Learning the structure of Bayesian networks with ancestral and/or heuristic partition
[bookmark: _Hlk67398679][bookmark: _Hlk79594977]Xiangyuan Tan a, Xiaoguang Gao a [footnoteRef:1], Zidong Wang a, Hao Han a, Xiaohan Liu a, Daqing Chen b [1: Corresponding Author
 E-mail addresses: tanxy2017@mail.nwpu.edu.cn(Xiangyuan Tan), cxg2012@nwpu.edu.cn(Xiaoguang Gao), nwpu_wzd@mail.nwpu.edu.cn(Zidong Wang), hanhao@mail.nwpu.edu.cn (Hao Han), Xiaohan Liu (lxhwwey@mail.nwpu.edu.
cn), Daqing Chen (chend@lsbu.ac.uk)
This work was supported by the National Nature Science Foundation of China (61573285).
]

a School of Electronics and Information, Northwestern Polytechnical University, Xi’an, China
b School of Engineering, London South Bank University, London, UK

Abstract
[bookmark: _Hlk80125766]Developing efficient strategies for searching larger Bayesian networks in exact structure learning is an open challenge. In this study, ancestral and heuristic partition constraints are proposed to develop a series of exact learning algorithms, in which an ancestral partition is used to prune the order graph of a Bayesian network, and a heuristic partition is utilized to improve the tightness of the heuristic function. Algorithms for calculating these two types of constraints are established through thorough theoretical proof. Comparative experiments have been undertaken with state-of-the-art algorithms. It has been demonstrated that an algorithm improved with the proposed ancestral partition or combined ancestral and heuristic partition outperforms the algorithm in its original form, and it can have lower running time, fewer expanded states, and higher accuracy, as well as the ability to search larger networks within 100 nodes.
Keywords: Bayesian network; structure learning; order graph; heuristic function;

1. Introduction
Artificial intelligence (AI) has penetrated all aspects of our life with great impact. As one of the most popular and widely used techniques in AI, deep learning has a broad range of applications in image processing[1][2], natural language processing[3], autonomous driving[4], and industrial process[5], etc. However, deep learning is not a panacea, and it remains difficult and challenging for researchers to understand the causal relationships of data[6]. The Bayesian network (BN), as a mathematical modelling tool to support such a causal structure representation and analysis in AI, has attracted considerable research attention for applications in reliability assessment[7], fault detection[8], multi-label learning[9], and other fields.
A BN is a probabilistic graph model based on probability and graph theories. A BN can be expressed as a directed acyclic graph (DAG), in which each node represents a random variable, and the directed edges between nodes represent the dependencies between variables, and each node is further quantified by a set of conditional probability distributions. In general, a BN represents the joint probability distribution of a set of random variables.
Learning a BN includes two parts—structure learning and parameter learning. Since parameter learning only needs to be performed when a DAG structure is known, BN structure learning is the foundation of BN parameter learning. Compared with parameter learning, structure learning requires higher accuracy because redundant directed edges can result in incorrect domain structure and dependence and an increase in the number of probability parameters to be learned in parameter learning. In addition, higher accuracy is required in parameter learning as a compensation for the error caused by the lack of "correct" directed edges. Therefore, BN structure learning is the core of BN learning.
BN structure learning determines the topological relationships between the nodes in a BN using a sample dataset available, and this remains a challenge and has therefore been extensively studied over the past few decades. However, learning the optimal BN structure from data has proved to be NP-hard[10] [11]. The space of the possible network structures grows super-exponentially with the number of variables. Usually, BN structure learning algorithms can be grouped into two categories—approximate and exact learning algorithms—based on learning results. Approximate learning algorithms are fast and suitable for larger networks, but they tend to fall into local optima easily and rarely obtain the optimal BN structure. By contrast, exact learning algorithms can theoretically ensure that the learned network is optimal. However, these algorithms are less efficient than approximate learning algorithms and cannot be applied to the structure learning problem for larger networks.
[bookmark: _Hlk79590146]Approximate learning algorithms can be divided into score-based, constraint-based, and hybrid search algorithms[12]. Score-based algorithms are the most commonly used approximate learning algorithms. Such an algorithm uses a scoring function to estimate the quality of BN structures and consequently searches for a network structure with the best score. A scoring function is used to measure the goodness of fit of a DAG structure to a given dataset. These algorithms include K2[13], Hill-Climbing (HC)[14], Simulated Annealing (SA)[15], and Ordering-Based Search (OBS)[16] algorithms. The core idea of these algorithms is to start from an initial state and update the state through several operations so that the score of the new state can gradually approach the optimal score gradually. Such algorithms can easily fall into local optima owing to the greedy strategies applied. Constraint-based algorithms determine the conditional independent relations among variables by performing conditional independence (CI) tests from data and then build a BN structure that satisfies the independence relations. Common constraint-based algorithms include Sparse Causal Graphs (SCG)[17], Peter and Clark (PC)[18], and Grow-Shrink (GS)[19] algorithms. In practice, however, it is difficult to determine whether any two variables are conditionally independent. CI tests require a large number of samples and are sensitive to noise. If there are insufficient or noisy data, they may perform poorly, and an error in these CI tests has a cascading effect in the subsequent learning process. Hybrid search algorithms combine the advantages of score-based and constraint-based algorithms. The most well-known hybrid algorithm is the Max-Min Hill-Climbing (MMHC)[20] algorithm. MMHC first uses the Max-Min Parents and Children (MMPC)[21] algorithm to learn the parent and children sets of each node in the BN and then uses the HC algorithm to determine the direction of edges in the network. The MMHC algorithm cannot guarantee a global optimal network because it also uses CI tests and can easily fall into local optima. Recently, novel approximate algorithms have been proposed. For example, Non-combinatorial Optimization via Trace Exponential and Augmented lagRangian for Structure learning (NOTEARS)[22] and DAG-GNN[23]. The NOTEARS algorithm formulates the structure learning problem as a purely continuous optimization problem. The DAG-GNN extends NOTEARS by incorporating graph neural network functions and variational inference such that the score function is the evidence lower bound.
[bookmark: _Hlk79590271]Exact learning algorithms inherit the idea of score-based algorithms. The difference is that these algorithms can theoretically ensure that the obtained network is optimal. Koivisto[24] proposed an order graph search space for the exact learning of BN structures and used a dynamic programming (DP) algorithm to search the order graph. Singh[25] and Silander[26] improved the DP algorithms. Malone[27] performed DP by leveraging the layered structure present within the order graph and proposed Memory-Efficient Dynamic Programming (MEDP), which dramatically improves efficiency. These DP algorithms require a complete search in the order graph, and the search space increases exponentially with the variables; therefore, these algorithms always belong to the exponential algorithm category. Later, Yuan and Malone[28] formulated the structure learning problem of BN as the shortest path problem in the order graph. They proposed the A*[29], Anytime Window A* (AWA*)[30], and Breadth-First Branch and Bound search (BFBnB)[31] algorithms, and introduced heuristic functions for these heuristic searches[32]. These heuristic functions are admissible[footnoteRef:2] and consistent[footnoteRef:3], ensuring that these heuristic search algorithms eventually converge to the optimal score. Tan[33] continued the idea of shortest path and proposed the bidirectional heuristic search (BiHS). Compared with the previous DP algorithms, these algorithms based on the shortest path search need only to perform a partial search in the order graph and have a higher efficiency than DP algorithms. In addition, some algorithms based on mathematical programming have achieved good results. For example, CPBayes[34] defines the structure learning problem as a constraint programming problem. Other examples include Globally Optimal Bayesian Network learning using Integer Linear Programming (GOBNILP) [35][36]. This algorithm expresses the structure learning problem as an integer linear programming (ILP) problem, which can be solved efficiently using existing ILP frameworks such as SCIP. Malone[37] conducted comparative experiments on three algorithms, A*, CPBayes, and GOBNILP (the old version), and the results showed that no single algorithm dominates the others in terms of efficiency. A new version of GOBNILP is considered the current state-of-the-art approach for exact structure learning[22][23][38][39]. [2: A heuristic function is said to be admissible if it never overestimates the cost of reaching the goal.] [3: A heuristic function is said to be consistent, or monotone, if its estimate is always less than or equal to the estimated distance from any neighboring state to the goal, plus the cost of reaching that neighbor.]

In recent years, structure learning algorithms based on partitions have also been developed. The Separation And Union (SAR)[40] algorithm decomposes the task of learning a large BN into learning some relatively small BNs using a few CI tests and builds the actual BN by re-unifying these small BNs. Zhao[41] used mutual information to divide the learning process into stages. At each stage, a subnet is learned over a selected subset of the variables. The selected subset grows in stages and eventually includes all the variables. The Layered Optimal Learning (LOL)[42]algorithm uses CI tests to layer nodes of BN and then use MEDP to learn the structure for each layer. Li[43] used an improved k-means algorithm with mutual information to partition the network, and then MMPC and DP were performed to learn the partitioned network. Decomposition-based BN structure learning algorithm (Local-DSL)[44] uses local topology information to decompose the task of reconstructing a whole BN into a series of subtasks of learning small DAGs, and the entire structure can be obtained by merging such locally learned subgraph.
Most of the algorithms mentioned above use the CI tests for partitioning. However, given insufficient samples, CI tests have some probability of making errors. The accuracy of the subsequent structure learning is not guaranteed when incorrect results are used to guide the partitioning. In addition, most of the above algorithms use approximate learning algorithms to learn the partitioned parts, which cannot guarantee a global optimal network. Even if exact learning algorithms such as DP and MEDP are used, these algorithms are still limited by the drawbacks of CI tests. Moreover, many exact learning algorithms are more efficient than DP/MEDP algorithms. In summary, there is plenty of room for further research on partition-based BN structure learning algorithms.
[bookmark: _Hlk79589850]Inspired by the idea of partitioning, this study aims to improve the efficiency of exact learning by examining and employing two partition constraints—ancestral partition and heuristic partition. The rationale for this research is as follows: First, many of the aforementioned algorithms use the concept of ordering[13][16][24][25][26][27][28][29][30][31][33]. Ordering represents a strict constraint, and if an optimal ordering is obtained, the optimal BN can be established in a few simple steps. However, finding an optimal ordering is still a challenge because the search space of candidate orderings or the order graph (a graphical ordering space) is very large. As such, this research is concentrated on a generalized constraint, namely, the ancestral partition, which is easier to obtain than ordering. Second, some experimental results[29][32] show that different partitions of the variable set of the BN impact the heuristic function and affect the efficiency of order graph-based heuristic algorithms. To address this issue, this study explores a better partition to improve the tightness of the heuristic function, namely, the heuristic partition.
In summary, the essential contributions of this paper are as follows:
· An ancestral partition, a generalized and easier-to-obtain constraint, is established. The ancestral partition can prune an order graph and divide the entire learning process into stages, thereby improving the efficiency of order graph-based algorithms. A thorough theoretical analysis is provided to prove that order graph-based algorithms with consistent ancestral partition can still find the optimal BN. In addition, an algorithm is developed to calculate the ancestral partition. It is shown that algorithms with our calculated ancestral partition can have higher efficiency and can search for much larger BNs than the original algorithms.
· A heuristic partition is proposed to improve the tightness of a heuristic function along with an algorithm for calculating the heuristic partition. Algorithms with our calculated heuristic partition have higher efficiency and search for much larger BNs than before. Since the heuristic function is admissible and consistent, algorithms with a heuristic partition can always obtain the optimal solution.
The remainder of this paper is organized as follows. The preliminaries of the BNs and the exact learning algorithms in the order graph are presented in Section 2. In Section 3, the ancestral partition and its calculation algorithm are introduced, and related theorems and proofs are provided. Section 4 describes the heuristic partition and its calculation algorithm. In Section 5, we conduct various experiments to evaluate the proposed partition constraints and analyze them. Finally, the concluding remarks are presented in Section 6.
2. Preliminaries
This section presents the preliminaries of the BNs and the exact learning algorithms within the order graph.
2.1 Bayesian networks

A BN is a type of probability graph model that can be expressed by DAG,, and the joint probability distribution , where represents all the nodes in the graph, corresponding to each random variable, and is the number of nodes, and is a directed edge set, indicating the dependence relations between each node. If there is a directed edge in a DAG, then is identified as a parent node of , and is a child node of . Let represent the parent set of . Starting from node , if there is a path to reach node along directed edges, then is said to be an ancestor node of , and is a descendant node of . The joint probability distribution of an entire BN can be decomposed into the product of each conditional probability as:
	
	

	（1）

BN structure learning aims to find the optimal BN structure that best reflects the dependence among variables in the complete dataset , where is the number of samples. This problem is known to be NP-hard[10][11]. Related works show that, except for constraint-based algorithms, most of the algorithms use a scoring function to measure the quality of the BN structure based on the dataset . Common scoring functions include the Bayesian information criterion (BIC)[45], Bayesian Dirichlet score with score equivalence (BDe)[46], minimum description length (MDL)[47], and Akaike information criterion (AIC) [48]. Usually, the smaller the MDL score, the better the BN structure and for the other scoring functions, the higher the other scores, the better the network structure. The fundamental goal of this paper is to study the BN structure exact learning algorithm from the viewpoint of the shortest path on the order graph. Therefore, this study uses the MDL score to measure the quality of a learned BN structure (note that related theories also use the MDL score). Hence, learning the optimal BN structure can be expressed as
	
	

	（2）

The aforementioned scoring functions have a fundamental property: these scoring functions are decomposable. Therefore, a BN score can be decomposed into the sum of the scores of each node. The MDL score of the BN structure can be decomposed into
	
	
	

	（3）

where
	
	

	（4）

	
	

	（5）

	
	

	（6）

In the equations above, the state space of is denoted as , and the state space of is denoted as . denotes the log-likelihood of and its parent set. is the maximum likelihood estimate of the conditional probability . and represent the number of data records consistent with and in the dataset , respectively. is the complexity penalization of the BN structure complexity. For simplicity, the symbol "" in the scoring function is omitted in the following equations.

	Notably, the above scoring functions are score-equivalent. Multiple BN structures that represent the same probability distribution with all possible parameterizations are called equivalence classes. It has been proven that BN structures of equivalence classes have the same score value under the same score-equivalent scoring function. Therefore, the optimal BN structure is not unique, and finding one of them is sufficient.
2.2 Exact structure learning in order graph
Before introducing the exact learning algorithms for BN structure learning based on an order graph, let us first consider the term of ordering. The concept of ordering was first discussed in the K2[13] algorithm and has been applied to many algorithms such as OBS[16], DP[26][27], and A*[28][29], etc. This article defines the ordering as follows:

Definition 1. (Ordering) In a BN of random variables , a relation () is specified. For any , (), and . Then, this relation is called an ordering, indicating that the structure learning of the BN must be performed under the following condition: For any , the possible parent sets of are selected from the subsets of .

Definition 2. (Optimal ordering) In a BN of random variables , an ordering is specified. If for any element in this ordering, the optimal parent set of the variable in the BN always satisfies , then is called consistent with the BN and considered the optimal ordering.
[image:]
Figure 1: Asia network structure.

An ordering poses constraints on the range of possible parent sets of each node in a BN. In the structure learning process under an ordering, only the possible parent sets of a node that belong to the set of nodes preceding it can be selected. If the relation in the ordering is consistent with the actual network structure, the ordering is considered optimal. Consider the classic Asia BN as shown in Fig. 1. Both and are orderings, but the former is an optimal ordering, while the latter is not because it does not satisfy Definition 2. The optimal ordering of the Asia network can be , , or other orderings. A BN can have multiple optimal orderings. Notably, in this study, we are interested in finding the optimal ordering that is close to the lexicographic order. For example, for the Asia network, we prefer to use to represent the corresponding optimal ordering.
The DP algorithm is derived from the decomposability of the scoring function. The DP algorithm aims to decompose the task of searching for the optimal BN structure into finding the optimal sub-network until reaching the empty set and recursively find the entire optimal network. More formally, these recursive formulas exist as
	
	

	（7）

	
	

	（8）

[bookmark: _Hlk79886260]The above recursive relations show that the optimal network structure score for the variable set can be decomposed into two parts: (1) the optimal score for the sub-network on the variable set , and (2) the optimal score for choosing an optimal parent set from . Then, the variable set can be decomposed according to Eqs. (7) and (8) until the empty set is obtained. Given the above recurrence relations, the procedure of DP is as follows: Starting from the empty set, it searches for the optimal structures for every individual variable. After adding variables into these structures, it builds optimal sub-networks with increasingly larger variable sets until the optimal one for is found. This entire process can be represented by an order graph, and as an example, the order graph of a four-variable BN is shown in Fig.2. DP algorithms can find an optimal BN in time and space[24][25][26] and must search for a total of states in the order graph (the initial state need not be searched). The MEDP[27] algorithm reduces memory consumption by leveraging the layered structure of the order graph. However, a complete search of the order graph is still required.
[image:]
Figure 2: Order graph of a four-variable Bayesian network.

In the order graph, the directed path from the initial state at the top to the goal state at the bottom is the sequence in which the variables appear, corresponding to an ordering. Thus, the order graph obtains its name. Based on the above phenomena, Malone and Yuan proposed a series of algorithms[29][30][31] from the shortest path perspective. Now that a path from to corresponds to an ordering, the shortest path from to corresponds to the optimal ordering. For example, the optimal path corresponds to the optimal ordering of the Asia network. Therefore, the shortest path can be searched in the order graph and the optimal parent set for each node in the process can be recorded. Finally, an optimal BN structure can be built using the ordering and optimal parent sets. From the shortest path perspective, the path cost in the order graph from the current state to the successor state is
	
	

	（9）

In the A* algorithm, for the current state , the generated path cost from the initial state to is calculated, and a heuristic function is used to estimate the cost from the current state to the goal state . In the search process, is used to estimate the optimal cost of the path through . A priority queue is used to store a list of states to be expanded, sorted by the f -value, and is used to store the already-expanded states. At each search step, the current state with the lowest f -value in is selected to be expanded, the current state is put into , and the states that are successors of the current state are moved to . Until is expanded, the shortest path from to is found. Thus, optimal ordering and the optimal BN structure are found.

In the AWA* algorithm, a sliding window search strategy is introduced in A* to search the order graph over several iterations. AWA* uses a sliding window to encourage a deeper search of the order graph. This algorithm uses the parameter to control the window size, which increases with the number of iterations and keeps track of the depth of all states. The states are expanded as usual by A*. After the states of the layer (the cardinality of the set corresponding to the state is its number of layers) are expanded, all states in a layer less than are placed in . After one iteration ends, a path from to is found, from which an upper bound is obtained. The lowest f -value in is considered to be the lower bound. Then, the window size is increased by one, and the states in are placed into . The entire process continues until the upper and lower bounds converge to obtain an optimal solution.

In the BFBnB algorithm, a fast approximate algorithm, such as the HC algorithm, is used in advance to rapidly obtain the upper bound. The states in the order graph are expanded in layers using the breadth-first search strategy. If the current state has a higher f -value than the upper bound during the search, then the search for the state and its successors can be safely abandoned without losing accuracy.
The three algorithms A*, AWA*, and BFBnB have heuristic functions, so they do not need to search the entire order graph. The efficiency of these three algorithms is higher than that of the DP algorithms. The heuristic functions of these algorithms are admissible, ensuring that these algorithms can converge to the optimal score. In addition, these heuristic functions are consistent and can converge faster than non-consistent heuristic functions.
3. Ancestral partition constraints
3.1 Ancestral partition

As mentioned earlier, multiple optimal orderings are consistent with the Asia network. However, ordering is a strict constraint, and finding one of the multiple optimal orderings is still a challenge. As an alternative, in this study, we attempt to formulate a general constraint instead of ordering. With the Asia network in Fig. 1 as an example, the new constraints are defined as follows: and should be ancestors of all other nodes, , , and should be ancestors of , , and . Under such constraints, we can obtain multiple optimal orderings. These nodes indicate the relationships between ancestors and descendants. Based on this simple example, we define the following:

Definition 3. (Ancestral partition) In a BN of random variables , a relation (,) is specified. For any , (), , and . Then, this relation is called the ancestral partition, indicating that the structure learning of the BN must be performed under the following condition: For any , the possible parent sets of () are selected from the subsets of .

Definition 4. (Consistent ancestral partition) In a BN of random variables , an ancestral partition is specified. If for any set in this ancestral partition, the optimal parent set of any variable () in the BN always satisfies , then is called the ancestral partition consistent with the BN or consistent ancestral partition.

[bookmark: _Hlk79000480]Let and denote the partition block and its partition block size, respectively. Definitions 3 and 4 can be regarded as extensions of Definitions 1 and 2, respectively. If for any partition block in Definitions 3 and 4, , then Definitions 3 and 4 become Definitions 1 and 2. Therefore, an ancestral partition can be considered a generalized ordering. Similar to ordering, the ancestral partition poses constraints on the range of possible parent sets. If the relation in an ancestral partition is consistent with the actual BN structure, that is, if the optimal parent set of each node exists in the possible parent sets derived from the ancestral partition, the ancestral partition is consistent.

We are still using the Asia network as an example to explain the ancestral partition. The possible consistent ancestral partitions are or . Similar to the optimal ordering, the consistent ancestral partition of a BN is not unique. An example of an Asia network based on the consistent ancestral partition is shown in Fig.3. The consistent ancestral partition represents a partition relation for the BN structure, and this partition relation also reflects the priority order for BN structure learning. If the sub-network structure of cannot be determined, it would not be possible to build the sub-network structure of . Only by determining the sub-network structure of can it be possible to further learn the sub-network structure of .

[image:]

Figure 3: Example for Asia network according to ancestral partition .
Since the (consistent) ancestral partition is more generalized than the (optimal) ordering, obtaining the ancestral partition would be easier than obtaining the ordering. Therefore, introducing an easier-to-obtain ancestral partition constraint into the BN structure learning problem would be beneficial for improving the efficiency of structure learning algorithms.
3.2 Ancestral partition for order graph
We know that an optimal ordering corresponds to the (optimal) path in the order graph. Therefore, does an ancestral partition correspond to a more "abstract" path in an order graph than a generalized ordering?

Continuing with the Asia network as an example, without any constraints, the order graph corresponding to the Asia network is similar to that in Fig. 2, as shown in Fig. 4. In such an order graph, there are states. Such an order graph grows exponentially with the number of nodes and many search algorithms based on the order graph must search a vast state space. This has led to the poor efficiency of these algorithms.
[image:]
Figure 4: Order graph for Asia network without any constraints.

We assume that a consistent ancestral partition is known. To create an order graph, the sub-network of should be built first, followed by the sub-network of , and finally the sub-network of . Therefore, the complete order graph in Fig.4 can be pruned with ancestral partition constraints, as shown in Fig. 5.
[image:]

Figure 5: Pruned order graph for Asia network with ancestral partition constraints .

As shown in the pruned order graph in Fig. 5, there are only 18 states. The state space is significantly reduced under the ancestral partition constraints, and as a result, the efficiency of search algorithms based on the order graph is improved. The relay states , , and can be considered the points that must be visited when searching for the optimal path. This undoubtedly strengthens the restriction on the search for the optimal path so that the optimal path can be obtained faster. In addition, states , and can be regarded as stages in the entire learning process. Given , we can use any algorithm based on the order graph to search the subgraph of , then the subgraph of ,..., and finally the subgraph of . The final BN can be obtained by combining the results of each stage.
Several problems remain to be solved for ancestral partition. For the order graph of the Asia network in Fig. 4, does the corresponding optimal path still exist in the order graph in Fig. 5 ? In other words, has any state in the optimal path of the Asia network been pruned during the change in the order graph under a consistent ancestral partition? Theorem 1 provided below answers this question.

Lemma 1. In a BN on random variables , an ordering and an ancestral partition are consistent with this BN. For any in the ancestral partition, and () must exist such that .

Proof. According to Definition 2, Definition 4, and the analysis in Section 3.1, the optimal ordering is a particular case of a consistent ancestral partition. Therefore, for any partition block in the consistent ancestral partition, one node or several adjacent nodes must be found in the consistent ordering to form .
∎

Lemma 2. If the ancestral partition (,) is consistent with the BN of random variables , the order graph of can be changed to the pruned order graph of (,,). Then, for any state of the optimal path (, ,) in the order graph of , and must exist satisfying .

Proof. The ancestral partition is consistent with the BN. The path is optimal; thus, its corresponding ordering () is also optimal and consistent with the BN. According to Lemma 1, must exist such that and . Therefore, , , and , the relation holds.
∎

Theorem 1. In a BN on random variables , if the ancestral partition (,) is consistent, the order graph of can be changed to the pruned order graph of (, ,). Then, for the optimal path (, ,) in the order graph of , it will not be pruned in the pruned order graph of .

Proof. According to Lemma 2, if the ancestral partition is consistent with the BN, any state in the optimal path will be located between adjacent stages and . In other words, any state in the optimal path still exists in the pruned order graph. Therefore, the optimal path will not be pruned.
∎
Theorem 1 shows that the optimal path will not be pruned in a pruned order graph if an ancestral partition is consistent. The BN structure found in the order graph, pruned by the consistent ancestral partition, has the same optimal score as that of the BN structure found in the original order graph. It is guaranteed that the found network is still optimal, and the change in the order graph will not affect the search for the optimal BN. If the ancestral partition is not consistent, then all the above results will not be guaranteed, and the optimal network will not be found.

Theorem 2. In a BN of random variables , if through the ancestral partition (,), the order graph of is pruned to become the pruned order graph of , where (,). Then, the number of states to be searched in the order graph is reduced from to .

Proof. The complete order graph shown in Figs. 2 and 4 has a total of states. For the initial state , no search is required, and a total of states must be searched. For the pruned order graph with the ancestral partition in any subgraph , there are states. There are subgraphs of the order graph and total states. However, this method repeatedly calculates the states and does not require an initial state . Hence, a total of states must be pruned from the calculation. Finally, the number of states to be searched is .
∎

Theorem 2 shows that ancestral partition constraints can reduce the number of states in the order graph. Searching in the pruned order graph changed by the ancestral partition is more efficient than searching in the original order graph. In particular, for any partition block in the ancestral partition , , that is, when the ancestral partition becomes an ordering, , , and the number of blocks is equal to the number of states of a path from to . It also shows that the path is unique under the given ordering, and the BN structure corresponding to the path can be obtained. This means that these heuristic search algorithms based on the order graph, such as A*, AWA*, and BFBnB, only need to perform a partial search on the order graph. With ancestral partition constraints, the number of states that these algorithms must expand will be less than .
3.3 Calculate ancestral partition
The ancestral partition can prune unnecessary states of an original order graph, reduce the search space, and improve the efficiency of various algorithms based on the order graph. In this section, an algorithm is presented to obtain the constraints of the ancestral partition.
In theory, it would be more appropriate to use CI tests to discover the relationships among variables to build the ancestral partition. However, CI tests require sufficient samples. Given limited data, any statistical test will have a probability of error. Consequently, many previous studies using CI tests did not achieve the expected results. Even if exact learning algorithms were used in the subsequent search process, the errors generated by the CI tests prevented them from returning to the optimal score. Therefore, considering the drawbacks of CI tests, this study does not consider using CI tests to calculate the ancestral partition.

Before using these exact learning algorithms to search for the optimal BN structure, the possible parent sets (PPSs) must be calculated for each variable from the given data. In theory, for each node, the scores of PPSs must be calculated, and the entire BN has a total of scores for all PPSs. The number of PPSs can be reduced by some score pruning rules without losing the global optima. In this study, the focus is not on the calculation and pruning of scores (for detailed theory, readers can refer to, for example [29]). Instead, it is based on the search theory of the algorithm. After score calculation and pruning, the remaining PPSs and their corresponding scores can be used to search for the optimal network. Meanwhile, PPSs contain a lot of information on parent–child relationships and can be used to calculate the ancestral partition in this study.
We now describe how to calculate the ancestral partition, which is related to a new concept, the strongly connected components (SCCs). A directed graph is strongly connected if every vertex is reachable from every other vertex. A directed graph can be decomposed into SCCs. An SCC of a directed graph is a maximal set of vertices in which there is a path from any vertex in the set to any other vertex in the set. Equivalently, an SCC of a directed graph is a subgraph that is strongly connected and is maximal with this property, and no additional edges or vertices from this directed graph can be included in the subgraph without breaking its property of being strongly connected. The collection of SCCs forms a partition of the set of vertices in this directed graph.

The Asia network is used as an example to illustrate the role of SCCs. Assume that after Asia's score calculation and pruning, the PPSs are listed in Table 1. As shown in Fig. 6(a), a directed graph can be obtained by connecting all the nodes and their PPSs. This directed graph can be easily partitioned into three blocks, akin to Fig.3, as shown in Fig. 6(b). The blocks marked in Fig. 6(b) are the SCCs of the directed graph in Fig.6(a). The directed graph composed of the PPSs of a BN contains a large number of parent-child relationships of the BN, and the parent-child relationships between nodes further constitute the relationships between ancestors and descendants; that is, the directed graph implies the ancestral partition constraints. Therefore, the extracted SCCs also represent the ancestral partition constraints. An SCC can be treated simply as a partition block in an ancestral partition. If each SCC is contracted to a single vertex, the resulting graph is an acyclic component graph, as shown in Fig. 6(c). The inherent topological relationship of the acyclic component graph indicates the ancestral partition . The classic Kosaraju algorithm was used to calculate the SCCs of the directed graph. The complete algorithm for the ancestral partition calculation is presented in Algorithm 1.
Table 1: Possible parent sets (PPSs) for each node in the Asia network.
	variable
	possible parent sets

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

[image:]
Figure 6: Example of strongly connected components (SCCs) for Asia network.
[image:]
Algorithm 1 considers two cases in an ancestral partitioning process as discussed below.

Case 1: (The ideal case) Suppose that the directed graph composed of all PPSs can be divided into SCCs of appropriate size. Such an ancestral partition is consistent, can improve the search efficiency on the order graph, and ensures the optimal BN. However, a practical problem must be considered. Suppose that all PPSs of each node are used to build a directed graph. In this case, the directed graph may have only one SCC, or the maximum size of the SCCs may be larger than . If the partition block size is too large, algorithms based on the order graph are still difficult to search quickly. This problem leads to Case 2 as a solution.

Case 2: When this happens, we do not use all PPSs of each node to build the directed graph, but instead use the best PPSs of each node to build the directed graph and then extract the SCCs. As gradually decreases from a constant value to 1, the edges of the directed graph also become sparse, and it is easier to extract the SCCs. However, considering the above greedy strategy, the ancestral partition may not be consistent with the BN, thus reducing the accuracy of BN structure learning. This will be further analyzed in the experiments. Cases 1 and 2 avoid invalid ancestral partition constraints as much as possible. The worst occurs when using the best PPSs () of each node to build the directed graph, and appropriate SCCs cannot be obtained. Then, each node can be treated as an SCC. However, such cases rarely occur.

In addition, is designed to limit the size of the maximum partition block. For smaller BNs, the default value is the number of nodes in the BN minus one, and we can obtain an ancestral partition partitioned into at least two blocks. For larger BNs, although they can be extracted into multiple SCCs, the size of these SCCs may still be considerable. By controlling the maximum partition block size, appropriate SCCs can be achieved to address the problem where algorithms with a large partition block size search slowly.
4. Heuristic partition constraints
4.1 Heuristic partition

To start the discussion on heuristic partition, it is worth noting the work by Yuan on heuristic functions. To meet the search requirements of the A*, AWA*, and BFBnB algorithms within order graphs, Yuan proposed three heuristic functions—a simple heuristic, dynamic k-cycle conflict heuristic, and static k-cycle conflict heuristic. All heuristic functions are admissible and consistent[29][32]. Since the static k-cycle conflict heuristic is better than the simple heuristic and more efficient than the dynamic k-cycle conflict heuristic, they preferred to use the static k-cycle conflict heuristic in their subsequent research. This study also considers the static k-cycle conflict heuristic as the main research objective and abbreviates it as .

Yuan developed a better heuristic function based on the pattern database technique, which is an approach for calculating a heuristic for a problem by solving a relaxed problem. This approach partitions the variables into non-overlapping blocks and focuses on avoiding directed cycles within each block. A subset of a partition block is considered a pattern. Yuan then calculated the heuristic using a backward breadth-first search to create static pattern databases. Once the pattern databases have been built, researchers can calculate the heuristic function directly by performing a query.

Theorem 3. [29]The cost of the pattern ,, is equal to the shortest distance from to the goal state in an order graph.

The detailed method for creating the heuristic function is as follows: For a BN with a variable set , the method is to partition it into mutually exclusive partition blocks, and (as with , we also name the partition block and the partition block size of). For each partition block , a pattern database is created. The pattern database of the partition block corresponds to the reverse order graph of , and the backward breadth-first search can be used to create static pattern databases. The cost of the path in this reverse order graph is equal to . Then, all subsets of each block can be enumerated as patterns and stored as hash tables. Once these static pattern databases are created, the cost for the state can be calculated as
	
	

	（10）

[bookmark: _Hlk72866134][bookmark: _Hlk72866144][bookmark: _Hlk72866161]As shown in Fig. 7, using the Asia network (eight variables) as an example, the network can be partitioned into two partition blocks and . A reverse order graph for each block can be further created like Fig. 2 but all edges are reversed. According to Theorem 3, the shortest path from to the goal state is the cost of the pattern (note that, here, is only considered the goal state rather than the entire variable set, that is, can be either or). For example, the shortest path from state to state is the cost of the pattern . The shortest path cost for each pattern is calculated using a backward breadth-first search. All patterns and their shortest path costs are stored to create a pattern database for a reverse order graph. Assuming that the bold paths shown in Fig.7 are the shortest paths for patterns and respectively, we have

The costs of the other patterns can be calculated as and and are stored in hash tables. Finally, static pattern databases are created. The heuristic cost of the state in the order graph must be calculated according to Eq. (10),

[image:]
Figure 7: Two pattern databases for eight-variables networks.

[bookmark: _Hlk72865430]For such a heuristic function , Yuan and Malone initially partitioned into two blocks and (referred to as the default simple partition) for calculation. According to their further research[49], the tightness of the heuristic function depends highly on the partition being used. A good partition method should reduce the number of directed cycles between the variables and enforce the acyclicity as much as possible. Since no cycles are allowed within each partition block, the correlation between the variables in each partition block should be maximized. In addition, since cycles are allowed between partition blocks, the correlation between partition blocks should be minimized. Therefore, we continue to improve the partitioning method, which is called the heuristic partition.
4.2 Calculate heuristic partition
This section discusses what partition result is a good heuristic partition. According to previous research[29][32], the following characteristics of the heuristic partition can be observed:
1.	Balancing the number of partitions (or the partition block size) and the tightness of the heuristic function.
2.	Reducing the number of directed cycles between the variables and enforcing acyclicity as much as possible.

For the first feature, if the number of partitions is 1 (the partition block size is), the heuristic function can be created using the entire variable set ; then, for any state in the order graph, is the actual cost from to . This case is related to an ideal heuristic function, equivalent to performing a backward breadth-first search in the reverse order graph for the entire variable set to create static pattern databases. However, the time and space complexity of this case is , and the cost is too high to achieve. If the number of partitions is (the partition block size is 1), becomes a simple heuristic. In other words, the simple heuristic is a particular case of the static k-cycle conflict heuristic, as it simply contains costs for the individual variables, which is the worst case of . A simple heuristic search searches more states in the order graph than and is more inefficient than . In summary, the greater the number of partitions, the smaller the partition block size, the worse the heuristic function obtained, the higher the efficiency of creating static pattern databases, and the lower the efficiency of searching the order graph. However, the smaller the number of partitions, the larger the partition block size, the better (tighter) the heuristic function obtained, the lower the efficiency of creating static pattern databases, and the higher the efficiency of searching the order graph. Therefore, the number of partitions (partition block size) and the tightness of the heuristic function should be relatively balanced.

The second feature can be formalized as a graph-partitioning problem that divides the graph into two or more components while minimizing the weight of the edges between different components. The definition of the SCCs mentioned in Section 3.3 satisfies these requirements. As shown in Fig. 6(b), the directed cycles are concentrated within each SCC. Suppose that static pattern databases are created for using SCCs, and all the directed cycles are broken within each SCC, which satisfies the need to reduce the number of directed cycles between the variables and enforces acyclicity as much as possible. Therefore, this section also uses an idea similar to that in Section 3.3 for designing a heuristic partition algorithm based on SCCs.
Considering the needs of the two features discussed above, Algorithm 2 for calculating the heuristic partition, is proposed.
[image:]

Algorithm 2 converges within the upper and lower bounds of the BN to obtain a heuristic partition. The algorithm uses a technology similar to the BFBnB algorithm to quickly obtain the upper bound through an approximate algorithm. This algorithm uses the hill-climbing algorithm with restarts to calculate . Since the hill-climbing algorithm itself is fast, it is worth bearing the cost to use proper restarts to obtain a better upper bound. For the lower bound, since a heuristic partition affects the tightness of the heuristic function , the value of can be used to measure the quality of the heuristic partition and use it as . Moreover, the smaller the difference between the upper and lower bounds, the better the heuristic partition. Algorithm 2 can limit the upper and lower bounds by the threshold to obtain a heuristic partition that meets the requirements.

[bookmark: _Hlk79589453]When executing Algorithm 2, lines 14–27 are similar to those in Algorithm 1. Case 1: Case 1 is ideal. is returned immediately for the heuristic partition that can be obtained by extracting the SCCs and meets the size requirement of the maximum partition block . Case 2: If Case 1 does not occur, the best PSSs in each node are used to build a directed graph, and the SCCs are then extracted. As gradually decreases from a constant value to 1, the corresponding edges of the built directed graph also become sparse, and it is easier to extract the SCCs. It is necessary to merge small SCCs because small SCCs imply a greater number of partitions that reduce the tightness of the heuristic function. Conversely, with merging partitions of relatively small SCCs, the new partition blocks formed will not be too large, and it will take less time to create static pattern databases. For each SCC, the current size of the SCC can be checked to determine if it is less than minus the previous SCCs size. If so, we merged these SCCs. Case 3: Considering that the heuristic partition obtained by the above strategies may not meet the threshold requirements , a new partition calculation method is added here. In this method, the score corresponding to the current heuristic partition is first retained. Then, the current partition is further partitioned into smaller partition blocks of size and becomes . Subsequently, the elements of the partition blocks in are swapped, and the updated score is calculated corresponding to the new heuristic partition. If the updated score is better than , the swap is retained; otherwise, the swap is withdrawn. A better heuristic partition can be obtained by applying this greedy swap strategy and integrating it into the original size.

The main body of Algorithm 2 uses to control the entire loop. starts from an initial user-specified value and increases by 1. Different values return different heuristic partitions in the [image:] function, and the threshold judges these partitions. Therefore, the final heuristic partition formed considers both the partition block size and the tightness of the heuristic function.

Yuan proved that is always admissible and consistent[29]. Our heuristic partition constraints offer only the different partition schemes for . As such, the heuristic partition constraints do not affect the accuracy of these heuristic algorithms based on the order graph but only their efficiency.
5. Experiments
To evaluate and demonstrate the algorithms proposed in this study for exact structure learning, a considerable number of experiments were conducted and are presented in this section.
To test and evaluate the performance of the algorithms proposed for ancestral partition and heuristic partition the following algorithms were used for comparison:
1. Order graph-based algorithms, including A*, AWA*, and BFBnB[footnoteRef:4], with\without partition constraints being added. [4: A*, AWA* and BFBnB with source code can be download at https://github.com/bmmalone/urlearning-cpp.]

2. GOBNILP[footnoteRef:5] algorithm (the latest stable version 1.6.3), considered the current state-of-the-art algorithm of exact learning of the BN structure. [5: GOBNILP with source code can be download at https://www.cs.york.ac.uk/aig/sw/gobnilp/.]

3. MMHC algorithm, the most well-known hybrid algorithm.
4. NOTEARS[footnoteRef:6] algorithm, considered the first to recast the structure learning problem as a continuous optimization problem. [6: NOTEARS with source code can be download at https://github.com/xunzheng/notears.]

5. DAG-GNN[footnoteRef:7] algorithm, which uses a deep generative model and applies a structural constraint variant to learn a DAG. [7: DAG-GNN with source code can be download at https://github.com/fishmoon1234/DAG-GNN.]

All the algorithms in 1 and 3 were coded in C++. The performances of the algorithms in 1 and 2 were analyzed with various parameter settings.

A group of benchmark BNs and datasets from the UCI machine learning repository[footnoteRef:8] were used in the experiments, and they are publicly available. Except for the boerlage92 BN[50], the other benchmark BNs are publicly available in the BN repository[footnoteRef:9]. Samples were randomly selected from these benchmark BNs of different scales with different sample sizes . In addition, synthetic data were generated for larger networks with over 100 nodes. [8: https://archive.ics.uci.edu/ml/index.php.] [9: https://www.bnlearn.com/bnrepository/.]

All the experiments were executed on Windows 10 with a 4-core Intel (TM) i7-7700 3.6 GHz processor and 16 GB RAM.
For brevity, in the following experiments, we abbreviate ancestral partition as "AP" and abbreviate heuristic partition as "HP." "-AP" indicates an algorithm with only ancestral partition constraints from Algorithm 1. "-HP" indicates an algorithm with only heuristic partition constraints from Algorithm 2. "AP-HP" indicates an algorithm with both ancestral partition and heuristic partition constraints.
Notably, Section 3.2 theoretically proved that a consistent ancestral partition does not affect the optimal score of exact learning algorithms based on the order graph. However, Algorithm 1 for calculating an ancestral partition in Section 3.3 uses a greedy strategy in Case 2. Therefore, the proposed algorithm may return an inaccurate ancestral partition that affects the accuracy of these exact learning algorithms. To reflect the influence of accuracy, a score error ratio is applied to the optimal score as follows:
	
	

	（11）

where is the optimal MDL score of the DAG from the original exact learning algorithm, and is the MDL score of the DAG from these algorithms with partition constraints. The better the score obtained by an algorithm with partition constraints, the closer the score error ratio to 0.
In the following experiments, some symbols are used to indicate different situations: "O" for an original algorithm and "OT" for an experiment running up to 8 hours but not converging (out of time). For a larger number of expanded states (over 10 million), "M" represents millions. All results were rounded to three decimal places.
5.1 Experiments of ancestral partition and heuristic partition for algorithms based on order graph
To quantitatively analyze the efficacy and accuracy of the proposed partition constraints for order graph-based exact learning algorithms, including A*, AWA*, and BFBnB, the performances of these algorithms were observed and compared with those of ancestral and/or heuristic partitions on the benchmark BNs and UCI datasets.
The comparison was based on the following criteria:
Time: The running time of an algorithm (in seconds or hours).
The number of expanded states (Exp): The number of expanded states in an order graph. The fewer the expanded states, the lower the memory cost. This criterion is only valid for order graph-based exact learning algorithms (A*, AWA*, and BFBnB).

Score error ratio (Error): This criterion is calculated using Eq. (11). In general, the GOBNILP algorithm was employed to obtain the optimal MDL score . If GOBNILP could not obtain an optimal score, a score returned by A*[footnoteRef:10] was used. Note that a lower Error value indicates higher accuracy. [10: If used datasets cannot be scored for A* and GOBNILP, such as pathfinder and andes in the next experiment, we get their structures from https://www.bnlearn.com/bnrepository/.]

For the ancestral partition calculation algorithm, the maximum size of the partition blocks was set to for BNs with , for BNs with , respectively, and the constant to . For the heuristic partition calculation algorithm, the maximum size of the partition blocks was set to , constant to , and threshold to .
The results of running time, number of expanded states, and score error ratios for A*, AWA*, and BFBnB with ancestral partition and/or heuristic partition on benchmark BNs and UCI datasets are presented in Tables 2–7.

Table 2: Running time, number of expanded states, and score error ratio for A* with ancestral partition and/or heuristic partition on benchmark BNs.
	Name
	n
	N
	O
	AP
	HP
	AP-HP

	
	
	
	Time(s)
	Exp
	Time(s)
	Exp
	Error
	Time(s)
	Exp
	Error
	Time(s)
	Exp
	Error

	sachs
	11
	500
	0.001
	164
	0.001
	53
	0%
	0.001
	11
	0%
	0.001
	11
	0%

	sachs
	11
	1000
	0.002
	207
	0.001
	56
	0%
	0.001
	11
	0%
	0.001
	11
	0%

	sachs
	11
	5000
	0.003
	503
	0.002
	91
	0%
	0.002
	11
	0%
	0.002
	15
	0%

	sachs
	11
	10000
	0.003
	634
	0.003
	110
	0%
	0.003
	14
	0%
	0.003
	11
	0%

	sachs
	11
	15000
	0.004
	765
	0.003
	131
	0%
	0.003
	36
	0%
	0.003
	14
	0%

	child
	20
	500
	0.125
	34679
	0.040
	13764
	0%
	0.023
	292
	0%
	0.022
	100
	0%

	child
	20
	1000
	0.209
	54271
	0.073
	22160
	0%
	0.025
	75
	0%
	0.024
	81
	0%

	child
	20
	5000
	1.132
	257793
	0.076
	100564
	0%
	0.066
	5123
	0%
	0.062
	3031
	0%

	child
	20
	10000
	1.746
	422718
	0.707
	174422
	0%
	0.134
	12190
	0%
	0.104
	7623
	0%

	child
	20
	15000
	2.130
	515066
	0.914
	221324
	0%
	0.227
	21229
	0%
	0.173
	12624
	0%

	boerlage92
	23
	500
	9.231
	2002228
	4.418
	1004319
	0%
	0.029
	1604
	0%
	0.025
	1332
	0%

	boerlage92
	23
	1000
	9.821
	2027860
	0.443
	143271
	0%
	0.173
	29536
	0%
	0.010
	137
	0%

	boerlage92
	23
	5000
	15.049
	3170608
	8.820
	2229531
	0%
	22.769
	4355273
	0%
	9.928
	2130129
	0%

	boerlage92
	23
	10000
	17.632
	3600952
	9.142
	2230655
	0%
	26.324
	5042508
	0%
	11.882
	2574403
	0%

	boerlage92
	23
	15000
	18.026
	3667071
	9.367
	2236236
	0%
	29.501
	5582066
	0%
	13.014
	2831004
	0%

	insurance
	27
	500
	187.219
	23.824M
	61.519
	8875295
	0%
	0.640
	73228
	0%
	0.136
	18317
	0%

	insurance
	27
	1000
	241.479
	26.759M
	146.363
	17.438M
	0%
	2.928
	292463
	0%
	1.404
	146644
	0%

	insurance
	27
	5000
	252.730
	24.618M
	143.290
	15.790M
	0%
	3.091
	285418
	0%
	1.432
	143307
	0%

	insurance
	27
	10000
	261.516
	24.781M
	65.748
	7986905
	0%
	10.033
	30146
	0%
	1.886
	8497
	0%

	insurance
	27
	15000
	262.485
	24.799M
	147.272
	15.778M
	0%
	1.974
	27673
	0%
	1.845
	13838
	0%

	water
	32
	500
	OT
	
	1.709
	457528
	0.048%
	11.974
	994743
	0%
	0.019
	542
	0.048%

	water
	32
	1000
	OT
	
	2.319
	632824
	0.008%
	31.442
	2076364
	0%
	0.026
	930
	0.008%

	water
	32
	5000
	OT
	
	2.812
	765076
	0.003%
	6.968
	492616
	0%
	0.025
	343
	0.003%

	water
	32
	10000
	OT
	
	0.184
	90357
	0.001%
	7.428
	479481
	0%
	0.033
	135
	0.001%

	water
	32
	15000
	OT
	
	2.802
	742632
	0.004%
	28.802
	1775929
	0%
	0.033
	1175
	0.004%

	alarm
	37
	500
	OT
	
	0.107
	197
	0.401%
	OT
	
	
	0.164
	37
	0.401%

	alarm
	37
	1000
	OT
	
	0.167
	61582
	0.062%
	OT
	
	
	0.091
	4908
	0.062%

	alarm
	37
	5000
	OT
	
	0.226
	73802
	0.021%
	OT
	
	
	0.296
	130
	0.021%

	alarm
	37
	10000
	OT
	
	0.256
	76196
	0.010%
	OT
	
	
	0.155
	8349
	0.010%

	alarm
	37
	15000
	OT
	
	0.307
	77581
	0.005%
	OT
	
	
	0.161
	8341
	0.005%

	hailfinder
	56
	500
	OT
	
	0.066
	1670
	0.013%
	OT
	
	
	0.098
	76
	0.013%

	hailfinder
	56
	1000
	OT
	
	0.064
	1931
	0.023%
	OT
	
	
	0.084
	66
	0.023%

	hailfinder
	56
	5000
	OT
	
	1.564
	356025
	0.025%
	OT
	
	
	0.231
	68
	0.025%

	hailfinder
	56
	10000
	OT
	
	0.291
	491
	0.067%
	OT
	
	
	0.356
	62
	0.067%

	hailfinder
	56
	15000
	OT
	
	1.662
	362282
	0.043%
	OT
	
	
	0.469
	10378
	0.043%

Table 3: Running time, number of expanded states, and score error ratio for AWA* with ancestral partition and/or heuristic partition on benchmark BNs.
	Name
	n
	N
	O
	AP
	HP
	AP-HP

	
	
	
	Time(s)
	Exp
	Time(s)
	Exp
	Error
	Time(s)
	Exp
	Error
	Time(s)
	Exp
	Error

	sachs
	11
	500
	0.002
	211
	0.001
	63
	0%
	0.001
	11
	0%
	0.001
	11
	0%

	sachs
	11
	1000
	0.002
	271
	0.001
	69
	0%
	0.001
	11
	0%
	0.001
	11
	0%

	sachs
	11
	5000
	0.003
	629
	0.002
	102
	0%
	0.002
	11
	0%
	0.002
	16
	0%

	sachs
	11
	10000
	0.003
	783
	0.003
	144
	0%
	0.003
	15
	0%
	0.003
	11
	0%

	sachs
	11
	15000
	0.004
	914
	0.003
	160
	0%
	0.003
	37
	0%
	0.003
	14
	0%

	child
	20
	500
	0.107
	45312
	0.045
	16371
	0%
	0.026
	371
	0%
	0.027
	123
	0%

	child
	20
	1000
	0.198
	69590
	0.074
	26905
	0%
	0.029
	118
	0%
	0.029
	108
	0%

	child
	20
	5000
	1.377
	323846
	0.405
	119191
	0%
	0.070
	7438
	0%
	0.068
	5133
	0%

	child
	20
	10000
	2.404
	534444
	0.792
	208862
	0%
	0.149
	19720
	0%
	0.117
	12522
	0%

	child
	20
	15000
	2.90
	595660
	1.050
	254369
	0%
	0.249
	32735
	0%
	0.212
	19590
	0%

	boerlage92
	23
	500
	12.487
	3641617
	5.687
	1695447
	0%
	0.027
	2466
	0%
	0.026
	1881
	0%

	boerlage92
	23
	1000
	14.904
	3958712
	0.450
	214525
	0%
	0.207
	58129
	0%
	0.010
	169
	0%

	boerlage92
	23
	5000
	33.738
	7824034
	24.236
	6323678
	0%
	45.366
	8138119
	0%
	19.229
	3950159
	0%

	boerlage92
	23
	10000
	43.527
	9344601
	23.560
	5597403
	0%
	55.968
	9425791
	0%
	22.662
	4554849
	0%

	boerlage92
	23
	15000
	52.107
	11.364M
	26.969
	6952358
	0%
	50.801
	11.392M
	0%
	26.449
	5287172
	0%

	insurance
	27
	500
	331.862
	35.222M
	109.414
	11.732M
	0%
	0.633
	129828
	0%
	0.729
	26900
	0%

	insurance
	27
	1000
	445.477
	36.488M
	296.259
	23.662M
	0%
	4.885
	517640
	0%
	2.316
	249705
	0%

	insurance
	27
	5000
	426.415
	32.291M
	269.710
	21.367M
	0%
	3.653
	378471
	0%
	1.843
	184711
	0%

	insurance
	27
	10000
	426.873
	32.538M
	101.347
	9989889
	0%
	10.309
	47955
	0%
	1.828
	11116
	0%

	insurance
	27
	15000
	431.401
	31.664M
	264.387
	20.265M
	0%
	1.988
	40444
	0%
	1.866
	19587
	0%

	water
	32
	500
	OT
	
	2.156
	619534
	0.048%
	16.152
	2386387
	0%
	0.020
	779
	0.048%

	water
	32
	1000
	OT
	
	3.498
	881337
	0.008%
	41.585
	3669217
	0%
	0.028
	1140
	0.008%

	water
	32
	5000
	OT
	
	3.943
	927943
	0.003%
	8.628
	905978
	0%
	0.025
	424
	0.003%

	water
	32
	10000
	OT
	
	0.218
	110199
	0.001%
	9.856
	851281
	0%
	0.034
	150
	0.001%

	water
	32
	15000
	OT
	
	4.357
	968292
	0.004%
	34.204
	2860343
	0%
	0.035
	1574
	0.004%

	alarm
	37
	500
	OT
	
	0.109
	216
	0.401%
	OT
	
	
	0.108
	37
	0.401%

	alarm
	37
	1000
	OT
	
	0.200
	104005
	0.062%
	OT
	
	
	0.097
	7694
	0.062%

	alarm
	37
	5000
	OT
	
	0.270
	117787
	0.021%
	OT
	
	
	0.216
	124
	0.021%

	alarm
	37
	10000
	OT
	
	0.325
	157903
	0.010%
	OT
	
	
	0.163
	10939
	0.010%

	alarm
	37
	15000
	OT
	
	0.298
	133828
	0.005%
	OT
	
	
	0.169
	11348
	0.005%

	hailfinder
	56
	500
	OT
	
	0.067
	2168
	0.013%
	OT
	
	
	0.070
	73
	0.013%

	hailfinder
	56
	1000
	OT
	
	0.064
	2445
	0.023%
	OT
	
	
	0.077
	75
	0.023%

	hailfinder
	56
	5000
	OT
	
	2.901
	667896
	0.025%
	OT
	
	
	1.816
	73
	0.025%

	hailfinder
	56
	10000
	OT
	
	0.285
	648
	0.067%
	OT
	
	
	0.290
	64
	0.067%

	hailfinder
	56
	15000
	OT
	
	2.890
	653044
	0.043%
	OT
	
	
	1.582
	12991
	0.043%

Table 4: Running time, number of expanded states, and score error ratio for BFBnB with ancestral partition and/or heuristic partition on benchmark BNs.
	Name
	n
	N
	O
	AP
	HP
	AP-HP

	
	
	
	Time(s)
	Exp
	Time(s)
	Exp
	Error
	Time(s)
	Exp
	Error
	Time(s)
	Exp
	Error

	sachs
	11
	500
	0.004
	389
	0.003
	80
	0%
	0.004
	335
	0%
	0.004
	53
	0%

	sachs
	11
	1000
	0.005
	567
	0.004
	99
	0%
	0.004
	519
	0%
	0.004
	71
	0%

	sachs
	11
	5000
	0.005
	751
	0.005
	111
	0%
	0.005
	487
	0%
	0.005
	67
	0%

	sachs
	11
	10000
	0.006
	887
	0.005
	134
	0%
	0.005
	487
	0%
	0.005
	67
	0%

	sachs
	11
	15000
	0.006
	848
	0.005
	152
	0%
	0.005
	139
	0%
	0.005
	67
	0%

	child
	20
	500
	0.113
	36914
	0.029
	15394
	0%
	0.035
	7746
	0%
	0.034
	3882
	0%

	child
	20
	1000
	0.106
	55805
	0.045
	23253
	0%
	0.038
	7784
	0%
	0.038
	3900
	0%

	child
	20
	5000
	0.394
	259156
	0.168
	101145
	0%
	0.102
	12371
	0%
	0.105
	6743
	0%

	child
	20
	10000
	0.801
	423868
	0.347
	174816
	0%
	0.120
	19582
	0%
	0.137
	11175
	0%

	child
	20
	15000
	0.917
	516250
	0.499
	221228
	0%
	0.221
	28710
	0%
	0.207
	12605
	0%

	boerlage92
	23
	500
	3.414
	2012963
	1.394
	1022502
	0%
	0.033
	5857
	0%
	0.034
	5782
	0%

	boerlage92
	23
	1000
	3.460
	2041343
	0.185
	144115
	0%
	0.078
	34539
	0%
	0.015
	287
	0%

	boerlage92
	23
	5000
	5.732
	3174387
	3.336
	2230335
	0%
	8.593
	4359792
	0%
	3.142
	2131497
	0%

	boerlage92
	23
	10000
	6.679
	3603342
	3.466
	2231478
	0%
	9.832
	5050544
	0%
	4.485
	2578268
	0%

	boerlage92
	23
	15000
	6.830
	3668565
	3.564
	2237462
	0%
	10.628
	5585074
	0%
	3.434
	2835181
	0%

	insurance
	27
	500
	93.145
	23.922M
	28.597
	8928857
	0%
	0.213
	97491
	0%
	0.067
	24817
	0%

	insurance
	27
	1000
	110.116
	26.786M
	73.064
	17.472M
	0%
	0.761
	312161
	0%
	0.392
	157598
	0%

	insurance
	27
	5000
	104.588
	24.641M
	67.418
	15.798M
	0%
	0.792
	296061
	0%
	0.399
	151183
	0%

	insurance
	27
	10000
	106.364
	24.790M
	28.314
	7991544
	0%
	9.367
	39833
	0%
	1.809
	12685
	0%

	insurance
	27
	15000
	107.699
	24.802M
	68.937
	15.781M
	0%
	1.831
	30521
	0%
	1.848
	15263
	0%

	water
	32
	500
	OT
	
	0.566
	459629
	0.048%
	17.034
	5772642
	0%
	0.037
	3042
	0.048%

	water
	32
	1000
	OT
	
	0.828
	634958
	0.008%
	8.669
	2346917
	0%
	0.037
	3082
	0.008%

	water
	32
	5000
	OT
	
	1.020
	765489
	0.003%
	1.390
	514388
	0%
	0.033
	593
	0.003%

	water
	32
	10000
	OT
	
	0.192
	90459
	0.001%
	1.634
	532970
	0%
	0.034
	251
	0.001%

	water
	32
	15000
	OT
	
	1.009
	742810
	0.004%
	7.143
	1795402
	0%
	0.052
	1536
	0.004%

	alarm
	37
	500
	OT
	
	0.127
	205
	0.401%
	OT
	
	
	0.120
	60
	0.401%

	alarm
	37
	1000
	OT
	
	0.117
	62268
	0.062%
	OT
	
	
	0.085
	6048
	0.062%

	alarm
	37
	5000
	OT
	
	0.166
	74354
	0.021%
	OT
	
	
	0.283
	1500
	0.021%

	alarm
	37
	10000
	OT
	
	0.184
	76756
	0.010%
	OT
	
	
	0.153
	9588
	0.010%

	alarm
	37
	15000
	OT
	
	0.194
	78120
	0.005%
	OT
	
	
	0.144
	9995
	0.005%

	hailfinder
	56
	500
	OT
	
	0.109
	2316
	0.013%
	OT
	
	
	0.091
	1115
	0.013%

	hailfinder
	56
	1000
	OT
	
	0.070
	2411
	0.023%
	OT
	
	
	0.088
	805
	0.023%

	hailfinder
	56
	5000
	OT
	
	0.638
	356943
	0.025%
	OT
	
	
	0.215
	2235
	0.025%

	hailfinder
	56
	10000
	OT
	
	0.344
	583
	0.067%
	OT
	
	
	0.335
	185
	0.067%

	hailfinder
	56
	15000
	OT
	
	0.783
	363272
	0.043%
	OT
	
	
	0.404
	11274
	0.043%

Table 5: Running time, number of expanded states, and score error ratio for A* with ancestral partition and/or heuristic partition on UCI datasets.
	Name
	n
	N
	O
	AP
	HP
	AP-HP

	
	
	
	Time(s)
	Exp
	Time(s)
	Exp
	Error
	Time(s)
	Exp
	Error
	Time(s)
	Exp
	Error

	zoo
	17
	101
	0.053
	20468
	0.022
	5916
	0%
	0.025
	68
	0%
	0.031
	28
	0%

	voting
	17
	435
	0.010
	2521
	0.010
	789
	0%
	0.024
	59
	0%
	0.027
	44
	0%

	statlog
	19
	752
	0.918
	220235
	0.473
	66275
	0%
	0.100
	4162
	0%
	0.134
	1536
	0%

	hepatitis
	20
	126
	0.032
	8514
	0.021
	4807
	0%
	0.022
	94
	0%
	0.025
	57
	0%

	segment
	20
	2310
	1.889
	428082
	0.441
	107899
	0%
	0.054
	404
	0%
	0.099
	108
	0%

	imports
	22
	205
	11.520
	2052429
	5.237
	927463
	0%
	0.563
	71244
	0%
	0.291
	41964
	0%

	meta
	22
	528
	5.876
	441823
	3.318
	225950
	0%
	7.667
	24
	0%
	7.880
	22
	0%

	heart
	23
	212
	23.241
	4456333
	10.877
	2238602
	0%
	0.531
	95464
	0%
	0.240
	52690
	0%

	horse
	23
	300
	15.775
	3126900
	3.727
	781730
	0%
	1.877
	278894
	0%
	0.391
	69733
	0%

	mushroom
	23
	8124
	0.614
	49592
	0.410
	33164
	0%
	10.912
	102
	0%
	10.644
	100
	0%

	autos
	26
	159
	46.271
	4762545
	23.824
	2546893
	0%
	9.790
	939725
	0%
	5.251
	4697864
	0%

	steel
	28
	1941
	OT
	
	147.794
	17.705M
	0%
	0.999
	82014
	0%
	0.365
	27296
	0%

	flag
	29
	194
	OT
	
	14.822
	1196267
	0.004%
	78.112
	6236857
	0%
	21.965
	2143722
	0.004%

	soybean
	36
	266
	OT
	
	0.398
	15302
	0.487%
	OT
	
	
	0.393
	4311
	0.487%

	bands
	39
	277
	OT
	
	0.120
	66
	0.194%
	OT
	
	
	0.133
	39
	0.194%

	spectf
	45
	267
	OT
	
	0.069
	47
	0.098%
	OT
	
	
	0.087
	45
	0.098%

	sponge
	45
	76
	OT
	
	0.310
	54
	1.304%
	OT
	
	
	0.300
	46
	1.304%

	lung cancer
	57
	32
	OT
	
	0.472
	19223
	2.159%
	OT
	
	
	0.441
	703
	2.159%

	splice
	61
	3190
	OT
	
	0.167
	65
	0.123%
	OT
	
	
	0.158
	61
	0.123%

Table 6: Running time, number of expanded states, and score error ratio for AWA* with ancestral partition and/or heuristic partition on UCI datasets.
	Name
	n
	N
	O
	AP
	HP
	AP-HP

	
	
	
	Time(s)
	Exp
	Time(s)
	Exp
	Error
	Time(s)
	Exp
	Error
	Time(s)
	Exp
	Error

	zoo
	17
	101
	0.059
	25131
	0.048
	6899
	0%
	0.028
	96
	0%
	0.034
	28
	0%

	voting
	17
	435
	0.011
	3771
	0.010
	1152
	0%
	0.022
	57
	0%
	0.030
	46
	0%

	statlog
	19
	752
	1.113
	338997
	0.278
	101894
	0%
	0.108
	5954
	0%
	0.146
	2137
	0%

	hepatitis
	20
	126
	0.032
	10641
	0.021
	6134
	0%
	0.024
	137
	0%
	0.027
	117
	0%

	segment
	20
	2310
	3.264
	908547
	0.663
	240903
	0%
	0.057
	532
	0%
	0.103
	129
	0%

	imports
	22
	205
	17.668
	3075638
	6.731
	1264646
	0%
	0.797
	92703
	0%
	0.365
	52723
	0%

	meta
	22
	528
	7.201
	517954
	3.668
	252176
	0%
	7.665
	22
	0%
	7.662
	22
	0%

	heart
	23
	212
	38.600
	7787034
	15.584
	3419396
	0%
	0.635
	127183
	0%
	0.306
	67492
	0%

	horse
	23
	300
	29.253
	5386046
	6.063
	1327575
	0%
	2.944
	457832
	0%
	0.495
	107789
	0%

	mushroom
	23
	8124
	0.665
	64057
	0.557
	46724
	0%
	11.668
	101
	0%
	11.767
	100
	0%

	autos
	26
	159
	70.130
	7528551
	70.130
	4059585
	0%
	13.251
	1323745
	0%
	7.024
	677144
	0%

	steel
	28
	1941
	OT
	
	286.447
	41.099M
	0%
	4.959
	510918
	0%
	1.157
	152173
	0%

	flag
	29
	194
	OT
	
	18.649
	1320734
	0.004%
	96.354
	8321170
	0%
	28.707
	2980926
	0.004%

	soybean
	36
	266
	OT
	
	0.430
	22255
	0.487%
	OT
	
	
	0.398
	5802
	0.487%

	bands
	39
	277
	OT
	
	0.149
	69
	0.194%
	OT
	
	
	0.118
	39
	0.194%

	spectf
	45
	267
	OT
	
	0.070
	47
	0.098%
	OT
	
	
	0.069
	45
	0.098%

	sponge
	45
	76
	OT
	
	0.337
	66
	1.304%
	OT
	
	
	0.342
	48
	1.304%

	lung cancer
	57
	32
	OT
	
	0.490
	22922
	2.159%
	OT
	
	
	0.465
	854
	2.159%

	splice
	61
	3190
	OT
	
	0.171
	69
	0.123%
	OT
	
	
	0.160
	61
	0.123%

Table 7: Running time, number of expanded states, and score error ratio for BFBnB with ancestral partition and/or heuristic partition on UCI datasets.
	Name
	n
	N
	O
	AP
	HP
	AP-HP

	
	
	
	Time(s)
	Exp
	Time(s)
	Exp
	Error
	Time(s)
	Exp
	Error
	Time(s)
	Exp
	Error

	zoo
	17
	101
	0.056
	22065
	0.027
	6241
	0%
	0.029
	444
	0%
	0.034
	133
	0%

	voting
	17
	435
	0.012
	4982
	0.015
	1723
	0%
	0.027
	2459
	0%
	0.033
	962
	0%

	statlog
	19
	752
	0.356
	249602
	0.359
	75415
	0%
	0.155
	15262
	0%
	0.164
	5524
	0%

	hepatitis
	20
	126
	0.036
	22930
	0.034
	20490
	0%
	0.033
	7681
	0%
	0.037
	5705
	0%

	segment
	20
	2310
	0.877
	537611
	0.276
	136505
	0%
	0.093
	26583
	0%
	0.116
	6682
	0%

	imports
	22
	205
	4.166
	2475145
	1.829
	1127967
	0%
	0.324
	75604
	0%
	0.215
	44605
	0%

	meta
	22
	528
	4.026
	443153
	3.205
	228331
	0%
	7.272
	310
	0%
	7.644
	167
	0%

	heart
	23
	212
	7.846
	4579686
	3.414
	2255507
	0%
	0.242
	113342
	0%
	0.115
	59797
	0%

	horse
	23
	300
	6.250
	3670783
	1.298
	907128
	0%
	0.691
	322343
	0%
	0.199
	75274
	0%

	mushroom
	23
	8124
	0.395
	58203
	0.366
	37431
	0%
	11.764
	8735
	0%
	11.730
	4368
	0%

	autos
	26
	159
	14.652
	5138539
	6.969
	2743292
	0%
	3.867
	1070505
	0%
	2.184
	535253
	0%

	steel
	28
	1941
	OT
	
	62.711
	17.751M
	0%
	0.346
	88357
	0%
	0.179
	31437
	0%

	flag
	29
	194
	OT
	
	4.024
	1497750
	0.004%
	28.055
	7238302
	0%
	7.369
	2655608
	0.004%

	soybean
	36
	266
	OT
	
	0.416
	47425
	0.487%
	OT
	
	
	0.421
	16621
	0.487%

	bands
	39
	277
	OT
	
	0.326
	96
	0.194%
	OT
	
	
	0.138
	78
	0.194%

	spectf
	45
	267
	OT
	
	0.097
	61
	0.098%
	OT
	
	
	0.095
	55
	0.098%

	sponge
	45
	76
	OT
	
	0.326
	74
	1.304%
	OT
	
	
	0.321
	69
	1.304%

	lung cancer
	57
	32
	OT
	
	0.501
	31912
	2.159%
	OT
	
	
	0.446
	4439
	2.159%

	splice
	61
	3190
	OT
	
	0.200
	76
	0.123%
	OT
	
	
	0.190
	72
	0.123%

As shown in Tables 2–7, the original A*, AWA*, BFBnB and these algorithms with ancestral partition and/or heuristic partition were used to learn structures on benchmark BNs and UCI datasets, and their trends of running time, number of expanded states and score error ratios were similar. Since the original A*, AWA*, and BFBnB are all exact learning algorithms, their score error ratios are always 0%. Therefore, the score error ratios for the original algorithms are not included in these tables. In addition, under the same constraints, the three algorithms achieved the same score error ratio. In general, the running time and the number of expanded states of the algorithms with ancestral partition and/or heuristic partition have significantly reduced compared with the original algorithms. In addition, with these partition constraints, the algorithms can search larger BNs.

In general, these algorithms with HP have demonstrated lower running times and fewer expanded states than those with AP on BNs with , and the algorithms with AP-HP have resulted in the lowest running times and fewest expanded states among almost all datasets. On BNs with , the algorithms with AP had lower running times and fewer expanded states than those with HP, and AP constraints performed better than HP constraints at improving the scalability of the algorithms. There are two reasons for this: (1) The main factor limiting these search algorithms is the scale of the order graph (it grows exponentially) rather than the tightness of the heuristic function. According to the analysis in Sections 3 and 4, AP constraints can significantly prune the order graph and reduce the number of states, which completely changes the structure of the order graph. However, HP constraints cannot change the structure of the order graph; rather, they can only improve the tightness of the heuristic function to avoid searching for more states in the original order graph. In short, compared with HP constraints, AP constraints can directly affect the order graph more significantly, and the AP constraints are the main factors that affect the efficiency of these algorithms. Suppose AP constraints () are always available for any network. According to Theorem 2, the ratio of the number of remaining states to the number of original states after applying AP constraints is (). (), the ratio decreases as the network size increases; that is, the number of remaining states that must be expanded decreases when the network size increases. For example, if in an 8-variables network and AP constraints () are applied, then the number of expanded states can be reduced from 255 to 30, which is 11.375% of the original value. If, in a 16-variable network with similar AP constraints (), then the number of expanded states can be reduced from 65535 to 510, which is 0.778% of the original value. Evidently, as the network size increases, more expanded states can be reduced by AP. (2) Another reason is the limitation of the partition block size. For AP, a smaller partition block size means that the order graph is partitioned into smaller parts, which can improve efficiency. However, for HP, the number of partitions (or the partition block size) and the tightness of the heuristic function (Section 4.2) must be balanced, but this is difficult for larger networks. For example, in the alarm (with 10000 samples), the size of the AP partition block was {1, 16, 1, 1, 17, 1}, which was relatively quick at creating static pattern databases for 16 and 17 variables and is feasible. However, the size of the HP partition block was {16, 15, 6}. As mentioned earlier, the original algorithms used a default simple partition (the size of AP partition blocks was {19, 18} for alarm), and they cannot obtain the solution. According to Section 4.2, {16, 15, 6} was less tight than {19, 18}, indicating that the algorithms with the HP partition block {16, 15, 6} expanded more states than the original algorithms and could not obtain the solution. In addition, we did not limit the maximum size of the partition blocks and obtained another size of the HP partition block as {36, 1}. Algorithms cannot create static pattern databases because the backward breadth-first search for 36 variables runs out of memory. Therefore, for larger networks, HP constraints often face a dilemma. Either the partition of small blocks cannot guarantee fewer expanded states, or static pattern databases cannot be created for the partition of large blocks.
In summary, for larger BNs, the algorithms with AP constraints are more efficient than those with HP constraints and combining these two constraints can improve efficiency.

In terms of accuracy, in larger-scale BNs, algorithms with AP constraints performed more poorly than those with HP constraints. The reason for this is as follows. From Sections 3 and 4, if a directed graph composed of all PPSs may have only one SCC or the maximum size of SCCs may be larger than , then the best PPSs are used for each node to build the directed graph and extract SCCs. In this case, AP constraints may be inaccurate; that is, the ancestral partition is not consistent with the actual BN structure, leading to a slight loss of accuracy in structure learning. For a directed graph built from all PPSs in a larger-scale BN, it is challenging to extract SCCs that meet the required size . Therefore, the greedy strategy of using the best PPSs is more likely to be applied in larger-scale networks, and it is more likely to lose accuracy in larger-scale networks. In contrast, regardless of the heuristic partition, is always admissible and consistent, and it does not affect the structure learning accuracy. Owing to the above reasons, the accuracy loss of algorithms with AP-HP is derived only from AP. With only a slight loss of accuracy, AP-HP and AP can significantly improve the efficiency of many algorithms in the order graph.

[bookmark: _Hlk79593204]Some interesting results deserve further attention. In some cases of boerlage92, especially when the sample size is 5000, 10000, and 15000, algorithms with HP have more running time and expanded states than their original versions. This is because the effect of the heuristic partitions obtained by Algorithm 2 is inferior to that of the default simple partition and on boerlage92. Such cases only appeared in boerlage92. In other cases, the algorithms with HP had fewer expanded states. However, fewer states do not always mean less running time. For example, in the meta and mushroom datasets, algorithms with HP and algorithms with AP-HP had a small number of expanded states, but their running times increased. Heuristic partitions of (,) and (,) were obtained for the meta and mushroom datasets, respectively. These partitions are unbalanced. Under these HP constraints, algorithms performed a backward breadth-first search in the reverse order graph, which is only one smaller than the current size required to create static pattern databases for , and the time cost increased.
The results of the three algorithms A*, AWA*, and BFBnB have been also reviewed under the same constraints in Tables 2–7. In general, with AP and/or HP constraints, AWA* had a longer running time than the other two algorithms. Despite its lower time efficiency, it can obtain the current approximate solution within a limited time, as with GOBNILP. In general, BFBnB had a much greater number of expanded states than the other two algorithms because it expanded states in a breadth-first manner, while the other two algorithms choose the current lowest f-value state. However, BFBnB can save the expanded states to disk in a layered structure, thereby reducing RAM consumption. Furthermore, this algorithm can use a high-speed read and write technique to read and save related information about states. Despite more expanded states, it can obtain a solution more rapidly than the other two algorithms in larger-scale BNs. Considering the running time and the number of expanded states, A* is a more balanced algorithm.

In addition, in Tables 8–9, the running times for calculating AP (Algorithm 1) and HP (Algorithm 2) were recorded on the benchmark BN and UCI datasets. For Algorithm 1, calculating the ancestral partition was relatively quick. The AP can be easily obtained, and a graph-partitioning algorithm only requires a few iterations. By contrast, calculating the heuristic partition required more time because it involved creating static pattern databases based on the current HP to calculate . The of Algorithm 2 was set to obtain the maximum size of a heuristic partition block of approximately 15–20. Sizes near this value can still create static pattern databases relatively quickly. However, because the meta and mushroom heuristic partitions are , and , , the running time for creating static pattern databases for 21 or 22 variables increased significantly. Hence, the running time of Algorithm 2 also increased significantly. This result is consistent with previous conclusions. According to the data in Tables 8–9, Algorithms 1 and 2 generally consume less time to calculate AP and HP within a reasonable running time.
Table 8: Running time for calculating the ancestral and heuristic partition on benchmark BNs.
	Name
	n
	N
	AP Time(s)
	HP Time(s)

	sachs
	11
	500
	0.001
	0.001

	sachs
	11
	1000
	0.001
	0.001

	sachs
	11
	5000
	0.001
	0.002

	sachs
	11
	10000
	0.001
	0.002

	sachs
	11
	15000
	0.001
	0.002

	child
	20
	500
	0.001
	0.012

	child
	20
	1000
	0.001
	0.014

	child
	20
	5000
	0.003
	0.022

	child
	20
	10000
	0.005
	0.028

	child
	20
	15000
	0.008
	0.042

	boerlage92
	23
	500
	0.001
	0.019

	boerlage92
	23
	1000
	0.001
	0.017

	boerlage92
	23
	5000
	0.001
	0.087

	boerlage92
	23
	10000
	0.001
	0.112

	boerlage92
	23
	15000
	0.002
	0.110

	insurance
	27
	500
	0.001
	0.015

	insurance
	27
	1000
	0.001
	0.021

	insurance
	27
	5000
	0.002
	0.050

	insurance
	27
	10000
	0.002
	1.508

	insurance
	27
	15000
	0.002
	0.393

	water
	32
	500
	0.001
	0.027

	water
	32
	1000
	0.001
	0.042

	water
	32
	5000
	0.001
	0.046

	water
	32
	10000
	0.001
	0.045

	water
	32
	15000
	0.001
	0.051

	alarm
	37
	500
	0.001
	0.133

	alarm
	37
	1000
	0.001
	0.075

	alarm
	37
	5000
	0.003
	0.170

	alarm
	37
	10000
	0.003
	0.137

	alarm
	37
	15000
	0.003
	0.120

	hailfinder
	56
	500
	0.004
	0.175

	hailfinder
	56
	1000
	0.006
	0.273

	hailfinder
	56
	5000
	0.007
	0.697

	hailfinder
	56
	10000
	0.007
	0.750

	hailfinder
	56
	15000
	0.007
	0.753

Table 9: Running time for calculating the ancestral and heuristic partitions on UCI datasets.
	Name
	n
	N
	AP Time(s)
	HP Time(s)

	zoo
	17
	101
	0.001
	0.015

	voting
	17
	435
	0.001
	0.009

	statlog
	19
	752
	0.004
	0.047

	hepatitis
	20
	126
	0.001
	0.013

	segment
	20
	2310
	0.004
	0.047

	imports
	22
	205
	0.001
	0.208

	meta
	22
	528
	0.047
	4.224

	heart
	23
	212
	0.001
	0.017

	horse
	23
	300
	0.001
	0.081

	mushroom
	23
	8124
	0.013
	4.084

	autos
	26
	159
	0.003
	1.590

	steel
	28
	1941
	0.006
	0.073

	flag
	29
	194
	0.001
	0.138

	soybean
	36
	266
	0.004
	0.504

	bands
	39
	277
	0.001
	0.084

	spectf
	45
	267
	0.001
	0.080

	sponge
	45
	76
	0.002
	0.242

	lung cancer
	57
	32
	0.003
	2.184

	splice
	61
	3190
	0.001
	0.153

5.2 Comparisons with other algorithms
5.2.1 Comparisons with GOBNILP
This section compares the A*, AWA*, and BFBnB under AP/HP/AP-HP constraints with GOBNILP on benchmark BNs, UCI datasets, and datasets with more than 100 nodes, as shown in Tables 10–12. Only the running times for A*, AWA*, and BFBnB with AP/HP/AP-HP that exceeded the running time of GOBNILP are presented, and the bold numbers indicate the shortest running times of the four algorithms. In addition, the score error ratios for A*, AWA*, and BFBnB with AP/AP-HP are shown in the last column.

As shown in Tables 10–12, with the AP and/or HP, A*, AWA*, and BFBnB had lower running times than GOBNILP in many cases. Comparing Tables 2–7 with Tables 10–12, without these constraints, GOBNILP had a shorter running time and could search larger-scale networks than the original A*, AWA*, and BFBnB. With the partition constraints being added, most of the shortest running times occurred in A* and BFBnB. Moreover, the shortest running time was mainly based on AP-HP constraints, followed by AP constraints. Among the three algorithms, AWA* was usually the least efficient in terms of running time, and thus, under the same constraints, its efficiency was also low. In terms of accuracy, A*, AWA*, and BFBnB with HP always obtained optimal scores because is always admissible and consistent. As for the AP and AP-HP constraints, when , A*, AWA*, and BFBnB had lower running times than GOBNILP in most cases, but could also achieve the optimal scores as GOBNILP. When , they had a slight loss of accuracy with AP or AP-HP constraints because Algorithm 1 tended to use a greedy strategy to extract the SCCs for larger-scale networks, and the accuracy loss of this greedy strategy would be negligible. For datasets with over 100 nodes, their accuracy was reduced. In this case, Algorithm 1 extracted the SCCs when and returned many partitions of a single node. These partitions formed AP constraints similar to partial ordering, and they were not consistent with the actual BNs, even incorrect, resulting in a large loss of accuracy.

[bookmark: _Hlk79593469]In boerlage92, with a sample size of 5000, 10000, and 15000 in Table 10, algorithms with the AP and/or HP did not outperform GOBNILP in terms of running time. Considering AP in these situations, the size of the AP partition block was {22,1}, indicating that a network only smaller than the current size was searched, and therefore, the running time was only slightly reduced. With regard to HP in these situations, Algorithm 2 returned a worse heuristic partition plan than the default simple partitions and , resulting in more expanded states and a higher running time. With the combination of the two factors, algorithms with AP and/or HP have achieved worse running time.
In summary, in most of the cases, A*, AWA*, and BFBnB under AP/AP-HP demonstrated a lower running time than GOBNILP, and the accuracy was close to that of GOBNILP within 100 nodes.

Table 10: Running time for A*, AWA*, BFBnB with AP/HP/AP-HP and GOBNILP, and score error ratio for A*, AWA*, BFBnB with AP/AP-HP on benchmark BNs.
	Name
	n
	N
	GOBNILP
	A*
	AWA*
	BFBnB
	Error

	
	
	
	
	AP
	HP
	AP-HP
	AP
	HP
	AP-HP
	AP
	HP
	AP-HP
	

	sachs
	11
	500
	0.161
	0.001
	0.001
	0.001
	0.001
	0.001
	0.001
	0.003
	0.004
	0.004
	0%

	sachs
	11
	1000
	0.257
	0.001
	0.001
	0.001
	0.001
	0.001
	0.001
	0.004
	0.004
	0.004
	0%

	sachs
	11
	5000
	0.297
	0.002
	0.002
	0.002
	0.002
	0.002
	0.002
	0.005
	0.005
	0.005
	0%

	sachs
	11
	10000
	0.304
	0.003
	0.003
	0.003
	0.003
	0.003
	0.003
	0.005
	0.005
	0.005
	0%

	sachs
	11
	15000
	0.219
	0.003
	0.003
	0.003
	0.003
	0.003
	0.003
	0.005
	0.005
	0.005
	0%

	child
	20
	500
	0.247
	0.040
	0.023
	0.022
	0.045
	0.026
	0.027
	0.029
	0.035
	0.034
	0%

	child
	20
	1000
	0.410
	0.073
	0.025
	0.024
	0.074
	0.029
	0.029
	0.045
	0.038
	0.038
	0%

	child
	20
	5000
	4.159
	0.076
	0.066
	0.062
	0.405
	0.070
	0.068
	0.168
	0.102
	0.105
	0%

	child
	20
	10000
	9.767
	0.707
	0.134
	0.104
	0.792
	0.149
	0.117
	0.347
	0.120
	0.137
	0%

	child
	20
	15000
	22.668
	0.914
	0.227
	0.173
	1.050
	0.249
	0.212
	0.499
	0.221
	0.207
	0%

	boerlage92
	23
	500
	0.156
	
	0.029
	0.025
	
	0.027
	0.026
	
	0.033
	0.034
	0%

	boerlage92
	23
	1000
	0.214
	
	0.173
	0.010
	
	0.207
	0.010
	0.185
	0.078
	0.015
	0%

	boerlage92
	23
	5000
	0.221
	
	
	
	
	
	
	
	
	
	0%

	boerlage92
	23
	10000
	0.475
	
	
	
	
	
	
	
	
	
	0%

	boerlage92
	23
	15000
	1.095
	
	
	
	
	
	
	
	
	
	0%

	insurance
	27
	500
	0.928
	
	0.640
	0.136
	
	0.633
	0.729
	
	0.213
	0.067
	0%

	insurance
	27
	1000
	0.921
	
	
	
	
	
	
	
	0.761
	0.392
	0%

	insurance
	27
	5000
	5.874
	
	3.091
	1.432
	
	3.653
	1.843
	
	0.792
	0.399
	0%

	insurance
	27
	10000
	7.136
	
	
	1.886
	
	
	1.828
	
	
	1.809
	0%

	insurance
	27
	15000
	9.559
	
	1.974
	1.845
	
	1.988
	1.866
	
	1.831
	1.848
	0%

	water
	32
	500
	1.833
	1.709
	
	0.019
	
	
	0.020
	0.566
	
	0.037
	0.048%

	water
	32
	1000
	4.717
	2.319
	
	0.026
	3.498
	
	0.028
	0.828
	
	0.037
	0.008%

	water
	32
	5000
	2.573
	
	
	0.025
	
	
	0.025
	1.020
	1.390
	0.033
	0.003%

	water
	32
	10000
	7.391
	0.184
	
	0.033
	0.218
	
	0.034
	0.192
	1.634
	0.034
	0.001%

	water
	32
	15000
	18.770
	2.802
	
	0.033
	4.357
	
	0.035
	1.009
	7.143
	0.052
	0.004%

	alarm
	37
	500
	2.241
	0.107
	
	0.164
	0.109
	
	0.108
	0.127
	
	0.120
	0.401%

	alarm
	37
	1000
	3.154
	0.167
	
	0.091
	0.200
	
	0.097
	0.117
	
	0.085
	0.062%

	alarm
	37
	5000
	12.876
	0.226
	
	0.296
	0.270
	
	0.216
	0.166
	
	0.283
	0.021%

	alarm
	37
	10000
	25.663
	0.256
	
	0.155
	0.325
	
	0.163
	0.184
	
	0.153
	0.010%

	alarm
	37
	15000
	23.002
	0.307
	
	0.161
	0.298
	
	0.169
	0.194
	
	0.144
	0.005%

	hailfinder
	56
	500
	0.811
	0.066
	
	0.098
	0.067
	
	0.070
	0.109
	
	0.091
	0.013%

	hailfinder
	56
	1000
	1.920
	0.064
	
	0.084
	0.064
	
	0.077
	0.070
	
	0.088
	0.023%

	hailfinder
	56
	5000
	6.559
	1.564
	
	0.231
	2.901
	
	1.816
	0.638
	
	0.215
	0.025%

	hailfinder
	56
	10000
	34.393
	0.291
	
	0.356
	0.285
	
	0.290
	0.344
	
	0.335
	0.067%

	hailfinder
	56
	15000
	68.880
	1.662
	
	0.469
	2.890
	
	1.582
	0.783
	
	0.404
	0.043%

	win95pt
	76
	500
	527.834
	1.469
	
	1.492
	2.571
	
	1.505
	2.190
	
	1.590
	0.653%

	win95pt
	76
	1000
	244.868
	2.071
	
	2.059
	3.588
	
	2.076
	2.425
	
	2.282
	2.830%

	win95pt
	76
	5000
	3169.231
	3.359
	
	3.350
	4.330
	
	3.360
	3.759
	
	3.597
	2.881%

	win95pt
	76
	10000
	2920.649
	3.979
	
	3.972
	5.361
	
	4.004
	4.837
	
	4.225
	2.706%

	win95pt
	76
	15000
	4814.765
	3.703
	
	3.514
	4.739
	
	4.567
	4.121
	
	3.831
	2.880%

Table 11: Running time for A*, AWA*, BFBnB with AP/HP/AP-HP and GOBNILP, and score error ratio for A*, AWA*, BFBnB with AP/AP-HP on UCI datasets.
	[bookmark: _Hlk78142196]Name
	n
	N
	GOBNILP
	A*
	AWA*
	BFBnB
	Error

	
	
	
	
	AP
	HP
	AP-HP
	AP
	HP
	AP-HP
	AP
	HP
	AP-HP
	

	zoo
	17
	101
	4.754
	0.022
	0.025
	0.031
	0.048
	0.028
	0.034
	0.027
	0.029
	0.034
	0%

	voting
	17
	435
	0.562
	0.010
	0.024
	0.027
	0.010
	0.022
	0.030
	0.015
	0.027
	0.033
	0%

	statlog
	19
	752
	13.600
	0.473
	0.100
	0.134
	0.278
	0.108
	0.146
	0.359
	0.155
	0.164
	0%

	hepatitis
	20
	126
	0.397
	0.021
	0.022
	0.025
	0.021
	0.024
	0.027
	0.034
	0.033
	0.037
	0%

	segment
	20
	2310
	12.963
	0.441
	0.054
	0.099
	0.663
	0.057
	0.103
	0.276
	0.093
	0.116
	0%

	imports
	22
	205
	9.944
	5.237
	0.563
	0.291
	6.731
	0.797
	0.365
	1.829
	0.324
	0.215
	0%

	meta
	22
	528
	OT
	3.318
	7.667
	7.880
	3.668
	7.665
	7.662
	3.205
	7.272
	7.644
	0%

	heart
	23
	212
	0.310
	
	
	0.240
	
	
	0.306
	
	0.242
	0.115
	0%

	horse
	23
	300
	2.068
	
	1.877
	0.391
	
	
	0.495
	1.298
	0.691
	0.199
	0%

	mushroom
	23
	8124
	OT
	0.410
	10.912
	10.644
	0.557
	11.668
	11.767
	0.366
	11.764
	11.730
	0%

	autos
	26
	159
	13.325
	
	9.790
	5.251
	
	13.251
	7.024
	6.969
	3.867
	2.184
	0%

	steel
	28
	1941
	74.392
	
	0.999
	0.365
	
	4.959
	1.157
	
	0.346
	0.179
	0%

	flag
	29
	194
	1.243
	
	
	
	
	
	
	
	
	
	0.004%

	soybean
	36
	266
	22.241
	0.398
	
	0.393
	0.430
	
	0.398
	0.416
	
	0.421
	0.487%

	bands
	39
	277
	31.657
	0.120
	
	0.133
	0.149
	
	0.118
	0.326
	
	0.138
	0.194%

	spectf
	45
	267
	6.402
	0.069
	
	0.087
	0.070
	
	0.069
	0.097
	
	0.095
	0.098%

	sponge
	45
	76
	0.670
	0.310
	
	0.300
	0.337
	
	0.342
	0.326
	
	0.321
	1.304%

	lung cancer
	57
	32
	4.62
	0.472
	
	0.441
	0.490
	
	0.465
	0.501
	
	0.446
	2.159%

	splice
	61
	3190
	304.946
	0.167
	
	0.158
	0.171
	
	0.160
	0.200
	
	0.190
	0.123%

Table 12: Running time for A*, AWA*, BFBnB with AP/HP/AP-HP and GOBNILP, and score error ratio for A*, AWA*, BFBnB with AP/AP-HP on datasets with more than 100 nodes.
	Name
	n
	N
	GOBNILP
	A*
	AWA*
	BFBnB
	Error

	
	
	
	
	AP
	HP
	AP-HP
	AP
	HP
	AP-HP
	AP
	HP
	AP-HP
	

	pathfinder
	109
	5000
	OT
	48.897
	
	46.700
	51.921
	
	47.933
	48.340
	
	48.819
	42.364%

	synthetic 1
	120
	10000
	193.093
	10.051
	
	10.055
	11.380
	
	10.249
	11.860
	
	11.809
	21.298%

	synthetic 2
	150
	10000
	322.424
	16.269
	
	16.096
	21.111
	
	16.486
	18.493
	
	18.738
	20.188%

	synthetic 3
	175
	10000
	584.062
	16.943
	
	16.608
	20.979
	
	16.667
	18.053
	
	17.454
	30.977%

	andes
	223
	5000
	OT
	19.735
	
	19.039
	22.677
	
	19.633
	19.142
	
	19.226
	48.135%

5.2.2 Comparisons with MMHC
This section compares the A*, AWA*, and BFBnB under AP/HP/AP-HP constraints with MMHC on benchmark BNs, UCI datasets, and datasets with more than 100 nodes, as shown in Tables 13–15. Only the running times for A*, AWA*, and BFBnB with AP/HP/AP-HP that exceeded the running time of MMHC are presented, and the bold numbers indicate the shortest running times of the four algorithms. In addition, the score error ratios for MMHC are listed in the 5th column, and the score error ratios for A*, AWA*, and BFBnB with AP/AP-HP are listed in the last column.
As shown in Tables 13–15, with the AP and/or HP, these algorithms had lower running times than MMHC in many cases. Comparing Tables 2–7 with Tables 13–15, without these constraints, MMHC had a shorter running time, less than GOBNILP, and can search larger-scale networks than the original A*, AWA*, and BFBnB. With added constraints, most of the shortest running times occurred in A* and BFBnB. Moreover, the shortest running times mainly occurred with AP-HP constraints, followed by AP constraints. Among the three algorithms, AWA* was usually the least efficient in terms of running time, and thus, under the same constraints, its efficiency was also low.

In terms of accuracy, the MMHC performed less accurately on many datasets. For the same dataset, MMHC achieved better results with a larger sample size than a smaller sample size. This is because the MMPC algorithm (the first phase of the MMHC algorithm) uses CI tests to learn the parent and children sets. CI tests require a large number of samples; therefore, MMHC has low accuracy when the sample size is smaller. A*, AWA*, and BFBnB with HP always obtained optimal scores because is always admissible and consistent. When , A*, AWA*, and BFBnB with AP/AP-HP also achieved optimal scores. When , although A*, AWA*, and BFBnB under AP/AP-HP had a slight loss of accuracy, they are still better than MMHC. On datasets with over 100 nodes, A*, AWA*, and BFBnB with AP/AP-HP produced worse accuracy than MMHC. In this case, Algorithm 1 extracted the SCCs when and returned many partitions of a single node. These partitions formed AP constraints similar to partial orderings, and they were incorrect, resulting in a large loss of accuracy.
In boerlage92, with a sample size 5000, 10000, and 15000, algorithms with the AP and/or HP did not outperform MMHC in running time. The reason for this has been discussed in Section 5.2.1.
In summary, in most of the cases, A*, AWA*, and BFBnB under AP/AP-HP had a lower running time than MMHC, and the accuracy was higher than that of MMHC within 100 nodes.

Table 13: Running time and score error ratio for A*, AWA*, BFBnB with AP/HP/AP-HP and MMHC on benchmark BNs.
	[bookmark: _Hlk78135540]Name
	n
	N
	MMHC
	A*
	AWA*
	BFBnB
	Error

	
	
	
	time(s)
	Error
	AP
	HP
	AP-HP
	AP
	HP
	AP-HP
	AP
	HP
	AP-HP
	

	sachs
	11
	500
	0.345
	0.037%
	0.001
	0.001
	0.001
	0.001
	0.001
	0.001
	0.003
	0.004
	0.004
	0%

	sachs
	11
	1000
	0.352
	0%
	0.001
	0.001
	0.001
	0.001
	0.001
	0.001
	0.004
	0.004
	0.004
	0%

	sachs
	11
	5000
	0.974
	0%
	0.002
	0.002
	0.002
	0.002
	0.002
	0.002
	0.005
	0.005
	0.005
	0%

	sachs
	11
	10000
	1.491
	0%
	0.003
	0.003
	0.003
	0.003
	0.003
	0.003
	0.005
	0.005
	0.005
	0%

	sachs
	11
	15000
	2.289
	0%
	0.003
	0.003
	0.003
	0.003
	0.003
	0.003
	0.005
	0.005
	0.005
	0%

	child
	20
	500
	0.578
	4.063%
	0.040
	0.023
	0.022
	0.045
	0.026
	0.027
	0.029
	0.035
	0.034
	0%

	child
	20
	1000
	0.730
	0.143%
	0.073
	0.025
	0.024
	0.074
	0.029
	0.029
	0.045
	0.038
	0.038
	0%

	child
	20
	5000
	2.552
	0.346%
	0.076
	0.066
	0.062
	0.405
	0.070
	0.068
	0.168
	0.102
	0.105
	0%

	child
	20
	10000
	5.545
	0.288%
	0.707
	0.134
	0.104
	0.792
	0.149
	0.117
	0.347
	0.120
	0.137
	0%

	child
	20
	15000
	9.074
	0.345%
	0.914
	0.227
	0.173
	1.050
	0.249
	0.212
	0.499
	0.221
	0.207
	0%

	boerlage92
	23
	500
	0.367
	0.979%
	
	0.029
	0.025
	
	0.027
	0.026
	
	0.033
	0.034
	0%

	boerlage92
	23
	1000
	0.504
	0.940%
	0.443
	0.173
	0.010
	0.450
	0.207
	0.010
	0.185
	0.078
	0.015
	0%

	boerlage92
	23
	5000
	0.773
	0.191%
	
	
	
	
	
	
	
	
	
	0%

	boerlage92
	23
	10000
	1.242
	0.067%
	
	
	
	
	
	
	
	
	
	0%

	boerlage92
	23
	15000
	1.631
	0.062%
	
	
	
	
	
	
	
	
	
	0%

	insurance
	27
	500
	0.644
	8.030%
	
	0.640
	0.136
	
	0.633
	
	
	0.213
	0.067
	0%

	insurance
	27
	1000
	0.912
	4.135%
	
	
	
	
	
	
	
	0.761
	0.392
	0%

	insurance
	27
	5000
	4.817
	1.0493%
	
	3.091
	1.432
	
	3.653
	1.843
	
	0.792
	0.399
	0%

	insurance
	27
	10000
	10.995
	2.400%
	
	10.033
	1.886
	
	10.309
	1.828
	
	9.367
	1.809
	0%

	insurance
	27
	15000
	23.683
	2.223%
	
	1.974
	1.845
	
	1.988
	1.866
	
	1.831
	1.848
	0%

	water
	32
	500
	0.382
	47.208%
	
	
	0.019
	
	
	0.020
	
	
	0.037
	0.048%

	water
	32
	1000
	0.508
	33.820%
	
	
	0.026
	
	
	0.028
	
	
	0.037
	0.008%

	water
	32
	5000
	1.017
	10.919%
	
	
	0.025
	
	
	0.025
	
	
	0.033
	0.003%

	water
	32
	10000
	1.871
	5.933%
	0.184
	
	0.033
	0.218
	
	0.034
	0.192
	1.634
	0.034
	0.001%

	water
	32
	15000
	2.748
	4.075%
	
	
	0.033
	
	
	0.035
	
	
	0.052
	0.004%

	alarm
	37
	500
	0.714
	1.225%
	0.107
	
	0.164
	0.109
	
	0.108
	0.127
	
	0.120
	0.401%

	alarm
	37
	1000
	0.884
	1.816%
	0.167
	
	0.091
	0.200
	
	0.097
	0.117
	
	0.085
	0.062%

	alarm
	37
	5000
	2.298
	1.104%
	0.226
	
	0.296
	0.270
	
	0.216
	0.166
	
	0.283
	0.021%

	alarm
	37
	10000
	4.158
	1.220%
	0.256
	
	0.155
	0.325
	
	0.163
	0.184
	
	0.153
	0.010%

	alarm
	37
	15000
	6.736
	0.904%
	0.307
	
	0.161
	0.298
	
	0.169
	0.194
	
	0.144
	0.005%

	hailfinder
	56
	500
	7.229
	2.748%
	0.066
	
	0.098
	0.067
	
	0.070
	0.109
	
	0.091
	0.013%

	hailfinder
	56
	1000
	2.837
	14.49%
	0.064
	
	0.084
	0.064
	
	0.077
	0.070
	
	0.088
	0.023%

	hailfinder
	56
	5000
	40.775
	5.587%
	1.564
	
	0.231
	2.901
	
	1.816
	0.638
	
	0.215
	0.025%

	hailfinder
	56
	10000
	142.147
	3.811%
	0.291
	
	0.356
	0.285
	
	0.290
	0.344
	
	0.335
	0.067%

	hailfinder
	56
	15000
	307.990
	2.252%
	1.662
	
	0.469
	2.890
	
	1.582
	0.783
	
	0.404
	0.043%

	win95pt
	76
	500
	1.862
	7.765%
	1.469
	
	1.492
	2.571
	
	1.505
	2.190
	
	1.590
	0.653%

	win95pt
	76
	1000
	5.734
	3.378%
	2.071
	
	2.059
	3.588
	
	2.076
	2.425
	
	2.282
	2.830%

	win95pt
	76
	5000
	55.928
	4.911%
	3.359
	
	3.350
	4.330
	
	3.360
	3.759
	
	3.597
	2.881%

	win95pt
	76
	10000
	509.719
	3.089%
	3.979
	
	3.972
	5.361
	
	4.004
	4.837
	
	4.225
	2.706%

	win95pt
	76
	15000
	659.807
	5.209%
	3.703
	
	3.514
	4.739
	
	4.567
	4.121
	
	3.831
	2.880%

Table 14: Running time and score error ratio for A*, AWA*, BFBnB with AP/HP/AP-HP and MMHC on UCI datasets.
	[bookmark: _Hlk78141994]Name
	n
	N
	MMHC
	A*
	AWA*
	BFBnB
	Error

	
	
	
	time(s)
	Error
	AP
	HP
	AP-HP
	AP
	HP
	AP-HP
	AP
	HP
	AP-HP
	

	zoo
	17
	101
	0.346
	4.733%
	0.022
	0.025
	0.031
	0.048
	0.028
	0.034
	0.027
	0.029
	0.034
	0%

	voting
	17
	435
	0.592
	4.432%
	0.010
	0.024
	0.027
	0.010
	0.022
	0.030
	0.015
	0.027
	0.033
	0%

	statlog
	19
	752
	0.767
	1.226%
	0.473
	0.100
	0.134
	0.278
	0.108
	0.146
	0.359
	0.155
	0.164
	0%

	hepatitis
	20
	126
	0.344
	1.469%
	0.021
	0.022
	0.025
	0.021
	0.024
	0.027
	0.034
	0.033
	0.037
	0%

	segment
	20
	2310
	2.621
	2.637%
	0.441
	0.054
	0.099
	0.663
	0.057
	0.103
	0.276
	0.093
	0.116
	0%

	imports
	22
	205
	0.585
	5.290%
	
	0.563
	0.291
	
	0.797
	0.365
	
	0.324
	0.215
	0%

	meta
	22
	528
	7.793
	45.301%
	3.318
	7.667
	
	3.668
	7.665
	7.662
	3.205
	7.272
	7.644
	0%

	heart
	23
	212
	0.485
	1.514%
	
	
	0.240
	
	
	0.306
	
	0.242
	0.115
	0%

	horse
	23
	300
	0.486
	0.788%
	
	
	0.391
	
	
	
	
	
	0.199
	0%

	mushroom
	23
	8124
	228.549
	82.367%
	0.410
	10.912
	10.644
	0.557
	11.668
	11.767
	0.366
	11.764
	11.730
	0%

	autos
	26
	159
	0.588
	5.192%
	
	
	
	
	
	
	
	
	
	0%

	steel
	28
	1941
	18.111
	0.466%
	
	0.999
	0.365
	
	4.959
	1.157
	
	0.346
	0.179
	0%

	flag
	29
	194
	0.641
	1.165%
	
	
	
	
	
	
	
	
	
	0.004%

	soybean
	36
	266
	1.133
	6.240%
	0.398
	
	0.393
	0.430
	
	0.398
	0.416
	
	0.421
	0.487%

	bands
	39
	277
	0.618
	1.915%
	0.120
	
	0.133
	0.149
	
	0.118
	0.326
	
	0.138
	0.194%

	spectf
	45
	267
	0.721
	0.037%
	0.069
	
	0.087
	0.070
	
	0.069
	0.097
	
	0.095
	0.098%

	sponge
	45
	76
	0.899
	10.263%
	0.310
	
	0.300
	0.337
	
	0.342
	0.326
	
	0.321
	1.304%

	lung cancer
	57
	32
	0.622
	4.758%
	0.472
	
	0.441
	0.490
	
	0.465
	0.501
	
	0.446
	2.159%

	splice
	61
	3190
	110.072
	0.894%
	0.167
	
	0.158
	0.171
	
	0.160
	0.200
	
	0.190
	0.123%

Table 15: Running time and score error ratio for A*, AWA*, BFBnB with AP/HP/AP-HP and MMHC on datasets with more than 100 nodes.
	Name
	n
	N
	MMHC
	A*
	AWA*
	BFBnB
	Error

	
	
	
	time(s)
	Error
	AP
	HP
	AP-HP
	AP
	HP
	AP-HP
	AP
	HP
	AP-HP
	

	pathfinder
	109
	5000
	1600.815
	53.679%
	48.897
	
	46.700
	51.921
	
	47.933
	48.340
	
	48.819
	42.364%

	synthetic 1
	120
	10000
	15.237
	6.468%
	10.051
	
	10.055
	11.380
	
	10.249
	11.860
	
	11.809
	21.298%

	synthetic 2
	150
	10000
	19.408
	7.539%
	16.269
	
	16.096
	
	
	16.486
	18.493
	
	18.738
	20.188%

	synthetic 3
	175
	10000
	30.195
	7.873%
	16.943
	
	16.608
	20.979
	
	16.667
	18.053
	
	17.454
	30.977%

	andes
	223
	5000
	71.521
	8.159%
	19.735
	
	19.039
	22.677
	
	19.633
	19.142
	
	19.226
	48.135%

5.2.3 Comparisons with NOTEARS
This section compares A*, AWA*, and BFBnB under AP/HP/AP-HP constraints with NOTEARS on benchmark BNs, UCI datasets, and datasets with more than 100 nodes, as shown in Tables 16–18. Only the running times for A*, AWA*, and BFBnB with AP/HP/AP-HP that exceeded the running time of NOTEARS are presented, and the bold numbers indicate the shortest running times of the four algorithms. In addition, the score error ratios for NOTEARS are listed in the 5th column, and the score error ratios for A*, AWA*, and BFBnB with AP/AP-HP are listed in the last column.
In terms of running time, with the AP and/or HP, these algorithms had lower running times than NOTEARS in many cases. Comparing Tables 2–7 with Tables 13–15, without these constraints, NOTEARS had a lower running time, less than GOBNILP, and could search larger-scale networks than the original A*, AWA*, and BFBnB. The running time of NOTEARS was close to that of MMHC, but the running time of NOTEARS did not change much with a change in sample and network sizes. After adding the constraints, most of the shortest running times appeared in A* and BFBnB. In addition, the shortest running times mainly occurred with AP-HP constraints, followed by AP constraints.

In terms of accuracy, NOTEARS exhibited varying degrees of accuracy loss across the datasets. NOTEARS obtained better results with a smaller sample size, which was the opposite of MMHC. A*, AWA*, and BFBnB with HP always obtained optimal scores because of admissibility and consistency of the heuristic function. When , A*, AWA*, and BFBnB with AP/AP-HP obtained the optimal scores or slight accuracy losses, performing better than NOTEARS. On datasets with more than 100 nodes, A*, AWA*, and BFBnB with AP/AP-HP had worse accuracies than NOTEARS in general. Algorithm 1 extracted the SCCs under and returned many partitions of a single node on datasets with more than 100 nodes. These single nodes formed AP constraints similar to partial orderings, which was incorrect, resulting in a high loss of accuracy. In pathfinder, NOTEARS could not calculate the score because it ran out of memory, indicating a worse score.
In boerlage92 with a sample size of 5000, 10000, and 15000, algorithms with the AP and/or HP did not outperform NOTEARS in terms of running time. The reason for this has been discussed in Section 5.2.1.
In summary, in most of the cases, A*, AWA*, and BFBnB under AP/AP-HP had a lower running time than NOTEARS, and the accuracy was higher than that of NOTEARS within 100 nodes.

Table 16: Running time and score error ratio for A*, AWA*, BFBnB with AP/HP/AP-HP and NOTEARS on benchmark BNs.
	Name
	n
	N
	NOTEARS
	A*
	AWA*
	BFBnB
	Error

	
	
	
	time(s)
	Error
	AP
	HP
	AP-HP
	AP
	HP
	AP-HP
	AP
	HP
	AP-HP
	

	sachs
	11
	500
	0.739
	4.347%
	0.001
	0.001
	0.001
	0.001
	0.001
	0.001
	0.003
	0.004
	0.004
	0%

	sachs
	11
	1000
	0.692
	6.317%
	0.001
	0.001
	0.001
	0.001
	0.001
	0.001
	0.004
	0.004
	0.004
	0%

	sachs
	11
	5000
	1.247
	11.524%
	0.002
	0.002
	0.002
	0.002
	0.002
	0.002
	0.005
	0.005
	0.005
	0%

	sachs
	11
	10000
	1.621
	12.741%
	0.003
	0.003
	0.003
	0.003
	0.003
	0.003
	0.005
	0.005
	0.005
	0%

	sachs
	11
	15000
	2.263
	13.264%
	0.003
	0.003
	0.003
	0.003
	0.003
	0.003
	0.005
	0.005
	0.005
	0%

	child
	20
	500
	1.396
	25.437%
	0.040
	0.023
	0.022
	0.045
	0.026
	0.027
	0.029
	0.035
	0.034
	0%

	child
	20
	1000
	1.860
	29.093%
	0.073
	0.025
	0.024
	0.074
	0.029
	0.029
	0.045
	0.038
	0.038
	0%

	child
	20
	5000
	3.522
	29.981%
	0.076
	0.066
	0.062
	0.405
	0.070
	0.068
	0.168
	0.102
	0.105
	0%

	child
	20
	10000
	6.480
	28.893%
	0.707
	0.134
	0.104
	0.792
	0.149
	0.117
	0.347
	0.120
	0.137
	0%

	child
	20
	15000
	8.955
	28.248%
	0.914
	0.227
	0.173
	1.050
	0.249
	0.212
	0.499
	0.221
	0.207
	0%

	boerlage92
	23
	500
	0.679
	10.852%
	
	0.029
	0.025
	
	0.027
	0.026
	
	0.033
	0.034
	0%

	boerlage92
	23
	1000
	0.692
	10.015%
	0.443
	0.173
	0.010
	0.450
	0.207
	0.010
	0.185
	0.078
	0.015
	0%

	boerlage92
	23
	5000
	1.315
	12.681%
	
	
	
	
	
	
	
	
	
	0%

	boerlage92
	23
	10000
	1.949
	12.278%
	
	
	
	
	
	
	
	
	
	0%

	boerlage92
	23
	15000
	2.662
	12.884%
	
	
	
	
	
	
	
	
	
	0%

	insurance
	27
	500
	1.690
	13.309%
	
	0.640
	0.136
	
	0.633
	0.729
	
	0.213
	0.067
	0%

	insurance
	27
	1000
	1.947
	16.782%
	
	
	1.404
	
	
	
	
	0.761
	0.392
	0%

	insurance
	27
	5000
	5.531
	23.689%
	
	3.091
	1.432
	
	3.653
	1.843
	
	0.792
	0.399
	0%

	insurance
	27
	10000
	10.563
	24.995%
	
	10.033
	1.886
	
	10.309
	1.828
	
	9.367
	1.809
	0%

	insurance
	27
	15000
	15.886
	25.622%
	
	1.974
	1.845
	
	1.988
	1.866
	
	1.831
	1.848
	0%

	water
	32
	500
	0.920
	8.598%
	
	
	0.019
	
	
	0.020
	0.566
	
	0.037
	0.048%

	water
	32
	1000
	0.932
	7.934%
	
	
	0.026
	
	
	0.028
	0.828
	
	0.037
	0.008%

	water
	32
	5000
	2.425
	9.487%
	
	
	0.025
	
	
	0.025
	1.020
	1.390
	0.033
	0.003%

	water
	32
	10000
	3.829
	9.238%
	0.184
	
	0.033
	0.218
	
	0.034
	0.192
	1.634
	0.034
	0.001%

	water
	32
	15000
	5.632
	9.308%
	2.802
	
	0.033
	4.357
	
	0.035
	1.009
	
	0.052
	0.004%

	alarm
	37
	500
	2.635
	24.636%
	0.107
	
	0.164
	0.109
	
	0.108
	0.127
	
	0.120
	0.401%

	alarm
	37
	1000
	4.658
	27.798%
	0.167
	
	0.091
	0.200
	
	0.097
	0.117
	
	0.085
	0.062%

	alarm
	37
	5000
	9.247
	27.274%
	0.226
	
	0.296
	0.270
	
	0.216
	0.166
	
	0.283
	0.021%

	alarm
	37
	10000
	15.941
	27.942%
	0.256
	
	0.155
	0.325
	
	0.163
	0.184
	
	0.153
	0.010%

	alarm
	37
	15000
	23.169
	27.536%
	0.307
	
	0.161
	0.298
	
	0.169
	0.194
	
	0.144
	0.005%

	hailfinder
	56
	500
	15.957
	5.161%
	0.066
	
	0.098
	0.067
	
	0.070
	0.109
	
	0.091
	0.013%

	hailfinder
	56
	1000
	14.718
	7.764%
	0.064
	
	0.084
	0.064
	
	0.077
	0.070
	
	0.088
	0.023%

	hailfinder
	56
	5000
	50.278
	9.945%
	1.564
	
	0.231
	2.901
	
	1.816
	0.638
	
	0.215
	0.025%

	hailfinder
	56
	10000
	57.964
	11.214%
	0.291
	
	0.356
	0.285
	
	0.290
	0.344
	
	0.335
	0.067%

	hailfinder
	56
	15000
	79.527
	11.481%
	1.662
	
	0.469
	2.890
	
	1.582
	0.783
	
	0.404
	0.043%

	win95pt
	76
	500
	1.572
	42.738%
	1.469
	
	1.492
	
	
	1.505
	
	
	
	0.653%

	win95pt
	76
	1000
	2.138
	50.191%
	2.071
	
	2.059
	
	
	2.076
	
	
	
	2.830%

	win95pt
	76
	5000
	4.841
	48.658%
	3.359
	
	3.350
	4.330
	
	3.360
	3.759
	
	3.597
	2.881%

	win95pt
	76
	10000
	9.403
	45.937%
	3.979
	
	3.972
	5.361
	
	4.004
	4.837
	
	4.225
	2.706%

	win95pt
	76
	15000
	12.221
	46.292%
	3.703
	
	3.514
	4.739
	
	4.567
	4.121
	
	3.831
	2.880%

Table 17: Running time and score error ratio for A*, AWA*, BFBnB with AP/HP/AP-HP and NOTEARS on UCI datasets.
	Name
	n
	N
	NOTEARS
	A*
	AWA*
	BFBnB
	Error

	
	
	
	time(s)
	Error
	AP
	HP
	AP-HP
	AP
	HP
	AP-HP
	AP
	HP
	AP-HP
	

	zoo
	17
	101
	0.771
	29.105%
	0.022
	0.025
	0.031
	0.048
	0.028
	0.034
	0.027
	0.029
	0.034
	0%

	voting
	17
	435
	0.899
	4.063%
	0.010
	0.024
	0.027
	0.010
	0.022
	0.030
	0.015
	0.027
	0.033
	0%

	statlog
	19
	752
	3.657
	23.504%
	0.473
	0.100
	0.134
	0.278
	0.108
	0.146
	0.359
	0.155
	0.164
	0%

	hepatitis
	20
	126
	0.484
	8.630%
	0.021
	0.022
	0.025
	0.021
	0.024
	0.027
	0.034
	0.033
	0.037
	0%

	segment
	20
	2310
	1.390
	23.792%
	0.441
	0.054
	0.099
	0.663
	0.057
	0.103
	0.276
	0.093
	0.116
	0%

	imports
	22
	205
	1.061
	22.590%
	
	0.563
	0.291
	
	0.797
	0.365
	
	0.324
	0.215
	0%

	meta
	22
	528
	0.635
	82.871%
	
	
	
	
	
	
	
	
	
	0%

	heart
	23
	212
	0.884
	10.086%
	
	0.531
	0.240
	
	0.635
	0.306
	
	0.242
	0.115
	0%

	horse
	23
	300
	0.568
	11.571%
	
	
	0.391
	
	
	0.495
	
	
	0.199
	0%

	mushroom
	23
	8124
	47.689
	63.887%
	0.410
	10.912
	10.644
	0.557
	11.668
	11.767
	0.366
	11.764
	11.730
	0%

	autos
	26
	159
	2.701
	22.721%
	
	
	
	
	
	
	
	
	2.184
	0%

	steel
	28
	1941
	3.062
	19.314%
	
	0.999
	0.365
	
	
	1.157
	
	0.346
	0.179
	0%

	flag
	29
	194
	0.575
	12.451%
	
	
	
	
	
	
	
	
	
	0.004%

	soybean
	36
	266
	1.092
	28.621%
	0.398
	
	0.393
	0.430
	
	0.398
	0.416
	
	0.421
	0.487%

	bands
	39
	277
	0.907
	6.259%
	0.120
	
	0.133
	0.149
	
	0.118
	0.326
	
	0.138
	0.194%

	spectf
	45
	267
	0.438
	1.646%
	0.069
	
	0.087
	0.070
	
	0.069
	0.097
	
	0.095
	0.098%

	sponge
	45
	76
	17.088
	30.943%
	0.310
	
	0.300
	0.337
	
	0.342
	0.326
	
	0.321
	1.304%

	lung cancer
	57
	32
	1.137
	22.128%
	0.472
	
	0.441
	0.490
	
	0.465
	0.501
	
	0.446
	2.159%

	splice
	61
	3190
	3.742
	2.703%
	0.167
	
	0.158
	0.171
	
	0.160
	0.200
	
	0.190
	0.123%

Table 18: Running time and score error ratio for A*, AWA*, BFBnB with AP/HP/AP-HP and NOTEARS on datasets with more than 100 nodes.
	Name
	n
	N
	NOTEARS
	A*
	AWA*
	BFBnB
	Error

	
	
	
	time(s)
	Error
	AP
	HP
	AP-HP
	AP
	HP
	AP-HP
	AP
	HP
	AP-HP
	

	pathfinder
	109
	5000
	462.839
	-
	48.897
	
	46.700
	51.921
	
	47.933
	48.340
	
	48.819
	42.364%

	synthetic 1
	120
	10000
	11.544
	12.392%
	10.051
	
	10.055
	11.380
	
	10.249
	
	
	
	21.298%

	synthetic 2
	150
	10000
	14.737
	13.191%
	
	
	
	
	
	
	
	
	
	20.188%

	synthetic 3
	175
	10000
	22.670
	10.862%
	16.943
	
	16.608
	20.979
	
	16.667
	18.053
	
	17.454
	30.977%

	andes
	223
	5000
	32.073
	22.899%
	19.735
	
	19.039
	22.677
	
	19.633
	19.142
	
	19.226
	48.135%

5.2.4 Comparisons with DAG-GNN
This section compares A*, AWA*, and BFBnB under AP/HP/AP-HP constraints with DAG-GNN on benchmark BNs, UCI datasets, and datasets with more than 100 nodes, as shown in Tables 19–21. DAG-GNN uses a deep learning method, which has a long training time; therefore, unlike other sections, hours were used as the time measurement unit. We set 8 hours as the maximum time limit. The bold numbers indicate the shortest running times of the four algorithms. In addition, the score error ratios for DAG-GNN are listed in the 5th column, and the score error ratios for A*, AWA*, and BFBnB with AP/AP-HP are listed in the last column.
The running time of DAG-GNN increased with an increase in network size and sample size. Because of the need to train the neural network, DAG-GNN required a longer running time than GOBNILP, MMHC, NOTEARS, and other algorithms. Therefore, A*, AWA*, and BFBnB with AP and/or HP always had shorter running times, as shown in Table 19 –21.

In terms of accuracy, in general, DAG-GNN often obtained higher accuracy with a larger sample size, which was similar to MMHC but the opposite of NOTEARS. Generally, the larger the training sample size of the deep learning model, the better the results. However, some cases did not fit this trend. We believe that these cases were not well trained. Limited by workload and time, we cannot set the parameters of all models to optimal values based on our experiments. Overall, the DAG-GNN obtained good results for a large sample size. However, within 100 nodes, A*, AWA*, and BFBnB with the AP/AP-HP constraints achieved higher accuracy than DAG-GNN. These algorithms achieved lower accuracy with more than 100 nodes, and the reasons have been discussed previously. Under these circumstances, Algorithm 1 built AP constraints when , and these AP constraints included many single nodes. AP constraints built with a small number of PPSs were inaccurate, in other words, these single nodes built incorrect orderings, resulting in a significant loss of accuracy. Similar to Table 18, in pathfinder, DAG-GNN cannot calculate the score due to running out of memory.
The reasons for algorithms with the AP and/or HP not outperform DAG-GNN in term of running time in boerlage92 have been discussed in Section 5.2.1.
In summary, in most of the cases, A*, AWA*, and BFBnB under AP/AP-HP had a lower running time and higher accuracy than DAG-GNN within 100 nodes.

Table 19: Running time and score error ratio for A*, AWA*, BFBnB with AP/HP/AP-HP and DAG-GNN on benchmark BNs.
	Name
	n
	N
	DAG-GNN
	A*
	AWA*
	BFBnB
	Error

	
	
	
	time(h)
	Error
	AP
	HP
	AP-HP
	AP
	HP
	AP-HP
	AP
	HP
	AP-HP
	

	sachs
	11
	500
	0.369
	50.647%
	0.001
	0.001
	0.001
	0.001
	0.001
	0.001
	0.003
	0.004
	0.004
	0%

	sachs
	11
	1000
	0.376
	10.579%
	0.001
	0.001
	0.001
	0.001
	0.001
	0.001
	0.004
	0.004
	0.004
	0%

	sachs
	11
	5000
	0.588
	4.231%
	0.002
	0.002
	0.002
	0.002
	0.002
	0.002
	0.005
	0.005
	0.005
	0%

	sachs
	11
	10000
	0.712
	8.561%
	0.003
	0.003
	0.003
	0.003
	0.003
	0.003
	0.005
	0.005
	0.005
	0%

	sachs
	11
	15000
	0.998
	10.186%
	0.003
	0.003
	0.003
	0.003
	0.003
	0.003
	0.005
	0.005
	0.005
	0%

	child
	20
	500
	0.378
	65.361%
	0.040
	0.023
	0.022
	0.045
	0.026
	0.027
	0.029
	0.035
	0.034
	0%

	child
	20
	1000
	0.566
	22.663%
	0.073
	0.025
	0.024
	0.074
	0.029
	0.029
	0.045
	0.038
	0.038
	0%

	child
	20
	5000
	0.658
	25.064%
	0.076
	0.066
	0.062
	0.405
	0.070
	0.068
	0.168
	0.102
	0.105
	0%

	child
	20
	10000
	0.958
	23.716%
	0.707
	0.134
	0.104
	0.792
	0.149
	0.117
	0.347
	0.120
	0.137
	0%

	child
	20
	15000
	1.385
	23.032%
	0.914
	0.227
	0.173
	1.050
	0.249
	0.212
	0.499
	0.221
	0.207
	0%

	boerlage92
	23
	500
	0.314
	12.039%
	4.418
	0.029
	0.025
	5.687
	0.027
	0.026
	1.394
	0.033
	0.034
	0%

	boerlage92
	23
	1000
	0.574
	14.363%
	0.443
	0.173
	0.010
	0.450
	0.207
	0.010
	0.185
	0.078
	0.015
	0%

	boerlage92
	23
	5000
	0.854
	12.439%
	8.820
	22.769
	9.928
	24.236
	45.366
	19.229
	3.336
	8.593
	3.142
	0%

	boerlage92
	23
	10000
	0.939
	9.578%
	9.142
	26.324
	11.882
	23.560
	55.968
	22.662
	3.466
	9.832
	4.485
	0%

	boerlage92
	23
	15000
	1.221
	6.367%
	9.367
	29.501
	13.014
	26.969
	50.801
	26.449
	3.564
	10.628
	3.434
	0%

	insurance
	27
	500
	0.373
	5.853%
	61.519
	0.640
	0.136
	109.414
	0.633
	0.729
	28.597
	0.213
	0.067
	0%

	insurance
	27
	1000
	0.725
	11.333%
	146.363
	2.928
	1.404
	296.259
	4.885
	2.316
	73.064
	0.761
	0.392
	0%

	insurance
	27
	5000
	0.748
	26.882%
	143.290
	3.091
	1.432
	269.710
	3.653
	1.843
	67.418
	0.792
	0.399
	0%

	insurance
	27
	10000
	1.336
	29.565%
	65.748
	10.033
	1.886
	101.347
	10.309
	1.828
	28.314
	9.367
	1.809
	0%

	insurance
	27
	15000
	1.703
	20.939%
	147.272
	1.974
	1.845
	264.387
	1.988
	1.866
	68.937
	1.831
	1.848
	0%

	water
	32
	500
	0.437
	43.838%
	1.709
	11.974
	0.019
	2.156
	16.152
	0.020
	0.566
	17.034
	0.037
	0.048%

	water
	32
	1000
	0.871
	29.075%
	2.319
	31.442
	0.026
	3.498
	41.585
	0.028
	0.828
	8.669
	0.037
	0.008%

	water
	32
	5000
	0.983
	10.070%
	2.812
	6.968
	0.025
	3.943
	8.628
	0.025
	1.020
	1.390
	0.033
	0.003%

	water
	32
	10000
	1.392
	5.552%
	0.184
	7.428
	0.033
	0.218
	9.856
	0.034
	0.192
	1.634
	0.034
	0.001%

	water
	32
	15000
	1.749
	3.194%
	2.802
	28.802
	0.033
	4.357
	34.204
	0.035
	1.009
	7.143
	0.052
	0.004%

	alarm
	37
	500
	0.512
	14.186%
	0.107
	
	0.164
	0.109
	
	0.108
	0.127
	
	0.120
	0.401%

	alarm
	37
	1000
	0.940
	16.312%
	0.167
	
	0.091
	0.200
	
	0.097
	0.117
	
	0.085
	0.062%

	alarm
	37
	5000
	0.696
	15.112%
	0.226
	
	0.296
	0.270
	
	0.216
	0.166
	
	0.283
	0.021%

	alarm
	37
	10000
	2.082
	23.206%
	0.256
	
	0.155
	0.325
	
	0.163
	0.184
	
	0.153
	0.010%

	alarm
	37
	15000
	2.695
	12.651%
	0.307
	
	0.161
	0.298
	
	0.169
	0.194
	
	0.144
	0.005%

	hailfinder
	56
	500
	0.767
	51.132%
	0.066
	
	0.098
	0.067
	
	0.070
	0.109
	
	0.091
	0.013%

	hailfinder
	56
	1000
	0.799
	14.845%
	0.064
	
	0.084
	0.064
	
	0.077
	0.070
	
	0.088
	0.023%

	hailfinder
	56
	5000
	1.234
	37.674%
	1.564
	
	0.231
	2.901
	
	1.816
	0.638
	
	0.215
	0.025%

	hailfinder
	56
	10000
	1.838
	16.196%
	0.291
	
	0.356
	0.285
	
	0.290
	0.344
	
	0.335
	0.067%

	hailfinder
	56
	15000
	4.655
	15.549%
	1.662
	
	0.469
	2.890
	
	1.582
	0.783
	
	0.404
	0.043%

	win95pt
	76
	500
	0.661
	19.339%
	1.469
	
	1.492
	2.571
	
	1.505
	2.190
	
	1.590
	0.653%

	win95pt
	76
	1000
	1.224
	23.342%
	2.071
	
	2.059
	3.588
	
	2.076
	2.425
	
	2.282
	2.830%

	win95pt
	76
	5000
	1.944
	18.905%
	3.359
	
	3.350
	4.330
	
	3.360
	3.759
	
	3.597
	2.881%

	win95pt
	76
	10000
	2.754
	21.610%
	3.979
	
	3.972
	5.361
	
	4.004
	4.837
	
	4.225
	2.706%

	win95pt
	76
	15000
	OT
	
	3.703
	
	3.514
	4.739
	
	4.567
	4.121
	
	3.831
	2.880%

Table 20: Running time and score error ratio for A*, AWA*, BFBnB with AP/HP/AP-HP and DAG-GNN on UCI datasets.
	[bookmark: _Hlk78487070]Name
	n
	N
	DAG-GNN
	A*
	AWA*
	BFBnB
	Error

	
	
	
	time(h)
	Error
	AP
	HP
	AP-HP
	AP
	HP
	AP-HP
	AP
	HP
	AP-HP
	

	zoo
	17
	101
	0.267
	22.819%
	0.022
	0.025
	0.031
	0.048
	0.028
	0.034
	0.027
	0.029
	0.034
	0%

	voting
	17
	435
	0.312
	20.580%
	0.010
	0.024
	0.027
	0.010
	0.022
	0.030
	0.015
	0.027
	0.033
	0%

	statlog
	19
	752
	0.492
	15.547%
	0.473
	0.100
	0.134
	0.278
	0.108
	0.146
	0.359
	0.155
	0.164
	0%

	hepatitis
	20
	126
	0.238
	10.567%
	0.021
	0.022
	0.025
	0.021
	0.024
	0.027
	0.034
	0.033
	0.037
	0%

	segment
	20
	2310
	1.176
	12.485%
	0.441
	0.054
	0.099
	0.663
	0.057
	0.103
	0.276
	0.093
	0.116
	0%

	imports
	22
	205
	0.138
	18.991%
	5.237
	0.563
	0.291
	6.731
	0.797
	0.365
	1.829
	0.324
	0.215
	0%

	meta
	22
	528
	
	
	3.318
	7.667
	7.880
	3.668
	7.665
	7.662
	3.205
	7.272
	7.644
	0%

	heart
	23
	212
	0.453
	2.293%
	10.877
	0.531
	0.240
	15.584
	0.635
	0.306
	3.414
	0.242
	0.115
	0%

	horse
	23
	300
	0.497
	8.351%
	3.727
	1.877
	0.391
	6.063
	2.944
	0.495
	1.298
	0.691
	0.199
	0%

	mushroom
	23
	8124
	4.809
	83.305%
	0.410
	10.912
	10.644
	0.557
	11.668
	11.767
	0.366
	11.764
	11.730
	0%

	autos
	26
	159
	0.195
	17.688%
	23.824
	9.790
	5.251
	70.130
	13.251
	7.024
	6.969
	3.867
	2.184
	0%

	steel
	28
	1941
	0.521
	12.715%
	147.794
	0.999
	0.365
	286.447
	4.959
	1.157
	62.711
	0.346
	0.179
	0%

	flag
	29
	194
	0.287
	4.853%
	14.822
	78.112
	21.965
	18.649
	96.354
	28.707
	4.024
	28.055
	7.369
	0.004%

	soybean
	36
	266
	0.584
	15.651%
	0.398
	
	0.393
	0.430
	
	0.398
	0.416
	
	0.421
	0.487%

	bands
	39
	277
	0.768
	5.987%
	0.120
	
	0.133
	0.149
	
	0.118
	0.326
	
	0.138
	0.194%

	spectf
	45
	267
	0.448
	2.231%
	0.069
	
	0.087
	0.070
	
	0.069
	0.097
	
	0.095
	0.098%

	sponge
	45
	76
	0.264
	22.216%
	0.310
	
	0.300
	0.337
	
	0.342
	0.326
	
	0.321
	1.304%

	lung cancer
	57
	32
	0.200
	20.679%
	0.472
	
	0.441
	0.490
	
	0.465
	0.501
	
	0.446
	2.159%

	splice
	61
	3190
	1.301
	3.278%
	0.167
	
	0.158
	0.171
	
	0.160
	0.200
	
	0.190
	0.123%

Table 21: Running time and score error ratio for A*, AWA*, BFBnB with AP/HP/AP-HP and DAG-GNN on datasets with more than 100 nodes.
	Name
	n
	N
	DAG-GNN
	A*
	AWA*
	BFBnB
	Error

	
	
	
	time(h)
	Error
	AP
	HP
	AP-HP
	AP
	HP
	AP-HP
	AP
	HP
	AP-HP
	

	pathfinder
	109
	5000
	2.271
	-
	48.897
	
	46.700
	51.921
	
	47.933
	48.340
	
	48.819
	42.364%

	synthetic 1
	120
	10000
	3.225
	9.366%
	10.051
	
	10.055
	11.380
	
	10.249
	11.860
	
	11.809
	21.298%

	synthetic 2
	150
	10000
	4.438
	10.421%
	16.269
	
	16.096
	21.111
	
	16.486
	18.493
	
	18.738
	20.188%

	synthetic 3
	175
	10000
	7.822
	9.248%
	16.943
	
	16.608
	20.979
	
	16.667
	18.053
	
	17.454
	30.977%

	andes
	223
	5000
	OT
	
	19.735
	
	19.039
	22.677
	
	19.633
	19.142
	
	19.226
	48.135%

Overall, based on the comparisons in 5.2.1 and 5.2.4, the following summary can be presented as a conclusion. Generally, in terms of running time, the algorithms can be ranked with the best coming first, as algorithms with AP-HP > algorithms with AP > NOTEARS > MMHC > algorithms with HP > GOBNILP > DAG-GNN. In terms of accuracy, the performance ranking of the algorithms with the best results GOBNILP = algorithms with HP > algorithms with AP/AP-HP > MMHC > DAG-GNN > NOTEARS, within datasets of 100 nodes. AP constraints could not perform well on large networks because fewer PPSs were used to build the directed graph to obtain AP constraints. Fewer PPSs contain less information about the actual BN, and the obtained AP constraints deviate from the correct constraints, resulting in a large loss of accuracy. If more PPSs were used to calculate AP constraints, the partition block size of AP would have been too large to be searched by A*, AWA*, and BFBnB. Consequently, on larger networks, it is either difficult to search or the accuracy is reduced.
NOTEARS and DAG-GNN can learn a BN structure from the perspective of continuous optimization; therefore, they are better at handling continuous data. However, in this study, A*, AWA*, BFBnB, GOBNILP, MMHC, and our proposed algorithms work only with discrete data, and they cannot be compared with NOTEARS and DAG-GNN on continuous data. We believe that NOTEARS and DAG-GNN can achieve good results with continuous data.

5.3 Parameters analysis for calculating ancestral partition

According to Algorithm 1, [image:] is controlled by and , which are adjusted by the user. In this section, the performance of Algorithm 1 under various parameters is analyzed.
According to the analysis in Section 5.1, A*, AWA*, and BFBnB have similar trends under the constraints of AP/HP/AP-HP, and the performance of A* is the most balanced among the three; therefore, A* will be used in the following experiments in Sections 5.3 and 5.4.
The following criterion is introduced for the results of AP or HP.

Partition block size set (PBS): The set of partition blocks of all sizes. In other words, the set recorded all for AP or all for HP.

For example, the PBS for is {2, 3, 3}. It is unrealistic to adjust the parameters of Algorithms 1 and 2 in all datasets in Section 5.1. Therefore, the insurance_10000 (insurance with 10000 samples), flag, and water_10000 (water with 10000 samples) datasets are chosen as examples to test the performance of various parameters. To eliminate the influence of HP, the default simple partition was implemented to create static pattern databases in this section. Once a parameter changed within a specific range, the other parameters used the default values, as described in Section 5.1.

Table 22 shows the results of AP and the performance of A* with AP under various on the insurance_10000, flag, and water_10000 datasets. changed between the intervals [n-12, n-1]. Multiple parameters may share the same AP, and hence, the corresponding A* had the same number of expanded states, the same score error ratio, and the similar running time. As increased, the number of partitions for AP decreased (or the partition block size increased), the running time and the number of expanded states for the A* algorithm increased, and score error ratio for the A* algorithm decreased.

Table 23 shows the results of AP and the performance for A* with AP under various on the insurance_10000, flag, and water_10000 datasets. changed between intervals [1, 10]. The experimental results were similar to those presented in Table 22. Different values of the parameter may share the same AP; therefore, the corresponding A* had the same number of expanded states, the same score error ratio, and the similar running time. As increased, the number of partitions for AP decreased (or the partition block size increased), running time and the number of expanded states for the A* algorithm increased, and score error ratio for the A* algorithm decreased.

Table 22: Results of AP and the performance of A* with AP under various on the insurance_10000, flag and water_10000 datasets.
	[bookmark: _Hlk59318065]Name
	

	AP Time
	PBS
	A* Time
	Exp
	Error

	insurance_10000
	15
	0.002
	{8,5,1,1,7,1,3,1}
	0.091
	143
	0.177%

	
	16
	0.002
	{8,5,1,1,7,1,3,1}
	0.082
	143
	0.177%

	
	17
	0.002
	{8,5,1,1,7,1,3,1}
	0.080
	143
	0.177%

	
	18
	0.002
	{8,5,1,1,7,1,3,1}
	0.081
	143
	0.177%

	
	19
	0.002
	{8,5,1,1,7,1,3,1}
	0.081
	143
	0.177%

	
	20
	0.002
	{8,5,1,1,7,1,3,1}
	0.081
	143
	0.177%

	
	21
	0.002
	{8,5,1,1,7,1,3,1}
	0.086
	143
	0.177%

	
	22
	0.002
	{8,5,1,1,7,1,3,1}
	0.082
	143
	0.177%

	
	23
	0.002
	{23,1,1,1,1}
	12.054
	1760623
	0%

	
	24
	0.002
	{24,1,1,1}
	25.916
	3348330
	0%

	
	25
	0.002
	{25,1,1}
	64.855
	7986905
	0%

	
	26
	0.002
	{25,1,1}
	65.285
	7986905
	0%

	flag
	17
	0.001
	{17,1,1,1,1,1,2,3,1,1}
	0.073
	7862
	0.044%

	
	18
	0.001
	{17,1,1,1,1,1,2,3,1,1}
	0.072
	7862
	0.044%

	
	19
	0.001
	{17,1,1,1,1,1,2,3,1,1}
	0.072
	7862
	0.044%

	
	20
	0.001
	{17,1,1,1,1,1,2,3,1,1}
	0.071
	7862
	0.044%

	
	21
	0.001
	{21,1,1,1,1,1,2,1}
	1.501
	259626
	0.044%

	
	22
	0.001
	{21,1,1,1,1,1,2,1}
	1.481
	259626
	0.044%

	
	23
	0.001
	{21,1,1,1,1,1,2,1}
	1.505
	259626
	0.044%

	
	24
	0.001
	{21,1,1,1,1,1,2,1}
	1.475
	259626
	0.044%

	
	25
	0.001
	{25,1,2,1}
	3.907
	418550
	0.010%

	
	26
	0.001
	{25,1,2,1}
	3.958
	418550
	0.010%

	
	27
	0.001
	{27,1,1}
	14.139
	1196267
	0.004%

	
	28
	0.001
	{27,1,1}
	14.227
	1196267
	0.004%

	water_10000
	20
	0.001
	{6,17,3,3,3}
	0.197
	90357
	0.001%

	
	21
	0.001
	{6,17,3,3,3}
	0.190
	90357
	0.001%

	
	22
	0.001
	{6,17,3,3,3}
	0.202
	90357
	0.001%

	
	23
	0.001
	{6,17,3,3,3}
	0.196
	90357
	0.001%

	
	24
	0.001
	{6,17,3,3,3}
	0.196
	90357
	0.001%

	
	25
	0.001
	{6,17,3,3,3}
	0.193
	90357
	0.001%

	
	26
	0.001
	{6,26}
	421.886
	55283373
	0.001%

	
	27
	0.001
	{6,26}
	421.363
	55283373
	0.001%

	
	28
	0.001
	{6,26}
	422.249
	55283373
	0.001%

	
	29
	0.001
	{6,26}
	421.474
	55283373
	0.001%

	
	30
	0.001
	{6,26}
	421.665
	55283373
	0.001%

	
	31
	0.001
	{6,26}
	423.772
	55283373
	0.001%

Table 23: Results of AP and the performance of A* with AP under various on the insurance_10000, flag and water_10000 datasets.
	Name
	

	AP Time
	PBS
	A* Time
	Exp
	Error

	insurance_10000
	1
	0.002
	{4,2,2,1,2,1,2,1,6,1,1,3,1}
	0.134
	58
	0.385%

	
	2
	0.002
	{8,5,1,1,7,1,3,1}
	0.081
	143
	0.177%

	
	3
	0.002
	{23,1,1,1,1}
	12.177
	1760623
	0%

	
	4
	0.002
	{23,1,1,1,1}
	12.170
	1760623
	0%

	
	5
	0.002
	{23,1,1,1,1}
	12.170
	1760623
	0%

	
	6
	0.002
	{24,1,1,1}
	26.187
	3348330
	0%

	
	7
	0.002
	{25,1,1}
	64.651
	7986905
	0%

	
	8
	0.002
	{25,1,1}
	64.013
	7986905
	0%

	
	9
	0.002
	{25,1,1}
	63.697
	7986905
	0%

	
	10
	0.002
	{25,1,1}
	64.356
	7986905
	0%

	flag
	1
	0.001
	{17,1,1,1,1,1,2,3,1,1}
	0.109
	7592
	0.044%

	
	2
	0.001
	{21,1,1,1,1,1,2,1}
	1.520
	259626
	0.010%

	
	3
	0.001
	{25,1,2,1}
	3.971
	418550
	0.010%

	
	4
	0.001
	{27,1,1}
	14.393
	1196267
	0.004%

	
	5
	0.001
	{27,1,1}
	14.268
	1196267
	0.004%

	
	6
	0.001
	{27,1,1}
	14.236
	1196267
	0.004%

	
	7
	0.001
	{27,1,1}
	14.418
	1196267
	0.004%

	
	8
	0.001
	{27,1,1}
	14.301
	1196267
	0.004%

	
	9
	0.001
	{27,1,1}
	14.270
	1196267
	0.004%

	
	10
	0.001
	{27,1,1}
	14.468
	1196267
	0.004%

	water_10000
	1
	0.001
	{4,1,1,7,6,3,3,3,4}
	0.038
	117
	0.019%

	
	2
	0.001
	{6,11,3,6,3,3}
	0.080
	1152
	0.003%

	
	3
	0.001
	{6,17,3,3,3}
	0.182
	90357
	0.001%

	
	4
	0.001
	{6,17,3,3,3}
	0.192
	90357
	0.001%

	
	5
	0.001
	{6,17,3,3,3}
	0.183
	90357
	0.001%

	
	6
	0.001
	{6,17,3,3,3}
	0.189
	90357
	0.001%

	
	7
	0.001
	{6,17,3,3,3}
	0.190
	90357
	0.001%

	
	8
	0.001
	{6,17,3,3,3}
	0.182
	90357
	0.001%

	
	9
	0.001
	{6,17,3,3,3}
	0.189
	90357
	0.001%

	
	10
	0.001
	{6,17,3,3,3}
	0.184
	90357
	0.001%

From the analysis of Algorithm 1 in Section 3.3, as gradually decreases from a constant value to 1, the edges of the directed graph also become sparse, and it is easier to extract SCCs. Therefore, a smaller means easier extraction of SCCs, and concurrently, the size of the SCCs will also be reduced. Therefore, Tables 22 and 23 have shown similar trends. When decreased (decreased), the size of the SCCs also decreased (the partition block size decreased), indicating that the AP was closer to the ordering, which reflected stronger constraints in the order graph. Stronger constraints mean more pruning of the order graph, resulting in fewer states that need to be expanded and a lower running time. However, a decreasing indicated that fewer PPSs were used to build the directed graph, extracted SCCs contained less information about the original BN, and the obtained AP was not consistent with the actual network structure. Therefore, the accuracy decreased as decreased (decreased). This also explains why the accuracy of these algorithms under AP/AP-HP decreased on datasets with over 100 nodes. The harmful impact of these factors can be further enhanced as the network size increases.
5.4 Parameters analysis for calculating heuristic partition

According to Algorithm 2, [image:] is controlled by , and , which are adjusted by the user. In this section, the performance of Algorithm 2 is examined under various parameters.
Similar to Section 5.3, we used A* with a heuristic partition under various parameters on the insurance_10000, flag, and water_10000 datasets. No AP constraints were added to eliminate the influence of the AP. Once a parameter changed within a specific range, the other parameters used the default values, as described in Section 5.1. The HP does not affect the final accuracy of the exact learning algorithms based on previous theories and experiments. Inspired by Algorithm 2, Line 8, and Eq. (11), the following criteria were used to evaluate the tightness of the HP.

Score difference ratio (Diff): This criterion is calculated using Eq. (12). For a heuristic partition plan, static pattern databases are created to calculate . is calculated using an approximate algorithm for BN structure learning. Note that a lower Diff value indicates a tighter heuristic partition.

	
	

	（12）

In Algorithm 2, the hill-climbing algorithm with restarts was used to calculate .

Table 24 shows the results of HP and the performance of A* with HP under various on the insurance_10000, flag, and water_10000 datasets. The changed between the intervals [n-12, n-1]. Multiple parameters may share the same HP. In general, as increased, the running time for calculating HP increased, size of the maximum partition block increased, score difference ratio for HP decreased, and number of expanded states for A* also decreased. However, unlike the AP, the change in running time for A* was not consistent with the change in the number of expanded states (see the data in the flag dataset). A similar phenomenon was discussed in Section 5.1, that is, fewer states do not always mean shorter running time. When in the flag, a smaller number of expanded states indicates that A* searched fewer states in the order graph, resulting in reduced running time. When in the flag, although fewer expanded states reduced the running time, more running time for A* was spent creating the static pattern database for the largest partition block. There is also an evident rise in running time for calculating HP for the same reason. The results for the insurance_10000 and water_10000 datasets were similar to those when in the flag dataset.

Table 25 shows the results of HP and the performance of A* with HP under various on the insurance_10000, flag, and water_10000 datasets. As increased when in the insurance_10000 and in the water_10000 datasets, the running time for calculating HP increased, size of the maximum partition block increased, score difference ratio for HP decreased, and the number of expanded states for the A* algorithm also decreased. In other cases, the results remain unchanged with . In fact, from Table 25, the results were not sensitive to . There were apparent changes only when is smaller under the AP for the insurance_10000, flag, and water_10000 datasets. If Algorithm 2 did not add merging partitions of small SCCs (Algorithm 2, lines 23–43), the results in Table 25 would have been similar to those in Table 23.

Table 26 shows the results of HP and the performance of A* with HP under various on the insurance_10000, flag, and water_10000 datasets. As decreased, both the score difference ratio for HP and the number of expanded states for the A* algorithm decreased, indicating that heuristic functions with better tightness can help algorithms search fewer states. The changing trend of the running time of calculating HP and the running time of A* in Table 26 are similar to those in Table 24, and the reasons are discussed in Section 5.1.

Table 24: Results of HP and the performance of A* with HP under various on the insurance_10000, flag and water_10000 datasets.
	[bookmark: _Hlk59318409]Name
	

	HP Time
	PBS
	Diff
	A* Time
	Exp

	insurance_10000
	15
	1.473
	{22,5}
	1.863%
	10.028
	30146

	
	16
	1.457
	{22,5}
	1.863%
	9.943
	30146

	
	17
	1.445
	{22,5}
	1.863%
	9.954
	30146

	
	18
	1.441
	{22,5}
	1.863%
	10.158
	30146

	
	19
	1.431
	{22,5}
	1.863%
	10.114
	30146

	
	20
	1.422
	{22,5}
	1.863%
	10.037
	30146

	
	21
	1.415
	{22,5}
	1.863%
	10.200
	30146

	
	22
	1.407
	{22,5}
	1.863%
	10.102
	30146

	
	23
	2.936
	{23,4}
	1.109%
	23.183
	6350

	
	24
	6.186
	{24,3}
	0.823%
	50.964
	3771

	
	25
	13.050
	{25,2}
	0.517%
	108.434
	2786

	
	26
	27.156
	{26,1}
	0.268%
	240.706
	44

	flag
	17
	0.073
	{17,12}
	1.640%
	26.208
	1953999

	
	18
	0.105
	{18,11}
	1.640%
	26.043
	1953999

	
	19
	0.178
	{19,10}
	0.985%
	6.723
	573760

	
	20
	0.332
	{20,9}
	0.793%
	6.058
	461788

	
	21
	0.648
	{21,8}
	0.805%
	11.118
	556434

	
	22
	1.287
	{22,7}
	0.805%
	15.685
	553070

	
	23
	2.688
	{23,6}
	0.739%
	27.991
	552978

	
	24
	5.525
	{24,5}
	0.719%
	54.125
	552966

	
	25
	11.272
	{25,4}
	0.440%
	105.788
	670

	
	26
	23.810
	{26,3}
	0.274%
	241.687
	626

	
	27
	49.220
	{27,2}
	0.305%
	OT
	

	
	28
	104.708
	{28,1}
	0.179%
	OT
	

	water_10000
	20
	0.355
	{6,20,6}
	0.085%
	5.779
	338160

	
	21
	0.346
	{6,20,6}
	0.085%
	5.662
	338160

	
	22
	0.352
	{6,20,6}
	0.085%
	5.691
	338160

	
	23
	2.568
	{23,9}
	0.175%
	145.292
	8486121

	
	24
	2.573
	{23,9}
	0.175%
	148.941
	8486121

	
	25
	2.576
	{23,9}
	0.175%
	146.580
	8486121

	
	26
	25.799
	{6,26}
	0.019%
	208.700
	126

	
	27
	25.728
	{6,26}
	0.019%
	210.659
	126

	
	28
	25.726
	{6,26}
	0.019%
	210.088
	126

	
	29
	25.771
	{6,26}
	0.019%
	210.944
	126

	
	30
	25.784
	{6,26}
	0.019%
	209.706
	126

	
	31
	25.827
	{6,26}
	0.019%
	210.499
	126

Table 25: Results of HP and the performance of A* with HP under various on the insurance_10000, flag and water_10000 datasets.
	Name
	m
	HP Time
	PBS
	Diff
	A* Time
	Exp

	insurance_10000
	1
	0.0721
	{21,6}
	3.814%
	6.577
	241833

	
	2
	1.482
	{22,5}
	1.863%
	10.065
	30146

	
	3
	1.463
	{22,5}
	1.863%
	10.093
	30146

	
	4
	1.466
	{22,5}
	1.863%
	9.873
	30146

	
	5
	1.459
	{22,5}
	1.863%
	9.925
	30146

	
	6
	1.460
	{22,5}
	1.863%
	9.975
	30146

	
	7
	1.462
	{22,5}
	1.863%
	10.015
	30146

	
	8
	1.460
	{22,5}
	1.863%
	10.078
	30146

	
	9
	1.462
	{22,5}
	1.863%
	10.065
	30146

	
	10
	1.461
	{22,5}
	1.863%
	9.964
	30146

	flag
	1
	0.138
	{15,14}
	1.679%
	78.667
	6236857

	
	2
	0.140
	{15,14}
	1.679%
	78.607
	6236857

	
	3
	0.139
	{15,14}
	1.679%
	77.766
	6236857

	
	4
	0.138
	{15,14}
	1.679%
	78.402
	6236857

	
	5
	0.137
	{15,14}
	1.679%
	79.211
	6236857

	
	6
	0.137
	{15,14}
	1.679%
	79.356
	6236857

	
	7
	0.138
	{15,14}
	1.679%
	79.162
	6236857

	
	8
	0.140
	{15,14}
	1.679%
	79.211
	6236857

	
	9
	0.138
	{15,14}
	1.679%
	79.180
	6236857

	
	10
	0.139
	{15,14}
	1.679%
	79.381
	6236857

	water_10000
	1
	0.172
	{19,13}
	0.438%
	OT
	

	
	2
	0.311
	{20,12}
	0.147%
	9.668
	479439

	
	3
	0.347
	{6,20,6}
	0.085%
	5.810
	338160

	
	4
	0.347
	{6,20,6}
	0.085%
	5.815
	338160

	
	5
	0.347
	{6,20,6}
	0.085%
	5.802
	338160

	
	6
	0.346
	{6,20,6}
	0.085%
	5.791
	338160

	
	7
	0.349
	{6,20,6}
	0.085%
	5.675
	338160

	
	8
	0.350
	{6,20,6}
	0.085%
	5.578
	338160

	
	9
	0.345
	{6,20,6}
	0.085%
	5.573
	338160

	
	10
	0.347
	{6,20,6}
	0.085%
	5.734
	338160

Table 26: Results of HP and the performance of A* with HP under various on the insurance_10000, flag and water_10000 datasets.
	Name
	epsilon
	HP Time
	PBS
	Diff
	A* Time
	Exp

	insurance_10000
	0.10
	0.038
	{15,12}
	5.129%
	4.457
	389224

	
	0.05
	1.476
	{22,5}
	1.863%
	10.181
	30146

	
	0.02
	1.461
	{22,5}
	1.863%
	10.363
	30146

	
	0.01
	10.532
	{24,3}
	0.823%
	51.008
	3771

	
	0.0075
	23.559
	{25,2}
	0.517%
	108.395
	2786

	
	0.005
	50.776
	{26,1}
	0.268%
	247.301
	44

	flag
	0.10
	0.141
	{15,14}
	1.679%
	79.749
	6236857

	
	0.05
	0.138
	{15,14}
	1.679%
	78.914
	6236857

	
	0.02
	0.137
	{15,14}
	1.679%
	80.715
	6236857

	
	0.01
	0.372
	{16,13}
	0.984%
	2.205
	189969

	
	0.0075
	5.406
	{23,6}
	0.739%
	28.689
	552978

	
	0.005
	22.075
	{25,4}
	0.440%
	107.488
	670

	water_10000
	0.10
	0.347
	{6,20,6}
	0.085%
	5.983
	338160

	
	0.05
	0.346
	{6,20,6}
	0.085%
	5.864
	338160

	
	0.02
	0.348
	{6,20,6}
	0.085%
	6.035
	338160

	
	0.01
	0.344
	{6,20,6}
	0.085%
	5.791
	338160

	
	0.001
	0.348
	{6,20,6}
	0.085%
	5.816
	338160

	
	0.0005
	31.162
	{6,26}
	0.019%
	210.619
	126

6. Conclusion

This study proposed two partition constraints—ancestral and heuristic partition—to improve the efficiency of exact learning algorithms: ancestral partition and heuristic partition. The ancestral partition can prune the order graph by dividing the entire learning process into various stages. A heuristic partition can improve the tightness of a heuristic function. We also theoretically proved that algorithms with ancestral partition can still find the optimal score on the pruned order graph if the ancestral partition is consistent with the actual BN structure. Algorithms with heuristic partition also obtain the optimal solution because the heuristic function is admissible and consistent. Extensive experiments were performed to evaluate the performance of the proposed partition constraints on a variety of benchmark BN, UCI, and synthetic datasets. Experiments have illustrated that both ancestral partition and heuristic partition can significantly improve the efficiency and scalability of a series of exact learning algorithms than before, such as A*, AWA*, and BFBnB. The ancestral partition can help algorithms achieve optimal scores within smaller-scale BNs () and may cause a slight loss of accuracy for larger-scale BNs (). Worse results have been observed on a network with more than 100 nodes because fewer PPSs were used to build the ancestral partition constraints. Compared with other algorithms, such as GOBNILP, MMHC, NOTEARS, and DAG-GNN, in most of the cases, algorithms with AP\AP-HP can outperform other algorithms in terms of running time and have achieved a higher accuracy than other algorithms, except GOBNILP within 100 node datasets. Finally, an analysis of the parameters was performed to calculate the ancestral partition and heuristic partition, and the results can guide the user to adjust these parameters.
However, further research questions remain. The greedy strategy employed in Algorithm 1 leads to a slight loss of accuracy within a network of 100 nodes and a larger loss of accuracy for a network with more than 100 nodes. Overcoming this problem or reducing the score error ratio requires further study. We consider that, in future research, using more approximate PPSs rather than exact PPSs may be an appropriate solution. In addition, we would like to perform searches for various stages in parallel with the ancestral partition.
Acknowledgment
This work was supported by the National Nature Science Foundation of China (No. 61573285).
Reference
[1] [bookmark: _Ref78825916][bookmark: _Ref13062087]Yu J, Rui Y, Tao D. Click prediction for web image reranking using multimodal sparse coding[J]. IEEE Transactions on Image Processing, 2014, 23(5): 2019-2032.
[2] [bookmark: _Ref78826494][bookmark: _Ref78825908]Yu J, Tan M, Zhang H, Tao D, Rui Y. Hierarchical deep click feature prediction for fine-grained image recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019.
[3] [bookmark: _Ref78826705]Young T, Hazarika D, Poria S, Cambria E. Recent trends in deep learning based natural language processing[J]. IEEE Computational Intelligence Magazine, 2018, 13(3): 55-75.
[4] [bookmark: _Ref78827600]Chen C, Seff A, Kornhauser A, Xiao J. Deepdriving: Learning affordance for direct perception in autonomous driving[J]. In Proceedings of the IEEE International Conference on Computer Vision, 2015: 2722-2730.
[5] [bookmark: _Ref85048853]Ai M, Xie Y, Tang Z, Zhang J, Gui W. Deep learning feature-based setpoint generation and optimal control for flotation processes[J]. Information Sciences, 2021, 578: 644-658.
[6] [bookmark: _Ref79772966]Cai R, Zhang Z, Hao Z, Winslett M. Sophisticated merging over random partitions: a scalable and robust causal discovery approach[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 29(8): 3623-3635.
[7] [bookmark: _Ref78829927]Tien, Iris, Der, et al. Algorithms for Bayesian network modeling and reliability assessment of infrastructure systems[J]. Reliability Engineering & System Safety, 2016: 134-147.
[8] [bookmark: _Ref78830867]Zhang H, Qian Z, Liu J, et al. Fault Detection and Repairing for Intelligent Connected Vehicles Based on Dynamic Bayesian Network Model[J]. IEEE Internet of Things Journal, 2018, 5(4): 2431-2440.
[9] [bookmark: _Ref85046540]Wang R, Ye S, Li K, Kwong S. Bayesian network based label correlation analysis for multi-label classifier chain[J]. Information Sciences, 2021, 554: 256-275.
[10] [bookmark: _Ref78830929]Chickering D M. Learning Bayesian Networks is NP-Complete[J]. Networks, 1996, 112(2):121-130.
[11] [bookmark: _Ref13062089]Chickering D M, Heckerman D, Meek C. Large-sample learning of Bayesian networks is NP-hard[J]. Journal of Machine Learning Research, 2004, 5: 1287-1330.
[12] [bookmark: _Ref85046924]Gheisari S, Meybodi MR. BNC-PSO: structure learning of Bayesian networks by particle swarm optimization[J]. Information Sciences, 2016, 348: 272-289.
[13] [bookmark: _Ref72851070]Cooper G F, Herskovits E. A Bayesian method for the induction of probabilistic networks from data[J]. Machine Learning, 1992, 9(4):309-347.
[14] [bookmark: _Ref72851160]JA Gámez, Mateo J L, Puerta J M. Learning Bayesian networks by hill climbing: efficient methods based on progressive restriction of the neighborhood[J]. Data Mining & Knowledge Discovery, 2011, 22(1-2):106-148.
[15] [bookmark: _Ref72851244]Lee S, Kim S B. Parallel Simulated Annealing with a Greedy Algorithm for Bayesian Network Structure Learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2019:1157-1166.
[16] [bookmark: _Ref72851984]Teyssier M, Koller D. Ordering-Based Search: A Simple and Effective Algorithm for Learning Bayesian Networks[C]. Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence, 2005: 584-590.
[17] [bookmark: _Ref72852287]Spirtes P, Glymour C. An Algorithm for Fast Recovery of Sparse Causal Graphs[J]. Social Science Computer Review, 1991.
[18] [bookmark: _Ref72852294]Spirtes P, Glymour C, Scheines R. Causation, Prediction, and Search, 2nd Edition. The MIT Press, 2000.
[19] [bookmark: _Ref72852300]D Margaritis, Thrun S. Bayesian Network Induction via Local Neighborhoods[J]. Advances in neural information processing systems, 2000, 12: 505-511.
[20] [bookmark: _Ref72852522]Tsamardinos, Ioannis and Brown, Laura E and Aliferis, Constantin F. The max-min hill-climbing Bayesian network structure learning algorithm[J]. Machine Learning, 2006, 31-78.
[21] [bookmark: _Ref72852630]Tsamardinos I, Aliferis C, Statnikov A. Time and sample efficient discovery of Markov blankets and direct causal relations[C]. Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-2003),673-678.
[22] [bookmark: _Ref78832158]Zheng X, Aragam B, Ravikumar P, Xing EP. DAGs with NO TEARS: Continuous optimization for structure learning[C]. Proceedings of the 32nd International Conference on Neural Information Processing Systems, 2018: 9492–9503.
[23] [bookmark: _Ref78832293]Yu Y, Chen J, Gao T, Yu M. DAG-GNN: DAG structure learning with Graph Neural Networks. Proceedings of the 36th International Conference on Machine Learning, 2019: 7154-7163.
[24] [bookmark: _Ref13064108]Koivisto M, Sood K. Exact Bayesian structure discovery in Bayesian networks[J]. Journal of Machine Learning Research, 2004: 549-573.
[25] [bookmark: _Ref72852737]Singh A, Moore A W. Finding optimal Bayesian networks by dynamic programming[R]. Carnegie Mellon University, 2005.
[26] [bookmark: _Ref13064120]Silander T, Myllymaki P. A simple approach for finding the globally optimal Bayesian network structure[C]. Proceedings of the 22nd Conference on Uncertainty in Artificial Intelligence, 2006: 445-452.
[27] [bookmark: _Ref13064143]Malone B, Yuan C. Memory-efficient dynamic programming for learning optimal Bayesian networks[C]. Proceedings of 25th AAAI Conference on Artificial Intelligence, 2011: 1057-1062.
[28] [bookmark: _Ref13064188]Yuan C, Malone B, Wu X. Learning optimal Bayesian networks using A* search[C]. Proceedings of the 22nd International Joint Conference on Artificial Intelligence, 2011: 2186–2191.
[29] [bookmark: _Ref13065159]Yuan C, Malone B. Learning optimal Bayesian networks: a shortest path perspective[J]. Journal of Artificial Intelligence Research, 2013, 48(1): 23-65.
[30] [bookmark: _Ref13065165]Malone B, Yuan C. Evaluating anytime algorithms for learning optimal Bayesian networks[C]. Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence, 2013: 381-390.
[31] [bookmark: _Ref13065984]Malone, B, Yuan C, Hansen E, Bridges S. Improving the scalability of optimal Bayesian network learning with external-memory frontier breadth-first branch and bound search[C]. Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence, 2011: 479-488.
[32] [bookmark: _Ref13066185]Yuan C, Malone B. An improved admissible heuristic for learning optimal Bayesian networks[C]. Proceedings of the 28th Conference on Uncertainty in Artificial Intelligence, 2012: 924–933.
[33] [bookmark: _Ref85053102]Tan X, Gao X, Wang Z, He C. Bidirectional heuristic search to find the optimal Bayesian network structure[J]. Neurocomputing, 2021, 426: 35-46.
[34] [bookmark: _Ref78994273]Beek P V, Hoffmann H F. Machine Learning of Bayesian Networks Using Constraint Programming[C]. Proceedings of the 21st International Conference on Principles and Practice of Constraint Programming, 2015: 429-445.
[35] [bookmark: _Ref72853247][bookmark: _Ref13066833]Bartlett M, Cussens J. Advances in Bayesian Network Learning using Integer Programming[C]. Proceedings of the Twenty-Nineth Conference on Uncertainty in Artificial Intelligence, 2013:182-191.
[36] [bookmark: _Ref72853248]Bartlett M, Cussens J. Integer linear programming for the Bayesian network structure learning problem[J]. Artificial Intelligence, 2017, 244: 258-271.
[37] [bookmark: _Ref78845032]Empirical hardness of finding optimal Bayesian network structures: algorithm selection and runtime prediction[J]. Machine Learning, 2018, 107: 247–283.
[38] [bookmark: _Ref72853408]Scanagatta M, A Salmerón, Stella F. A survey on Bayesian network structure learning from data[J]. Progress in Artificial Intelligence, 2019, 8(4):425-439.
[39] [bookmark: _Ref72853410]Behjati S, H Beigy. Improved K2 algorithm for Bayesian network structure learning[J]. Engineering Applications of Artificial Intelligence, 2020, 91(5):103617.1-103617.12.
[40] [bookmark: _Ref72853662][bookmark: _Ref21526466]Liu H, Zhou S, Lam W, et al. A new hybrid method for learning Bayesian networks: Separation and reunion[J]. Knowledge-Based Systems, 2017, 121(4): 185-197.
[41] [bookmark: _Ref72853755]Zhao Y, Chen Y, Tu K, et al. Learning Bayesian network structures under incremental construction curricula [J]. Neurocomputing, 2017, 258(10): 30-40.
[42] [bookmark: _Ref72853852]Yang Y, Gao X, Guo Z. Finding optimal Bayesian networks by a layered learning method[J]. Journal of Systems Engineering and Electronics, 2019(30): 946-958.
[43] [bookmark: _Ref72853896]Li X, Gao X, Wang C. A Novel BN Learning Algorithm Based on Block Learning Strategy[J]. Sensors, 2020, 20(21):6357.
[44] [bookmark: _Ref85054178]Dai J, Ren J, Du W. Decomposition-based Bayesian network structure learning algorithm using local topology information[J]. Knowledge-Based Systems, 2020, 195: 105602.
[45] [bookmark: _Ref13067868]Schwarz G. Estimating the dimension of a model[J]. The Annals of Statistics, 1978,6 (2): 461-464.
[46] [bookmark: _Ref72854577]D Heckerman, D Geiger, Chickering M. Learning Bayesian networks: The combination of knowledge and statistical data[J]. Machine learning,1995:197-243.
[47] [bookmark: _Ref72854587]Rissanen J. Modeling by shortest data description[J]. Automatica, 1978, 14: 465–471.
[48] [bookmark: _Ref72854647]Akaike H T. A new look at the statistical model identification[J]. IEEE Transactions on Automatic Control, 1974, 19(6):716-723.
[49] [bookmark: _Ref72866521]Fan X, Yuan C, Malone B. Tightening Bounds for Bayesian Network Structure Learning[C]. Proceedings of the 28th AAAI Conference on Artificial Intelligence, 2014.
[50] [bookmark: _Ref24032667][bookmark: _Ref78743386]Boerlage B. Link strength in Bayesian networks. University of British Columbia, 1992.

image4.wmf
(,)

G

=

VE

oleObject55.bin

image43.wmf
ij

oo

¹

oleObject56.bin

image44.wmf
1

n

i

i

o

=

=

U

V

oleObject57.bin

image45.wmf
i

o

oleObject58.bin

oleObject59.bin

image46.wmf
{|}

l

oli

<

oleObject60.bin

oleObject4.bin

oleObject61.bin

oleObject62.bin

image47.wmf
ik

ox

=

oleObject63.bin

image48.wmf
k

x

oleObject64.bin

image49.wmf
()(){|}

kil

PaxPaooli

=Í<

oleObject65.bin

oleObject66.bin

image50.png

image5.wmf
P

image51.wmf
12345678

xxxxxxxx

ppppppp

oleObject67.bin

image52.wmf
87654321

xxxxxxxx

ppppppp

oleObject68.bin

oleObject69.bin

image53.wmf
12453687

xxxxxxxx

ppppppp

oleObject70.bin

image54.wmf
21543687

xxxxxxxx

ppppppp

oleObject71.bin

oleObject72.bin

oleObject5.bin

image55.wmf
()min{(\{})(,\{})}

x

MDLMDLxBestMDLxx

Î

=+

V

VVV

oleObject73.bin

image56.wmf
{}

(,\{})min(,)

x

BestMDLxxMDLx

Í

=

PSV\

VPS

oleObject74.bin

image57.wmf
V

oleObject75.bin

image58.wmf
\{}

x

V

oleObject76.bin

image59.wmf
x

oleObject77.bin

image6.wmf
12

{,,...,}

n

xxx

=

V

image60.wmf
\{}

x

V

oleObject78.bin

oleObject79.bin

image61.wmf
V

oleObject80.bin

image62.wmf
(2)

n

On

oleObject81.bin

image63.wmf
1

2

n

-

oleObject82.bin

image64.wmf
{}

=

O

oleObject6.bin

oleObject83.bin

image65.png

oleObject84.bin

oleObject85.bin

image66.wmf
O

oleObject86.bin

image67.wmf
V

oleObject87.bin

image68.wmf
O

oleObject88.bin

image7.wmf
n

oleObject89.bin

image69.wmf
11212345678

{}{}{,}...{,,,,,,,}

xxxxxxxxxxx

oleObject90.bin

oleObject91.bin

image70.wmf
U

oleObject92.bin

image71.wmf
{}(\)

xx

®=Î

U

USUVU

oleObject93.bin

image72.wmf
(,)=(,)

costBestMDLx

USU

oleObject94.bin

oleObject7.bin

image73.wmf
U

oleObject95.bin

image74.wmf
()

g

U

oleObject96.bin

oleObject97.bin

oleObject98.bin

image75.wmf
h

oleObject99.bin

image76.wmf
()

h

U

oleObject100.bin

image8.wmf
E

oleObject101.bin

oleObject102.bin

image77.wmf
()()()

fgh

=+

UUU

oleObject103.bin

oleObject104.bin

image78.wmf
Open

oleObject105.bin

image79.wmf
Closed

oleObject106.bin

oleObject107.bin

oleObject8.bin

oleObject108.bin

oleObject109.bin

oleObject110.bin

oleObject111.bin

oleObject112.bin

image80.wmf
w

oleObject113.bin

image81.wmf
l

oleObject114.bin

image82.wmf
lw

-

image9.wmf
ij

xx

®

oleObject115.bin

image83.wmf
Frozen

oleObject116.bin

oleObject117.bin

oleObject118.bin

oleObject119.bin

oleObject120.bin

oleObject121.bin

oleObject122.bin

oleObject123.bin

oleObject9.bin

image84.wmf
1

x

oleObject124.bin

image85.wmf
2

x

oleObject125.bin

image86.wmf
3

x

oleObject126.bin

image87.wmf
4

x

oleObject127.bin

image88.wmf
5

x

oleObject128.bin

image10.wmf
i

x

image89.wmf
6

x

oleObject129.bin

image90.wmf
7

x

oleObject130.bin

image91.wmf
8

x

oleObject131.bin

oleObject132.bin

image92.wmf
12

......

im

ppp

AAAA

oleObject133.bin

image93.wmf
mn

£

oleObject10.bin

oleObject134.bin

image94.wmf
i

Ì

AV

oleObject135.bin

image95.wmf
i

oleObject136.bin

image96.wmf
j

oleObject137.bin

image97.wmf
ij

¹

oleObject138.bin

image98.wmf
ij

=Æ

AA

I

image11.wmf
j

x

oleObject139.bin

image99.wmf
1

m

i

i

=

=

U

AV

oleObject140.bin

image100.wmf
i

A

oleObject141.bin

image101.wmf
k

x

oleObject142.bin

image102.wmf
ki

x

Î

A

oleObject143.bin

image103.wmf
l

li

£

U

A

oleObject11.bin

oleObject144.bin

oleObject145.bin

oleObject146.bin

oleObject147.bin

oleObject148.bin

image104.wmf
i

k

x

Î

A

oleObject149.bin

image105.wmf
()

kl

li

Pax

£

Í

U

A

oleObject150.bin

oleObject151.bin

oleObject12.bin

oleObject152.bin

image106.wmf
||

i

A

oleObject153.bin

oleObject154.bin

image107.wmf
||1

i

=

A

oleObject155.bin

image108.wmf
12345678

{,}{,}{}

xxx,xxx,x,x

pp

oleObject156.bin

image109.wmf
12345678

{,}{,}{}{}

xxx,xxxx,x

ppp

oleObject157.bin

oleObject13.bin

oleObject158.bin

image110.wmf
12

{,}

xx

oleObject159.bin

image111.wmf
345

{,}

x,xx

oleObject160.bin

oleObject161.bin

oleObject162.bin

image112.png
{xl'xz}

{x3, x4, x5}

{x6,x7,xg}

oleObject163.bin

image113.wmf
8

2256

=

image12.wmf
()

i

Pax

oleObject164.bin

image114.png
LI I

oleObject165.bin

image115.wmf
112

={,}

xx

C

oleObject166.bin

image116.wmf
212345

{,,}

xx,x,xx

=

C

oleObject167.bin

image117.wmf
312345678

{,,,}

xx,x,xxx,x,x

==

CV

oleObject168.bin

image118.png

oleObject14.bin

oleObject169.bin

image119.wmf
1

C

oleObject170.bin

image120.wmf
2

C

oleObject171.bin

image121.wmf
3

C

oleObject172.bin

oleObject173.bin

oleObject174.bin

oleObject175.bin

oleObject15.bin

oleObject176.bin

image122.wmf
12

-

CC

oleObject177.bin

image123.wmf
23

-

CC

oleObject178.bin

image124.wmf
1

mm

-

-

CC

oleObject179.bin

oleObject180.bin

oleObject181.bin

oleObject182.bin

oleObject16.bin

oleObject183.bin

image125.wmf
p

oleObject184.bin

image126.wmf
q

oleObject185.bin

image127.wmf
pq

£

oleObject186.bin

image128.wmf
{}

i

q

l

lp

o

=

=

A

U

oleObject187.bin

oleObject188.bin

oleObject17.bin

oleObject189.bin

oleObject190.bin

image129.wmf
mn

£

oleObject191.bin

image130.wmf
0

im

££

oleObject192.bin

oleObject193.bin

image131.wmf
-

OV

oleObject194.bin

image132.wmf
01

...

im

...

CCCC

oleObject18.bin

oleObject195.bin

image133.wmf
il

li

£

=

U

CA

oleObject196.bin

image134.wmf
0

=

CO

oleObject197.bin

image135.wmf
m

=

CV

oleObject198.bin

image136.wmf
t

N

oleObject199.bin

image137.wmf
01

...

tn

...

NNNN

oleObject19.bin

oleObject200.bin

image138.wmf
{}

tl

lt

o

£

=

N

U

oleObject201.bin

image139.wmf
0

=

NO

oleObject202.bin

image140.wmf
n

=

NV

oleObject203.bin

oleObject204.bin

image141.wmf
i

C

oleObject205.bin

oleObject20.bin

image142.wmf
1

i

+

C

oleObject206.bin

image143.wmf
1

iti

+

ÍÍ

CNC

oleObject207.bin

oleObject208.bin

oleObject209.bin

image144.wmf
12

......

tn

oooo

ppp

oleObject210.bin

image145.wmf
1

\

ttt

o

-

=

NN

oleObject211.bin

oleObject21.bin

image146.wmf
1122

pqptq

££££

oleObject212.bin

image147.wmf
1

1

{}

i

q

l

lp

o

=

=

A

U

oleObject213.bin

image148.wmf
+1

2

2

{}

i

q

l

lp

o

=

=

A

U

oleObject214.bin

image149.wmf
1

{}

ill

lilq

o

££

==

UU

CA

oleObject215.bin

image150.wmf
{}

tl

lt

o

£

=

U

N

oleObject216.bin

image13.wmf
()

P

V

image151.wmf
2

1

1

{}

ill

lilq

o

+

£+£

==

UU

CA

oleObject217.bin

oleObject218.bin

oleObject219.bin

oleObject220.bin

oleObject221.bin

oleObject222.bin

oleObject223.bin

oleObject224.bin

oleObject225.bin

oleObject22.bin

oleObject226.bin

oleObject227.bin

oleObject228.bin

image152.wmf
{}

tl

lt

o

£

=

N

U

oleObject229.bin

oleObject230.bin

oleObject231.bin

image153.wmf
-

OV

oleObject232.bin

oleObject233.bin

image14.wmf
G

oleObject234.bin

image154.wmf
t

N

oleObject235.bin

image155.wmf
i

C

oleObject236.bin

image156.wmf
1

i

+

C

oleObject237.bin

oleObject238.bin

oleObject239.bin

oleObject240.bin

oleObject23.bin

oleObject241.bin

oleObject242.bin

oleObject243.bin

oleObject244.bin

oleObject245.bin

oleObject246.bin

image157.wmf
21

n

-

oleObject247.bin

image158.wmf
||

1

2

i

m

i

m

=

-

å

A

oleObject248.bin

image15.wmf
13

1

(,,...,)(|())

n

nii

i

PxxxPxPax

=

=

Õ

image159.wmf
2

n

oleObject249.bin

image160.wmf
O

oleObject250.bin

oleObject251.bin

oleObject252.bin

image161.wmf
1

ii

-

-

CC

oleObject253.bin

image162.wmf
||

2

i

A

oleObject254.bin

oleObject24.bin

image163.wmf
m

oleObject255.bin

image164.wmf
||

1

2

i

m

i

=

å

A

oleObject256.bin

image165.wmf
11

...

im

...

-

--

CCC

oleObject257.bin

image166.wmf
O

oleObject258.bin

image167.wmf
m

oleObject259.bin

image16.wmf
*

G

oleObject260.bin

oleObject261.bin

oleObject262.bin

image168.wmf
||1

i

=

A

oleObject263.bin

image169.wmf
mn

=

oleObject264.bin

image170.wmf
||

1

22

i

m

i

mnnn

=

-=-=

å

A

oleObject265.bin

image171.wmf
O

oleObject25.bin

oleObject266.bin

image172.wmf
V

oleObject267.bin

oleObject268.bin

image173.wmf
1

2

n

-

oleObject269.bin

image174.wmf
1

2

n

n

-

oleObject270.bin

oleObject271.bin

image175.wmf
1

x

image17.wmf
12

{,,...,}

N

DDD

=

D

oleObject272.bin

image176.wmf
2

{}{ }

x

oleObject273.bin

image177.wmf
2

x

oleObject274.bin

image178.wmf
1

{}{ }

x

oleObject275.bin

image179.wmf
3

x

oleObject276.bin

image180.wmf
4515

{}{}{}{ }

x,xxx

oleObject26.bin

oleObject277.bin

image181.wmf
4

x

oleObject278.bin

image182.wmf
352

{}{}{ }

x,xx

oleObject279.bin

image183.wmf
5

x

oleObject280.bin

image184.wmf
3423

{}{}{}{ }

x,xxx

oleObject281.bin

image185.wmf
6

x

image18.wmf
N

oleObject282.bin

image186.wmf
347878

{}{}{}{}{ }

x,xx,xxx

oleObject283.bin

image187.wmf
7

x

oleObject284.bin

image188.wmf
34346

{}{}{}{}{ }

x,xxxx

oleObject285.bin

image189.wmf
8

x

oleObject286.bin

image190.wmf
345455646

{}{,}{,}{}{}{ }

x,x,xxxxxxx

oleObject27.bin

oleObject287.bin

image191.png
(a) A directed graph built from possible parent sets. e -
(b) The three strongly connected components of the directed

graph in (a).

X1,%X2

X3, X4, X5

X6, X7,Xg

(c) The acyclic component graph for the directed graph in (a).

image192.png
Algorithm 1 Calculate Ancestral Partition

Input: possible parent sets PPS, max size of partition blocks maxS ize, constant r
Output: ancestral partition plan P
1: function ANCESTRALPARTITION(PPS, maxS ize, r)

2 if maxSize == n then

3 maxSize =n—1

4 end if

50 // Case 1:

6 build graph G° according to all PPS of each variable
7 P « FindSCCs(G) [[Kosaraju’s algorithm

8: if P.MaxSCCSize() < maxSize then

9: return

10: end if

110 // Case 2:

12: fork=r— ldo

13: build graph G according to the best k PPS of each variable
14: P « FindSCCs(G") //Kosaraju’s algorithm

15 if P.MaxSCCSize() < maxSize then

16: return

17: end if

18: end for

19: end function

image193.wmf
maxSize

oleObject288.bin

image194.wmf
k

oleObject289.bin

oleObject290.bin

image195.wmf
r

oleObject291.bin

image19.wmf
D

image196.wmf
1

k

=

oleObject292.bin

oleObject293.bin

oleObject294.bin

image197.wmf
static

h

oleObject295.bin

oleObject296.bin

image198.wmf
U

oleObject297.bin

image199.wmf
()

pd

U

oleObject28.bin

oleObject298.bin

image200.wmf
\

VU

oleObject299.bin

oleObject300.bin

image201.wmf
V

oleObject301.bin

image202.wmf
=

i

i

U

VV

oleObject302.bin

image203.wmf
i

A

oleObject303.bin

image20.wmf
*

argmin(|)

G

GMDLG

=

D

image204.wmf
i

V

oleObject304.bin

image205.wmf
||

i

V

oleObject305.bin

oleObject306.bin

oleObject307.bin

oleObject308.bin

oleObject309.bin

image206.wmf
\{}()

xx

®=Î

USUU

oleObject310.bin

oleObject29.bin

image207.wmf
(,)

j

ji

BestMDLx

¹

U

U

VS

oleObject311.bin

oleObject312.bin

oleObject313.bin

image208.wmf
U

oleObject314.bin

image209.wmf

oleObject315.bin

image210.wmf
()((\))

statici

i

hpd

=

å

I

UVUV

oleObject316.bin

image21.wmf
()=(,()|)

ii

i

MDLGMDLxPax

å

D

image211.wmf
11234

{,,,}

xxxx

V=

oleObject317.bin

image212.wmf
25678

{,,,}

xxxx

V=

oleObject318.bin

oleObject319.bin

oleObject320.bin

oleObject321.bin

oleObject322.bin

image213.wmf
1

V

oleObject323.bin

oleObject30.bin

image214.wmf
2

V

oleObject324.bin

image215.wmf
12

{,}

xx

oleObject325.bin

image216.wmf
1234

{,,,}

xxxx

oleObject326.bin

image217.wmf
34

{,}

xx

oleObject327.bin

image218.wmf
34

{,}

xx

oleObject328.bin

image22.wmf
(,()|)=(|())(|())

iiiiii

MDLxPaxHxPaxKxPax

+

D

image219.wmf
56

{,}

xx

oleObject329.bin

image220.wmf
34312424122

({,})=(,{}) +(,{})

pdxxBestMDLxx,x,xBestMDLxx,x

VV

UU

oleObject330.bin

image221.wmf
56567816781

({,})=(,{}) +(,{})

pdxxBestMDLxx,x,xBestMDLxx,x

VV

UU

oleObject331.bin

image222.wmf
34

{,}

xx

oleObject332.bin

oleObject333.bin

image223.wmf
U

oleObject31.bin

oleObject334.bin

image224.wmf
12783456

({,,,})({,})({,})

static

hxxxxpdxxpdxx

=+

oleObject335.bin

image225.png

oleObject336.bin

oleObject337.bin

image226.wmf
1

2

{,...,}

n

xx

éù

êú

êú

oleObject338.bin

image227.wmf
1

2

{,...,}

nn

xx

+

éù

êú

êú

oleObject339.bin

image23.wmf
,

,

()

(|())log

ii

kp

iikp

pPaxkx

p

N

HxPaxN

N

ÎWÎW

=-

åå

image228.wmf
n

oleObject340.bin

oleObject341.bin

oleObject342.bin

image229.wmf
()

static

h

U

oleObject343.bin

oleObject344.bin

oleObject345.bin

oleObject346.bin

image230.wmf
(2)

n

On

oleObject32.bin

oleObject347.bin

image231.wmf
n

oleObject348.bin

oleObject349.bin

oleObject350.bin

oleObject351.bin

oleObject352.bin

oleObject353.bin

oleObject354.bin

oleObject355.bin

image24.wmf
log

(|())(||1)|()|

2

iiii

N

KxPaxxPax

=W-W

image232.png
Rlgorithm 2 Calculate Heuristc Partition

Tnput: possible parent sets PPS, max size of partition blocks maxS ize, constant r, hreshold
Output: heuristic partiion plan P
1 function HeuwisticPakrimiox(PPS, maxS e, 1.)
diff oo
upperBound « RestartHillClimbing(PPS)
while dif > ¢ do
P Parmos(PPS. maxS ize.r)
create statc pattern databases for . according o P
lowerBound — I (0)
diff = (upperBound — lowerBound)/lower Bound
maxSize — maxSize + |
i end while
11 end function

15 function PakmioN(PPS, maxS
1/ Casel

15 build graph GO according all PPS of each variable
I P FindSCCSGY) //Kosaraiu’s algorithm

1 PMaxSCCSize() < maxSice then

)

i return,
B endif

o/ Case:

. fork=roldo

s build graph G according (o the best k PPS of cach variable
P P FindS CCs(G") | Kosaraju's algorithm

2 P MaxSCCSize() < maxS e then

P ‘merge SCCs with smallsize

2 endif

7 endfor

3 [Cased:
. p=lmaxSize/2lq = Infp]

50 putthe variables of P nto blocks P of size p and number g in order
3 ereate staic patter databases for . according 0 P

2 scoreTemp i (0)

3 for any twoblocks B, and B, in P do

S Torany two varibles 5, € By and 3 € B do
- s 5 a0 5 10 form ne bloks B, and

s scareNew o scoreTemp - p) - pbiB) » pE) + pb(E)

- if scoreew < scoreTmp then

5 apply this swap for P aad scoreNew - scoreTemp

- Jump out of he e orloop

o

a

P

5. clar Pand pariion P ino blocksof iz maxS e snd nomber (1 maxS el

46 putthe variablesof P ino blocks P in rder
7. end function

image233.wmf
upperBound

oleObject356.bin

oleObject357.bin

image234.wmf
()

static

h

O

oleObject358.bin

image235.wmf
lowerBound

oleObject359.bin

image236.wmf
e

oleObject360.bin

oleObject33.bin

image237.wmf
P

oleObject361.bin

oleObject362.bin

oleObject363.bin

oleObject364.bin

image238.wmf
r

oleObject365.bin

oleObject366.bin

oleObject367.bin

image239.wmf
scoreTemp

image25.wmf
i

x

oleObject368.bin

image240.wmf
P

oleObject369.bin

image241.wmf
/2

maxSize

êú

ëû

oleObject370.bin

image242.wmf
b

P

oleObject371.bin

oleObject372.bin

image243.wmf
scoreNew

oleObject373.bin

oleObject34.bin

oleObject374.bin

oleObject375.bin

oleObject376.bin

oleObject377.bin

image244.png
PartITION(PPS, maxS ize, r)

oleObject378.bin

oleObject379.bin

oleObject380.bin

image245.wmf
{500,1000,5000,10000,15000}

N

Î

oleObject381.bin

image26.wmf
i

x

W

image246.wmf
()

(1)100%

()

c

o

MDLG

MDLG

-´

oleObject382.bin

image247.wmf
()

o

MDLG

oleObject383.bin

image248.wmf
()

c

MDLG

oleObject384.bin

oleObject385.bin

image249.wmf
maxSizen

=

oleObject386.bin

image250.wmf
30

n

£

oleObject35.bin

oleObject387.bin

image251.wmf
20

maxSize

=

oleObject388.bin

image252.wmf
30

n

>

oleObject389.bin

image253.wmf
10

r

=

oleObject390.bin

image254.wmf
15

maxSize

=

oleObject391.bin

oleObject392.bin

image27.wmf
()

i

Pax

image255.wmf
0.05

e

=

oleObject393.bin

image256.wmf
29

n

<

oleObject394.bin

image257.wmf
29

n

³

oleObject395.bin

image258.wmf
12

AA

p

oleObject396.bin

image259.wmf
12

||||

=

AA

oleObject397.bin

oleObject36.bin

image260.wmf
1

||

2

1

2

22

2121

i

n

m

i

nn

m

Q

+

=

-

-

==

--

å

A

oleObject398.bin

image261.wmf
2

m

=

oleObject399.bin

image262.wmf
'

0

Q

<

oleObject400.bin

image263.wmf
2

n

³

oleObject401.bin

oleObject402.bin

oleObject403.bin

image28.wmf
()

i

Pax

W

oleObject404.bin

oleObject405.bin

oleObject406.bin

oleObject407.bin

image264.wmf
k

oleObject408.bin

oleObject409.bin

oleObject410.bin

oleObject411.bin

oleObject412.bin

oleObject37.bin

oleObject413.bin

image265.wmf
1

||21

=

V

oleObject414.bin

image266.wmf
2

||1

=

V

oleObject415.bin

image267.wmf
1

||1

=

V

oleObject416.bin

image268.wmf
2

||22

=

V

oleObject417.bin

oleObject418.bin

image29.wmf
(|())

ii

HxPax

oleObject419.bin

image269.wmf
15

maxSize

=

oleObject420.bin

image270.wmf
1

||21

=

V

oleObject421.bin

image271.wmf
2

||1

=

V

oleObject422.bin

image272.wmf
1

||1

=

V

oleObject423.bin

image273.wmf
2

||22

=

V

oleObject38.bin

oleObject424.bin

oleObject425.bin

oleObject426.bin

image274.wmf
29100

n

£<

oleObject427.bin

image275.wmf
1

k

=

oleObject428.bin

oleObject429.bin

oleObject430.bin

oleObject431.bin

oleObject39.bin

oleObject432.bin

oleObject433.bin

oleObject434.bin

image276.wmf
100

n

<

oleObject435.bin

oleObject436.bin

oleObject437.bin

image277.png
ANCESTRALPARTITION(PPS, maxS ize, r)

oleObject438.bin

image278.wmf
r

image30.wmf
,

/

kpp

NN

oleObject439.bin

image279.wmf
||

i

A

oleObject440.bin

image280.wmf
||

i

V

oleObject441.bin

oleObject442.bin

oleObject443.bin

oleObject444.bin

oleObject445.bin

oleObject446.bin

oleObject40.bin

oleObject447.bin

oleObject448.bin

oleObject449.bin

oleObject450.bin

oleObject451.bin

oleObject452.bin

oleObject453.bin

oleObject454.bin

image281.wmf
k

oleObject455.bin

image31.wmf
(|())

ii

PxkPaxp

==

oleObject456.bin

oleObject457.bin

oleObject458.bin

oleObject459.bin

oleObject460.bin

oleObject461.bin

oleObject462.bin

image282.png
HeurisTicPARTITION(PPS, maxS ize, r, €)

oleObject463.bin

oleObject464.bin

oleObject41.bin

image283.wmf
e

oleObject465.bin

oleObject466.bin

image284.wmf
upperBound

oleObject467.bin

image285.wmf
(1)100%

()

static

upperBound

h

-´

O

oleObject468.bin

oleObject469.bin

oleObject470.bin

oleObject471.bin

image32.wmf
p

N

oleObject472.bin

oleObject473.bin

image286.wmf
[17,20]

maxSize

Î

oleObject474.bin

image287.wmf
[20,28]

maxSize

Î

oleObject475.bin

oleObject476.bin

image288.wmf
r

oleObject477.bin

image289.wmf
r

oleObject42.bin

oleObject478.bin

image290.wmf
[1,2]

r

Î

oleObject479.bin

image291.wmf
[1,3]

r

Î

oleObject480.bin

oleObject481.bin

oleObject482.bin

oleObject483.bin

oleObject484.bin

oleObject485.bin

image33.wmf
,

kp

N

image292.wmf
maxSize

oleObject486.bin

oleObject487.bin

oleObject488.bin

oleObject489.bin

image293.wmf
29

n

<

oleObject490.bin

image294.wmf
29100

n

£<

oleObject491.bin

oleObject43.bin

image3.wmf
(,)

BNGP

=

image34.wmf
()

i

Paxp

=

oleObject44.bin

image35.wmf
()

ii

xkPaxp

=Ù=

oleObject45.bin

oleObject46.bin

image36.wmf
(|())

ii

KxPax

oleObject47.bin

image37.wmf
|

D

oleObject48.bin

oleObject49.bin

oleObject3.bin

oleObject50.bin

image38.wmf
12

......

in

oooo

ppp

oleObject51.bin

image39.wmf
i

o

Î

V

oleObject52.bin

image40.wmf
i

oleObject53.bin

image41.wmf
j

oleObject54.bin

image42.wmf
ij

¹

image1.wmf
h

oleObject1.bin

image2.wmf
h

oleObject2.bin

