 

a significant requirement for an automated robotic system that has high structural 

tolerance. Mooring chains are often subjected to significant environmental changes such 

as tidal waves, wind, storms etc. The chain link shown in Figure 1-4 demonstrates rusted 

and uneven surfaces. Therefore, the robustness of the climbing robot needs to be ensured. 

Due to the harsh offshore conditions in which the robot operates, easy robot deployment 

was identified as one of the primary design requirements. Deployment of a large and heavy 

robot is much more difficult in offshore environments. In addition, a robot structure that 

encloses the chain is more laborious to deploy. The ability to change surfaces between 

orthogonal chain links was considered as the second requirement because mooring chains 

are discontinuous, being made with two sets of links that are kept orthogonal to each other. 

Therefore, the crawling/climbing robot needs to cope with the discontinuity. An 

amphibious adhesion module and suitable locomotion were also identified as the areas that 

needed to be addressed in the design. The adhesion module and locomotion mechanism 

were selected according to the mooring chain’s physical nature, i.e. curved, rusted, 

ferromagnetic, amphibious, and uneven. The design aimed to achieve a maximum target 

weight of 35kg to ease off-shore deployment with a maximum of two human operators. 

Mooring chain link size can vary according to the location, application, load capacity etc. 

This chapter aimed to describe the design of a lightweight, permanent magnetic adhesion, 

wheeled robot that could be used as a platform to convey NDT equipment along the 

mooring chain to perform NDT in air and also be adapted for underwater operation. In this 

chapter, the mechanical design of a mooring-chain-climbing robot, its structural strength 

analysis, motor drive and magnetic adhesion systems, and the optimisation of a permanent 

magnetic adhesion module were discussed. The designs and models proposed in this 

chapter were used as the prototype aid, as discussed in Chapter 4. 
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4.1 Chapter overview  

The magnetic adhesion tracked-wheel approach for mooring chain climbing has not been 

studied in the literature. Therefore, a study was carried out, as discussed in Chapter 3, to 

propose a suitable tracked-wheel orientation and tracked-wheel specifications. The 

required adhesion and torque calculations were added to the study as a design aid. 

Moreover, a bespoke permanent magnetic adhesion module was designed, and a 

parametric study was carried out with the use of numerical modelling. An L-shaped 

lightweight aluminium structure was designed and analysed in terms of its structural 

behaviours.  

This chapter discusses the prototyping and testing of the principles and designs established 

in the previous chapter. Previously published (i.e. in the literature) magnetic adhesion 

modules were discussed in Chapter 3 in terms of the process of the adhesion module 

design. Previously published adhesion module design parameters were used in the design 

process, but a bespoke adhesion module was designed in order to comply with the tracked-

wheel unit. A number of numerical modelling studies were carried out during the design 

of the adhesion module with the use of COMSOL Multiphysics. Validation of the 

numerical modelling was carried out using a test rig, and a comparison of the results was 

presented in this chapter. A tracked-wheel unit prototype was presented in the chapter 

according to the proposed design architecture. Finally, the validation of the tracked-wheel 

locomotion and the permanent magnetic adhesion principles was carried out by 

prototyping and testing.  

The novel approach of using tracked wheels and permanent magnets to climb vertically 

aligned mooring chains was tested in this chapter under laboratory conditions. Three link 

mooring chain segments were used for testing, and climbing experiments were conducted 

to observe the chain link–link transitions. 
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4.2 Prototype of the early-stage design  

Before the establishment of the proposed magnetic adhesion orthogonal tracked-wheel 

concept, a few attempts were made during the initial stage of the research. The tracked 

wheel and external magnet attachment design presented in Chapter 3, Figure 3-12, was 

prototyped using MISUMI configurable aluminium extrusions (see Figure 4-1). The 

prototype of the tracked-wheel unit are discussed in this chapter. 

 

 

The prototyped tracked-wheel adhesion configuration illustrated in Figure 4-1 is a low-

cost configurable design. In the above design, a lightweight, rigid aluminium tube was 

introduced to hold and protect the magnets and the backplate. Moreover, the same tube’s 

outer surface was used to attach a hinge joint. To attach the hinge joint to the magnet holder 

(aluminium tube), a TIG welding procedure was used (i.e. tungsten inert gas arc welding 

procedure), as shown in Figure 4-2(a). Both the hinge and tubes were made using 

aluminium. Therefore, welding was proposed for the attachment. In the above-illustrated 

design, a rigid frame was introduced to hold and attach the crawler to the main frame of 

the robot. When the prototype was ready, the tracked-wheel unit was tested on a mooring 

Figure 4-1: Prototype of the tracked-wheel adhesion module attachment attempt 01 

 

(a)   (b)   (c)   

(d)   (e)   
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chain for performance analysis (as illustrated in Figure 4-2(b)). This design was unable to 

maintain its balance, as explained in Chapter 3 (see Figure 3-12).  

 

The idea of a support wheel/wheelset to counter the imbalance forces was prototyped, as 

proposed in Chapter 3, Figure 3-13 (for the prototyped image see Figure 4-3). An 

additional wheelset was introduced to the Figure 4-1 tracked-wheel setup in order to 

maintain balance. The prototyped attachment was tested to check the reliability of the 

system, but it was unable to behave as expected, i.e. the tracked-wheel unit started to share 

the load with the support wheels, which led to the issue described in Figure 3-13. 

Moreover, the attachment led to a considerable increase in weight (approximately 1.5kg). 

 

Figure 4-2: (a) TIG welding procedure for attachment; (b) tracked-wheel testing on the chain surface 

 

(a)   
                         (b)   
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4.3 Tracked- wheel unit prototype  

As explained in the design section of Chapter 3, a prototype of the proposed tracked wheel 

was constructed (see Figure 4-4). A rubber tracked wheel was introduced to drive two 

aluminium wheels, and a support wheel was introduced to maintain the tension of the track. 

As proposed in Chapter 3, permanent magnets were considered for adhesion. Therefore, 

non-ferromagnetic materials were selected for the tracked wheel to avoid magnetic 

interferences. If the critical parts of the tracked-wheel unit (i.e. aluminium wheel, bearings) 

were affected by magnetic interference, locomotion could be disturbed. In the design stage 

for the adhesion module, a high-permeability backplate was proposed to shield/minimise 

magnetic flux leakage. However, as seen in Figure 3-30(d), some flux leakage was 

observed. One aluminium wheel was the driving wheel, which was connected to a motor, 

and the other was passively driven by the track mechanism. 

 

 

Figure 4-3: (a) and (b) design of the support wheel; (c) and (d) prototype of the design  

 

(a)   (b)   

(c)   (d)   
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The dimensions proposed in the tracked-wheel design were considered for the prototype, 

as illustrated in Figure 4-5(a-b). As discussed previously, 310mm was selected to avoid 

link–link misalignments. A 40mm internal width was selected to ensure the tracked-wheel 

unit was able to rest comfortably on the 133mm diameter chain link. The tracked-wheel 

unit was tested on a chain link, as illustrated in Figure 4-5(c-d). The adhesion module was 

not included in this test; therefore, the chain link was placed on the floor and testing was 

carried out. Once the outer structure of the tracked-wheel unit had been prototyped, the 

adhesion module was investigated. 

 

 

 

 

 

Figure 4-4: (a) and (b) prototyped tracked wheel unit; (c) rubber tracked-wheel set  

 

(a)   (b)   

(c)   



Chapter 4: Prototype of the vertically aligned mooring-chain-climbing robot 

89 

 

 

4.4 Magnetic adhesion module validation  

4.4.1 Validation test rig  

In the FEA studies carried out in Chapter 3, a bespoke magnetic adhesion module was 

designed. It was necessary to develop the adhesion module according to the space provided 

in the tracked-wheel unit. Therefore, a number of numerical modelling studies were carried 

out to understand the adhesion properties and magnetic flux density behaviours. It was 

necessary to validate the results generated in the numerical modelling studies. The test rig 

in Figure 4-6 was used to validate the magnetic adhesion results simulated in the FEA 

study. The frame and magnet holding plates were made using (3–5mm) carbon fibre and 

aluminium plates (see Figure 4-6(c)). Magnets were attached to an aluminium plate with 

free movement in the direction of the magnetic forces, and the plate was kept on a set of 

four load cells (see Figure 4-6(b)). Aluminium spacers were introduced to maintain the 

same air gap as in the FEA simulation (see Figure 4-6(a)). Four strain-gauge-based load 

cells were introduced to the test rig, and these were capable of measuring up to 1500N. 

The bottom ends of the load cells were attached to the structure, while the top ends rested 

on the plate holding the magnets. This setup enabled to measure the changes in plate 

deflections due to the adhesion force between the magnet and the chain surface. However, 

Figure 4-5: (a) and (b) dimensions of the prototyped tracked-wheel unit; (c) and (d) tracked-

wheel set testing on the chain surface 

(a)   (b)   

(c)   (d)   
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the output of the load cells was relatively weak, i.e. millivoltage was obtained compared 

to the applied load/force. An operation amplifier (op-amp), HX 711, was introduced to the 

output signal and an AVR microcontroller (with a 10bit digital–analogue module) was 

used to convert the signal. To enhance the accuracy of the reading, the load cells were 

configured as a Wheatstone bridge.  

 

After prototyping the validation test rig, it was necessary to calibrate the force reading (i.e. 

the digital reading obtained from the microcontroller). A known (pre-calibrated) weight 

set was used for the test rig calibration. 4N–70N calibration weights were used during the 

calibration (see Figure 4-7(a)) and the digital reading was plotted to establish the pattern 

of the force-reading curve (see Figure 4.7(b)). Parts of the test rig that were affecting the 

load cells were measured independently and deducted from the reading. To enhance the 

accuracy of the reading, an average of 10 readings was taken for each calibration wright. 

 

 

Figure 4-6: Adhesion force validation test rig; (a) free-moving aluminium plate and spacers; (b) 

load cell arrangements; (c) carbon fibre plate; (d) test rig – amplifier – microcontroller  

(a)   (b)   

(c)   (d)   
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According to the known weight and the corresponding digital reading curve plotted in 

Figure 4-7(b), the relationship between the digital reading and the weight was established. 

By considering the y = mx + c type curve, and  can be written as; 

 

Eq 4-1 

Where y is the  digital reading and x is the force reading. Therefore, the above equation 

can be rearranged to obtain the true adhesion force: 

 

Eq 4- 2 

 

According to the adhesion module placement studies, inside the tracked-wheel unit was 

selected as the best option for the magnets. Figure 4-6 illustrates the space availability as 

proposed in Chapter 3, Figure 3-22. The experimental test rig illustrated in Figure 4-8 was 

used to validate the modelling results. The mooring chain was kept in the upright position 

during the following experiment. Therefore, the external weight subtraction in Eq4-2 was 

avoided. The base plate was introduced between the test rig and the chain surface to 

maintain enough surface contact (see Figure 4-8(b and c). To ease the test rig placement 

Figure 4-7: (a) Calibration with known weights; (b) calibration curve (known weight vs digital reading)  

 

(a)   (b)   

𝑦 =  
𝛥𝑦

𝛥𝑥
 𝑥 + 80893.90 

𝐹𝑜𝑟𝑐𝑒  = {(𝐷𝑖𝑔𝑖𝑡𝑎𝑙 𝑟𝑒𝑎𝑑𝑖𝑛𝑔 − 80893.90)/
𝛥𝑦

𝛥𝑥
 } − 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡(𝑁) 
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on the chain surface, the base plate was used because the width of the test rig was greater 

than the width of the chain. 

The experimental magnet sets in Figure 4-9 were tested in the test rig (Figure 4-8) and the 

forces are recorded in Table 4-1. The 9mm airgap used in the FEA design was kept the 

same in the experiment by adjusting the height between the magnet–chain surface. The 

error between the recorded experimental adhesion results and the FEA results are within 

the acceptable range (i.e less than 10%). The maximum variation / error recorded was 6.07 

%. A change in air gap distances (± 0.5mm) while setting up the test rig and the sensitivity 

of the load cells (0.2% manufacturing error in the sensor) were possible factors affecting 

the error between the FEA and experimental results. Based on the results, it was possible 

to accept the validity of the FEA study and force calculations. 

 

 

 

A – mooring chain; B – base plate; C – carbon fibre test rig; D – iron backplate and magnets; 

E – load cells; F – magnets; G – spacers 

Figure 4-8: (a) Experiment schematics; (b) and (c) experimental setup   

 

(a)   (b)   

(c)   
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Table 4-1: Simulation vs experimental results  

 
Studied 

magnet 

arrangement 

Numerical 

modelling results 

Experimental 

results 

*Error % 

B 164.95N 155.504N -6.07% 

C 182.17N 185.35N 1.72% 

D 219.16N 216.60N -1.18% 

 

* Error calculation = [(Experimental – Numerical)/Experimental] x 100. 

Figure 4-9: (a) Experiment setup; (b) 10mm thickness setup; (c) 15mm thickness setup; 

(d) 20mm thickness setup 

(a)   (b)   

(c)   (d)   
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4.5 Adhesion module placement  

As discussed in Chapter 3, Figure 3-22, the adhesion module was placed inside the unit 

after testing the prototype, i.e. the adhesion module was inserted (see Figure 4-10(b)). 

There were small changes in the air gap between the magnet–chain surface (due to the 

uneven surface of the mooring chains). This led to a sudden increase/decrease in adhesion 

force. Therefore, small support wheels were introduced between the magnets to maintain 

the steadiness of the air gap during the entire motion (see Figure 4-10(b)). The support 

wheel and crawler were made using aluminium to avoid any interference with the magnets. 

Small cuts were introduced to the crawler to keep the magnets in place, as illustrated in 

Figure 4-10(a) (it was essential to maintain a constant air gap between the two magnets). 

Once the addition module was placed inside the tracked-wheel unit, it was tested on a 

mooring chain, as illustrated in Figure 4-10(c). Only the adhesion (ability to stick to the 

chain) capability was tested at this stage because the motor attachments had not been 

added. During the experiment, adhesion capability, support wheel behaviours, and tracked-

wheel behaviours were observed. 

 

Figure 4-10: (a) Cuts introduced to the tracked wheel; (b) aluminium support wheel; (c) tracked-

wheel unit testing on a mooring chain  

(a)   (b)   (c)   
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4.6 Motor attachment and motor control  

According to the orthogonal tracked-wheel concept of climbing, at least two sets of 

tracked-wheel units contribute to the motion at a given point. Therefore, each crawler 

should be capable of delivering half the torque, which was calculated in Chapter 3, Eq 3-

12 (approximately 14Nm). Each crawler unit was equipped with a brushless DC motor 

(24V/16Nm DC brushless, 8mm diameter output shaft), and a suitable worm gearbox to 

supply the calculated torque (631:1 gear ratio with an output speed of 4rpm). The speed of 

the robot was calculated at 42cm/min according to Eq 3-14. To save space between the 

orthogonal chain links and the crawlers, each motor was attached with a 90˚ attachment 

(see Figure 4-11). 

As mentioned at the beginning of this chapter, this study aimed to establish a fundamental 

principle for a fast, lightweight tracked-wheel-based robot solution for chain climbing. 

Therefore, the basic flow chart operation described in Figure 4-12 was used to drive the 

robot platform along the mooring chain. To drive the motors along the mooring chain, 

each set of motors was attached to an H-bridge module, and the relevant H-bridge signals 

were generated using a microcontroller with an input signal from a joystick. 

Figure 4-11: Motor and gearbox attachment and placement on the robot 

 

(a)   (b)   
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4.7 L-shaped frame design and adhesion test 

Using the previously discussed simulations and CAD designs, the prototype of the tracked-

wheel units and the L frame were built. Aluminium extrusions were used to prototype the 

L-shaped main frame and the four crawler units (tracked-wheel) were attached to the frame 

(see Figure 4-13). Additional 10cm lengths of aluminium extrusions were used during the 

prototyping for further mechanical changes. At this stage of the research, the mooring 

chain inspection mechanism was not included; therefore, the following climbing tests were 

carried out with the robot’s own weight. A stability check was performed with external 

payloads (see Figure 4-14) to check the adhesion capability of the design. According to 

the experimental results, the robot stayed attached to the chain link surface with up to 50N 

of external force (all safety cables were released during the stability test experiment). 

 

 

Figure 4-12: Tracked-wheel motor control  
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Figure 4-13: (a) L-shaped robot main frame and tracked-wheel units; (b) example of orthogonal 

tracked-wheel placement; (c) L-shaped frame deployment onto the mooring chain  

(a)   

(b)   

(c)   

Figure 4-14: Robot on chain stability check; (a) with 20N load; (b) with 40N load; (c) with 50N load 

 

(a)   (b)   (c)   
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4.8 Laboratory climbing sequence test 

The climbing sequence illustrated in Figure 4-16 was recorded during the laboratory 

experiment trial. The crawler robot was placed on a mooring chain segment (see Figure 4-

15) comprising three links and the up/down movement was tested (see Figure 4-16). The 

experimental trial was conducted in an industrial environment. Therefore, an additional 

cable (i.e. safety cable) was used to enhance safety (internal laboratory safety regulation). 

The robot was able to attach and climb the mooring chain by making transitions between 

the chain links. 

 

 

Figure 4-16: Laboratory climbing sequence test 

 

Figure 4-15: Laboratory climbing sequence – robot placement on the chain   

 

(a)   (b)   
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At the fundamental design stage for the robot (in Chapter 3), the net weight was estimated 

at 19.5kg. The weight of the prototype of the robot was recorded at 19.48kg. The robot 

was placed on a laboratory scale and the weight was measured, as illustrated in Figure 4-

17. 

4.9 Overall summary of the chapter  

Compared to other climbing terrains, mooring chain climbing or chain climbing with 

robots has not been significantly investigated in the literature. Sliding structures with 

arms/grippers, ROV-assisted, and cable-assisted locomotion mechanisms were discussed 

in the literature for climbing. However, magnetic adhesion tracked-wheel climbing has not 

been studied previously in relation to chain climbing. Therefore, the use of tracked wheels 

for chain climbing was investigated in this research.  

In Chapter 3, a fundamental robotic approach was proposed for mooring chain climbing 

using orthogonally positioned tracked-wheel units and magnetic adhesion. The primary 

aim of Chapter 4 was to prototype the proposed concept and test this on a chain. In this 

chapter, a lightweight, fast-moving mooring-chain-climbing robot system that could be 

quickly deployed and retrieved was prototyped. Moreover, validation of the neodymium 

permanent magnet adhesion system was conducted. Finally, the robot system was tested 

in a laboratory on a three-link chain segment to study its climbing capability and stability. 

In conclusion, the feasibility of using a crawler with an orthogonal arrangement of tracked 

wheels to climb vertically aligned mooring chains was established. 

 

Figure 4-17: Weight of the robot  
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5.1 Chapter overview  

The magnetic adhesion tracked-wheel mechanism for mooring chain climbing was 

discussed in Chapters 3 and 4. An ideal (straight) mooring chain configuration was 

considered in the study mentioned above. According to the observations, a straight 

mooring chain can be used in laboratory conditions, but misalignments are present in chain 

links during normal conditions. The robotic platform discussed in the previous chapter was 

able to climb on strictly straight mooring chains due to the rigid attachments. This chapter 

presents a Cartesian-legged, tracked-wheel crawler robot developed for mooring chain 

inspection. The proposed robot addresses the misalignment condition of mooring chains 

that is commonly evident in in-situ conditions. The primary purpose of the presented 

robotic platform is to convey NDT equipment along the chain to perform an inspection. 

Therefore, in-situ chain misalignment adaptation is essential. The preliminary design 

(basic climbing robot) of the proposed robotic platform was discussed in the previous 

chapters and in [D1] [D4]. This chapter describes an upgraded version of the robotic 

platform that solves the climbing problem posed by link misalignment in mooring chains. 

The previously presented magnetic adhesion robotic platform was able to climb orthogonal 

chain links that were in a uniformly straight, but it was unable to adapt to chain curvature 

and chain link misalignment due to relative twists between the links. This chapter presents 

a brief description of the previously studied robot. The mooring chain misalignment was 

investigated mathematically and used as a design parameter for the proposed robot. This 

is followed by the design of the proposed misalignment adaptation mechanism. The final 

section of the chapter describes the prototyping and validation of the climbing technique. 

The robot was validated using laboratory-based climbing experiments. The presented 

robot can be used as a platform to convey equipment, i.e. tools for NDT/evaluation 

applications. The robot presented in this chapter was teleoperated and a feasibility study 

was added in order to identify chain misalignments.   

5.2 Comparison of robotic manipulator configurations 

As discussed in the Appendix (please see the appendix), several robotic manipulators have 

been used in industry/research studies. The selection of the manipulators was conduct 

according to the requirements, i.e. space constraints, end effector workspace/reachability, 

complexity, durability, payload capacity etc. A comparison of the commonly used 

manipulators is discussed below, which was used to select the manipulator operation that 

could cope with the selected misalignments. The comparison was carried out considering  
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 the mooring chain misalignments (misalignment and misalignment workspaces are 

discussed later in this chapter). 

  

Manipulator  Joints   Advantages/disadvantages  

Cartesian  Three prismatic 

joints 

Advantages  

1. Three simple linear motions that can cover three 

dimensions 

2. Rigid structure (compared to others) 

3. Simple kinematic model 

Disadvantages  

1. Smaller work space compared to the robot’s 

dimensions 

2. Unable to achieve complex geometries (i.e. under 

objects) 

3. Gliding surfaces/space required for prismatic joints 

Cylindrical  Revolute (waist) 

Prismatic 

(shoulder) 

Prismatic (elbow) 

Advantages  

1. Can be driven with a simple kinematic model 

2. Easy access to areas such as cavities 

3. Suitable for operation that requires 360° movement 

(round shape access) 

Disadvantages  

1. Restricted work space 

2. Work volume can be overlapped (back of the robot) 

 

Spherical  Revolute (waist) 

Revolute 

(shoulder) 

Prismatic (elbow) 

Advantages  

1. Able to reach a considerably large space from the 

central support 

2. Suitable for operation requiring spherical access 

Disadvantages  

1. Complex kinematics model  

2. Spherical reachability is not important for this case 

 

Articulated  Revolute (waist) 

Revolute 

(shoulder) 

Revolute (elbow) 

Advantages  

1. Maximum flexibility compared to any other 

2. Comparatively large workspace  

Disadvantages  

1. Complex kinematic operations are required  

2. Low rigidity when the manipulator is at full reach 

mode 

Table 5-1: Comparison of commonly used industrial manipulators  

 

 

Figure 5-3: (a) 

and (b) 

Catenary 

curvature and 

mooring 

attachments 

[150] [156]; 

(c) link 

bending [19]; 

(d) 

misalignment 

between 

successive 

chain links 

[19]Manipulator  

Joints   Advantages/disadvantages  

Cartesian  Three prismatic 

joints 

Advantages  

1. Three simple linear motions that can cover three 

dimensions 

2. Rigid structure (compared to others) 

3. Simple kinematic model 

Disadvantages  

1. Smaller work space compared to the robot’s 

dimensions 

2. Unable to achieve complex geometries (i.e. 

under objects) 

3. Gliding surfaces/space required for prismatic 

joints 

Cylindrical  Revolute (waist) 

Prismatic 

(shoulder) 

Prismatic 

(elbow) 

Advantages  

1. Can be driven with a simple kinematic model 

2. Easy access to areas such as cavities 

3. Suitable for operation that requires 360° 

movement (round shape access) 

Disadvantages  

1. Restricted work space 

2. Work volume can be overlapped (back of the 

robot) 

 

Spherical  Revolute (waist) 

Revolute 

(shoulder) 

Prismatic 

(elbow) 

Advantages  

1. Able to reach a considerably large space from the 

central support 

2. Suitable for operation requiring spherical access 

Disadvantages  

1. Complex kinematics model  

2. Spherical reachability is not important for this 
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The mooring chain misalignments discussed in this research can be achieved by 

manipulating in a 2D Cartesian plane (discussed later). The rigidity of the manipulator is 

a vital parameter when considering a climbing robot. Moreover, the leg/arm that will cope 

with the misalignments should be able to handle the weight of the robot and the adhesion 

force (e.g. a manipulator with many vulnerable joints is not suitable for this type of 

operation). Moreover, the selected manipulator should be able to attach to the L frame. 

Therefore, adaptability was also considered during the selection. A simple kinematics 

model can be introduced as an advantage in this situation due to the complex climbing (i.e. 

climbing under operational conditions). When considering the above selection criteria, a 

Cartesian manipulator with a suitable wrist/end effector was considered for research in this 

chapter.  

5.3 Misalignment problem during vertical climbing  

The first part of this research was conducted by considering strictly orthogonal chain links 

in laboratory conditions. Introducing a new chain-climbing mechanism to the literature 

was the primary purpose of the abovementioned study. When considering the industrial 

application of the proposed robot, it should be capable of working as a platform to convey 

the tools required to conduct in-service activities, i.e. structural health monitoring. As 

discussed in the introduction chapter, mooring chains cannot be moved for inspection or 

repair. Therefore, any proposed robotic solution should be capable of climbing along a real 

chain surface. According to the literature, there are three main types of misalignment 

presented in an in-situ mooring chain: chain curvature due to the effect of gravity and 

distance between both ends of the chain; chain curvature due to out-of-plane bending and 

chain link–link misalignment due to external forces; and chain curvature due to gravity 

(also known as catenary curvature), which depends highly on the physical attachments of 

each mooring system (see Figure 5-1(a and b)). Moreover, chains with a shorter  distance 

between ends (i.e. attachment between FPSO and floor) have a steep/significant curvature, 

but the curvature of the first 30m is negligible for longer chain attachments. The chain 

segment within the straight (upright) range was considered in this study. Misalignment 

between two successive links is evident in any conditions (including laboratory conditions) 

(see Figure 5-1(d)). Ideally, the angle between two successive links should be 90°; 

however, due to external forces, ± 8° variations can occur [19].  
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Most significant and inevitable misalignments between two successive chain links were 

considered (common misalignments when the chain was hanging vertically) in this chapter 

and misalignment adaptation was studied (see Figure 5-1(c and d). 

 

 

5.4 Understanding of misalignments and tracked-wheel orientations 

An orthogonally positioned, magnetic adhesion tracked-wheel robotic approach (see 

Figure 5-2) was used at the beginning of this research. The tracked-wheel units were 

rigidly attached to the main body of the robot and research was conducted to test the 

robot’s climbing capability when chain links were strictly orthogonal to each other (ideal 

laboratory condition).  

Figure 5-1: (a) and (b) Catenary curvature and mooring attachments [150] [156]; 

(c) link bending [19]; (d) misalignment between successive chain links [19] 

(a)   (b)   

(c)   (d)   
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Due to in-situ environmental forces, chain links are not always orthogonal to each other 

[19]. The magnetic adhesion tracked-wheel crawler robot requires sufficient surface 

contact to generate sufficient friction force for climbing [D1]. In the earlier study, when 

there was a misalignment in the chain link orientation, the robot was unable to adapt its 

orientation due to the rigid body attachments. Further investigations were conducted to 

understand the behaviour of the tracked-wheel module with respect to selected 

misalignments. Two types of chain misalignment were considered in this study (common 

misalignments when the chain was hanging vertically). Figure 5-3 illustrates an ideal (non-

misaligned) chain link. To aid visualisation, the chain surface in Figure 5-3(a) is plotted 

as a planar surface. Due to the curvature of the mooring chain links, the centre of the chain 

link was selected as the optimum crawling path, as illustrated in Figure 5-3(a). To place 

the tracked-wheel unit on the optimum crawling path, a pure translation needed to be 

applied (see Eq 5-1 and Figure 5-3(b)), i.e. PP joint operation to tracked-wheel unit. 

𝑃 (𝑖𝑑𝑒𝑎𝑙 ) = 𝑃 (ℎ𝑜𝑚𝑒) + (
𝑑1

−𝑑2
0

)    Eq 5-1 

 

Figure 5-2: Orthogonally positioned magnetic adhesion tracked-wheel climbing robot; (a) 

climbing robot design; (b) orthogonal tracked-wheel placement concept 

 

(a)   (b)   
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where P (ideal) represents the optimum crawling position when the chain links are in ideal 

conditions (see Eq 5-1). In order to generalise the tracked-wheel positions, the ideal path 

was not taken as the home position. d1 and d2 are the directional distances (see Figure 5-

3(b)) from a given home position (home is considered to be the edge of the frame in this 

case).  

The first misalignment is explained in Figure 5-4(a). A chain link was rotated around its z 

axis at angle α (angle measured with respect to the x axis). To place the crawler on the 

chain in the same way as the ideal scenario, the wheel unit should be translated onto the 

new point in the x–y plane (see Figure 5-4(b)). Due to the tangential placement of the 

wheel unit, as illustrated in Figure 5-5, it was not necessary to rotate the wheel unit 

(rotation to cope with the twist angle) when there was a twist-type misalignment. If this 

feature is not considered, another DOF has to be added to the system, i.e. rotation around 

the wheel unit’s z axis. Therefore, p(twistz) can be written as follows.  

 

Figure 5-3:(a) Model of a chain link without misalignments; (b) placement distances 

 

(a)   (b)   
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𝑃 (𝑡𝑤𝑖𝑠𝑡𝑧) =  𝑃 (𝑖𝑑𝑒𝑎𝑙) + (
𝛥𝑥 
𝛥𝑦
0

)                                                            Eq 5-2 

where P (twist z) is the optimum crawling position when the chain link is in a misaligned 

condition (rotate around the chain link’s z axis). Dx and Dy are directional distances (see 

Figure 5-6(b)) that the tracked wheel should move in order to cope with the misalignment. 

 

Figure 5-4: Misalignment case 01: (a) schematic of chain link rotated around the z axis; (b) tracked-

wheel unit placement after introducing the translation  

 

(a)   (b)   

Figure 5-5: Tracked-wheel unit placement during misalignment 
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In the second misalignment, illustrated in Figure 5-6, a chain link was rotated along the x 

axis. To place the tracked-wheel unit on the chain surface, it was necessary to introduce a 

pure rotation to the x axis of the wheel unit. After applying the rotation, it was possible to 

create the appropriate angle that would allow better surface contact (see Figure 5-6(b)). In 

this case, the tracked-wheel unit was already aligned on the optimum working axis 

(because of climbing). Therefore, no translation was needed. The robot’s vertical climbing 

motion would be smoother after achieving this rotation. The required rotation can be 

modelled by Eq 5-3, where b is the misaligned angle (see Figure 5-6): 

 

𝑃 (𝑡𝑤𝑖𝑠𝑡𝑥) = (

1 0 0
0 𝑐𝑜𝑠𝛽 − sin 𝛽
0 sin 𝛽 cos 𝛽

 ) ×  𝑃 (𝑖𝑑𝑒𝑎𝑙)                      Eq 5-3 

 

When observing the above three cases (ideal alignment, chain twist, and tilt 

misalignments), where α( twist angle) and  β (tilt angle) can be identified as the only 

variables that are required for wheel manipulation. The remaining variables were 

calculated with the help of angle variations (discussed later in this chapter). According to 

Figure 5-6: Misalignment case 02: (a) schematic of chain link rotating around x axis; (b) tracked-

wheel unit placement after introducing the rotation  

 

(a)   (b)   
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Eqs 5-1 – 5-3, two translations and a rotation can be observed. Therefore, by introducing 

3DOF to the existing tracked-wheel crawler, adaptations could be made to achieve the 

abovementioned misalignments. 

5.5 Robotic manipulator design 

5.5.1 Design of 3DOF 

The 3DOF mentioned in the above section can be categorised as two translations (along 

the x and y axes) and a rotation around the x axis (i.e. PPR type). The above description 

relates to an operation of a planar Cartesian arm/leg with a revolute joint as an end effector. 

The modification capability of the existing structure was also considered during the 

conceptual design. Moreover, two translations were modelled with prismatic joints, and 

the rotation was modelled with a revolute joint (see Figure 5-7). In the conceptual 

manipulator diagram (Figure 5-7), L1 and L2 are the link lengths due to possible 

mechanical attachment clearances. L3 is the distance between the crawler attachment and 

the revolute joint. The variable parameters of two linear motions (prismatic joints) and the 

revolute joint are d1, d2, and Ø, respectively. Therefore, an active transformation of the end 

effector (see point P in Figure 5-7(c)) from its home position (Figure 5-9(a and b)) to its 

current position (with the given joint variables) can be modelled as follows: 

 

Considering the prismatic joint translation along the x axis with a d1 extension: 

Figure 5-7: Conceptual design of the robotic manipulator (schematic); (a) home configuration 

explanation; (b) home configuration; (c) active transformation 

(a)   

(b)   

(c)   
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Prismatic joint 1 = 𝐴1(𝑑1)  =  (

1 0 0 𝑑1

0 1 0 0
0 0 1 0
0 0 0 1

)    Eq5-4      

 

Considering the prismatic joint translation along the y axis with a d2 extension: 

Prismatic joint 2 = 𝐴2(𝑑2)  =  (

1 0 0 0
0 1 0 (−𝑑2

0 0 1 0
0 0 0 1

)   Eq 5-5 

When considering the A3(Ø) revolute joint transformation (rotation around x axis with L1 

and L2 bias distances), the joint transformation matrix (expressed in Eq 5-6) was obtained 

according to the theory explained in  Appendix: 

[ I –  𝑅𝑥(Ø) ] p = {(
1 0 0
0 1 0
0 0 1

) − (
1 0 0
0 𝑐𝑜𝑠 Ø −𝑠𝑖𝑛Ø
0 𝑠𝑖𝑛Ø 𝑐𝑜𝑠Ø

)} (
𝐿1

−𝐿2

0
)    Eq 5-6 

 

After simplification, A3(Ø) can be written as follows: 

𝐴3(Ø)  =  (

1 0 0 0
0 𝑐𝑜𝑠Ø −𝑠𝑖𝑛Ø −𝐿2(1 − 𝑐𝑜𝑠Ø)

0 𝑠𝑖𝑛Ø 𝑐𝑜𝑠Ø 𝐿2 ∗  𝑠𝑖𝑛Ø
0 0 0 1

)    Eq 5-7 

 

Therefore, the active transformation of the end effector from home to its current position 

when the joint variables are d1, d2, and Ø can be obtained as: 

𝐴1(𝑑1) 𝐴2(𝑑2) 𝐴3(Ø)  =   (

1 0 0 𝐿1 + 𝑑1

0 𝑐𝑜𝑠Ø −𝑠𝑖𝑛Ø −𝑑2 − 𝐿2 ∗ (1 − 𝑐𝑜𝑠Ø)

0 𝑠𝑖𝑛Ø 𝑐𝑜𝑠Ø 𝐿2 ∗ 𝑠𝑖𝑛Ø 
0 0 0 1

)   Eq 5-8 

 

When considering the home position of the tool frame, assuming that it is parallel to the 

world frame but translated by (L1; L2, L3; 0)T. So, the active transformation from the world 

frame to the tool frame (B) is expressed as follows:  

 

𝐵 =  (

1 0 0 𝐿1

0 1 0 −𝐿3 − 𝐿2

0 0 1 0
0 0 0 1

)     Eq 5-9 
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Active transformation from the world frame to the tool frame when the joint variables 

are d1, d2, and Ø is given by matrix multifaction of A1(d1)*A2(d2)*A3(Ø)*B: 

𝐴𝐴1(𝑑1) 𝐴2(𝑑2) 𝐴3(Ø) 𝐵 =   (

1 0 0 𝐿1 + 𝑑1

0 𝑐𝑜𝑠Ø −𝑠𝑖𝑛Ø −𝑑2 − 𝐿2 − 𝐿3 ∗ 𝑐𝑜𝑠Ø

0 𝑠𝑖𝑛Ø 𝑐𝑜𝑠Ø −𝐿3 ∗  𝑠𝑖𝑛(Ø)

0 0 0 1

)  Eq 5-10 

 

Finally, for the tracked-wheel unit, active transformation to adapt according to the selected 

misalignments in 3D space can be expressed as: 

(𝑝) 𝐴𝑐𝑡𝑖𝑣𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 =  (

1 0 0 𝐿1 + 𝑑1

0 𝑐𝑜𝑠Ø −𝑠𝑖𝑛Ø −𝑑2 − 𝐿2 − 𝐿3 ∗ 𝑐𝑜𝑠Ø

0 𝑠𝑖𝑛Ø 𝑐𝑜𝑠Ø −𝐿3 ∗  𝑠𝑖𝑛(Ø)

0 0 0 1

)    Eq5-11 

 

5.5.2 Robotic leg design for proposed kinematic motion 

The rigidity of the leg design/mechanism was vital due to the mooring chain’s rough and 

robust nature. Moreover, the load/weight acting along the axis was considered during the 

design of the above mechanism. To create a linear movement along the axis, DC geared 

actuators were used. The possibility of introducing a slider actuator was considered; 

however, due to the load capacity and rigidity, a low-friction, dry-coupled glider was 

introduced to the system with actuators, as illustrated in Figure 5-8. Two linear actuators 

were introduced to the system to ensure the tracked-wheel attachment remained rigid and 

stable. A dual actuator design with a pin-type joint was introduced to achieve the pitch 

action (rotate along the x axis) of the wheel unit. The system strength could be enhanced 

by replacing the rotary axis with two actuators that create a pitch angle by changing the 

distance of each actuator. Both y-axis actuators were mounted on a linear glider. The 

bodies of ‘b’ actuators in Figure 5-8 were mounted on a linear glider ‘c’, and both actuators 

were connected by a rigid attachment ‘f’. The rigid attachment ‘f’ was connected to the 

end of the actuator stroke ‘a’. The magnetic adhesion tracked-wheel unit ‘e’ was attached 

to the actuator end by using a pin-type joint ‘d’. Movement along the x axis was achieved 

by manipulating the actuator ‘a’ and y axis movement could be made using the actuator 

‘b’. By introducing a differential motion to the ‘b’ actuators, rotation along the x axis could 

be made. This actuator-assisted robotic leg was mounted on the L-shaped main frame of 

the robot.  
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5.5.3 Kinematics of the actuator’s assisted robot leg 

To understand the kinematics of the design, the entire motion of the leg can be separated 

into two main motions: planar manipulator (Figure 5-8(b)) and Cartesian manipulator 

(Figure 5-8(c)). The Cartesian manipulator operates as discussed in the previous section. 

For the Cartesian manipulator, actuator ‘a’ represents the x axis and both ‘b’ actuators 

represent the y axis without any differential motions, as illustrated in Figure 5-9. 

Therefore, the active transformation of the wheel units (see point P in Figure 5-9(c)) in the 

3D plane relative to the home configuration (Figure 5-9 (a and b)) can be expressed as 

follows, where L1, L2, and L3 are attachment distances and d1 and d2 are variable actuator 

stroke lengths. It is possible to find the new translation point along the XY plane (see 

Figure 5-9) with respect to the chain misalignment angle and the known parameters of the 

chain link (see Figure 5-4). 'r' (r in Figure 5-4(b)) is the distance between the optimum 

working path to the centre of the chain link. For a given chain, r will always be a known 

parameter. If the chain twist along the z axis is α, Dx = r-r cos(α) and Dy = r sin(α). Where 

Dx and Dy are the differences in actuator lengths from the ideal position. 

Figure 5-8: Design of the robotic manipulator; (a) design; (b) planner mode; (c) Cartesian mode 

 

(a) (b) (c) 
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Considering the prismatic joint translation along the x axis with a d1 extension: 

Prismatic joint 1 = 𝐴1(𝑑1)  =  (

1 0 0 𝑑1

0 1 0 0
0 0 1 0
0 0 0 1

)    Eq 5-12 

Considering the prismatic joint translation along the y axis with a d2 extension: 

 

Prismatic joint 2 = 𝐴2(𝑑2)  =  (

1 0 0 0
0 1 0 (−𝑑2)
0 0 1 0
0 0 0 1

)    Eq 5-13 

Therefore, the active transformation of the end effector from home to its position when the 

joint variables are d1 and d2 can be expressed as follows:  

𝐴1(𝑑1) 𝐴2(𝑑2)  =   (

1 0 0 𝑑1

0 1 0 −𝑑2

0 0 1 0
0 0 0 1

)   Eq 5-14 

When considering the home position of the tool frame, assume that it is parallel to the 

world frame but translated by (L1; L2, L3; 0)T. So, the active transformation from the world 

frame to the tool frame (B) is expressed as follows:  

 

Figure 5-9: Schematic of the for-chain twist 

adapt operation; (a) home configuration 

explanation; (b) home configuration; (c) active 

transformation 

(b) 
 

(a)   

(b)   

(c)   
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𝐵 =  (

1 0 0 𝐿1

0 1 0 −𝐿3 − 𝐿2

0 0 1 0
0 0 0 1

)     Eq 5-15 

 

Active transformation from the world frame to the tool frame when the joint variables are 

d1 and d2 is given by: 

 

𝐴1(𝑑1) 𝐴2(𝑑2)𝐵 =   (

1 0 0 𝐿1 + 𝑑1

0 1 0 −𝑑2 − 𝐿2 − 𝐿3

0 0 1 0
0 0 0 1

)   Eq 5-16 

Finally, for the tracked-wheel units, active transformation to adapt according to the 

selected misalignments in 3D space can be expressed as: 

 

(𝑝)𝐴𝑐𝑡𝑖𝑣𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛  =  (

1 0 0 𝐿1 + 𝑑1

0 1 0 −𝑑2 − 𝐿2 − 𝐿3

0 0 1 0
0 0 0 1

)   Eq 5-17 

 

To understand the behaviour of the planar part of the robot leg, the differential motion of 

the ‘b’ actuators was considered (see Figure 5-10). d2-1 and d2-2 represent the variable stroke 

distances of the ‘b’ actuators. L2 and L3 were considered as fixed offset distances due to 

the mechanical design of linear actuators. D is the fixed vertical distance between two 

actuators:  

(Dd) differential distance = distance(𝑑2−2) − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑑2−1)  Eq 5-18 

(Dd) = 
𝐷

tan (Ø)
      Eq 5-19 

 

Eq 5-18 and Eq 5-19 were used to calculate the appropriate actuator stroke distances. The 

sign of the angle was used to identify the associated actuator. For example, if the angle is 

(+ve), the d2-2 actuator was extended by Dd and the d2-1 actuator remained the same.  
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5.5.4 Mitigating the misalignment  

The previously discussed legged magnetic adhesion tracked-wheel module was used to 

replace the rigid attachment (see Figure 5-11) to deal with the misalignment. Some 

unmodified legs of the robot are shown in Figure 5-11(a) to distinguish the modifications 

in the other figures. Potential NDT attachment places are marked in Figure 5-11(a and d), 

but the NDT system/s are not reported in this part of the study. The performance of the 

upgraded design was tested using CAD models of chain twist and chain tilt misalignment 

scenarios (see Figure 5-12). 

 

  

Figure 5-10: Schematic of the for-chain tilt adapt operation 
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Figure 5-11: Robot (a) and (b) design schematics; (c) and (d) full design 

 

(a)   (b)   

(c)   (d)   

Figure 5-12: CAD compatibility of design; (a) twist adaptation; (b) tilt adaptation 

 

(a) (b) (a)   (b)   



Chapter 5: Design and prototype of the chain misalignment adaptation mechanism 

117 

 

5.6. Prototype and testing  

5.6.1 3DOF Cartesian leg 

A prototype of the Cartesian leg mechanism was developed to the design specifications 

provided in the previous section, as illustrated in Figure 5-13(a). The prototyped system 

in Figure 5-13 was attached to the robot’s mainframe (L frame, discussed in Chapters 3 

and 4) and a third linear actuator was added, as illustrated in Figure 5-13(b). Actuators 

were attached to the system using a linear slider plate. The motion of the legged system 

was tested to observe the 3DOF movement, as explained in the design process (Eq 5-11). 

To test the 3DoF (3-degree of freedom), the proposed movements were observed, as 

illustrated in Figure 5-14, without attaching the robot to a chain. During the development 

of the prototype, 5–8mm clearance was introduced to the pin joint for mechanical 

advantage during the tilt motion (to help the system cope with the vertical distance increase 

during the rotation of the tracked-wheel unit). 

 

 

 

Linear actuator  

Tracked-wheel Pin joint type joint 

Linear glider 

attachment  

Tracked-

wheel unit  

X-axis 

actuator  

Y-axis 

actuator -01 

Y-axis 

actuator -02 

 

linear 

slider plate. 

Actuator body 

– linear glider 

attachment 

Figure 5-13: Prototyped Cartesian legged tracked-wheel unit; (a) prototyped robot leg with 

two actuators; (b) robot leg mounted on the robot with the third actuator 

 

(a) (b) (a)   (b)   



Chapter 5: Design and prototype of the chain misalignment adaptation mechanism 

118 

 

 

5.6.2 Climbing test  

To test the Cartesian legged motion of the robot, link tilt and link twist misalignments were 

introduced to a three-link chain segment, as illustrated in Figure 5-15, and climbing 

capability was tested. To create the mooring chain twist misalignment, a series of wooden 

wedges were inserted between the first and second links. A tensioned strap was used, as 

illustrated in Figure 5-15, to create tilt misalignment.  

Figure 5-14: Prototyped Cartesian legged 3DOF testing 

 

1st 

2nd 

3rd Wooden wedge 

 

Strap 

Figure 5-15: Robot climbing sequence testing test rig (misalignment test rig) 
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Chain twist misalignment was introduced to the first link, as illustrated in the above 

experimental setup, and climbing capability was tested, as illustrated in Figure 5-16. The 

robot was able to adapt to the misalignment of the chain link and climb along the chain. 

The robot was also able to adapt and climb when a tilt misalignment was introduced to 

link 1, as illustrated in Figure 5-17. A stability check was performed without safety cables 

(see Figure 5-18). According to the experimental results, the robot stayed attached to the 

misaligned chain link surface with its own weight (all safety cables were released during 

the stability test experiment). 
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Actuator distances were recorded during the misalignment climbing and checked against 

the distances measured during the CAD study (see Figure 5-20). Comparison between 

CAD distances and the experimental readings are illustrated in the Figure 5-20. The control 

architecture presented in Figure 5-19 was used in this study for robot control. Automated 

detection of misalignment angles was not established within this part of the study. 

Therefore, misalignment angles and control commands were added to the system as an 

input from the robot control graphical user interface (GUI) (LabVIEW), i.e. the commands 

‘climb up’ and ‘climb down’ and the misalignment angles. The GUI was connected to the 

microcontroller (on the robot) via serial communication. 

 
Figure 5-19: (a) hardware architecture diagram; (b) control flow chart 

(a) (b) (a)   (b)   

Figure 5-18: Robot climbing stability check without safety cables 

Detached 
safety 
cables 

 

Mooring chain 

 

Mooring chain 
climbing robot  
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5.7 Chain misalignment detection feasibility study  

5.7.1 Numerical modelling and design 

The misalignment detection of the proposed robot was conducted by manual measurement 

and a numerical feasibility study was conducted to improve the robot with autonomous 

misalignment detection capabilities. Sample misalignment angles (as discussed in the 

previous section) were introduced to a CAD file, and an FEA study was carried out using 

COMSOL numerical modelling. The FEA study was carried out by considering air and 

solid objects. COMSOL pressure acoustics and solid mechanics modules were 

incorporated to detect the misalignment using ultrasonic distance measurement 

transducers. The boundary load force on the transducer point was used as the excitation. 

 

 

 

 

(a) (b) 

(c) (d) 

Figure 5-20: Actuator distance check; (a) 10-degree twist misalignment CAD distances; (b) 10 degrees 

recorded actuator distances; (c) 5-degree twist misalignment CAD distances; (d) 5 degrees recorded 

actuator distances 
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The parameters considered in the FEA are presented in Table 5-2 and the model layout is 

shown in Figure 5-21.  

 

 

 

 

Parameter / expression  Value  

Frequency (f) 40 khz 

Number of cycles (n) 5 

Angular frequency (w) 2.5133e5hz 

Speed of sound in air (c) 343m/s 

Density of air (app at sea level) 1.225 kg𝑚−3 

Density of iron  7700 kg𝑚−3 

Speed of sound in iron 5130 m/s 

Maximum element size  8.5750e-4 m 

Sampling frequency  2.5e-5 s 

Maximum element size 0.8mm 

Minimum element size 0.015mm 

Mesh type Free triangular mesh  

 

Table 5-2: Parametric data used in the numerical modelling 

 

Figure 5-21: COMSOL FEA model layout and boundaries 
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A study of chain twist misalignment detection was carried out, as illustrated in Figure 5-

22. Two ultrasound detectors were used to measure the distances, as illustrated in Figure 

5-22(a). Ultrasound detectors were placed perpendicular to the chain surface during the 

ideal condition. Then, a 17° misalignment was introduced to the chain while the 

transducers were kept in the same place. Transmit and receive signals, illustrated in Figure 

5-23, were obtained from the wave patterns illustrated in Figure 5-24. To minimise the 

disturbances, ultrasound transducers were fired one after another, i.e. noise could be added 

to the signal if the waves began to interfere with each other. 

 

 

 

 

Figure 5-22: FEA case 1; (a) 3D CAD design; (b) misaligned angle cross section; (c) simplified CAD 

layout for FEA 
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Figure 5-23: Time-of-flight signals; (a) from d1; (b) from d2 
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Output signals monitored in FEA case 1 are illustrated in Figure 5-23 (d1– Figure 5-23(a), 

d2 – Figure 5-23(b)). Distances d1 and d2 were calculated by considering the peak-to-peak 

time of arrival. d1 was calculated as 48.96mm and d2 was calculated as 148.09mm. 

Therefore, the misaligned angle was calculated by considering the trigonometry between 

the transducer positions and the d1 and d2 distances. The calculated misaligned angle is as 

follows:  

α= tan−1 {
𝑑2−𝑑1

𝐿𝑎
] =  {

148.09−48.96

314.2
] = 17.51˚    Eq 5-20 

where La is the known (fixed) distance between the transducers. The sign of the angle 

could be used to determine the clockwise and anti-clockwise misalignment directions. 

A study of the chain tilt misalignment detection was carried out, as illustrated in Figure 5-

25. Two ultrasound detectors were used to measure the distances, as illustrated in Figure 

5-25(a). Ultrasound detectors were placed perpendicular to the chain surface during the 

ideal condition (both were placed on the same side of the link, separated by a known 

Figure 5-24: Wave pattern; (a.1) d1 wave start; (a.2) d1 wave hits the chain surface; (a.3) d1 return to the 

transducer; (b.1) d2 wave start; (b.2) d2 wave hits the chain surface; (b.3) d2 return to the transducer 

 

(a.1)   (a.2)   (a.3)   

(b.1)   (b.2)   (b.3)   
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distance). Then, a 5° misalignment was introduced to the chain while transducers were 

kept in the same place. Transmit and receive signals, illustrated in Figure 5-26, were 

obtained from the wave patterns, illustrated in Figure 5-27. In order to minimise the 

disturbances, ultrasound transducers were fired one after another, i.e. noise could be added 

to the signal if the waves began to interfere with each other. 
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Figure 5-26: Time-of-flight signals; (a) from d3; (b) from d4 
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Figure 5-25: FEA case 2; (a) 3D CAD design; (b) misaligned angle cross-section; (c) simplified CAD layout for FEA 
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Output signals monitored in FEA case 2 are illustrated in Figure 5-26 (d3 – Figure 5-28(a), 

d4 – Figure 5-26(b)). Distances d3 and d4 were calculated by considering the peak-to-peak 

time (see Figure 5-26). d3 was calculated as 47.55mm and d4 was calculated as 92.18mm. 

Therefore, the misaligned angle was calculated by considering the trigonometry between 

the transducer positions and the d3 and d4 distances. The misaligned angle is as follows:  

Ø= tan−1 {
𝑑4−𝑑3

𝐿𝑏
] =  {

92.18−47.55

120
] = 5.06˚    Eq 5-21 

where Lb is the known (fixed) distance between the transducers. The sign of the angle 

could be used to determine the clockwise and anti-clockwise directions of the 

misalignments. 

According to the above examples, it was possible to use the ultrasound distance 

measurement to estimate the misalignment angle of the chain links. 

 

 

Figure 5-27: Wave pattern; (a.1) d3 wave start; (a.2) d3 wave hits the chain surface; (a.3) d3 return to the 

transducer; (b.1) d4 wave start; (b.2) d4 wave hits the chain surface; (b.3) d4 return to the transducer 

 

(a.1)   (a.2)   (a.3)   

(b.1)   (b.2)   (b.3)   
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5.7.2 Ultrasound misalignment detecting experimental test 

After the misalignment detection feasibility study, which was carried out using ultrasound, 

a test rig was built to test the idea. At this stage of the research, autonomous climbing was 

not established, but it was necessary to understand the misalignment of the chain surface 

(link’s climbing surface) for future upgrades. The test rig illustrated in Figure 5-28(b) was 

constructed according to the specifications provided in the Figure 5-28(a) schematic. A 

transducer with the specifications provided in Table 5-3 was used in this experiment, i.e. 

the frequency of the transducer was the same as in the FEA studies. At the beginning of 

the experiment, the prototyped test rig remained parallel to the chain, as illustrated in 

Figure 5-28(c). Then, misalignments were introduced. A scale/pointer was used in this 

experiment to indicate the reference angle (see Figure 5-28(d)). 

 

Figure 5-28: Ultrasound test rig for twist misalignment detection; (a) test rig schematic; (b) prototyped test rig; 

(c) test rig placement with the chain surface; (d) pointer/scale used as reference 

 

(a)   (b)   

(c)   (d)   
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The measurement of the angle was conducted by introducing misalignments to the chain 

link under inspection. The misalignment angle was measured as explained in the FEA (i.e. 

by using two distances measured using ultrasound), and the distance between the 

transducers and the corresponding reference angle was measured by the scale. Both the 

ultrasound angles and reference angles were recorded (an average reading was taken from 

ten recorded values for each reading), then the results were plotted for evaluation, as 

illustrated in Figure 5-29. The error between the reference measurements and the 

experimental readings were not significant. The maximum error between the reference and 

measured results was 1.97°, i.e. the angle measured – 18.03°, the reference angle – 20°. 

According to the experimental results, the error between the readings was less than ± 0.8° 

when the misalignment was ± 17°. In this method of angle measurement, the transducers 

were not perpendicular to the chain surface when there was a twist. However, the surface 

was still within the ultrasound measuring range, as illustrated in Figure 5-30. This can be 

seen as the main reason for the error when the misalignment was greater than 17°. 

According to previously published studies, twist misalignments can be ± 8° [19]. 

Therefore, it was possible to use ultrasound distance measurement to estimate the 

misalignment angle of the chain links. 

 

 

Table 5-3: Transducer specifications 

Transducer Parameter  Specification  

Working Frequency (During Experiment) 40khz 

Working Voltage (Input Voltage) Dc 5v 

Working Current (Input Current) 15mA 

Max Range 4m 

Min Range 2cm 

Measuring Angle 15 Degrees 

Trigger Input Signal 10µs Ttl 

Pulse 
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Figure 5-29: Twist misalignment angle measuring experimental results vs reference values  

 

Figure 5-30: Chain link vs ultrasound measuring range (example of 20-degree misalignment); (a) 

misalignment schematic; (b) ultrasound beam and the chain link when there is no misalignment; (c) 

ultrasound beam and the chain link when there is a 20-degree misalignment (chain surface still covering 

the beam width) 

(a)   (b)   (c)   
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The test rig illustrated in Figure 5-31(b) was constructed according to the specifications 

provided in the Figure 5-31(a) schematic. A transducer with the specifications provided in 

Table 5-3 was used in this experiment, i.e. the frequency of the transducer was the same 

as in the FEA studies. At the beginning of the experiment, the prototyped test rig remained 

parallel to the chain, as illustrated in Figure 5-31(c). Then, misalignments were introduced 

(see Figure 5-31(d)). 

 

 

Angle measuring was conducted by introducing misalignments to the chain link under 

inspection. The misalignment angle was measured as explained in the FEA, i.e. using two 

distances measured using ultrasound and the distance between the transducers. The 

corresponding reference angle was measured by a scale. Both the ultrasound angles and 

reference angles were recorded (an average reading was taken from ten recorded values 

for each reading), then the results were plotted for evaluation, as illustrated in Figure 5-

32. The error between the reference measurements and the experimental readings were not 

significant. The maximum error between the reference and measured results was 0.89°, 

Figure 5-31: Ultrasound test rig for tilt misalignment detection; (a) test rig schematic; (b) prototyped 

test rig; (c) test rig placement with the chain surface; (d) sample measurement position  

 

(a)   (b)   

(c)   
(d)   
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i.e. the angle measured – 9.89°, the reference angle – 9°. In this method of angle 

measurement, the transducers were not perpendicular to the chain surface when there was 

a tilt. However, the surface was still within the ultrasound measuring range, as illustrated 

in Figure 5-30. This can be seen as the main reason for the error. When considering the 

experimental data in Figure 5-29 and Figure 5-32, it was possible to use the ultrasound 

distance measurement to estimate the misalignment of the chain links when they were ± 

17° (for the tilt) and ± 8° (for the twist).  

5.8. Chapter summary  

This chapter discussed the results that showed that it was possible to upgrade a previously 

designed magnetic adhesion tracked-wheel mooring-chain-climbing robot to address the 

misalignment issues of operational mooring chains. The results and findings in the chapter 

were added to the literature in [D2]. The previous version of the climbing robot was unable 

to demonstrate climbing when there was a misalignment presented in the chain. Two types 

of misalignment (chain twist and chain tilt) were studied and a mathematical model of a 

robot leg was proposed. Then, the proposed model was modified according to the 

mechanical needs of the climbing robot. The prototyped robot leg was introduced to a 

single tracked-wheel module of the previous robot and experimental studies were carried 

Figure 5-32: Tilt misalignment angle measuring experimental results vs reference values 
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out. The complete robot system was tested on a three-link mooring chain segment to study 

the climbing capability. For this study, 5–17° link twist and 1–5° link tilt misalignments 

were introduced to the chain link and the robot was able to adapt the tracked-wheel unit 

by using the newly added Cartesian robot leg. During the climbing experiment, 

misalignment angles were added to the system manually. Therefore, a feasibility study was 

conducted using ultrasound in order to establish a misalignment detection concept. The 

concept was designed using ultrasound FEA, then an experiment was conducted. As a 

result of the study in this chapter, the idea of an orthogonally placed, Cartesian-legged 

magnetic adhesion tracked-wheel robotic platform that could eliminate concerns relating 

to the misaligned mooring chain climbing was established. 
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6.1 Chapter overview  

Chain climbing is a highly industry-related activity due to its application, i.e. for the use 

of FPSO mooring chain integrity management. Only a few automated attempts have been 

tested in the history of chain integrity management due to the inspection complexity and 

lack of reachability, i.e. due to the mooring chain’s curved, round, complex geometry and 

because most automated robotic platforms are still at the laboratory stage. Therefore, 

integrity assessment of mooring chains is carried out using manual methods such as visual 

inspection, hammer testing, mechanical measurements etc.  

The development of a chain-climbing robot that is capable of working as a platform was 

investigated in Chapters 2–5. In the interest of robotic improvements, chain climbing is an 

area that requires further exploration. Therefore, in the first part of the thesis, a magnetic 

adhesion tracked-wheel robot was proposed. As mentioned previously, the primary 

concern of mooring chain climbing is to conduct an in-situ integrity investigation. 

Therefore, a feasibility study was carried out in this chapter to investigate a suitable 

method of inspection that could be used both in air as well as underwater. Moreover, the 

capability of automation was considered as a primary aspect because the idea presented in 

this chapter was to propose a technique that could be used with a climbing platform. 

Inspection of the chain crown area was considered as the primary concern in this chapter. 

It is imported to evaluate the crown of a link and the interlink contact zone due to the heavy 

residual stress and wear effects. In previous automated studies, the primary concern was 

to investigate the weld area of the chain. According to the findings in [8] [7], chain crown 

investigation was also considered as priority. The capability of using conventional NDT 

techniques for crown inspection are limited due to the complex geometrical features of the 

chain crown, i.e. curved, round, overlapping with the orthogonal chain link, rusted etc.  

State-of-the-art mooring chain inspection techniques were discussed at the beginning of 

this chapter. Commonly used NDT techniques were investigated in order to select a 

suitable technique. The background theory of the selected techniques was also presented. 

Finally, the design and testing of the selected technique were presented, as well as a 

feasibility conclusion, i.e. phased-array/FMC ultrasound inspection. 
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6.2 State-of-the-art chain inspection mechanisms 

6.2.1 Automated mechanisms  

When considering the literature on chain inspection, only a few attempts have been made 

to automate the process. Compared to the evolution of automated NDT, chain inspection 

is still in its infancy. Long-range, guided-wave inspection was used in the ‘Moorinspect’ 

project [19] [115]. A collar with guided-wave transducers was introduced around a chain 

link with the use of a pneumatic actuator arm and NDT inspection was carried out (see 

Figure 6-1). According to the internal project reports, ensuring the mobility of the system 

became more difficult with the extra weight of the pneumatic collar. This system aimed to 

access the chain from a single point and inspect the entire chain. 

A visual inspection system was designed in [22], as illustrated in Figure 6-2(a). An 

inspection chamber was designed for this mechanism that could rotate in order to inspect 

orthogonal chain links. An image-processing mechanism was added to the system to 

measure the distortions of the structure (see Figure 6-2(b)). 

Figure 6-1: Guided wave inspection collar and attachments [115]  

 

Figure 6-2: ICARE anchor chain inspection mechanism; (a) visual inspection 

chamber; (b) image-processing sample [22] 

(a)   (b)   
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The automated inspection system presented in [116] was designed for use in the chain-

manufacturing process (see Figure 6-3). The system was designed to investigate 

manufacturing flaws in the soldered area using ultrasound transducers. Angle probes were 

used in this system and the results were obtained by considering the entire curvature of the 

welded surface. Since this was designed to work at the manufacturing stage, chain links 

needed to be placed in the system in order to conduct the inspection.  

A conceptual NDT system was proposed in [117], as illustrated in Figure 6-4. Phased-

array NDT and visual inspection were considered in this project (‘chain test’). A phased-

array system with a robotic manipulator was proposed in order to investigate the welding 

joint area. 

Figure 6-3: Ultrasound welding inspection automated system [116] 

 

Figure 6-4: ‘Chain test’ PAUT inspection mechanism [117] 
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For industrial subsea inspection, ROVs are the most common industrial practice. Most 

ROV inspections are carried out using visual inspection, i.e. a camera system or a 3D laser 

surface detection mechanism [118]. Most of these visual inspection mechanisms are 

teleoperated and can be attached to an ROV, which can take the device close to the chain. 

The visual inspection is based on images/measurement readings/3D models of the chain 

surface. Few ROV-assisted attempts with automated measuring have been recorded in the 

literature. The system illustrated in Figure 6-5 (a) consists of an automated robotic 

manipulator designed to take measurements of the chain links [28] [29]. Figure 6-5(b) 

illustrates a gas spring measuring mechanism that was designed to record the mooring 

chain’s physical measurements when dragged along the chain surface by an ROV [30]. 

 

Employing divers or NDT operators 

(hanging in air from the top side) to 

investigate mooring chains is another 

common inspection mechanism. The 

device illustrated in Figure 6-6 was 

designed to investigate the crown of a 

pre-specified chain link [119]. In this 

device, a set of single-degree UT probes 

were attached to a rigid mould that could 

be fitted onto a chain crown.  

 

Figure 6-6: TWI’s handheld chain crown 

inspection device [119] 

 

Figure 6-5: ROV-assisted inspection mechanism; (a) Welaptega mooring measuring system [155]; (b) gas 

spring mooring measuring system [30]  

(a)   (b)   
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6.2.2 Mooring chain inspection standards and related studies 

As discussed in the introduction chapter, a break in a mooring system can lead to 

catastrophic events, i.e. riser rapture, vessel drift etc. Therefore, standards and codes of 

practice have been introduced to mooring systems. Standards have been discussed from 

the manufacturing stage to in-situ inspection because it is vital to maintain integrity 

throughout the process. 

According to the DNV offshore standards [120], mooring chain links should be inspected 

both visually and using NDT. Moreover, inspection of the welding area should be carried 

out using ultrasound inspection (inspection should be according to ASTM E587 

standards). According to API standards [121], a diameter reduction that indicates less than 

95% (nominal diameter) must be considered a rejected link. Chain inspection intervals are 

determined according to service time in the water, i.e. a mooring system that has been in 

operation for 0–3 years should be inspected every 36 months, 4–10-year chain links should 

be inspected every 24 months, and systems that have over ten years of service should be 

inspected every eight months [121]. When considering both API and DNV standards, 

visual inspection can be identified as a common and vital NDT inspection. According to 

API standards, offshore mooring chain inspection should be carried out using visual 

inspection, magnetic particle inspection (MPI), diameter calliper inspection, measuring 

gauge inspection (go-no-go gauge), and the hammer test. 

At TWI Cambridge, a study was carried out to understand the stresses between mooring 

chain links and potential fatigue damage. Residual stresses around the interlink contact 

zone were analysed in this research and potential fatigue damage around the crown of the 

chain link was investigated. Moreover, in the above-mentioned research, the fatigue 

sensitivity of the Kt point (approximately the region of the intrados where the shank and 

the crown intersect (see Figure 6-7)) was also investigated [8]. A comprehensive historical 

review of the permanent mooring system was presented in [3]. In the review, accidents 

and incidents relating to the integrity of mooring systems between 2001 and 2011 are 

discussed and integrity failures of different parts of mooring systems are presented 

according to the accident percentage. A study was conducted to determine the rate of wear 

of a mooring chain’s interlink contact zones in [35]. The presented test results are based 

on various axial loadings and specific angular displacements using dry/wet mooring 

chains.  
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6.3 Selection of NDT technique   

6.3.1 Comparison of NDT techniques  

Table 6-1 presents a brief comparison of the NDT techniques that are commonly used in 

the industry. A detailed comparison of NDT techniques is presented in [122] [123]. 

 

NDT 

technique 

Characteristic 

observed  

Usage  Technical limitation  

Ultrasound 

inspection 

Indication of 

acoustic 

impedance 

change caused by 

defects  

Able to penetrate via thick 

solid materials. Resolution 

of defect detection is 

comparatively high. 

Automation capability 

Good surface 

contact/coupling 

requirement 

Visual 

inception  

Observation of 

surface 

characteristics  

Easy to set up. Can be 

automated with 

controllable cameras. 

Works with any surface 

Inspection is only for the 

surface. Internal defects 

cannot be observed 

Radiography  Density changes 

in materials, 

material 

variations, voids, 

inclusions etc. 

Applicable to a wide range 

of materials. Different 

thicknesses can be 

measured according to the 

power of the radiography  

Radiation safety must be 

considered. Detection of 

cracks depends on the 

perpendicularity  

Liquid 

penetrant 

Openings of the 

surface, cracks, 

defects, porosity  

Sensitive to surface defects. 

Easy to use. Portable. 

Inexpensive  

Defect must be open to the 

surface. Not useful for 

rough materials 

Magnetic 

particles  

Leakage of 

magnetic flux 

caused by a 

defect  

Sensitive to surface and 

near-surface defects. Easy 

to use. Portable. 

Inexpensive  

Lack of surface penetration. 

Limited to ferromagnetic 

surfaces 

Eddy 

current  

Electrical 

conductivity 

changes due to 

material defects  

Sensitive to surface and 

near-surface defects. Easy 

to use. Portable 

Limited to electrically 

conducted surfaces. 

Limited surface penetration 

Table 6-1: Common NDT techniques  
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6.3.2 Selection of NDT technique for mooring chain inspection  

When considering the NDT techniques listed in Table 6-1, a liquid penetrant cannot be 

used for mooring chain crown inspection because this technique does not penetrate the 

surface. Magnetic particle inspection and eddy current techniques are difficult to establish 

in underwater mooring environments, and surface penetration is unable to look through 

the diameter of the chain, i.e. the chain diameter used in this research was ≈ 133mm).  

Radiography is a useful technique, but underwater inspection capabilities are limited and 

placing source and the detector in order to inspect the crown is not practical. Visual 

inspection is vital to understand the physical nature of the material, but it is unable to 

provide a greater evaluation other than the surface quality. However, according to the 

standards, a visual inspection should be included. In the findings in [8] [7], inspection of 

the chain crown and interlink contact zone was suggested as vital to the structural health 

monitoring of mooring systems. In order to evaluate the structural health condition of a 

chain system, it is imported to investigate the crown as well as the weld area for possible 

defects such as cracks, corrosion, manufacturing defects etc. To investigate the crown and 

interlink contact zone, a surface penetration method such as ultrasound is needed. 

The current state-of-the-art automated mechanisms are designed to investigate the weld 

area of a chain link using ultrasound. Due to the geometry, inspection of a chain weld is 

similar to inspection of a weld in a pipe. However, inspection of the chain crown requires 

further study due to the lack of investigation in the literature, i.e. initially, mooring chain 

inspection focused on the welding, but the importance of the chain crown has been 

identified recently. Moreover, single-degree probe ultrasound inspection of the chain 

crown was studied in [119], and an NDT handle was designed to be operated by divers; 

Figure 6-7: NDT inspection focused areas due to high stress that can cause fatigue cracking [7] [8] 
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however, automation capability was not considered. To conduct an automated ultrasound 

inspection of a chain crown, the following aspects were considered: 1) placing – the 

inspection probe must be kept on the outside of the chain crown and should provide a 

detailed image of the cross-section, i.e. access via the inner crown surface is restricted due 

to the orthogonal chain link; 2) defect identification – the system should provide clear 

identification of the defects such as cracks, backwall loss etc; and 3) automation capability 

– the mechanism should be able to provide automation capability.  

As mentioned previously, a single-degree probe (conventional ultrasound inspection) was 

considered in the literature [119]. In automated ultrasound inspection, the use of ultrasound 

arrays is common practice compared to single crystal transducers because arrays are 

capable of electronically focused steer and sweep without physically moving the 

transducer, i.e. they provide the ability to inspect an area with a single transducer 

placement. The reduction of mechanical movements provides an advantage when 

considering a robotic/automation inspection, i.e. with the reduction of physical probe 

manipulation, automation path planning can be discreet and less complicated. Full matrix 

capture (FMC) is a well-known ultrasound data accusation technique which has been used 

in the industry/ research to capture the complete time domain signals for each transmit-

receive element of an array. This technique has been studied and used in [124] [125] [126]. 

FMC phased array data acquisition technique is capable of providing a higher resolution 

entirely focused images and better sensitivity to small defects compared to the 

conventional phased array as illustrated in the Figure 6-8. In the conventional phased array 

inspection, an area can be covered, but the resolution of the image is comparatively low 

due to the unfocused points/defects (see Figure 6-8(a)). Due to the multiple A scan 

capability of FMC, every point on the scan is focused with higher quality and resolution 

Figure 6-8: (a) sample image of a conventional phased array inspection; (b) sample image of an 

FMC phased array inspection [137] 

(a)   (b)   
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𝜕2Φ

𝜕𝑡2
= 𝑐𝑠

2∇2Φ 

(see Figure 6-8(b)). In conclusion, Ultrasound phased array inspection with full matrix 

capture was selected. 

6.4 Basic background theories in propagation of sound waves  

Prior to the experimental approach of the ultrasound chain inspection, a fundamental 

understanding of how sound waves propagate in a medium is useful. Detailed studies of 

wave propagation have been presented in many textbooks, i.e. Ultrasonic testing of 

materials [127], Ultrasonic waves in solid media [128], NDT fundamentals [129] and is 

merely briefly outlined here. Navier’s equation [128] of motion for an isotropic elastic 

unbounded media is,  

 

Eq 6-1 

 

Where λ and µ are Lamé constants, three-dimensional displacement vector (u), the three-

dimensional Laplace operator (∇2), material density ρ. Helmholtz decomposition can be 

used to write u as a sum of the compressional scalar potential (Ø), and an equivoluminal 

vector potential (φ), 

Eq 6-2 

With  

Eq 6-3 

 

Eq 6-4 

 

Eq 6-5 

 

By substituting the potentials of Helmholtz decomposition (Eq 6-2) in to Navier’s 

equation (Eq 6-1) of motion, generate two separate equations for the unknown potentials 

which govern longitudinal waves (Eq 6-4) and shear waves (Eq 6-5). 

 

     

 

(𝜆 + µ)∇∇. 𝑢 + µ∇2𝑢 =  𝜌
𝜕2𝑢

𝜕𝑡2
 

𝑢 = ∇Ø + ∇xΦ 

∇Φ = 0 

𝜕2𝜙

𝜕𝑡2
= 𝑐𝑙

2∇2𝜙 
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where, cl and cs are the velocities of longitudinal and shear waves and they can be 

expressed as bellow, 

 

   Eq 6-5 

   Eq 6-6 

 

Comprehensive background theory of ultrasonic inspection, i.e. Fundamentals, properties 

of sound waves and phased array has been discussed in [129] [130] [131] [132].  

The method of FMC is an ultrasonic data collection process that uses phased-array probes 

to record A-scans for each pair of transmitting and receiving elements. Therefore, for an n 

element phased-array probe, the number of A-scans is in the order of 𝑛2 [133]. Prior to 

using the technical approach of FMC, a fundamental understanding of the principle is 

useful. Detailed studies of FMC are presented in [125] [134] [135] and are briefly outlined 

here. The FMC algorithm was introduced to the non-destructive inspection by the 

University of Bristol in 2005 [135]. The basic mathematical explanation of the algorithm 

is expressed as:  

 

Eq 6-7 

 

This expresses a grid of pixels that represents a cross-sectional area of the specimen of 

interest for inspection. The pixel intensities (I) are dependent on the time of flight, which 

can be calculated using both tx and rx, i.e. transmit and receive, where ℎ is the Hilbert 

transform that converts the acquired data from the time domain to the frequency domain. 

By calculating the complex signal, this can create the signal magnitude envelope. Each 

pixel in the image, 𝐼(𝑥, 𝑧), is determined by Eq 6-7. Previous work presented in [125] 

shows how the parallel processing capabilities of modern graphics cards could be utilised 

to accelerate the processing of the algorithm. 

 

𝑐
𝑙=  √

𝜆+2𝜇
𝜌

 

𝑐
𝑠=  √

𝜇
𝜌

 

𝐼(𝑥,𝑧) = |∑ ℎ𝑡𝑥,𝑟𝑥 (
√(𝑥𝑡𝑥 − 𝑥)2 + 𝑧2 +  √(𝑥𝑟𝑥 − 𝑥)2 + 𝑧2

𝑐𝑙
)|  
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sin (𝜙𝑖)

𝑐𝑖
=

sin (𝜙𝑅)

𝑐
  Eq 6-8 

 

The well-known Snell’s law was used to establish the direction of a sound beam between 

two points separated by two mediums that have acoustic velocities ci and c. When the 

angle of incident is Øi and the angle of diffraction is ØR, the relationship between them can 

be written as Eq 6-8.  

Eq 6-9 

Snell’s law can be derived using Fermat’s principle to express the shortest time between 

the P and Q points in Figure 6-9(a), i.e. Eq 6-9, where point P is located with px,py and Q 

is located with qx,qy.  

Eq 6-10 

 

 

Modification of the basic FMC equation (Eq 6-7) was studied in [126] to focus the sound 

beam through dual media, i.e. when the probe was placed on the water surface and 

inspection was carried out inside a metal. Eq 6-10 was developed according the above dual 

media refraction illustrated in Figure 6-9(b), where the intensity value of the pixel located 

at’ x, z is I, which is determined by each tx (transmit) and rx (receive) pair to the pixel 

region of interest (x,z), via the point at which the ultrasonic energy passes through the 

refractive interface (xtxi, ztxi for transmit and xrxi, zrxi for receive) to the pixel location. The 

velocity in the medium is c and the velocity though the interface material is ci. Detail 

discussion of Eq 6-8, Eq 6-9, and Eq 6-10 is presented in [126] [136]. 

 

 

 

 

𝑡𝑖𝑚𝑒 =
√𝑝𝑥2 + 𝑝𝑧2

𝑐𝑖
+

√𝑞𝑥2 + 𝑞𝑧2

𝑐
 

𝐼(𝑥,𝑧) = |∑ ℎ𝑡𝑥,𝑟𝑥 (
√(𝑥𝑡𝑥 − 𝑥𝑡𝑥𝑖)2 + 𝑧𝑡𝑥𝑖

2 +  √(𝑥𝑟𝑥 − 𝑥𝑟𝑥𝑖)2 + 𝑧𝑟𝑥𝑖
2

𝑐𝑙

+
√(𝑥𝑡𝑥𝑖 − 𝑥)2 + (𝑧 − 𝑧𝑡𝑥𝑖)2 + √(𝑥𝑟𝑥𝑖 − 𝑥)2 + (𝑧 − 𝑧𝑟𝑥𝑖)2

𝑐
)|  
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6.5 Requirements of the FMC algorithm and surface adaptation  

The FMC algorithm and the GUI used in this study were developed by TWI Ltd. [137], in 

its internal project deliverable report [138], for the InnovateUK project RIMCAW [27]. 

Inspection of the chain (i.e. phased-array inspection discussed in this chapter) was 

conducted as a novel application of the previously establish FMC concept [136]. 

6.5.1 Algorithm adaptation requirement  

For inspections carried out with a static wedge, the ultrasonic transmission paths can be 

computed once before any signal processing commences. However, for chain inspection, 

the probe is separated from a curved surface of unknown geometry (i.e. curved geometry 

of the chain) by a water path of approximately 35–40mm, i.e. the requirement of the water 

path and the height are discussed later in this chapter). This presents additional problems: 

1) the surface must be mapped, then 2) the ultrasonic transmission paths must be 

recalculated based on this surface. Therefore, the adaptations mentioned below were added 

to the existing algorithm. 

A number of algorithms for surface mapping were evaluated to determine the most 

optimum algorithm for the geometry considered here, i.e. the mooring chain’s curved 

surface. The front wall is typically of little interest, so it is usual for responses from this 

region to be saturated in favour of acquiring clear signals in the region of interest (which 

tends to be deeper inside the material). Conversely, when surface mapping, the ultrasonic 

Figure 6-9: (a) Demonstration of Fermat’s principal; (b) fully focused FMC data – focusing 

through dual media explanation [126] 

(a)   (b)   
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signal from the front wall is of critical interest and a saturated front wall signal will lead 

to inaccuracies in the estimation of the front wall position. For this reason, the imaging 

algorithm at each transducer position was sub-divided into two acquisitions: 1) surface-

mapping acquisition performed at lower gain, so as not to saturate the front wall response; 

and 2) an imaging acquisition with a higher gain in order to maximise the signal-to-noise 

ratio of the FMC dataset. 

Three surface-mapping algorithms were assessed: 

1. Vertical projection 

2. Dipping reflectors 

3. Point-like reflectors 

6.5.2 Vertical projection  

In this algorithm, each element was fired separately in pulse-echo mode and the distance 

to the front wall was derived from the water velocity and the time to the first response. A 

typical front wall response is illustrated in Figure 6-10(a). As the location of each 

transducer was known, the surface could be constructed by positioning the surface point 

directly below it. An example plot of this algorithm is shown in Figure 6-10(b). 

Figure 6-10: (a) Sample ultrasonic response with the initial receiver impulse and the front wall 

response; (b) example output of the vertical project algorithm showing transducer positions (red) 

and surface positions (blue) 

(a)   (b)   
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6.5.3 Dipping reflectors   

The studies conducted in [139] show that, unless the surface is flat and parallel to the plane 

in which the transducer elements lie, vertical projection mis-plots the position of the 

surface. However, if the surface can be assumed to be flat between adjacent pairs of 

transducer elements, then the dipping reflector algorithm can be used. 

 

 

Eq 6-11 

 

 

 

Eq 6-12 

 

Each transducer emits a spherically spreading wave that bounces off the front wall and 

returns to the element. The ray paths are orthogonal to the front wall in each case; 

therefore, the angle of incidence and angle of reflection must be equal. Differences 

between the lengths of the two paths are used to calculate the shifts in the horizontal (∆𝑥) 

and vertical (∆𝑧) directions, where 𝑠 is the element pitch (see Figure 6-11(a), Eq 6-11, and 

Eq 6-12). 

 

On a 3D surface, groups of four neighbouring elements are considered where the front 

wall is assumed to be planar between the responses from each group of four. An average 

gradient is computed in the passive and active directions of the probe, as shown in Figure 

6-11(b and c). The final position of the point on the surface generating the signal for each 

element can then be calculated as a combination of two shifts, a vertical shift parallel to 

the z axis and a shift in the x–y plane. 

Δ𝑧 =
𝑑2

√1 +
(𝑑2 − 𝑑1)2

𝑠2

  

Δx = Δ𝑧
(𝑑2 − 𝑑1)

𝑠
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6.5.4 Point-like reflectors   

The point-like reflector algorithm assumes that the response received by two adjacent 

transducer elements originates from the same point on the surface. For linear phased-array 

probes, a detailed methodology of this algorithm is given in [136]. Adapting this algorithm 

for 2D probes involves locating the intersection point of three neighbouring transducers. 

Graphically, the fundamental principle of this technique is presented in Figure 6-12. 

 

 

Figure 6-11: (a) Calculation of the shift in x and z from the transducer location using the 

difference in paths d1 and d2; (b) and (c) calculation of the average gradient in the active x 

and passive y array directions 

(a)   (b)   (c)   

Figure 6-12: (a) Calculation of the inspection point of three spheres 
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The x, y, and z locations of the intersection point of these three spheres relative to the 

centre of sphere 1 are given as follows; 

 

Eq 6-13 

 

Eq 6-14 

 

Eq 6-15 

 

6.6 Experimental testing – surface mapping  

After considering the above projection/reflating methods, a laboratory experiment was 

carried out in order to select a suitable technique (discussed previously) for chain 

inspection. An experiment was set up as illustrated in Figure 6-13 and responses from the 

focusing techniques were analysed. Selecting a suitable mapping technique was the 

primary concern of the experiment. Specifications of the ultrasound probe are discussed 

later in this chapter. A 3D printed probe holder, illustrated in Figure 6-13(a), was 

constructed in order to place the probe on the chain surface (see Figure 6-13(b)). The 

holder was capable of changing the probe’s angle and chain-probe height. Moreover, 

permanent magnetic adhesion attachments were proposed to keep the probe steady on the 

chain surface. The probe was placed on the chain surface, as illustrated in Figure 6-13(b), 

with the use of magnet adhesion. Then, the air gap between the probe and the chain surface 

was filled with water (see Figure 6-13(c)). The gap between the probe and the chain surface 

(water path) was calculated as ≈ 40mm in order to avoid front wall reflections (see Eq 6-

16), where the maximum inspection depth was ≈ 134mm, the speed of sound in the 

material was 5130m/s, and speed of sound in water was 1,482m/s. A reduction of the front 

wall reflection was needed in order to examine the material inside. 

 

  

Eq 6-16 

 

x =
𝑟1

2 − 𝑟2
2 +  𝑑2

2𝑑
  

𝑦 =
𝑟1

2 − 𝑟3
2 + 𝑗2 + 𝑖2

2𝑗
−

𝑖

𝑗
 𝑥 

z = ±√𝑟1
2 − 𝑥2 − 𝑦2  

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑝𝑡ℎ 

𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑠𝑜𝑢𝑛𝑑 𝑖𝑛 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 
<  

𝐻𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑎𝑡𝑒𝑟 𝑝𝑎𝑡ℎ  

𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑠𝑜𝑢𝑛𝑑 𝑖𝑛 𝑤𝑎𝑡𝑒𝑟 
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A water path was introduced to the system as a couplant due to the mooring chain in-situ 

conditions, i.e. sea condition. Understanding the automation feasibility is the primary 

concern of this chapter, and continuous water supply was used previously during NDT 

automation in [140] [141]. After the abovementioned experimental setup, comparisons 

between the vertical projection, dipping reflectors, and the point-like reflector algorithms 

were studied, as in Figure 6-14, Figure 6-15, and Figure 6-16, respectively. 

 

 

Figure 6-13: (a) CAD model of the probe holder; (b) experimental setup; (c) full experimental setup 

with the water path  

(a)   (b)   (c)   

Figure 6-14: Example surface mapping results for the direct projection algorithm; (a) y-z mapping; (b) 

x-z mapping; (c) x-y-z surface mapping sample 

 

(a)   (b)   (c)   
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Figure 6-15: Example surface mapping results for the dipping reflectors projection algorithm; (a) 

y-z mapping; (b) x-z mapping; (c) x-y-z surface mapping sample 

 

(a)   (b)   (c)   

Figure 6-16: Example surface mapping results for the point-like reflectors projection algorithm; (a) y-z 

mapping; (b) x-z mapping. (c) x-y-z surface mapping sample 

 

(a)   (b)   (c)   
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The point-like reflector algorithm did not produce a satisfactorily accurate surface map 

(see Figure 6-16). According to the illustrated results, the computed surface points would 

be a long way (> 20mm) from their expected approximate positions. Instabilities in the 

temporal domain were also observed. Given that this test was performed in laboratory 

conditions with stationary sample and probe, this algorithm was deemed unsuitable for 

surface mapping in this application. In contrast, the dipping reflector algorithm exhibited 

better performance in terms of mapping the curvature of the sample map (see Figure 6-

15). It was still slightly unstable in the temporal domain. Potential improvements to the 

algorithm could be implemented to provide a number of ultrasonic acquisitions in order to 

average out some of the noise. Given that acquisition time was important for this 

application, this avenue was not pursued. The vertical projection algorithm proved to be 

very stable during the experiments (see Figure 6-14). Given that these were performed in 

ideal conditions, and the fact that conditions in the field are likely to be more challenging, 

the vertical projection algorithm was chosen as the surface-mapping technique. 

6.7 Experimental testing – chain inspection  

6.7.1 Experimental setup 

The FMC software used in this research was designed by TWI Ltd. [142] with the use of 

the CUDA parallel programming model. The CPU and GPU architecture used in this 

software are discussed in [126] [125]. As mentioned previously, the intention of this 

research was to check the feasibility of using FMC/phased array to inspect the chain crown 

region when it is in air and in water (as an application novelty). In air, inspection can be 

identified as a challenging task compared to underwater, i.e. an additional coupling 

medium for underwater ultrasound inspection is not required. When considering in-air 

inspection, using water as a couplant for automated NDT is a common industrial approach. 

Most in-air industrial applications that use water as a couplant inspect pipes, tubes, plates 

etc. (hollow, tube-like or thin structures). Due to the significant curvature of the mooring 

chain (i.e. ≈ 66.5mm radius) and the great inspection depth (i.e. outer surface to the inner 

surface ≈ 133mm), a custom-built water coupling mechanism was needed with the 

following specifications: 1) it should be capable of being placed on the chain surface; 2) 

the wedge should be able to provide a sufficient water path between the chain surface and 

probe (i.e. 40mm); 3) the wedge should be able to be used as an attachment during the 

automation process; 4) the wedge should always place the probe signal perpendicular to 

the surface. As discussed earlier, phased array is a common NDT tool in relation to robotics 
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or automation, i.e. phased array is capable of covering an area under the probe due to its 

electronic beam-steering capability. Minimising the probe placement points on the chain 

surface was considered as an advantage because ensuring a discreet inspection can ease 

the automation process, i.e. if a continuous reading is required, the probe needs to 

move/drag along the chain surface, and discreet inspection is similar to spot inspection. 

Therefore, a submergible 2D phased-array probe with the specifications in Table 6-2 was 

selected. 

 

Characteristics/parameters  Value/acceptance criteria  

Centre frequency (-6dB) 5 ± 0.5MHz 

Bandwidth (-6dB) ≥ 60% 

Pulse length (-20dB) ≤ 0.8µs 

Sensitivity homogeneity  ± 3dB 

Geometrical shape 2D array 

Number of channels 64 

Elementary pitch  1.5mm 

Elements interspace  0.1mm 

Elevation 1.5mm 

 

6.7.2 Wedge design  

A specification study was carried out to understand the physical parameters of the wedge. 

Unlike pipe inspection, the thickness of a mooring chain is significantly high (~ 133–

134mm chain thickness in this study). It was necessary to understand the thickness of the 

water path in order to reduce/avoid front wall reflection.  

Table 6-2: Phased-array probe specifications 

 

 

Table  6-2: Phased-array probe specifications 

 

Figure 6-17: NDT probe holder/wedge design 

requirements 
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As explained previously, cracks are commonly found in the interlink contact zone of the 

chain link (see Figure 6-7). Therefore, a 100–134mm thickness range was selected for 

inspection (see Figure 6-17). According to Eq 6-16, a water path of 40mm was obtained. 

This study aimed to automate in-air NDT inspection of mooring chains using a robot arm 

(the design of the robotic manipulator is discussed later in this chapter). Therefore, a wedge 

attachment with the end effector of the robotic manipulator was considered during the 

design.  

Figure 6-18(a) illustrates the main components of the probe holder/continuous water 

supply wedge, i.e. a – NDT probe, b – water inlet 1, c – water inlet 2, d – spring, e – excess 

water outlet, f – robotic manipulator mount, g – curved edge, h – wedge tightening 

(clamping) screw holes, i – carbon fibre wedge-holding bars, j – locking nut, and k – spring 

guiding bars. Moreover, the wedge was designed to hold the water path during the 

inspection. Water bubbles in the water pocket could disrupt the sound path. Therefore, two 

continuous water supplies were added to the design with an overflow outlet to avoid any 

water bubbles, as illustrated in the figure, i.e. if a water bubble started to form underneath 

the probe, the signals might not transmit. Due to the rough and robust surface nature of 

Figure 6-18: (a) Exploded view of the wedge design; (b) 3D CAD model; (c) 2D schematic; (d) probe 

holder placement on the chain surface  

 

(a)   (b)   

(c)   (d)   
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mooring chains, a marine-grade silicon layer was proposed for the contact surface of the 

wedge (as the wedge–chain contact layer). Surface adaptation of the silicon gasket was 

considered in order to reduce the water leakage (water leakage from the chain–wedge 

contact surface), i.e. the compression capability of the silicon gasket was proposed to act 

as a water seal. The curved face of the wedge was introduced to reduce the thickness of 

the gasket and increase the adaptability to the chain curvature. Moreover, the curvature of 

the wedge was designed according to the chain’s surface curvature (see Figure 6-18(d)). 

Using an automated manipulator for chain inspection was one of the main purposes of this 

study. Therefore, a passive complaint mechanism (spring mechanism) was added between 

the robotic manipulator mount and the end of the wedge. The force created by the 

compression of springs allowed the silicon gasket to settle on the chain surface and the 

passive compliance corrected small nominal deviations of the wedge, i.e. at a given point, 

it is essential to maintain the position of the probe nominal to the inspection surface. 

6.7.3 Automated manipulator  

A feasibility study for the use of phased array with a robotic arm to obtain NDT results (in 

the chain crown area) was the primary concern of this chapter. As mentioned previously, 

with the use of phased array, discreet inspection can be carried out along the chain surface. 

However, a pre-planned discreet placing of the probe must be made in order to conduct a 

full crown inspection, i.e. a raster scan along the chain crown. When considering 

ultrasound probe locations (on a mooring chain crown), as explained in [119], it is 

significant that a raster scan along the chain crown is needed for better investigation (as 

illustrated in Figure 6-19). The gap between the two scanning points must be determined 

according to the scanning 

requirement, i.e. closer gaps 

between two spot scans can 

ensure a comprehensive result. 

Scanning across the chain surface 

was limited due to the orthogonal 

chain link. A sample single-chain 

piece was used in this experiment, 

but an orthogonal chain link is 

always presented in in-situ chain 

environments. 

Figure 6-19: Proposed mooring chain scanning steps (for an 

automated manipulator) 
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The automated/robotic manipulator design was carried out according to the wedge placing 

requirements. When considering the wedge orientation (see Figure 6-20), 5DOF can be 

observed, i.e. to scan the cross-section, translations around the z axis and the y axis, and 

rotation around the x axis is needed (see Figure 6-20(a)). For a scan along the crown of the 

chain, translations in the x axis and the y axis, and rotation along the z axis are needed, as 

illustrated in Figure 6-20(b). In summary, three translations (along x, y, and z) and two 

rotations (around x and z) are needed for chain crown raster investigation. When 

considering the geometrical features of the manipulator requirements, x, y, and z 

translations can be modelled with a Cartesian (gantry-type) manipulator that has a two-

axis wrist that carries the tool frame (wedge). After considering the requirements, a robotic 

manipulator, illustrated in Figure 6-21, was proposed, where L1–L8 are mechanical 

attachment clearances, d1, d2, and d3 are the linear axis variables in the z, x, and y 

directions, respectively, and Ø1 and Ø2 are the rotary axis variables in the z axis and x 

axis, respectively. 

 

 

 

 

 

Figure 6-20: (a) Chain cross-section scan requirements; (b) chain scan along the crown 

requirements 

(a)   (b)   
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6.7.4 Prototype of the experimental setup  

It was necessary to select an appropriate set of springs to provide a suitable force 

(illustrated in Figure 6-18(a)). Therefore, a simple experiment was carried out, as 

illustrated in Figure 6-22. The mooring chain sample was placed on material testing 

equipment that had a static load cell. Then, a perpendicular force was added to the wedge 

(sample wedge without the manipulator attachment), as illustrated by the red arrow in the 

figure (i.e. incremental force was applied to the wedge). Once the NDT results were clear, 

the corresponding force was recorded. The experiment was repeated ten times and the 

average reading was considered (ten readings for each place). The wedge was moved along 

the chain surface and the readings were recorded.  According to the experimental results, 

8N–13N force should be supplied by the springs, i.e. the applied force deforms the silicon 

gasket to make the wedge on the chain surface watertight. Four compression springs 

(0.72N/mm each) were added to the system to provide the required force. A 13N force was 

obtained by compressing each spring by ≈ 4.6mm. 

Figure 6-21: (a) Schematic of the proposed manipulator; (b) CAD model of the proposed 

manipulator 

(a)   (b)   
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To test the proposed ‘continuous water supply wedge’, a rapid prototype model was built, 

as illustrated in Figure 6-23. To place the PAUT probe, the water pocket area of the wedge 

was split into two main parts, as illustrated in Figure 6-23(a). The pocket was closed and 

tightened after placing the probe on the holding edges. The manipulator attachment was 

built as a separate module (see Figure 6-23(b)), then inserted into the wedge with the use 

of carbon fibre rods – locking nuts, as illustrated in Figure 6-23(c). Finally, the springs and 

the silicon gasket, illustrated in Figure 6-23(d), were added to the system.  

 

Figure 6-22: Spring force requirement test rig 

Figure 6-23: Prototype of the continuous water supply wedge; (a) water pocket and 

PAUT probe; (b) manipulator attachment; (c) and (d) prototyped wedge 

 

(a)   (b)   (c)   
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The automated manipulator proposed in Figure 6-21 was prototyped and the wedge was 

attached, as illustrated in Figure 6-24. The x, y, and z linear axes were made with linear 

slider actuators – lead screw model (see Figure 6-23(d)), and each axis was driven with a 

DC 24V stepper motor. Hard rubber stoppers and magnetic limit switches were added to 

the linear axis to prevent slider collisions during the experiments.  

 

 

The experimental setup illustrated in Figure 6-25(a) was created according to the block 

diagram illustrated in Figure 6-25(b). As discussed previously (see Figure 6-18(a)), two 

water inputs were added to the wedge at the prototyping stage. Therefore, two IP 68 12V 

DC water pumps (300l/h each) were attached to the wedge with the use of a pneumatic 

push-fit connection. A five-axis controller was programmed using GalilToolsTM [143] and 

this was connected to the controller via an ethernet connection. Similarly, the PAUT array 

was controlled by a MicroPulseTM array controller [144] and relevant commands were 

generated on a sperate processing unit (TWI PAUT processing unit/software CRYSTALTM 

[142]). In this experiment, control of the NDT system and the manipulator system was 

carried out separately, i.e. no feedback data/signals were exchanged between systems. 

Figure 6-24: Automated 5DOF manipulator; (a) five-axis manipulator test rig; (b) two rotary axis 

closer view; (c) wedge attachment; (d) axis components 

 

(a)   (b)   

(c)   (d)   
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As illustrated in Figure 6-25(b), GalilTools motion control software was used to 

programme the inspection path proposed in Figure 6-19. To execute the inspection, the 

tool frame (the PAUT probe and the wedge) was moved along the chain surface and the 

encoder readings of the five axes were recorded. The distances/angles for the two example 

inspection points are illustrated in Figure 6-26: Figure 6-26(a–b) illustrates the axis 

variations at two inspection points along the chain and Figure 6-26(c–d) shows the axis 

variation during the cross-section inspection. In Figure 6-26, the A, C, and B axes represent 

the x, y, and z Cartesian axes (in Figure 6-21), respectively. Rotation along the x axis is 

represented by the D axis and rotation around z is represented by the E axis. Moreover, 

each inspection point was represented by five encoder values (i.e. three distances, two 

angles) and the values were stored in the control software to execute the inspection path. 

As mentioned previously, air bubbles in the water chamber prevents a clear result. 

Therefore, a 15s delay was introduced before reading the data from the NDT display.  

Figure 6-25: (a) Physical experimental setup; (b) experimental setup block diagram  

 

(a)   (b)   
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6.8 Experimental results  

The automated experimental setup proposed in Figure 6-25 was built in order to test the 

FMC phased-array inspection. A chain crown with a diameter of ≈ 133mm was used in 

this experiment. Four defects (i.e. drill hole/flat bottom) were introduced to the inner 

surface of the chain, as illustrated in Figure 6-27. Defects 1 and 3 were placed 

perpendicular, and 2 and 4 were placed 20° from the perpendicular position, as illustrated 

in Figure 6-27(b). Defects with a ≈ 5mm diameter were introduced, and the defect lengths 

are discussed with the results. 

The phased-array inspection was carried out via the outer surface of the crown by placing 

the continuous water supply wedge using the automated manipulator. The phased-array 

FMC results were obtained using the TWI CRYSTALTM software [142]. A raster scan, 

proposed in Figure 6-26, was carried out with the automated 5DOF manipulator, as 

illustrated in Figure 6-28: Figure 6-28(a) illustrates examples of the cross-section 

inspection and Figure 6-28(b) illustrates inspections along the chain crown. 

Figure 6-26: Inspection point examples; (a) inspection along the chain crown point example 

point 1; (b) inspection along the chain crown point example point 2; (c) inspection across the 

chain cross-section example 1; (d) inspection across the chain cross-section example 2. 

 

(a)   (b)   

(c)   (d)   
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Figure 6-27: (a) Drill hole defects in chain crown (side view); (b) drill hole defects in 

chain crown (cross-sectional view); (c) defects image; (d) defect hole diameter (sample) 

 

(a)   (b)   

(c)   (d)   

Figure 6-28: (a) Inspection example – cross-section of the chain; (b) inspection example – across the 

chain crown surface 

(a)   

(b)   
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According to the mooring chain inspection standards, it is crucial to check the material 

losses in chain interlink contact zone; therefore, the back-wall thickness was investigated, 

as illustrated in Figure 6-29(a). The recorded FMC images of the defects (see Figure 6-27) 

are illustrated in Figure 6-29(b–e), i.e. the back wall of the chain (inner crown surface) and 

the defect height are presented. With the proposed NDT imaging technique, the depth of 

the defect could be measured and the distances between the top of the defect and the back 

wall are shown in the images. The results presented in Figure 6-29 were recorded during 

the in-air inspection, and the defect depth results were compared (see Figure 6-30) with 

the underwater inspection results (taken without the wedge) and measured depth values 

(mechanical measurement using a calliper).  

 

Figure 6-30: NDT results comparison  

 

Figure 6-29: (a) Sample back wall (no defect); (b) defect 1 scan results; (c) defect 2 scan 

results; (d) defect 3 scan results; (e) defect 4 scan results 

(a)   (b)   (c)   (d)   (e)   
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According to the comparison illustrated in Figure 6-30, it is significant that the proposed 

technique was capable of identifying a defect (illustrated in Figure 6-27(c)). Defect sizing 

was not a part of this study. However, the depth of the defect (height between the top of 

the defect and the back wall of the chain) could be measured with the presented technique. 

The recorded in-air results (with the use of the continuous water supply wedge) and the 

measured depth results (mechanical measurement) had a less error variation and the 

maximum variation was 0.61mm (≈ 5% difference). When considering the underwater 

results and the mechanical depth reading of the defect, it is possible to conclude that the 

proposed technique is able to operate both in air and underwater. Due to the amphibious 

nature of mooring chains, it was essential to develop a technique that could be automated 

and capable of operating in air and underwater. Moreover, the proposed technique could 

be used to evaluate material losses in the chain by measuring the through thickness of the 

chain diameter, as illustrated in Figure 6-29(a). If there is a material loss, the back-wall 

reading should be less than the expected value.   

6.9 Visual inspection proposed technique 

According to the mooring chain in-situ inspection standards, it is essential to obtain an 

image of the chain (during inspection). Therefore, a teleoperated camera was proposed for 

the climbing robot, described in Chapter 5. A teleoperated mechanism was proposed so 

that the operator could direct/focus the camera according to the inspection necessity. 

Visual inspection has been discussed in various robotic applications, i.e. a climbing robot 

with visual inspection [145], an underwater robot with visual inspection [146] etc. To 

demonstrate the principle of visual inspection, a camera mechanism was added to the 

climbing robot, as illustrated in Figure 6-31(a). The pan/tilt operation of the visual 

inspection system was controlled using LabVIEW (see Figure 6-31(b)). The images taken 

during the laboratory experiments are illustrated in Figure 6-31(d). These images were 

obtained in laboratory conditions, i.e. in air, under excellent ambient lighting.   
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6.10 Chapter summary  

Mooring chain inspection is crucial when considering the integrity management of floating 

production units. However, only a few automated attempts have been tested due to the in-

situ mooring chain complexities, i.e. difficult to reach, harsh environmental conditions etc. 

The use of sophisticated integrity management techniques, such as ultrasound inspection, 

guided-wave inspection etc., were comparatively less due to the lack of reachability. The 

weld area of the chain can be seen as the most studied inspection area. However, with new 

studies, the chain crown has become a crucial section that must be inspected for cracks, 

defects, material losses, and corrosion. Chain crown inspection is challenging due to the 

limited access and complicated geometry. The aim of this study was to investigate a 

technique that could be used in air and underwater for chain crown inspection. The 

automation of mooring chain integrity management was the main interest of this research; 

therefore, the inspection technique was selected carefully, i.e. automation capability was 

considered during the selection process.  

Ultrasound inspection was selected due to the inspection depth, amphibious nature, and 

automated capability. Phased-array ultrasound was considered in order to ease the 

automation, i.e. discreet inspection capability is obtained with phased array. Mooring 

chain integrity assessment with phased array is still in its infancy due to the operational 

Figure 6-31: (a) Pan and tilt system with camera; (b) camera module control screen; (c) visual 

inspection module with robot; (d) sample images from visual inspection  

(a)   (b)   

(c)   (d)   
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complexity and geometrical features of the chain. Therefore, a feasibility study of novel 

NDT application was carried out. The FMC data acquisition technique was used in the 

interest of enhancing the quality of the NDT images. Mooring integrity inspection must be 

conducted both in air and underwater. Therefore, a continuous water supply wedge was 

designed to provide an underwater coupling environment in air. A five-axis automated 

manipulator was designed to simulate the automated inspection capability. The proposed 

phased-array automated inspection mechanism was tested with simulated defects, e.g. 

drill-hole-type defects. The NDT results were obtained during the in-air automated 

inspection and the defects were recorded. Finally, a pan/tilt camera mechanism was 

proposed for the magnetic adhesion tracked-wheel crawler as a conceptual idea of visual 

inspection, i.e. visual inspection is considered an inspection requirement in the standards.  

In this study, a novel application of FMC/phased array was proposed for chain crown 

inspection and a laboratory experiment was carried out using an automated manipulator. 

According to the obtained results, the proposed automation-friendly technique is suitable 

for chain inspection. 
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7.1 Conclusions  

7.1.1 Research Summary  

Integrity assessment of offshore floating platforms needs to be addressed by providing in-

situ physical access to the mooring systems as the removal and transportation of chain 

links for inspection/repair is not practical. Most reliable integrity assessment methods, 

such as ultrasound testing, guided-wave inspection, mechanical measurements etc., require 

physical access to the chain to assess the structural health in in-situ conditions. Trained 

NDT divers and ROV inspections are the most common industrial mooring inspection 

methods. These methods raise health and safety concerns and diver inspection is very 

hazardous when inspecting a chain in the splash zone area. Using ROVs is expensive and 

access to the chain is limited. Removing and replacing mooring chains for inspection is a 

costly and unreliable method due to harsh operational conditions. Introducing an 

automated or teleoperated platform that can carry suitable NDT tools along in-service 

chain lines will help to enhance the integrity management of mooring chains in in-situ 

conditions. The development of chain-climbing robots is still in its infancy due to the 

complicated climbing structure presented by mooring chains. The current state-of-the-art 

automated systems are designed to investigate only the weld seam of a chain link. At TWI 

Cambridge, research was carried out to understand the stresses between mooring chain 

links and potential fatigue damage. In the previous automated studies, the primary concern 

was to investigate the weld seam of the chain. According to recent findings, chain crown 

inspection is also identified as crucial. The research presented in this thesis has achieved 

significant advances towards offshore mooring integrity management by introducing a 

novel climbing technique and a novel automated chain inspection application.  

A summary of the thesis, an introduction to the subject, industrial needs, the contribution 

to the knowledge, and the organisation of this thesis were documented in Chapter 1. 

Chapter 2 familiarised the reader with the state-of-the-art chain-climbing techniques, 

design requirements, commonly used climbing techniques, and adhesion principles. 

Chapter 3 was the first technical chapter of this thesis. The design of the lightweight, L-

shaped tracked-wheel robot that could be placed easily around a mooring chain was 

discussed in this chapter. The robot adheres to a chain using a permanent magnet system. 

Permanent magnetic adhesion was selected due to the mooring chain’s physical conditions 

and the in-situ environment. The neodymium permanent magnet (i.e. N 52) adhesion 
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module was optimised using the FEA software COMSOL Multiphysics to obtain the 

required adhesion force (i.e. 219.16N per unit). Structural analysis was conducted, and 

designs were created using CAD software (Autodesk Inventor, SolidWorks) and FEA 

software (COMSOL) to develop a robust structure. As discussed in Chapter 4, a 

lightweight (i.e. ≈ 20kg), fast-moving mooring-chain-climbing robot system that can be 

quickly deployed and retrieved was prototyped. Moreover, validation of the neodymium 

permanent magnet adhesion system was conducted. Finally, the robot system was tested 

in a laboratory on a three-link chain segment to study its climbing capability and stability. 

The permanent magnet adhesion crawler robot developed can climb mooring chains at a 

speed of 42cm/minute with a pay load of 50N (see Figure 7-1). In conclusion, the 

feasibility of using a crawler with an orthogonal arrangement of tracked wheels to 

climb vertically aligned mooring chains has been established (i.e. the first approach 

to using permanent magnetic adhesion tracked wheels to climb mooring chains). 

 

  

The first version of the climbing robot was unable to demonstrate climbing when a 

misalignment was present in the chain. Chapter 5 discussed the upgrade to the previously 

designed magnetic adhesion tracked-wheel mooring-chain-climbing robot (the robot 

discussed in Chapters 3 and 4) to address the misalignment issues of operational mooring 

chains. Two types of misalignment (chain twist and chain tilt) were studied and a 

mathematical model of a robot leg was proposed. Then, the proposed model was modified 

Figure 7-1: (a) Design of the first magnetic adhesion tracked-wheel crawler for chain climbing; (b) 

prototype of the crawler [D1] 

(a)   (b)   
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according to the mechanical needs of the climbing robot. The prototyped robot leg was 

introduced to a single tracked-wheel module of the previous robot and experimental 

studies were carried out. The complete robot system was tested on a three-link mooring 

chain segment to study the climbing capability. For this study, 5–17° of link twist and 1–

5° link tilt misalignments were introduced to the chain link and the robot was able to adapt 

the tracked-wheel unit by using the newly added Cartesian robot leg. The misalignment 

detection of the proposed robot was conducted by manual measurement and a numerical 

feasibility study was conducted to improve the robot by ensuring autonomous 

misalignment detection capabilities. Finally, a laboratory experiment was performed to 

validate the numerical modelling results. As a result of this study, the idea of a legged 

magnetic adhesion tracked-wheel robotic platform that can eliminate concerns 

relating to misaligned mooring-chain-climbing has been established (see Figure 7-2). 

  

 

An amphibious automated NDT technique that can be used to assess the structural health 

of mooring chains was discussed in Chapter 6. The FMC technique was adapted according 

to the mooring chain’s curved surface. In order to adapt, three surface-mapping techniques 

were evaluated in this research and a suitable technique was selected. In-service ultrasound 

inspection of the chain crown is not a state-of-the-art inspection procedure due to 

operational difficulty. Ultrasound inspection of the chain weld area is mandatory and is 

standard practice; however, according to recent investigations, the chain crown has also 

been identified as a crucial area for inspection. Ultrasound inspection was selected due to 

the inspection depth, amphibious nature, and automated capability. Phased-array 

ultrasound was considered in order to ease the automation, i.e. discreet inspection 

Figure 7-2: (a) Design of the adaptable legged chain-climbing robot; (b) prototype of a leg; (c) 

prototype of the robot 

(a)   (b)   (c)   
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capability is obtained with phased array. Mooring chain integrity assessment with phased 

array is still in its infancy due to the in-field operational complexities and geometrical 

features of the chain. Therefore, the research in this chapter was carried out as a feasibility 

study of a novel NDT application. The FMC data-acquisition technique was used in the 

interest of enhancing the quality of the NDT images. A continuous water supply wedge 

was designed to provide a marine coupling environment in air. A five-axis automated 

manipulator was designed to simulate the automated inspection capability. The proposed 

phased-array automated inspection mechanism was tested with simulated defects, i.e. 

drilled-hole-type defects. In this study, a novel application of FMC/phased array was 

demonstrated for chain crown inspection and laboratory experiments were carried out with 

the use of an automated manipulator. According to the results, the proposed 

automation-friendly technique is suitable for chain crown ultrasound inspection (see 

Figure 7-3). 

The research presented in this thesis aimed to enhance the automated capability of offshore 

mooring integrity assessment. From this thesis, a significant amount of knowledge has 

been added to the field of automated mooring chain climbing and automated mooring 

chain inspection. However, further studies and improvements are required to enhance the 

performance and quality of the proposed techniques. 

 

 

Figure 7-3: (a) Design of the automated inspection test rig; (b) sample FMC test results  

 

(a)   (b)   
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7.1.2 Research Conclusion  

The focus of this research was to mitigate the challenges set out by the traditional mooring 

inspection techniques. Two research gaps were identified in the beginning of this research. 

(i.e. requirement of a mooring chain climbing platform and automated mooring chain 

crown inspection). Therefore, two main aims were considered. 1) development of a light 

weight, fast, easily deployable chain climbing robot which is applicable for both air and 

underwater. 2) development of an automated chain crown inspection mechanism which is 

applicable for the use of both air and underwater.  

The first goal of the research was achieved by developing a magnetic adhesion orthogonal 

tracked wheel climber. The robot was tested in a laboratory environment. A straight chain 

links was used in this experiment and the concept was proofed. An adaptable Cartesian 

mechanism was developed in order to cope up with misalignments. As a result of that, a 

light weight, fast moving robotic platform was developed and presented. 

The second aim was achieved by developing an automated chain crown inspection 

mechanism. Phased array inspection mechanism along with the FMC data acquisition 

techniques were used for this inspection. A continuous water supply wedge and a 5DOF 

robotic manipulator were used in order to demonstrate the concept. With the above-

mentioned experiment, a successful technique was presented for chain crown inspection. 

In conclusion, the research which was presented in this thesis was able to enhance the 

integrity management of mooring chains by introducing a new robotic chain climbing 

platform and a crown inspection method. 

 

7.2 Further work  

7.2.1 Vertically aligned chain-climbing robot  

A straight mooring chain was used for part of this research. In practice, chains may have 

a catenary curvature. The current robot design should be modified to overcome 

misalignments in chain links that are caused by the catenary curvature. Future work should 

aim to introduce an active control mechanism that can correct the robot when it starts to 

slip due to mooring chain surface issues, change its path due to external forces, or climb 

links that are twisted relative to each other. Both the in-air and underwater sections of a 

mooring chain need to be inspected. Therefore, the robot should be able to travel 
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underwater. It will be necessary to marinise the motors and controllers and set up 

underwater laboratory trials. 

7.2.2 Adaptable chain-climbing robot  

A single leg was modelled and added to the robot to simulate misalignment. However, the 

introduction of multi-legged robotic locomotion will be the main improvement based on 

this study (see Figure 7-2(a)). The robot adhesion module was capable of carrying the 

modified leg (due to the additional adhesion capability). However, in order to prototype 

the fully functional system, a higher adhesion force is required. A significant improvement 

to the adhesion force could be achieved with longer tracked-wheel units and extended 

magnet modules (as illustrated in Figure 7-4). 

 

A stationary simulation was conducted in COMSOL Multiphysics with the use of the 

MFNC module as a feasibility study for the extended idea. A free tetrahedral mesh was 

created with a maximum element size of 10mm and a minimum element size of 0.1mm. 

The data presented in Table 3-3 was used in the numerical modelling. The CAD model in 

Figure 7-5(a) was designed and a simulation was carried out by moving the positions along 

the chain. A ≈ 1,000N force was produced by the extended magnet (N52, neodymium) 

arrangement (see Figure 7-5(b). With these results, it is possible to conclude that the 

extended tracked-wheel idea will enable additional payload capacity for further 

development, i.e. the payload capacity depends on the industrial design and component of 

the robot.  

Figure 7-4: (a) Extended adhesion module; (b) extended tracked-wheel unit 

 

(a)   (b)   
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In the current robot, misalignment angles were added to the system manually. A feasibility 

study was conducted with the use of ultrasound to detect misalignment, as discussed at the 

end of Chapter 5. Further work should be carried out to automate the misalignment angle 

detection system and integrate with the climbing robot. 

7.2.3 Automated inspection mechanism  

The research presented in Chapter 6 was conducted as a feasibility study, and further work 

should be carried out to develop a fully functional industrial chain inspection mechanism. 

Currently, defects are displayed, but a comprehensive defect-identification algorithm (i.e. 

cracks, corrosion, holes etc.) needs to be implemented. A phased-array controller and the 

NDT system were used under laboratory conditions; therefore, the physical size should be 

minimised for integration with a climbing robot. The robotic manipulator prototyped in 

the research was designed for laboratory-based experiments (i.e. heavy stand, not suitable 

for in-situ mooring conditions); therefore, it should be upgraded (i.e. axis marinisation and 

ruggedisation) and miniaturised to be mounted on a climbing robot. The chain geometry 

was known in this research; however, in real applications, the geometry may differ. 

Therefore, an automated chain crown shape detection mechanism needs to be 

implemented. The experiments were carried out to evaluate the structural health condition 

of the crown, but the proposed technique could be evolved to investigate both the crown 

Figure 7-5: (a) COMSOL layout – simulation reference position (2D schematic); (b) recorded total 

adhesion force  

(a)   (b)   
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and the weld at the same time. A single system that can inspect both the crown and the 

weld will help to enhance the industrial capabilities. When the size and weight of the NDT 

module is reduced as an extension of this work, it can be placed on the robot as illustrated 

in Figure 7-6 (b). However, other non-contact NDT techniques (i.e. laser distance 

measurement, high-quality imaging techniques etc., can be mounted as illustrated in Figure 

7-6(a). 

 

7.2.4 Industrial robotic system (as a product) 

As mentioned in this thesis, mooring chain climbing is an industry-related task. Therefore, 

further work should be carried out to enhance the safety of the robot, i.e. according to the 

subsea FPSO safety regulations and codes of practice. A sophisticated user interface 

should be implemented in order to ease the robot’s control. A sample control architecture 

is presented in Figure 7-7 and a sample operation concept is presented in Figure 7-8 for 

future development. An underwater umbilical power supply mechanism that adheres to the 

FPSO subsea practices should be added. 

 

 

 

 

Figure 7-6: (a) Potential places to attach NDT equipment; (b) automated FMC manipulator placement  

 

(a)   (b)   
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Figure 7-7: Proposed control architecture for an industrial mooring chain-climbing robot  

 

Figure 7-8: Proposed operational configuration of the chain-climbing robot  
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9.0 Background of robotic manipulators  

 9.1 Robotic manipulators  

To develop a robotic manipulator, a sequence of rigid bodies, commonly known as ‘links’, 

is interconnected by joints. A robotic manipulator consists of three main features: an ‘arm’, 

which is used for mobility; a ‘wrist’, which enables dexterity; and an ‘end effector’, which 

performs the task [147]. The end effector carries the pre-attached tool/equipment required 

to perform the task (final goal of the manipulator). The arm part of the manipulator is 

designed according to the geometrical reaching properties (i.e. moving to a given position 

in a specified space). The required agility to conduct the task is provided by the wrist 

operation. Typically, the degree of freedom (DOF) of a manipulator is determined by the 

number of joints. For example, a manipulator that has three independent degrees of 

movements for positioning and three independent movements for orientation is able to 

reach an object kept in any arbitrary position (in 3D space). The workspace of a 

manipulator is the volume covered by the end of the effector (while the manipulator 

executes every possible motion/path). The geometry of the workspace depends highly on 

the mechanical constraints of the joints and links. For example, theoretically, a revolute 

joint is capable of rotating a full 360°, but due to mechanical complexities and design 

constraints, it may be less than that. The ‘reachable workspace’ consists of all locations 

(points) that a robot manipulator can reach, whereas the ‘dextrous workspace’ accounts 

for all points that the manipulator can cover with arbitrary orientations of the end effector 

[148].  

First, the three joints of the manipulator were considered in order to be classified 

kinematically, with the wrist described separately. According to the usual practice of 

classification, the majority of manipulators fall into following geometric types: the 

cylindrical manipulator (RPP type), the spherical manipulator/SCARA manipulator (RRP 

type), the Cartesian manipulator (PPP type), the elbow manipulator (articulated) (RRR 

type), where R is a revolute joint and P is a prismatic joint. Commonly used geometric 

manipulator types and their workspaces are illustrated in Figure 9-1. When assigning a 

manipulator for a given task, the power source (i.e. the method of joints are actuated), 

method of control (i.e. how complicated the control architecture should be), application 

area (i.e. integrity and reliability of the actuated joints with respect to the working 

environment), and geometry (i.e. suitable kinematic structure to achieve the task) should 

be considered [148]. Moreover, when a manipulator has to work in a given environment, 
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additional physical design constraints should be considered. For example, if the 

manipulator has to work in an in-situ environment or as part of a robot, then weight, 

strength, and power consumption are also added as design constraints. The commonly used 

symbolic representation of joints is illustrated in Figure 9-2. 

 

9.2 Rigid body transformations  

In robotic design, it is essential to keep track of a rigid body to understand its behaviour 

with respect to a known location in 3D space. Two main mathematical models are 

Figure 9-1(a): Geometric types of commonly used robotic manipulator and their workspaces; (a) 

cylindrical manipulator; (b) spherical manipulator; (c) SCARA manipulator; (d) Cartesian 

manipulator; (e) elbow manipulator (articulated) [148] 

(a)   (b)   (c)   

(d)   (e)   

Figure 9-2: Commonly used symbolic representation of joints; (a) revolute joint; (b) prismatic joint 

[148] 

(a)   (b)   
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𝑝′ = 𝑅(Ø)𝑝  

presented in the literature to keep track of rigid body motion [149], i.e. the passive 

transformation approach and the active transformation approach. In the passive 

transformation technique, an embedded coordinate frame is given to the rigid body and its 

position and orientation are calculated by using the coordinate transformation from the 

world frame to the rigid body frame (i.e. to the embedded coordinate frame on the body). 

When the geometrical features of the manipulator/robot are complicated (i.e. several 

bodies involved in the motion and the bodies carry different coordinate frames), assigning 

different body frames for each body is not convenient [149]. However, the active body 

transformation technique is developed with a single fixed-coordinate frame. The position 

and orientation of a rigid body are specified by the transformation, which moves the body 

from its home position to its current position. A summary of active rigid body 

transformation is presented below. (i.e. a comprehensive study is presented in [149] ) 

In common practice, an arbitrary point (p) in a 3D coordinate system is expressed as a 3 × 

1 column vector: 

 

 

Eq 9-1 

 

When point p is subjected to a rotation around an axis, the effect of such a rotation on point 

p is expressed as below: 

 

Eq 9-2 

 

where Ø represents the angle of rotation (rotation angle around the selected axis) and R is 

the corresponding rotation matrix.  

Rotation around the x, y, and z axis can be expressed as Rx(Ø), Ry(Ø), and Rz(Ø), 

respectively. In a given Cartesian coordinate system, rotation matrices are expressed as 

follows: 

 

       Eq 9-3 

𝑝 = [
𝑥
𝑦
𝑧

] 

𝑅𝑥(Ø)  =  (
1 0 0
0 𝑐𝑜𝑠Ø −𝑠𝑖𝑛Ø
0 𝑠𝑖𝑛Ø 𝑐𝑜𝑠Ø

) 
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𝑝′ = 𝑝 + 𝑡  

𝑀 =  [
𝑅(Ø) 𝑡

0 1
] 

𝑝 = [

𝑥
𝑦
𝑧
1

]= [
𝑝
1

] 

�̃�′ = 𝑀�̃� =  [
𝑅(Ø)𝑝 + 𝑡

1
] 

 

          Eq 9-4 

 

           

Eq 9-5 

 

Similar to a rotation, the vector addition can be used to model a translation in 3D space. If 

the translation is a vector t, the resulting effect on point p due to the translation is expressed 

below, where p is the new point after the translation: 

 

Eq 9-6 

Using a 4 × 4 matrix system to combine rotation and translation is common practice in 

robotics. Therefore, the abovementioned translation and rotation can be modelled as 

follows, where M is the transformation matrix. This notation is often called homogeneous 

transformation: 

 

         Eq 9-7 

 

According to the above homogeneous transformation, a point that has coordinates (x, y, 

z) is expressed as a four-dimensional column vector (4 × 1): 

 

Eq 9-8 

 

Therefore, the combined effect of rigid body transformation can be expressed as a matrix 

product: 

 

   Eq 9-9 

 

𝑅𝑦(Ø)  =  (
𝑐𝑜𝑠Ø 0 𝑠𝑖𝑛Ø

0 1 0
−𝑠𝑖𝑛Ø 0 𝑐𝑜𝑠Ø

) 

𝑅𝑧(Ø)  =  (
𝑐𝑜𝑠Ø −𝑠𝑖𝑛Ø 0
𝑠𝑖𝑛Ø 𝑐𝑜𝑠Ø 0

0 0 1
) 
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To compute a transformation matrix of a rotation about a general line in a given 3D space, 

a conjugation is used. When R (3 × 3) is a rotation matrix and its rotation axis lies in the 

direction of the line and p (p =(x, y, z)T) is a position vector on the line, as illustrated in 

Figure 5-2, the 4 × 4 matrix can be written as fl (previously studied in the literature [149]): 

 

         Eq 9-10 

where I is an identity matrix (3 × 3). 

 

 

 

 

 

 

 

 

 

 

 

Figure 9-3: Schematic of a rotation around an arbitrary axis  

𝐴(Ø) =  [
𝐼 𝑝
0 1

] [
𝑅 0
0 1

] [
𝐼 −𝑝
0 1

] = [
𝑅 (𝐼 − 𝑅)𝑝
0 1
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The End. 


