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Abstract 
 

The milling of materials at cryogenic temperature has gained importance both in academic as 

well as the industrial community in the last two decades, primarily because of significant 

advantages this technique as compared to milling at room temperature; environmental 

friendly nature, cost-effectiveness, rapid grain refinement, less contamination, and large scale 

production capability of various nanomaterials. Scientifically, milling at cryo-temperature 

exhibits several distinct material related phenomena; suppression of recovery and 

recrystallization, predominant fractures over cold welding, significantly low oxidation, and 

contamination, leading to rapid grain refinement. Cryomilling has extensively been used to 

obtain finer scale powder of spices for the preservation of aroma, medicines for effective 

dissolution, or amorphization. It has been considered an environmentally friendly process as 

it utilizes benign liquid nitrogen or argon without discharging any toxic entity to the 

environment, making the process attractive and sustainable. The present review is intended to 

provide various scientific as well as technological aspects of cryomilling, environmental 

impact, and future direction.  
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Abbreviation 

DBTT : Ductile -to-Brittle Transition Temperature 

dmin  :Minimum grain size 

HEA  : High Entropy Alloy 

NPs  : Nanoparticles 

SAED  : Selected area electron diffraction 

TEM  : Transmission electron microscope 

SEM : Scanning electron microscope  

LN2 : Liquid Nitrogen 

RT  : Room Temperature 

MA  : Mechanical Alloying 

SFE : Stacking Fault Energy 

SPD : Severe Plastic Deformation 

PCA : Process Control Agent 

CNTs : Carbon nanotubes 

UHMWPE : Ultra-high molecular weight polyethylene 

PVC : Polyvinyl Chloride 

BP : Boiling Point 
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List of Symbols 

Tm Melting temperature 

Tg Glass transition temperature 

B Bulk modulus 

b Burger vector 

Q Self-diffusion activation energy 

Qp Activation energy for pipe diffusion 

Dpo Pipe diffusion coefficient 

 Poisson’s ratio 

 Stacking fault energy 

yl and ys Surface tension of liquid and solid surface 

 Dislocation density 

G Shear Modulus 

H Hardness 

∆Hm,o Melting enthalpy 

d crystallite size 

 Rate of dynamic recovery 

cs Dynamic recovery cross slip 

vc Dynamic recovery vacancy climb 
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1 Introduction 

Nanotechnology primarily involves the applications of novel nanomaterials for technological 

usage [1-5]. It has extensively revolutionized science and technology by combining various 

fields, including chemistry, physics, materials science and bioscience, and engineering. 

However, the major driver in the advancement of nanotechnology is the ability to 

successfully synthesize various nanomaterials in large quantities, so that the growing need for 

nanotechnology can be fulfilled [2, 6]. The synthesis of nanomaterials, in general, is carried 

out by two broad approaches, viz, bottom-up, and top-down. The former involves the self-

assembly of the materials component at the atomic-level to form nanostructures. Typical 

examples include chemical synthesis routes, laser ablation, atomic layer deposition, etc. [7, 

8]. The latter approach starts with a large initial structure, which is subsequently processed to 

obtain nanostructures. Ball milling and other severe plastic deformation (SPD) processes fall 

under this category. The bottom-up methods, in general, begin with atoms or molecules to 

build up nanostructures, and thus, fabrication is less expensive. However, most of these 

involve the usage of hazardous chemicals; the precursors and the reducing/capping agents, 

making these processes environmentally not sustainable. In addition, the bottom-up 

approaches, in general, cannot be used for the preparation of nanomaterials in large quantities 

and hence, cannot satisfy the burgeoning need of nanotechnology. On the other hand, the top-

down approaches can effectively be used for large scale production of nanomaterials. In 

particular, cryomilling is a type of top-down technique in which grinding is carried out at or 

below -150oC by using liquid nitrogen (LN2) or liquid argon (LAr). It is environmentally 

benign, and can be utilized to prepare all types of nanomaterials in large quantity [9-12]. As 

mentioned earlier, it also offers many advantages as compared to the conventional ball 

milling at RT (room temperature) or high temperature. Therefore, it is imperative to 

understand the basic process involved during cryomilling to make it technologically more 
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useful, viable, and robust for the preparation of various nanomaterials, encompassing metals, 

ceramics, polymers, and composites. 

Cryomilling/cryogrinding is a kind of mechanical milling process, carried out at a 

temperature lower than 123K (-150oC). The cooling of any material before milling has 

always been considered as effective means to make it brittle and friable. Hence, it is useful to 

accelerate fracturing and extensively reduce cold welding or agglomeration of the powder. 

This can be achieved in two ways [13]. In the simple form, the powder to be milled along 

with the milling media, which is mixed with cryogenic liquid to prepare a cryogenic slurry, 

and ball milling is further performed. However, this may lead to contamination of the powder 

due to the direct contact of the cryogenic liquid with powder. Many metallic materials, 

including Ti, Zr, Al are prone to nitridation in the presence of nitrogen [13-15]. In the second 

approach, the powder and the milling media are externally cooled by placing a jacket of 

cryogenic liquid around the vial, so that the powder does not come in contact with the 

cryogenic liquid.  The chance of contamination is thus low. However, it reduces efficiency of 

cooling of the powder due to poor heat transfer across the thick layer of the vial.  In fact, this 

significantly depends on the nature of vial material. As compared to WC or ZrO2, the 

stainless-steel vials will be more useful in achieving faster cooling. Stainless steels being less 

hard, may lead to contamination of the milled powder. Therefore, the choice of vial and ball 

will depend on the type of material to be milled and the level of contamination that can be 

tolerated for a specific application. 

Accordingly, different variants of the mills are present in the niche market for the synthesis of 

nanoparticles. First developed by Exxon Research, cryomills have been designed to cater the 

need to produce fine powders of metals, polymers, spices, and medicines[16]. The available 

cryomills include cryomill by RETSCH LTD (UK), cryogenic attritor by UNION PROCESS 

INC (USA), Goibao group (China), vibratory cryomill by FRITSCH GmbH (Germany), 
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Aveka Inc. (USA) and Tau instruments (India). Other variants are also available in the food 

industry, which are basically cryo-grinders having two separate chambers, typically known as 

a precooling and grinding stage. The food or species is first cooled to extremely low 

temperatures in the precooled screw conveyer stage by LN2. The cooled item is then ground 

using a hammer mill. However, cryomills utilized for materials science and engineering are 

different as there is no precooling stage. 

It is evident that the milling at cryogenic temperatures helps in many ways to obtain high-

quality nanomaterials, early fracture, rapid grain refinement, the lower oxidation rate of 

metallic materials, low contamination from the milling media, etc. [13, 17]. Low temperature 

can effectively limit or even suppress the processes like recovery and recrystallization, 

making early grain refinement. It is evident, the most of the BCC, HCP metals, ceramics and 

polymers become brittle at the cryogenic temperature due to ductile to brittle transition or 

glass transition temperature of the materials [18]. Hence, these materials predominantly 

undergo fracture during cryomilling. For FCC metals (which do not exhibit specific DBTT), 

the plasticity decreases substantially, making fractures of these metals predominant. The 

cryo-milling can also suppress the cold welding, which is dominated in conventional room 

temperature mechanical milling, causing agglomeration [19]. Therefore, the suppression of 

the cold-welding leads to fracture dominated phenomena with much less agglomeration. 

Additionally, milling leads to an increase of dislocation density by several-fold as both 

recovery and recrystallization processes are suppressed at extremely low temperature [14, 

20]. The major problem of nano-crystallization of metallic materials via milling is the 

incorporation of the contamination from the milling media as well as the atmosphere. 

Atmospheric oxygen can cause oxidation of the metallic nanoparticles at room and elevated 

temperature. The continuous milling can cause wear and tear of the balls and vials, leading to 

the incorporation of these materials into the milled powder. Longer milling, in general, 
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adopted to obtain nanocrystalline particles for ductile materials, can cause a substantial level 

of contamination. In cryomilling, rapid nano-crystallization occurs as mentioned earlier, 

requiring relatively shorter milling time and hence less contamination. Another advantage of 

cryomilling is related to the fact that it does not need the use of process control agent (PCA), 

and hence, the chance of contamination is further reduced. In addition, the oxidation rate of 

metallic materials reduces substantially at an extremely low temperature [21]. Hence, it is 

evident; the cryomilling can substantially reduce the level of contamination in the milled 

powder. With these distinct advantages, cryomilling has become a true alternative to 

synthesize various nanostructured materials, opening vistas to design and development of 

novel nanostructures. 

Cryomilling has extensively been used to prepare various metallic nanoparticles, viz., Cu, Fe, 

Ni, Al, Zn, Ag as well as alloys, including Mg alloys (AZ80), high entropy alloys, etc.[12, 

22-29]. It has been observed that quick milling at cryogenic temperature is enough to obtain a 

finer scale (<10 nm) nanoparticles of pure metals with narrow size distribution [9-12, 30]. It 

allows achieving finer nanoparticles, which can easily free stand in various organic liquids 

(ethanol, methanol, benzene, ethylene glycol, etc.) for a sufficiently long time, even several 

months [10, 30, 31]. Hence, milling at cryogenic temperature has been reported in the 

literature to be an effective method to synthesize nanoscale free-standing NPs in large 

quantities without using any PCA or capping agents. Especially Cu and Ag NPs, are potential 

candidates for various applications, notably flexible electronics [32], health care, antifouling 

coating for ship hulls [33], door panels, mattresses in hospitals and nanofluids in heat 

exchangers [34-37]. Some of these applications have already been realized. There exists 

sufficient literature on the efficacy of cryomilling on the synthesis of finer nanoparticles 

either using attritor or vibratory ball milling in dry or wet milling conditions. The detailed 

study on the dispersion of the metallic nanoparticles reveals the strong Van der Waals 
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interaction between the organic molecule and low co-ordinated atoms sitting on the surface of 

the nanoparticles, overcoming the tendency of agglomeration via collision due to Brownian 

motion [38, 39]. This is significant in a sense it would allow designing various metallic 

dispersions in liquids by controlling the surface characteristics of the nanoparticles. Unlike, 

room temperature milling, cryomilling cannot be used to prepare alloy nanoparticles by 

blending individual powder mixture and milling at cryogenic temperature. Extremely low 

temperatures can make interdiffusion among powder particles virtually impossible, and 

hence, alloying among powder particles is not possible at all. However, alloy nanoparticles 

can be synthesized by crushing the alloy ingots prepared via the melting-casting route at a 

cryogenic temperature [12]. Extremely low temperatures can be used to reduce ductility to 

make the cast ingots friable so that nanoparticles can be prepared via cryogenic grinding. 

This has opened up new vistas to obtain nanoparticles of various alloy with extremely low 

contamination levels for a large number of applications [11]. 

The detailed literature survey reveals that the cryomilling is not limited to the metallic 

materials. It has a wide area of usages, including polymers, ceramics, biomaterials, spices, 

pharmaceuticals, etc. [40-50]. Cryomilling, in different variants, has widely been utilized to 

prepare nanostructured polymeric as well as ceramic and composite materials [46, 48, 51-53]. 

An important variant, cryogenic grinding, employs cryogenic cooling of polymers to 

embrittle and grind for obtaining nanoparticles in a wide range of applications. Notable 

examples include polyvinyl chloride (PVC), nylon, polyethylene, synthetic rubber as 

adhesive, coating filler, molds, etc. [54, 55]. It effectively avoids excessive temperature 

enhancement, which degrades the properties of the materials or even leads to the melting of 

some polymers. Cryogenic grinding has even been used to reduce bulk materials into small-

sized particles. Some of the polymeric materials remain plastic and soft at ambient 

temperature. Hence, cooling down to cryogenic temperature embrittle them and easy to grind 
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into fine sizes. As many polymers are amorphous, cooling below glass transition temperature 

(Tg) also makes them brittle and friable. The cryogenic cooling allows the temperature control 

to prevent hazardous decomposition in the high energy environment of the mill. The water-

sensitive polymers can easily be cryomilled because LN2 expands almost 700 times in 

volume during gasification. It is enough to replace other gases in the chamber, including 

water vapor quickly. The extremely low-temperature allows the blending of LDPE (low-

density polyethylene) and UHMWPE (ultra-high molecular weight polyethylene) for the 

synthesis of nanocomposite coating [56]. The cryomilling has also be used for waste 

beneficiation for electronics waste (e-waste), plastic rich automotive waste [57, 58]. 

Similarly, cryomilling has extensively been used to synthesize nanoscaled ceramic and 

cermets [59], such as WC-Co [60], Al-AlN [14], B4C-Al [61], Fe2O3-Al [62], etc.  Halide 

nanocrystals (NaCl, KCl, CsCl) can be obtained via cryomilling [63-65]. Cryogenic cooling 

will restrain the mechanochemical reactions between the metal and ceramic, and hence, the 

integrity of the interface can be maintained. 

The mechano-chemical process at cryogenic temperature has effectively been utilized for the 

production of nano-sized powders of various important commercial ceramics, as mentioned 

earlier. Nanostructured ceramics are expected to provide property enhancement for different 

applications. Cryomilling has also been used to accomplish higher dispersion of carbon 

nanotubes (CNTs), carbon blacks, graphene, or even particulates in polymeric matrices 

without modifying their surface properties by using hazardous chemicals [46]. Because of the 

high aspect ratio, homogeneously dispersion of the second phase particles, which are desired 

various applications into a matrix, is a major hindrance in accomplishing the full potential of 

CNT based composites. Dispersion has been reported to increase substantially via 

cryomilling. 
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Additionally, it is important to note that cryomilling has increasingly been used in medical 

applications. Milling at cryogenic temperature can lead to the amorphization (full or 

partial)of drugs, enhancing their fast dissolution [66]. Cryo milling using liquid nitrogen (LN2 

milling) has been reported to grind phenytoin, improving its dissolution rate [67, 68]. This 

drug is considered to be poor water-soluble and needed to be pulverized for the enhancement 

of the dissolution rate [66]. The pulverization at low temperatures can even reduce the 

agglomeration of tiny drug particles due to the development of electrostatic charges over 

surfaces, mechanochemical surface defects, and changes in other physicochemical properties 

[69]. In the case of food science, the cryogenic grinding is a promising way to tackle damage 

of the ingredients such as essential oil, lipid, crude protein, starch, non-volatile ether extract, 

moisture, piperine, etc. and preserve the essential food values [70]. 

As mentioned earlier, cryomilling is considered as an environmentally friendly (eco-friendly) 

manufacturing process to prepare NPs of a variety of materials in large quantities. It is worth 

to mention that the research activities in the last few decades have been dedicated to 

developing eco-friendly processes (also known as green synthesis processes), for the 

preparation of NPs, with no usage of the hazardous chemicals [11, 71-76]. Fundamentally, 

any synthesis process needs to satisfy certain conditions to be called the green synthesis 

process [77]. These primarily include maximization of output yield and generate products, 

side products that possess no toxicity to the environment and human health. Hence, the 

researchers have made significant efforts to develop the green process with high yields and 

production capability of NPs. In this regard, most of the biologically assisted processes are 

green synthesis processes [72, 73, 78]. However, these processes suffer from a lack of yield 

[73, 76]. The commonly used chemical synthesis routes for NPs reported in the literature 

utilizes hazardous chemical with drainage of hazardous wastage and low yield. On the other 
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hand, cryomilling utilizes LN2 with no hazardous discharge to prepare metallic, ceramic as 

well as polymeric nanoparticles. Hence, it can be called a green synthesis technique, 

sustainable and capable of scaling up. 

In this background, the present review intends to provide an in-depth scientific understanding 

of the process of cryomilling, its environmentally benign nature, and technological 

applications to obtain various nanomaterials; metallic, ceramic, polymeric, composites, 

medicinal, food. The process of cryomilling, unlike its room temperature counterpart, has not 

been discussed in detail in the literature. Starting with basic aspects of cryomilling, design, 

and development of cryomills, the effectiveness of cryomilling as compared to room 

temperature milling to obtain better quality (size control, contamination-free) nanomaterials 

have been dealt with in details. Finally, the cryomilling is an environmentally friendly 

process, which makes this process unique as compared to other routes to prepare 

nanomaterials. It is discussed from the perspective of the benign nature of chemical (LN2), 

almost zero discharge of dangerous chemicals, high efficiency, and scale-up. As compared to 

bottom approaches, the cryomilling process is capable of preparation nanomaterials from 

laboratory scale to industrial scale [11, 62, 79]. 

2 Cryomilling/Cryogrinding 

 “Cryo” is a Greek word, meaning the extremely low temperature. Therefore, the word “cryo-

milling” indicates mechanical milling or grinding at extremely low temperature, preferably 

below 123K or -150oC. It is well known that the process of mechanical milling reduces the 

particle size, leading to the formation of the nanocrystalline and amorphous materials. 

Extremely low temperature allows easy and rapid fracture of the particles, significantly 

reducing the time of milling, oxidation, and contamination. In the following, we shall discuss 

the process of cryomilling/cryogrinding s in detail. 
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As mentioned earlier, cryomilling/cryogrinding is a kind of mechanical milling process, 

carried out at a temperature lower than 123K. Cooling of material has been used effective 

means to make the materials brittle and friable, accelerating fracture and reducing cold 

welding as well as an agglomeration of the powder. [19, 80, 81]. In the simplest form, the 

powder to be milled along with milling media are mixed with cryogenic liquid to prepare a 

cryogenic slurry, and mechanical milling is subsequently performed. It is widely known as 

the pulverization process or mechanical grinding at extremely low temperatures. This is 

termed as wet cryomilling. 

However, this may lead to contamination of powder due to direct contact of the cryogenic 

liquid with powder. Many metallic materials, including Ti, Zr, Al, are prone to nitridation in 

the presence of nitrogen [20, 82, 83]. In the second approach, the powder and the milling 

media are externally cooled by placing a jacket of cryogenic liquid around the vial so that the 

powder does not come in contact with the cryogenic liquid, and a chance of contamination is 

low. This is called dry cryomilling. In principle, various cryogenic liquids, including liquid 

helium (boiling point (BP) ~ 4K), liquid oxygen (BP ~90K), liquid argon (BP~ 87K), liquid 

neon (BP ~27K) and liquid nitrogen (BP ~ 77K) can be used. However, in practice, both 

liquid argon (LAr) and liquid nitrogen (LN2) are widely used due to availability, benign 

nature, ease of handling, and cost-effectiveness. LN2 has been utilized as a cryogenic liquid 

in most of the investigations reported in the literature [13, 17, 79]. 

Accordingly, there exist different designs of cryomill to serve varying purposes of a gamut of 

applications. For spices, in general, a hammer mill is used to pulverize the pre-cooled spices. 

This allows rapid refinement of the spices, retaining of aroma (volatile etheric oils, providing 

taste in the spices) as well as maintenance of health and hygiene of the spices [84]. The 

cryomills in the pharmaceutical industries utilize sophisticated mills such as fluid energy 
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impact mills (e.g., fluidized bed jet mills and spiral jet mills) to obtain narrow size 

distribution nanoparticles. There are many laboratory-scale cryomills available for different 

materials; metals, alloys, ceramics, and polymer, and composites details. The details are 

provided in Table 1. Each cryomill has a unique work principle and capacity. Some cryomills 

also can be assembled or altered to different capacities. More details of different mills are 

discussed in section 3. 

Table 1: Different types of cryomill in the niche market 

Company Model Name details Reference 

Union process 

laboratory (USA) 

Cryogenic 

grinding system 

An Attritor type cryomill. [85] 

Retsch  (UK) Mixer Cryomill Mechanical shaking or radial 

oscillations in a horizontal position. 

[86] 

SPEX (USA) CentiPrep Freezer 

Mill 

Milling tools:-hardened steel, stainless 

steel, zirconium oxide, PTFE with 

different size or capacity. 

[87] 

Tau Instrument 

(India) 

Cryomill KC (0) Planetary Ball Mill Machine 

Milling Tools: hardened steel, 

Tungsten carbide with different sizes 

of ball and vials. 

[88] 

Fritsch (GmbH), 

Germany 

Cryomill P(0) Vibratory Micro Mill 

PULVERISETTE 0 

Milling tools: Agate, sintered 

corundum, zirconium oxide, stainless 

steel, hardened steel, hard metal 

tungsten carbide 

[89] 
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CIPHET 

Ludhiyana (India) 

Custom-built pre-cooling and low-temperature 

grinder (two-step cryo-grinder) for 

spices 

[84] 

 

Cryomilling has extensive been utilized for medicinal purposes. One of the major advantages 

of mechanical milling at an extremely low temperature is rapid refinements (canonization), 

leading to dispersion stability of the drugs due to the enhanced surface area to volume ratio. It 

is worth mentioning that the dispersion stability of drug molecules in solution is the primary 

requirement in health applications [90]. Similarly, the mechanical milling enhances the 

amorphization of the drugs, leading to faster dissolution capability of drugs [66]. Extremely 

low temperatures can protect them against reverting in the crystallinity form during 

subsequent milling. The drugs are in a frozen state during cryomilling, protecting them from 

chemical degradation as compared to room temperature milling. However, the process is 

reported to lead to many undesirable issues on medicinal ingredients such as agglomeration 

of tiny particles, development of electrostatic charges over surfaces of the tiny particles, 

mechano-chemical surface defects, and changes in other physicochemical properties. This 

significantly affects the physical stability of the medicinal powders. Similarly, the milling of 

polymeric materials at cryogenic temperature can lead to fine and homogeneous powder 

formation. The thermosetting/thermoplastic polymer easily can be ground to fine particles 

utilizing less energy because the low temperature is expected to reduce the clogging and 

gumming of polymer materials. The pliable and sticky materials are easy to grind to obtain 

fine powder using efficient milling at cryo-temperature. The explosive materials also can be 

milled below their ignition temperature. 
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2.1 Mechanical Milling at Room Temperature vs. Cryogenic Temperature in 

Nanostructure Formation 

The mechanical milling at room temperature has widely been utilized for the synthesis of 

various nanostructured materials. Extensive literature is available on the formation of 

nanostructure or amorphous material; metals, alloys, ceramics, etc.[13, 91-94]. The main 

differences in nanostructures formation associated with the cryomilling are the suppression of 

cold welding phenomena, predominant fracturing as compared to plastic deformation, and 

suppression of recovery and recrystallization process, extremely low or no oxidation. Since 

the invention of mechanical alloying by  J. S. Benjamin, in 1968 [91, 92], the mechanical 

alloying (MA) or mechanical milling (MM) at room temperature has been discussed in details 

and reader can refer to special reviews on this aspect [13, 79, 95, 96]. It is evident the 

friction/collision of balls with milling materials and walls of the vials increases the 

temperature of the system as well as materials, which has been considered an obstacle in the 

refinement of materials [97]. This is because various properties of materials, especially 

mechanical properties, are strongly dependent on the temperature. Takacs et al. have 

measured the temperature rise of SPEX 8000 and Fritsch P5 Planetary mills during milling, 

shown in Figure 1(a-b). In the former, the temperature can reach more than 60oC within 20 

minutes of the milling. Similarly, temperature could increase even >200oC in Fritsch P5 

planetary ball mill rotating at 280 rpm[97]. The temperature rise is sufficient for dynamic 

recovery, recrystallization, and sintering for some materials during milling. Therefore, the 

grain refinement can be achieved to a certain size (dmin) during ball milling, and it is not 

possible to reduce further due to recovery and sintering dominant phenomena, dependent on 

temperature and grain size. Fecht et al.[19] have suggested that achieving minimum grain 

size during mechanical milling is the result of a balance between dislocation structure 

generated by the severe deformation of mechanical milling and its dynamic recovery by 
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thermal processes. It is worth adding that mechanical milling, in general, has been reported to 

produce nanocrystalline materials via five stages; particles flattening, cold welding, fracture, 

equiaxed particles formation, and steady-state particles formation to achieve nanocrystalline 

materials as shown in Figure 2[19, 91, 98].  

 

Figure 1:(a) Ball temperature as a function of milling time when using a SPEX mill and flat-

ended vials with five 12.7 mm balls and no powder (∆). The continuous line represents a 

fitted exponential. The temperature of the vials as measured by a thermocouple (×) and 

independent calorimetric determination (□) is shown for comparison(b) Ball temperature 

milling time curves obtained using a Fritsch P-5 planetary mill. The (∆) and (o) symbols 

represent data with a 10-cm diameter milling bowl, and 100 balls and 280 rpm (∆) and 200 

rpm (o) speed and the (*) and (□) symbols correspond to a 7.5-cm bowl, 50 balls and 280 rpm 

(*) and 200 rpm (□) speeds [97]. 
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Figure 2: Five stage fracture process in room temperature mechanical milling [99] 

During the flattening stage, the temperature at the point of collision of the material with balls 

or vial is likely to increase, depending on the type of material, ball mill. The rise in the 

temperature promotes both cold welding formation as well as the sintering of particles, 

leading to the formation of agglomeration having nanocrystallites with increasing particle 

size. Hence, cold welding phenomena are prevalent in the mechanical milling at room 

temperature (RT) and the agglomeration of as-synthesized powder. Therefore, the synthesis 

of fine nanoparticles and rapid refinement is unlikely via ball milling at  RT. In contrast, the 

cryomilling suppresses the cold welding and agglomeration[19]. Modeling of the formation 

of nanocrystalline materials and the sintering phenomenon can shed new light into the 

efficacy of cryomilling on the formation of nanostructured materials. In this direction, 
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Mohamed et al.[100] have provided a model to predict the minimum grain size (dmin) 

achievable via mechanical milling. Similarly, Alymov et al. [101] have developed a model on 

the sintering temperature of nanoparticles due to the reduction of particles. These models 

show reasonably good agreement of the experimental findings for the reduction of the size of 

powder particles. However, the theoretical calculation of dmin and TSS  require material 

properties, especially defect generation and annihilation. It is indeed, temperature dependent. 

In the following, this aspect is discussed to elucidate the importance of the temperature of 

mechanical milling. 

Over the past many decades, the characteristics of refinement of particle size and 

nanostructures formation during ball milling have been studied extensively and guided to 

many important findings, leading to several models for grain refinement. However, some of 

the important models require discussion. Let first discuss the conclusions on the experimental 

findings of the mechanical milling of various materials (concluded by Mohamed et al.[100]) 

i) grain size decreases and reaches to dmin (minimum grain size) as milling time increases, and 

dmin is different for different materials. 

ii) dmin of any material is inversely proportional to the melting temperature (Tm) and the bulk 

modulus (B). 

iii) for FCC nanocrystalline metals, dmin shows a linear relationship with and critical 

equilibrium distance between two edge dislocations (Lc). 

iv) some experimental observations reveal that smaller nanocrystalline grain sizes can be 

obtained at lower milling temperatures. 

Using these experimental findings, Mohamed has derived an equation for dmin, as a function 

of material parameters. In general, grain refinement has been categorized into three steps:  
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(a) The localization of high dislocation density in the shear bands;  

(b) The annihilation and recombination of dislocations, forming cells and subgrains 

(recovery);  

(c) The transformation of sub boundaries into high-angle grain boundaries. 

According to Fecht et al.[19],  dmin during mechanical milling is the result of a balance 

between the generation  of dislocation structure by the severe deformation during milling and 

its recovery and recombination by thermal processes.  However, Mohamed et al. have added 

the recovery can also take place via creep, stating that “steady-state creep represents a 

balance between competing factors of rate of strain hardening and rate of thermal recovery.”  

Accordingly, Mohamed et al. has provided an equation as follows 
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Here, A (dimensionless constant), b is Burger’s vector of dislocation, Q the self-diffusion 

activation energy,  is a constant (0.04);, Dpo pipe diffusion coefficient, G shear modulus, o 

Poisson's ratio, H  hardness,   the stacking fault energy, R the universal gas constant, k the 

Boltzmann constant and T is the absolute temperature. According to the equation, dmin is 

strongly dependent on the milling temperature because Q, DP0, G, H are dependent on T. The 

term  is related to the dislocation generation via the thermal process. 

The pipe diffusion (Dp) plays a critical role, especially at low homologous temperatures and 

high stresses. This can be expressed as 

Deff  = Dv + acDp                               (2) 

 

(1) 
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, where Deff is the effective diffusion coefficient, ac the area of the dislocation core associated 

with rapid diffusion, Dv the self-diffusion (bulk or volume) coefficient, and  is the 

dislocation density. 

By taking ac = 5b2 and  = 10 (/Gb)2  Eq. (2) becomes: 

Deff    =   Dv + 50(/G)2 DP                                                (3) 

Here, Dp is given by: 

DP = DPO  e-QP/RT = DPO exp-(Q/RT)                  (4) 

Here, Q is the self-diffusion activation energy, Qp the activation energy for pipe diffusion, T 

the absolute temperature, R the gas constant, and  is less than unity (about 0.58 for most 

FCC metals). DP is expected to assume significant value under the conditions associated with 

milling at low temperatures and severe plastic deformation, which can produce a high 

dislocation density. This aspect will be important for mechanical milling at cryogenic 

temperatures.  

A model of the initial stage of sintering of ultrafine powders (TSS) 

For the formation and retainment of nanocrystalline particles, the sintering of particles needs 

to be extensively reduced or even nullified. Temperature plays a critical role in sintering, and 

hence, sintering temperature vis-a-vis operation temperature of the mechanical milling will 

have a tremendous role in the formation of the nanoparticles. In this regard,  a model has 

provided by Alymov et al.[101] relates the temperature at which sintering starts (Tss) and the 

size of the particles during the initial stage of sintering. The ratio Tss/Tm (where Tm is the 

melting temperature of the bulk), can be obtained from this model and compared with the 

milling temperature. 

Alymov et al.[101] have provided a relationship for TSS  of  nanoparticles as following 
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 ln 1 ( 1)SS mT T k e= + −
               (5) 

, where,  

               

(6)

 

                                    

                            (7)

 

, where s is the fraction of the sintered region, as defined in equation (6), A is a constant 

varying from 0.06 to 0.15; L the number of neighbors of a particle and Tm is the melting 

temperature defined in equation (7). T0 is the bulk melting temperature, yl and ys are surface 

tensions of liquid and solid respectively, ΔHm,o the melting enthalpy, and d  is the crystallite 

size. 

Based on these models, there are few reports available in the literature on the efficacy of 

cryomilling on the formation of nanoparticles [10, 30, 102]. The application of these models 

suggests that the Zn NPs exhibit strongly sinter-dominated behavior >170 K. On the other 

hand, for the Al NPs, the critical temperature at which sintering dominated aspect occurs at 

>120 K. This is shown in 

Figure 3(a-b). Hence, the successful synthesis of fine nanoparticle and rapid refinement is 

possible by milling at a temperature lower than the critical temperature below which sintering 

dominates. Hence, one needs to select the milling temperature in the plastic-deformation 
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dominated region instead of the sintered dominated region for the rapid refinement of 

nanoparticles. 

 
 

Figure 3: Crystallite size predicted by the model of Mohamed[100](milling) and Alymov 

etal. [101](sintering) showing distinct regimes (a) Zn nanoparticles[102] (b) Aluminium 

nanoparticles[10]. 
 

Cryomilling can effectively reduce cold welding phenomena because many available 

materials undergo a ductile-to-brittle transition (DBTT) at or below 123K, causing 

predominant fracture over plastic deformation. For the ductile materials, the plastic 

deformation will be limited at extremely low temperature and hence, even if cold-welded 

particles forms, these joints are likely to be broken during the subsequent milling operation. 

This has been reported recently by Katiyar et al.[103] upon investigating the formation of 

cold-welds of some important materials at different temperatures.  Some comparison is 

shown in Figure 4(a). In these experiments, the two metallic strips of the pure metal were 

degreased using methanol, scratched for removing the oxide layer, and then riveted together 

to avoid any deflection between both strips during the deformation. Subsequently, the riveted 

strips were deformed by different amount (30, 40, 50, 60, 70, 80%) at various temperatures 

(27, 0 and -196oC) for cold weld formation [Schematics diagram shown in Figure 4(b)]. It is 

evident that the cold-welded joints of both Al and Cu exhibit higher bond strength at room 

temperature as well as after 70% and 80% deformation, respectively. However, similar 
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deformation at cryogenic temperature leads to a substantial reduction of the strength of the 

weld (40 % of Al and 60 % of Cu),  shown in Figure 4(c). Interestingly, the Fe has not been 

found to form a cold bond at any temperature, possibly due to BCC crystal structure and high 

melting temperature. Therefore, it is evident, cold welding and sintering of nanoparticles can 

severely be reduced by ball milling at cryogenic temperature. This is expected to promote the 

rapid refinement of the particle size during cryomilling and refinement of the size of the 

nanoparticles during milling. Subsequently, one needs to look at the mechanical properties of 

various materials (metals, ceramics, polymer, etc.) at cryogenic temperature to understand the 

plastic deformation vis-à-vis fracturing phenomena at low temperatures. 
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Figure 4 (a)Distinct nanostructure formation Cryomilling vs. room temperature milling(b) 

cold weld formation using rolling at different temperatures(c) Cold weld behaviour of 

materials at different temperatures and different percent deformation [31]. 

2.2 Effect of Temperature of Milling on Nanostructured Materials 

In the previous section, it has been shown that there are many advantages associated with the 

cryomilling process in comparison with conventional or room temperature mechanical 

milling. One of them is related to the suppression of recovery during the milling process. 

During milling, the crystalline lattice of the material is plastically deformed, leading to the 

accumulation of dislocations and other defects. Extensive plastic deformation or cold 

working leads to the accumulation of these defects, lowering the plasticity of the materials. 

Hence further generation of defects is no longer possible. Dynamic recovery is the basic 

mechanism that leads to the annihilation of dislocations during deformation [18], and hence, 

ductility of the deformed materials can be recovered. It has been reported that the cross slip 

of screw dislocations helps to achieve dynamic recovery at cryo-temperature., At the higher 

temperature, vacancy climb dominates [104, 105]. Hallen et al. have investigated the 

dynamic recovery of FCC metals at different temperatures and compared with theoretically 

calculated values [105]. Recrystallized specimens of pure nickel, aluminium, and copper and 

austenitic stainless steels were investigated via tensile test carried out at the various 

temperatures and strain rates (Al = 0.5×102, Cu = 1.3×102, Ni = 0.5×102s-1). 

According to the authors, the dynamic recovery is coupled with both processes of cross slip 

and vacancy climb and thus [105]; 

Ω= Ωcs + Ωvc                                                                          (8) 

Ωcs (CS = cross slip) is the dynamic recovery constant at low temperatures, where vacancy 

diffusion is negligible and Ωvc (VC= vacancy climb) rate of recovery constant at high 

temperature, 

Ωcs = Cexp(-Qc/RT)                                             (9) 
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Here, Ω is a factor describing the rate of dynamic recovery. The rate of recovery is also 

directly proportional to the instantaneous level of dislocation density . Nevertheless, the 

dynamic recovery significantly decreases at low temperature (especially at or below <123 K), 

as shown in Figure 5, compared to room temperature (300K) for the most of FCC metals and 

alloys [105]. Therefore, milling at low temperature (cryogenic-temperature) will lead to 

extensive storage of dislocations during repeated mechanical milling of materials, causing a 

substantial increase in the strain hardening. This leads to a reduction of ductility, toughness, 

and increases the probability of fracture at a lower level of strain. 

 

Figure 5:Experimental values of dynamic recovery constant variation against temperature 

formation FCC metals and alloy [105] 

Another important factor is the suppression in the oxidation rate of metallic nanoparticles at 

low temperature. Oxidation is predominately observed in the nanocrystalline metals and 

alloys during synthesis via mechanical milling at room temperature. Hence, many metallic 

nanoparticles exhibit oxidized surface layers, impeding their applications. The oxidation of 

pure metals takes place over the surface, and hence the nanoparticles of pure metals are 

highly prone to oxidation due to high ratio of surface area to volume [106]. Therefore, lower 

milling temperature helps to reduce the rate of oxidation during milling. Rhodin et al.[21] 
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have reported the formation of an oxide layer over the metallic surface of Cu with time at 

different temperatures. The growth of the oxide layer at 78K in a controlled experiment is 

negligible even after 100 hours. However, at the higher temperature (>273 K), the thickness 

of the oxide layer increases extensively with the time, as shown in Figure 6 [21]. Therefore, it 

is evident that the rate of oxidation at low-temperature milling expected to be low, and the 

possibility of synthesis of pure metallic NPs, almost free of contamination or oxide layer, 

called native particles or particles with virgin surfaces can be achieved. 

 

Figure 6:Oxidation behaviour of Cu at different temperatures as the effective film thickness 

of Cu oxide against temperature[21]. 

However, there are other sources of contamination in the milled powder. The interaction of 

the balls, and vials with powder can also cause the production of debris, which is the main 

source of contamination in many milling operations. This debris from milling tools is directly 

affected by milling parameters, especially ball to powder ratio, time, and speed. It is also 
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dependent on the milling materials and shape of the vials. Thus, one can compare the level of 

contamination between milling at room temperature and cryogenic temperature ball, provided 

other milling parameters are kept the same. If the conventional ball milling is compared with 

cryo-milling for the same material and the shape of vials, it is evident that the milling time 

will decide the level of unavoidable contamination contributed from the milling tools. 

Therefore, the cryomilling has this distinct advantage to reduce the contamination imparting 

from milling tools because the refinement is faster during cryomilling since the fracture 

phenomenon dominates over plastic deformation and reduces the time of milling. As seen in 

Figure 7, 100 hours of milling time required to obtain the NPs, when conventional ball 

milling is utilized. On the other hand, it requires 5 to 10 hours utilizing the cryomilling for 

the same.  

 

Figure 7: Comparison of conventional ball milling against cryo ball milling to get NPs. 

3 Cryomilling Setup: Types and Variation 

The cryomilling, carried out at or below cryogenic temperature, exhibits distinctly different 

features as compared to mechanical milling at room temperature. In this regard, the cooling 
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of the powder and milling media are considered a prominent factor for the design and 

development of cryomills. Cooling of powders, before milling or during milling using 

cryogenic liquids, is the distinctly different step in the cryomilling or grinding. Based on 

cooling, the cryomilling can be classified into two types, wet milling (milling materials 

mixed with cryogenic liquid) and dry milling (milling chamber is cooled externally). 

However,  spices, medicines, and polymeric powders are precooled, and milling is 

subsequently performed on the pre-cooled powder [84]. Based on cooling, the cryomills can 

further be classified based on whether the cryogenic liquid and milling materials never come 

in contact with each other. The cryogenic liquid is directly added in the milling chamber, 

containing ball and powder for wet milling. On the other hand, the coolant is kept in the 

reservoir adjacent to the milling chamber for cooling the milling materials in case of for dry 

milling. The wet milling can cause contamination arising from coolant liquid as it is directly 

in contact with milling materials for a long time. Hofmeister et al.[107] have estimated the 

nitrogen concentration of AA5083 alloy during prolong cryomilling in slurry form, and found 

nitrogen concentration of1.64 ± 0.17 at%, and 19.12 ± 1.10 at% for 8 and 72 hours 

cryomilling respectively. Sometimes, the ice flakes may also enter in the milling chamber 

along with the LN2. Consequently, the materials can get oxidized, as ice flakes turn to water 

due to heating up after taking out the milled powder from the mill. In contrast, dry-milling 

can eliminate or even reduce this problem. In addition, the milling under inert gas 

environment can provide a better quality product. Therefore, the addition of inert gas purging 

assembly with cryomill is of prime importance for synthesizing good quality nanomaterials. 

The continuous purging inert gas is difficult in a planetary ball mill as compared to the shaker 

and vibratory cryomill. It is also important that the milling assembly should be compatible 

with cryogenic liquid to avoid brittle fracture of the milling accessories. As some cryogenic 



Accepted in International Materials Reviews; 15 sept 2020 

31 

 

liquids may cause harm to the human body during direct contact, extra safety features are also 

needed to be incorporated in the cryomill.  

In the niche markets, various types of the cryomills are available; Fritsch GmbH [89], Retsch 

[86], KC (0) [88]and cryomill attritor ([85], SPEX Freezer mill [87] and with pre-cooling and 

low-temperature grinder (two-step cryo-grinder) for spices [108]. In the subsequent section, 

we shall discuss different cryomills and their evolution over time. 

3.1 Evolution of Cryomilling over Time 

The main objective of cryomilling is the reduction of particle size and the prevention of 

decomposition of temperature-sensitive materials during reduction. It is  part of conventional 

mechanical milling, as shown in the schematic  

Figure 8. In fact, the milling/grinding at low temperature was reported in the literature as 

early as 1937 with articles title “An apparatus for grinding bacteria at low temperature,” 

where the bacteria have been disrupted using a cryo-ball mill containing five hundred 0.25 

inch stainless steel balls. The mill was cooled -75oC using a mixture of methyl cellosolve and 

CO2. The stout pyrex flask of 1 litre containing bacteria and balls were rotated at 230 rpm 

using an electric motor [109]. Similarly, design of the cryomill published from West 

Germany in the year 1973, having the title “Cryogen-Low temperature grinding of brittle 

materials”.  This described the cryomilling of plastic granules and flocks [110]. It is evident 

cryomilling was developed much earlier than conventional room temperature ball mills. 

However, the utilization of cryomill was limited. The invention of the Scanning Tunneling 

Microscope (STM) by IBM in the 1980s fuelled the research in nanostructure/nanomaterials 

synthesis, and many research groups started using cryomilling to synthesize nanomaterials. 

Some research groups even used the conventional ball mills as cryomill, just dipping the vial 

in LN2 prior to milling. There exist many mechanical mills in the research, academia, and 

industries;  drum ball mill, jet ball mill, bead mill, horizontal rotatory ball mill, 
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vibrations/shaker ball mill, attritor ball mill, etc. The selection of ball mill depends according 

to the purpose, such as mixing, pulverization, mechanical alloying, etc. Nonetheless, ball 

mills can be classified based on energy, medium, and temperature. On the basis of energy, 

milling can be divided into low energy and high energy milling. According to the medium, it 

is categorized as wet milling and dry milling. Similarly, it is classified in high-temperature 

milling, room temperature cryomilling based on temperature, as shown in a schematic 

Figure 8. Some of the available cryomills for laboratory scale in the niche market has been 

discussed in Table 1. 

 

 

Figure 8: Schematic classification of ball milling based on energy, medium, and temperature. 

 

The categorization based on high and low energy is primarily dependent on energy transfer 

through milling tools to the underlying materials [111]. Several factors, including the 

hardness difference of milling tools, milling materials, speed of the mill, ball to powder ratio, 

etc. determine the energy transfer. Moreover, in some designed mills, the magnet is placed 

close to the vial to apply a strong pulling force on the magnetic balls, and thereby the impact 

energy imparted can be made higher than the normal mill [112]. Cryomills utilized for the 
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synthesis of nanoparticles; other aspects need to be considered, including homogeneity and 

the protection of nanomaterials from oxidation and nitridation. Recently, the free-standing 

nanocrystalline materials are considered an active and promising area of research in materials 

science, biomedical imaging, physics, chemistry, etc. [113]. The use of cryomills and their 

importance will be discussed in subsequent sections in detail. 

3.2 How to Achieve Cryogenic Temperature with Different Cryo-liquids 

Achieving proper cooling to obtain temperature below 123 K is considered the primary 

objective of the cryomilling. Hence, cryomills are designed to be compatible with different 

coolants. During the milling process, the milling media, along with powder, are being cooled 

using cryogenic liquids having an extremely low boiling temperature such as liquid oxygen 

(90 K); liquid argon (87 K); liquid neon (27 K) and liquid nitrogen (77 K), etc. Although 

liquid argon and nitrogen have primarily been utilized as a coolant in the cryomills, liquid 

nitrogen is widely used. The liquid nitrogen (LN2) is considered a cost-effective cryogenic 

liquid and non-toxic for the environment. It is released in the form of N2 gas, which is 

omnipresent (~78 volume %) in our environment, and we breathe it along with oxygen. The 

LN2 is the safest coolant in the cryomilling compared to another coolant such as liquid Ar. 

Argon is dangerous if inhaled in large amounts as it can get trapped in the lungs and can 

displace the oxygen. 

Kumar et al.[9] have described the cooling profile of custom-built cryomill, utilizing LN2 and 

compared the temperature variation and running positions. The temperature of the milling 

chamber was monitored online by a K-type thermocouple. LN2 was poured in the cryomilling 

via LN2 inlet (schematically shown in Figure 9(a)) in five minutes interval. Subsequently, the 

temperature was reduced and reached steady state -170 oC after 60  minutes (Figure 9(b)). 

The cooling (Figure 9(c)) profile reveals that the temperature varies from -140 to -180oC next 

5 minutes during the operation of the cryomill. 
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Figure 9: (a) Schematic of custom build cryomill(b) cooling profile of cryomilling in stop 

position (c) temperature variation during milling (LN2 added in each 5-minutes interval)[9] 

 

3.3 Issues in Fabrication of Cryomill 

 

It is also important to handle several basic issues while designing a mill working at an 

extremely low temperature.  The balls and vial materials, along with their accessories, must 

withstand the cryogenic temperature. The tungsten carbide and stainless steels have been 

reported to have the capability to sustain low temperatures and bear the shock load with 

minimum wear and tear. Similarly, UHMWPE (Ultra-high molecular weight polyethylene) is 

reported to withstand shock load at liquid nitrogen for a longer duration. It is a good insulator 

[114], which can be used for fabricating coolant reservoir and other accessories to reduce heat 

loss. In addition, the stainless steel (SS316 type)  can be used for fabricating the outer body 

of the mill. The available cryomills in the market are shaker, vibratory, and attritor types 

[111], primarily due to the easy handling of the liquid coolant. The planetary type cryomill is 

difficult to fabricate due to the need for additional accessories for supplying cryogenic liquid. 
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In fact, there is no planetary [13] type cryomill in the niche market because of the fact that 

planetary rotation does not allow the handling of liquid coolant. 

Additionally, there are other challenging issues to be considered for the design of the cryo-

chamber. This includes maintenance of the proper temperature in case of dry milling and the 

inert gas environment over the milling materials to avoid oxidation of the milled materials. In 

the case of wet milling (milling materials along with coolant liquid), the flow of LN2 is not 

continuous instead of the dosing of LN2 at certain intervals. There are high chances of the 

formation of ice flakes, which can enter into the milling chamber with the dosing of LN2.  

Moisture present in the chamber can freeze and form ice flakes.  Hence, it is essential to stop 

these ice flakes entering in the cryo-chamber. The each type of cryomill has a different 

energy transfer rate, and it critically depends on its working principle as well as hardness 

difference between under milling powder and ball-vial. 

The UNION ACRON, UK-based company, has designed an attritor-based cryomill. The 

schematic of the cryo-chamber is shown in Figure 10(a), in which the powder and balls are 

charged into the chamber, and the surrounding body is cooled with cryogenic liquid. In the 

attritor, the balls are rotated via impeller in the cryo-chamber [111, 115]. Similarly, Germany-

based company RETSCH has designed a shaker cryomill [116], in which the materials and 

liquid coolant are mixed and subsequently milled in the cryo-chamber (ball and vial), shown 

in Figure 10(b). The milling action is achieved by mechanical shaking of the cryo-chamber, 

and LN2 can be filled inside or outer body of the cryo chamber. The cryomill is used for the 

spices and food industries. In this type of mill, the milling materials are first cooled by 

cooling of the conveyor, and milling is done in a separate chamber, as shown in Figure 10(c) 

[117]. 
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There are some other custom-built cryo-mills, as shown in Figure 10(d). Kumar et al.[9] has 

reported the design and development of a vibratory custom cryo-chamber, as shown in Figure 

10(d). This mill is endowed with features including separate liquid coolant reservoir, in situ 

monitoring of temperature, in situ monitoring of ball motion, and inert gas environment to 

protect materials from oxidation. Similarly, KC0 cryomill, designed and developed by Tau 

Instrument, India, has several built-in facilities; a separate chamber for liquid coolant and 

well-protected hood to reduce noise generated during milling. 
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Figure 10: (a) Union process UK cryomill chamber ball and vials[85];(b) Schematics of 

Retsch cryomill chamber ball and vials[116];(c)Cryo conveyor for precooling milling 

materials[117];(d) schematic of cryobox with details 1. outlet of N2, 2. thermocouple, 3. exit 

of inert gas, 4. eyepiece, 5. inlet inert gas, 6. inlet LN2, 7. locking wedge, 8. Stainless steel 

outer body, 9. UHMWPE thermal insulator body, 10. annular space (LN2 reservoir), 11. 

tungsten carbide vial, 12. tungsten carbide ball, 13. neoprene seat-ring, 14. inert gas 

atmosphere in milling space [9],  

4 Cryomilling of Metals and Alloys 

It has earlier been mentioned that cryomilling has extensively been utilized for the synthesis 

of nanoparticles, metals, alloys, ceramics, polymers, composites, and hybrids to showcase the 

uniqueness of this processing route in the synthesis of various materials. In the following, we 

shall discuss the synthesis of each of these materials with detailed analyses on the efficacy of 

the process. In addition, cryomilled powders have been  used to obtain various shapes. 

Cryomilling has also been utilized to synthesize advanced materials; graphene, MoS2, etc. 

4.1  Pristine Metallic Nanoparticles 

 

The metallic nanoparticles having zero/negligible foreign contamination know as pristine 

metallic nanoparticles., The preparation technique may impart/induce foreign substances 
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during synthesis, leading to contamination of the NPs. Pristine NPs,  with reactive surface 

due to high surface to volume ratio, are prone to bind with airborne contaminations. 

Consequently, the preparation of metallic nanoparticles is challenging. The existing 

techniques to prepare nanoparticles have been summarized in Figure 11. In general, basically, 

the preparation of nanoparticles has been classified into two types; ‘top-down’ and ‘bottom-

up’ approaches. Both approaches have many drawbacks, i.e., low yield of the nanomaterials, 

the requirement of hazardous chemicals (processing agents) to prevent coarsening of NPs, 

stabilization, etc. On the other hand, the mechanical milling process is capable of producing a 

large quantity of NPs. However, it requires a long time of milling, inducing the debris as 

contamination or foreign atom during preparation. The metallic materials are also prone to 

oxidization during the extended hours of milling. However, the formation of the robust oxide 

layer over nanoparticles or the utilization of capping agents on the surface of the 

nanoparticles to protect theme can even lead to the loss of their native properties. This review 

focused on the cryomilling, which belongs to the top-down approach  
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Figure 11: Preparation nanoparticles by different techniques 

In comparison to other techniques, cryomilling is found to be a useful technique to prepare 

high pure metallic NPs in large quantities. It takes advantage of low temperatures, such as 

materials, to get fractures very easily at low-temperature and also reduces the 

oxidation/nitridation rate. Therefore, foreign and induced contamination can be reduced up to 

a negligible level. In the following, the synthesis of the nanoparticles/nanocrystals reported. 

The consolidation of the nanoparticles has been discussed in section 4.3. 

First, the synthesis of pristine metallic NPs via cryomilling will be discussed. Several pristine 

metallic NPs have been synthesized via cryomilling such as Cu, Ag, Fe, Zn, etc. The 

important characteristics of these metallic NPs are rapid grain refinement, narrow size 

distribution, contamination-free. In fact, some of these metallic NPs are found to be free-
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standing in liquids; methanol, ethanol, benzene, etc.  Barai et al.[30] have reported the 

successful synthesis of free-standing Cu nanoparticles using cryomilling. Similarly, Zn free-

standing nanoparticles were synthesized using combined cryomilling and room temperature 

milling [102]. However, Zhang et al.[118, 119] have reported that the average grain of Zn can 

be reduced to only 17 nm in 12 hours of cryomilling. Interestingly,  a large number of grains 

with size varying from 2 to6 nm forms in the early-stage  of cryomilling. Hence, cryomilling 

is effective in achieving finer scale NPs with less hours of cryomilling.  

In comparison to room temperature milling, the cryomilling reduces the particle size rapidly 

with finer particle size. The variation of size with milling at room temperature and cryo-

temperature is shown in Figure 12. After three hours of room temperature milling, the size of 

the average nanoparticles was 50 ± 4 nm. Similarly, the average size of the nanoparticles is 

32 ± 4 nm by cryomilling. Although the main purpose of cryomilling is to obtain pristine 

nanoparticles, it also leads to finer refinement of the NPs [120]. 



Accepted in International Materials Reviews; 15 sept 2020 

42 

 

 

Figure 12: variation of particle size against the time of milling at room temperature and 

cryogenic temperature (inset shows the XRD pattern of iron nanoparticles)[120]. 

Kumar et al.[10, 11, 31] have reported the synthesis of pristine metallic nanoparticles with 

the same technique. The surfactant-free (pristine surface NPs) Ag and Al NPs exhibit narrow 

size distribution, as shown in Figure 13(b). Interestingly, Ag and Al NPs don’t exhibit any 

surface contamination probed using X-ray photoelectron spectroscopy (XPS). The 

compositions of NPs are summarized in Table 2 and Table 3. [11]. Similarly, there is no 

oxide content in the Al NPs as compared to as-received powder, indicated by the XPS 

investigation [11]. The total contribution of oxygen can be related to sources such as surface 

adsorbed oxygen (533.5 eV) [121], hydroxide/oxyhydroxide (532.4 eV) [122, 123], and 

aluminium oxide (531.33 eV) [124]  
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Figure 13: (a) FESEM image of silver particles as received (b) TEM bright-field micrograph 

of Ag nanoparticles after 7 hours of cryomilling (inset shows a high-resolution image)[11] 

 

Table 2 : Surface composition of as received and after 7 hours of Cryomilling using XPS 

Name of sample Ag 

(atom%) 

C 

(atom%) 

O 

(atom%) 

As received Ag 
58.57 33.96 7.46 

7 h cryomilled Ag NPs 
67.03 20.84 12.13 
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Table 3:  Surface composition of Al (as received) and Al (Cryomilled) as NPs estimated by 

XPS. 

Element As received (Al) 

( atom % ) 

Cryomilled (Al) 

(atom %) 

Al 33.73±0.5 35.54±0.5 

O 48.09±1 47.40±1 

4.2 Pristine Alloys Nanoparticles 

The foreign contaminations, which are generally induced during processing,  include 

oxide/nitride formed during synthesis or handling due to a high surface to volume ratio  of 

NPs. During the chemical synthesis of NPs, the surface of particles is normally protected by 

using capping agents. The synthesis of pristine alloy NPs is a challenging task in the 

scientific community because of the difference in the chemical potential of the materials in 

the pristine form vis-à-vis compound. The different reactivity of the components either 

promotes the formation of intermetallic compounds or separates out from the matrix. A long 

time of milling is required to achieve nanosized particles during the mechanical milling at 

room temperature, and this can slowly introduce impurities from the milling tool or the 

environment, which is unavoidable during synthesis. However, the cryomilling process 

accelerates the fracturing process and form nanoparticles within 6-8 hours, reducing the 

milling debris at the negligible level and capable of synthesizing even pristine alloy 

nanoparticles, which is discussed next. 

4.2.1 Nanoparticles from Cast and Homogenized Ingot 

A combination of casting and cryomilling can be utilized to synthesize homogeneous alloy 

nanoparticles, which is thus considered a novel technique. It has more advantages as 

contamination from the milling media, and oxidation is expected to be low. The cast and 

homogenized ingot can be used as starting materials allowing the synthesis of NPs with better 

compositional homogeneity. Kumar et al.[12] have reported the synthesis of the high entropy 
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alloy (HEA) nanoparticles consisting of five metallic elements in a single phase. First, the 

HEA alloys were synthesized by casting routes, instead of longer mechanical alloying (MA) 

of a mixture of five elemental powders. The ingots were substantially homogenized at 

elevated temperature. After crushing them, smaller pieces were milled at cryo-temperature to 

obtain pristine single-phase HEA nanoparticles of three different alloy systems 

(Cu0.2Ag0.2Au0.2Pt0.2Pd0.2),(Fe0.2Cr0.2Mn0.2V0.2Al0.2), and (Fe0.2Cr0.2Mn0.2Ni0.2Co0.2) [12]. The 

nanoparticles were found to be free from any foreign contamination, which is evidenced by 

EPMA (Electron probe microanalyzer)-WDS (wavelength dispersive spectrum), as shown in 

Figure 14 [12]. 

 

Figure 14: EPMA (WDS) spectra of Cu0.2Ag0.2Au0.2Pt0.2Pd0.2 nanoparticles [lithium fluoride 

(LiFH) crystals; Layered dispersion element (LDE); pentaerythritol (PET); thallium acid 

phthalate (TAP)][12]. 
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4.3 Nanostructured Alloys and their consolidation 

The process of cryomilling also allows synthesizing nanocrystalline or ultra-fine grained bulk 

specimens from the powder. This can be done using a two-step process. First, milling is 

carried out to obtain the nanocrystalline powder, and this is subsequently followed by 

consolidation to obtain the bulk specimen. This even allows us to measure the properties of 

the bulk nanostructured materials. The nanostructured materials, synthesized by cryomilling, 

followed by consolidation, exhibit distinctly different properties as compared to the 

conventional ones. The final property will depend on the microstructural features (primarily 

grain size) of the consolidated specimens. It is important to note that the materials have grain 

size varying from 10-100 nm in a consolidated powder called nanostructured materials. In 

contrast, materials with grain size varying from 100 to 500 nm, are known as ultra-fine grain 

(UFG) materials [22]. The consolidation route is found to dictate the final grain size. A large 

number of nanocrystalline material systems, prepared via cryomilling, followed by 

consolidation, are reported in the literature. They exhibit exceptional properties. This includes 

NiAl [125] NiCrAlY [126-128], CoNiCrAlY [129], Zn-22 % Al [27, 130], Ti-6Al-4V [131] 

Fe-14Cr-3W-0.1Ti with Y2O3[132], commercially pure Ti [133], Cu-Zn-Al [134], Al-Si 

alloy[25] etc. Although, during consolidation, the final grain size is expected to remain in the 

range of ultrafine range temperature rise, and the fact that the tendency of coarsening of the 

existing nanoparticles during consolidation. Interestingly, the surface of the nanoparticles can 

react with the liquid nitrogen, or atmospheric oxygen in the wet milling and tend to form 

layers of oxide and nitrides, leading to stabilization of the particle size during consolidation 

[135]. Therefore, the coarsening phenomenon can be controlled by adding some oxide and 

nitride NPs during cryomilling. For example; TiN nanoparticles were added during 

cryomilling of commercially pure titanium [136], 1 wt% diamantane nanoparticles in 

cryomilling of Al powder[137], 6.5 vol% SiC nanoparticles in Al5083 alloy [138]; Al5083 
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with B4C[139] to retain the size of the particles in the nanometric regime. 2 wt% AlN 

nanoparticles added to Ni powder can even reduce Ni grain size up to 37 nm during 

cryomilling. In contrast, nanoparticles can only be reduced up to 100 nm without AlN [140]. 

The presence of process control agents (PCA) in the cryomilled powder can also affect the 

quality of consolidating powder.   In an experiment, Al (99.9%) powder was wet-milled in a 

cryomill with initial average particles size 50 m. Subsequently, 0.25 wt% stearic acid (as 

PCA) was added to reduce adhesion of the particles with ball and vial during milling. The 

consolidated Al powders, prepared by 4 hours and 8 hours of cryomilling, show an average 

grain size of 43 nm and 28 nm, respectively. In addition, Al powder cryomilled for 4 hours 

was found to be less homogeneous compared to 8 hours [29]. The cryoliquid is also found to 

play a significant role in the quality and grain size of the consolidated powder. The 

cryomilled Ni shows higher lattice parameter when cryomilled in LN2 as compared to LAr. It 

has been concluded that the N atoms take part to form Ni-N solid solution, leading to change 

of lattice parameter[141]. Some investigations have also been reported on the improvement 

of mechanical properties of the consolidated alloy powder, synthesized by cryomilling. 

Levernia et al. [22, 99, 142, 143] have reported the microstrain and average grain size 

variation after cryomilling and consolidation of Al 7.5% Mg  alloy. The alloys showed 

increased ductility and toughness after cryomilling. The fracture toughness has been found to 

improve from 8.3 to 17.5 MPa.m1/2 and ductility from 4.4 to 14 % [144]. Han et al.[145] have 

cryomilled the 5083 Al alloy for 8 hours in nitrogen slurry and consolidated the milled 

powder using hot isostatic pressing (HIP). The consolidated sample showed higher creep 

resistance compared to the conventional 5083 Al at same level of stress, exhibiting three 

distinct creep regions shown in Figure 15. This includes the low-stress region I with stress 

exponent 1.1, high stress region II with stress exponent 9, and the transition region. The 

microstructure of the cryomilled 5083 Al alloy is reported to be stable even after annealing at 
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573 and 623K with only slight grain growth, possibly due to the presence of and aluminum 

oxide nano-precipitates[145] in the powder. In addition, the cryomilled 5083 Al alloy exhibits 

higher ductility at a lower strain rate[146]. The reason for the high strength of the cryomilled 

materials is related to many contributions, mainly grain size and solid solution strengthening 

[22, 147-150]. 

 

Figure 15: Shear stress vs. shear strain of conventional and cryomilled 5083 Al alloy[145] 

The cryomilled reduced the size of particles and homogenized the alloy mixture with the 

addition of other additives metals/alloys[151]. 

In addition, the efforts have been made to prepare other materials in the bulk form using 

cryomilled powder. Kim et al.[132, 152] have reported the investigation on the effect of 

milling temperature to synthesize oxide dispersion strengthened (ODS) steels [152-154] at 

three different temperatures, such as room temperature, -70 and -150oC. The mixture of Fe-

14Cr—3W-0.4Ti was cryomilled along with Y2O3 for 40 hours at three different 

temperatures. The results reveal that as temperature decreases, particle size also undergoes 

reduction (summarized in Table 4). It is also reported that the ODS steels prepared via 

cryomilling at -150oC exhibits high tensile strength (1800 MPa) and good ductility due to the 
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multimodal grain size distribution that can hold higher dislocation density inside the grain 

(Figure 16). 

Table 4:Average particles size milled at room temperature, -70oC and -150oC [152] 

Milling Temperature Milling duration in hours 

0  10  40  

Room Temperature  

50 ± 20( m) 

80 ± 40( m) 70 ± 30( m) 

-70oC 35 ± 12( m) 25 ± 10( m) 

-150oC 15 ± 8( m) 8 ± 5( m) 

 

Figure 16: Engineering tensile stress vs. displacement of ODS steel synthesized at three 

different temperatures (temperature mentioned over the curve)[152]. 

Similarly, the TiFe alloy was milled with 4 wt% Zr at room temperature in argon and at 

cryogenic temperature in air for improving the hydrogen absorption. Interestingly, the 

cryomilled powder doesn’t show any absorption. It might be due to the presence of a very 

thin layer of oxide, which is not detected in characterization[155]. The more related literature 

is summarized in Table 5 for the interested reader. 
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Table 5: Literature nanostructure prepared by cryomilling and their consolidation 

Materials Cryomilling 

hours 

(coolant) 

Sintering 

technique 

Grains 

size 

Properties studied  References 

Al-7.5%Mg 8 h, (LN2) Hot isotactic 200-

300 

Mechanical strength [156, 157] 

Al5083 8 h (LN2) Spark 

plasma 

sintering 

51 Mechanical strength [158] 

Ti-45Al-8Nb 40 h Spark 

plasma 

sintering 

217 Fracture properties [159] 

Cu-Al-B 8 h (LN2) - 11 nm Effect of B and stability  [160] 

Al-Zn-Mg-Cu 2 and 10 - - Deformation twin [161] 

ODS steel-

Y2O3 

40 h (LN2) Hot isostatic 

pressing 

300 Microstructure and fracture [162] 

NiCoCrAlY 16 h (LN2) Coating 10 Oxidation [163] 

NiAl-AlN 4 h (LN2) Hot extruded 25 Mechanical [164, 165] 

Fe-10wt%Al 25 h (LN2 

and LAr2) 

Hot press 10 Grain growth [166, 167] 

Mg AZ80 8 h (LN2) Spark 

plasma 

sintering 

40 Strength [28] 

Al-7.5%Mg 8 h (LN2) Extrusion 300 Tensile at high Temp [143] 

Al5083/B4C 24 h (LN2) Cold 

isotactic 

pressing 

and hot 

extrusion 

20-

100 

HRTEM, EELS [168] 

Cu-05%Zr  8 h (LN2) Annealing 17 Thermal stability [169] 

Cu-12%Al 8 h (LN2) Annealing 40 Grain size stabilization [170] 

AA7075/B4C 8 h (LN2) Plasma 77 Effect of Boron nano and [171, 172] 
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activated 

sintering 

microparticles 

AA7075/B4C 8 h (LN2) Field 

assistant 

sintering 

200-

300 

Precipitate segregation  [173] 

Al-

diamantane 

8 h (LN2) Hot 

isostatic  

155 Inverse Hall-Petch 

behavior 

[174] 

Al5000/AlN 6 h (LN2) Powder 50 Contamination [20] 

Al5083/B4C 12 h (LN2) Hot 

isostatic 

38 Mechanical properties [175] 

Al-7.5%Mg 8 h (LN2) High-

pressure 

torsion 

20-

200 

Microstructure and 

hardness 

[176] 

Cu-Y2O3Cu-

CaO 

20 h (LN2) Hot 

pressing 

150 Microstructure and 

hardening 

[177] 

Ti 8 h (LAr) Spark 

plasma 

sintering 

50-80 Microstructure and texture [178] 

Al5083 8 h (LN2) Hot 

Isostatic 

pressing 

10-50 Microstructure [179] 

Al-10%Zn-

3%Mg-

1.8%Cu 

10 h (LN2) Spark 

plasma 

sintering 

28 Microstructure and 

precipitates 

[180] 

Al5083 12 h (LAr) Hot press 

and hot 

extrusion 

57 Tribological behavior [181] 

Al5083 10 hr (LN2) Extruded 305 High strain rate 

superplasticity 

[182] 

-TiAl 8 hr (LN2) Spark 

plasma 

sintering 

40 nm Grain refinement [183] 

Fe78Bi13Si9 8 hr (LN2) - 2 nm Recrystallization  [184] 

Fe10Al 25 

hours(LN2) 

Compacted 11 Thermal stability of 

nancrystalline grains 

[185] 
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5 Other Applications of Cryomilling 

It is evident that the cryomilling has extensively been used for the pulverization of the 

materials as well as the synthesis of nanoparticles of various materials. In addition, it has also 

been utilized for other applications, including solid-state reactions, waste beneficiation, etc. 

In the following, some of these applications will be discussed in detail to bring about the 

basic and unique features of this process. Here, we shall focus on the functional properties of 

the cryomilled products.  The salient examples are provided here to highlight the uniqueness 

of the cryomilling route in providing functional properties. 

The Pd-10Rh alloy has been prepared by atomization and cryomilling. Further, both the as-

prepared powder has been tested for hydrogen absorption and found that cryomilled powder 

exhibits the highest hydrogen uptake, as shown in Figure 17. In contrast, the atomized 

powder shows lower hydrogen uptake. It might be due to the increased surface area to 

volume ratio, and relatively clean surface, promoting chemisorption on the surface of the 

alloy [186]. 
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Figure 17: The hydrogen uptake of cryomilled and atomized Pd-10Rh alloy as a function of 

time[186]. 

In this same direction, Lee at el.[187] has studied the effects of cryomilling on the adsorption 

and desorption of hydrogen on multi-wall carbon nanotubes (MWCNTs). The MWCNTs, 

cryomilled at 300 and 700 rpm for 2 and 6 hours, have been found to show the reduction of 

the agglomeration tendency at higher milling speed with a simultaneous reduction in size. 

The MWCNTs after cryomilling reveal broken, shorten, and rugged surface compared to the 

unmilled MWCNTs, as shown in Figure 18 (a-c).  Hence, cryomilled MWCNTs adsorb 22% 

more hydrogen, containing enhanced 34.9% pore volume as compared to the unmilled 

MWCNTs (as shown in Figure 18(d)). The decreased pore size and increase in the surface 

area are cited to be the reasons for significantly higher adsorption ofhydrogen [187]. The 

addition of cryomilled CNTs in chitosan further improves the conductivity of 

nanocomposites due to well dispersion and reduction of entanglements and agglomeration 
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due to cryomilling [188]. In a nutshell, the effect of cryomilling offers increased surface area 

with a clean surface of the synthesized nanoparticles, improving the functional properties.  

 

 

Figure 18: TEM bright-field image and profile images of unmilled and cryomilled multiwall 

carbon nanotubes (MWCNTs)(a) unmilled, (b) 300, and (c) 700 rpm for 6 h. (d)hydrogen 

storage adsorption (ADS) and desorption (DES) capacity[187]. 

 

5.1 Cryomilling with in-situ Solid-State Reactions 

Mechanochemical synthesis; simultaneous mechanical milling and the chemical reaction 

were even widely utilized to prepare novel nanostructured materials. It is important to note 

that the mechanochemical process is mechanical milling with a chemical reaction, which can 

induce the chemical transformation in the materials by utilizing mechanical energy[189]. The 

temperature-sensitive materials can be milled at low-temperature due to the instability of 

materials at room and high temperatures. It includes the alkaline earth- Al metal complex 
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(Ti(AlH4)4, Fe(AlH4)2), which becomes unstable at 0oC and requires to be synthesized at low 

temperature. Pommerin et al. [190] have probed the stability of the AlH3 using ball milling 

and cryomilling and found that the room temperature milling for 1 hour leads to the 

decomposition of the AlH3 into Al. On the other hand, cryomilling prevented the 

decomposition, and the final product was AlH3. Although the cryomilling of AlH3 along with 

MeH (M: Li, Na, K) (eq. 10) does not lead to the synthesis of MeAlH4 as a by-product, 

neither a reactant nor Al metal was found to form.  

MeH + AlH3    --- Ball milling (-196oC)--------  MeAlH4 (Me = Li, Na, K ) …… (10) 

The cryomilling can also be used for the in-situ reaction of two solids or solid with gas. 

Therefore, cryomill can also be considered as a chemical reactor. In this regard, Cai et 

al.[191] have reported the synthesis of Mg-MgO nanocomposite using reactive cryomilling 

because milling at room temperature is found to be unable to refine the size of Mg due to 

extensive dynamic recovery. These authors have utilized a unique approach consisting of RT 

milling, followed by cryomilling to obtain the composites. Mg powder having particle size 80 

m was milled at room temperature for 5 hours under inert gas (Argon environment). 

Subsequently, the chamber was evacuated and refilled with 50% Ar and 50 % O (internal gas 

pressure 1 bar) and cryomilled for 30 minutes (assumed that reaction completed in each cycle 

and achieved 5 vol% MgO). The mechanical properties of Mg-MgO improved exceptionally 

compared to nanocrystalline Mg. The key for the exceptional property was found to be 

reduction in the grain size and fine distribution of MgO nanoparticles located at grain 

boundaries[191]. The nanosized lithium particles (highly reactive) having a size less than 500 

nm were prepared using cryomilling with an ionic liquid to protect the powder particles at 

nano size/. It shows exceptional electrochemical properties for lithium-ion batteries[192]. 
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The cryomilling also can be utilized to induce the polymorphic transformations and has 

vigorously been utilized in the drug industry [193]. This process is found to very effective in 

reducing the risk of recrystallization and increase the drug solubility as some articles listed in 

Table 6. 

 

Table 6: Cryomilling used for different drugs amorphization 

Drug Cryomilling Studied Properties Reference 

TMC125 

(Etravirine) 

3 hours (LN2) Crystallization behavior at above and below 

glass transition temperature 

[194] 

Simvastatin 1.5 hours 

(LN2) 

Amorphization of drug and compared stability 

cryomilling vs. melted and quenched cooled  

[195] 

Indomethacin 1 hour Effect of cryomill on  and , phase 

Indomethacin  

[196] 

Ranitidine 

hydrochloride 

form 1, and 2 

1 hour Synthesis of amorphous drug and capability to 

retain stability  

[197] 

Sulfathiazole 

form I and II 

2.5 hours The formation, physical stability, and 

quantification of process-induced disorder 

[198] 

Gliclazide 3 hours Cocrystal and amorphous system with 

chlorothiazide (CTZ), hydrochlorothiazide 

(HTZ), indapamide (IND), triamterene (TRI) 

and nifedipine (NIF) as well as benzamidine 

(BZA) 

[199] 

Piroxicam 2 hours Mechanochromism of Piroxicam 

Accompanied by Intermolecular Proton 

Transfer Probed by Spectroscopic Methods 

and Solid-Phase Changes 

[200] 

Ziprasidone 

and its 

hydrochloride 

salt 

1.5 hours Obtained amorphous state drug and estimated 

the solubility against crystalline drug 
[201] 

Furosemide 1.5 hours Stabilization of furosemide and the role of 

hydrogen bonding 
[202] 

Furosemide 2 hours Chemical stability on cryogrinding [203] 

Simvastatin 1.5 hours Solid-state reactivity and powder crystallinity [204] 

Felodipine 2.5 hours Rate of dissolution and disintegration [205] 

Caffeine–

oxalic acid 

120 seconds Role of lattice distortion and dissociation of 

co-crystal. 
[206] 
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(CAFOXA) 

and 

dicalcium 

phosphate 

anhydrate 

(DCPA) 

Griseofulvin 1 hour Evaluation of crystal phase after cryomilling [207] 

5.2 Cryomilling for Waste Beneficiation 

The increasing demands of plastics, electronics, non-renewable materials, etc. and their use in 

our daily life at an alarming rate have been causing unexpected and unprecedented damage to 

our ecosystem [208, 209].  The waste can cause severe environmental degradation with the 

rise in the air and water pollution as well as pollution of the food chain, leading to long term 

damage to the ecosystem [209, 210]. Hence, proper disposal of these wastes as well as 

retrieve, reuse, and utilization of materials from the waste have been sought after for a long 

time. Recovery of precious metals, ceramics, and polymers from the waste will add value to 

society and make the usage of these materials sustainable. Although there are many 

techniques available for beneficiation of materials from these wastes, waste recycling 

utilizing cryomilling is relatively new, providing an excellent alternative with a high recovery 

rate, environmentally benign, and relatively cheap. It is expected that mechanical milling at 

extremely low temperatures will lead to breaking of the waste into ultrafine or 

nanocrystalline form as well as segregation into different types, allowing separating them.  In 

the following, some specific examples from the literature are provided to highlight the 

uniqueness of cryomilling in this regard.   

It is worth mentioning that a new strategy of recycling tires by cryomilling has first been 

reported by Smith et al. [211], in which the highly dispersed blended composites were 

synthesized. The used or waste tires and thermoplastics were cryomilled together to 

synthesize chemically active surfaces as no chemical interaction is expected between the 
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thermoplastic and tires. This allows the synthesis of the good composite without any reaction 

product. V. Gente et al.[212] has studied the recycling of plastic waste from spent lead 

batteries and medical packaging blisters using cryo-comminution. Extremely low temperature 

is useful because of the embrittlement of the plastics. While room temperature is not useful 

because the comminution process generates heat, including partial melting of plastic [212]. 

This allows the usage of plastic and spent batteries to obtain useful materials.  Jonna et 

al.[213] have reported recycling the mixed waste flaks (polypropylene and polyethylene) 

using the cryomilling process. The milled powder after consolidation found to exhibit 45% 

increment in the apparent modulus as no specific chemistry or specific polymer is being used 

for food packaging (milk, beverage, etc.), making it difficult for recycling the wastage (junk 

of many polymers).  

However, waste beneficiation of electronic chips and circuits (computer electronic circuit 

boards) is even more challenging as they contain different types of materials, including 

oxides, pure metals, alloys, and polymers. Some of them are highly toxic and harmful for 

humankind when exposed to the open environment. Tiwary et al.[57] have reported a 

successful approach to recover materials from the printed electronics board using 

cryomilling. The Cu-Zn-Sn-Fe-Ni nanostructured alloy was synthesized by combined 

cryomilling and room temperature ball milling of waste PCBs[214]. The low-temperature 

milling enhanced separation and recovery of ceramics, metallic, and polymeric materials 

from the PCBs. The waste beneficiation of PCBs via cryomilling has been reported to 

provide more benefits as compared to other existing techniques. The cryomilling provides the 

highest recovery in less time and energy, as seen in Figure 19(a-b).  
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Figure 19: (a) Comparison of the recovery process in waste beneficiation ; (b) difference in 

the waste beneficiation based on energy, time, recovery, and % waste. 

6 Cryomilling of Ceramics 

Cryomilling has been successful in the synthesis of NPs of different ceramics. We shall 

discuss the salient features below. 

6.1.1 Cryomilling of Halides 

The alkali metals bonded with halogen (F, Cl, Br, I) are called halides, in which the 

electronegative halogen ions are bonded with an electropositive metallic ion via  ionic bond. 

Basically, the alkali halides, such as NaCl, KCl, CsCl, etc. are considered as perfect crystal in 

Mother Nature. The halides crystals are very reactive in nature at the nanocrystalline size and 

poses challenges to prepare by the bottom-up approach. Although, mechanical milling 

process (top-down approach) at room temperature is capable of preparing ultrafine halide 

particles, crystallite size reduction is severely limited but due to sintering at the higher 

temperature. In fact, it is difficult to reduce them from ultrafine to nanocrystalline sizes. 

However, cryomilling can sustain more defects in the crystal due to suppression of dynamic 

recovery as well as sintering, and hence, the particle size can further be reduced. In contrast, 

higher accumulation of defects in the crystals also can reduce the grain size by 

polygonization, in which the high angle grain boundaries disintegrate into low angle 
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boundary sub-grains (rearrangements of the dislocations). Since the re-arrangement of 

dislocations is limited at cryogenic temperature, the combined cryo- followed by RT milling 

can be used to store more defects and, subsequently, polygonization. Therefore, combined 

cryomilling and RT milling can be used to take advantage of both. In the literature, there are 

many reports on the successful synthesis of cryomilling halides at a cryogenic temperature 

[63-65]. Verma et al.[64] have reported the preparation of nanocrystalline NaCl using 

combined cryo- and room temperature milling. The as-received particles are in a cuboidal 

shape, and after cryomilling, they are massively fractured as morphology is shown in Figure 

20(a-d). It has been found that the combined milling (cryomilling and room temperature 

(RT)) can reduce the average particle size to 13±7 nm after 4 h cryo and 10 h RT milling 

[64]. The longer RT milling introduced the effect of deformation-induced sintering. 

Therefore, mechanical deformation during milling also needs to be optimized to obtain a 

minimum grain size. Tiwary et al. [65] have reported the nanocrystalline CsCl and KCl 

formation using combined cryo and RT milling.   
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Figure 20: SEM microstructure of cryomilled NaCl (a) as received NaCl (b) 2 hours 

cryomilling (c)4 hours cryomilling (d) 8 hours cryomilling(inset shows higher 

magnification)[64]. 

6.1.2 Cryomilling of  oxides 

The nanocrystalline oxides are important in science and technology, including  

semiconductor materials for optoelectronic devices. As these oxides play a significant role in 

technological development, it is important to find proper processing routes to obtain in the 

nanocrystalline form. In the following, we shall deliberate on the efficacy of cryomilling on 

the synthesis of some nanocrystalline oxides. Fabián et al. [215] have reported the synthesis 

of nanocrystalline ZnO using reactive cryomilling. Pure Zn was cryomilled in the presence of 

oxygen (air) until the coarse Zn was transformed into nanocrystalline ZnO. The formation of 

ZnO was analyzed using X-ray diffraction in some time interval. The Zn was found to be 
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completely transformed in nanocrystalline ZnO after 48 hours of cryomilling, with size 

ranging from 10-30 nm. Hence, reactive cryomilling works well for the synthesis of 

nanocrystalline oxides. 

Floriano et al.[216] have reported cryomilling of magnesium hydride (MgH2) in the presence 

of iron and niobium oxide/fluoride as additives for enhanced hydrogen storage. The presence 

of fluoride during cryomilling increases the reduction of the crystallite size compared to the 

oxides because the fluorides act as lubricating agent/dispersing agent helping to reduce the 

crystallite size of MgH2. The cryomilling also has also been used to incorporate ZnO in 

Co2O3 oxide for photocatalyst applications [217]. 

7 Cryogrinding of Polymer and Polymer-based Composites 

The process of cryomilling is also termed as cryogenic grinding. This process has extensively 

been used for the amorphization of drugs and their dispersion [47, 218-221], blending two or 

more immiscible polymers and change in their morphology [55, 222-224] and dispersion of 

second phase materials in some polymeric matrix [225-227]. In fact, the utilization of this 

process for polymeric and polymer-based composites is more extensive than for metallic 

materials. 

7.1 Polymer 

In principle, the process of cryomilling can be utilized to prepare fine powder of polymeric 

substances [223], blending of the immiscible polymer [196, 228-230] and biopolymer 

nanocomposite [231, 232]. For medical science applications, cryomilling has widely been 

used for the high loading of drugs in polymeric substances, which can reduce the burden of 

multi-tablets medication. There are a large number of reports available in the literature on the 

effective use of cryomilling for the synthesis and delivery of drugs at higher dispersion.  For 

example, the polyvinylpyrrolidone (PVP) was cryomilled along with a naproxen drug for 
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high loading [233]. Similarly, the PVP has been cryomilled with anti-inflammatory drugs, 

mefenamic acid (MFA) for good dispersion. The cryomilled drugs become amorphous 

because of the fact the extremely low temperature inhibits the restoration process of the 

polymeric materials [47]. Cryo-grinding is being used now-a-days for plastic-rich automotive 

shredder[58], reducing 98% particles below 250 m and having 95.8 to 99.7% elemental 

recovery[58]. Cryogrinding is considered as a milestone to mix two immiscible polymers for 

preparing new materials or combined properties. M. Stranz et al.[234] have investigated the 

mixing of imimicible polymers. Figure 21(a-b) revealed that the morphology of the 

immiscible syndiotactic polystyrene (sPS) and isotactic polypropylene (iPP) by cryogenic 

mechanical milling [234]). However, the cryomilling based blending process of sPS and iPP 

shows the dispersion of the spherical iPP domain in sPS, as shown in Figure 21.  Smith et 

al.[228, 235, 236] has observed anomalous phase inversion in cryomilling of poly(ethylene-

alt-propylene)  and poly(methylmethacrylate) (PMMA).In another study, change in the 

impact strength due to incorporation of polyisoprene (PI) in poly(ethylene-alt-propylene) and 

poly(methylmethacrylate) (PMMA) using cryo-mechanical alloying is shown in Figure 22. 
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Figure 21: (a) Morphology of the sPS/iPP (50/50 wt%) extruded blend and (b) of the 

sPS/iPP 50/50 wt%) prepared by cryogenic milling after both were crystallized from the 

melt[235]. 

 

Figure 22: Variation of impact strength with rubber concentration for PEP/PMMA and 

PI/PMMA blends cryomilled for 5h.for 25/75 PEP/PMMA blends (O), 25/75 PI/PMMA 

blends (∆). The solid line denotes a linear regression of thePEP/PMMA data, while the 

dashed line connects the PI/PMMA data points[237]. 

The highly porous and water-absorbing scaffolds of biodegradable poly(e-caprolactone) 

(PCL) and poly(glycolic acid) (PGL) polymers have also been synthesized by cryomilling for 
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articular cartilage tissues engineering applications [238]. Figure 23 shows the morphology of 

the scaffold after 12 and 180 minutes of cryomilling, respectively. The porosity of the 

scaffolds is about 99 % and does not depend on particle size due to cryomilling [238]. The 

morphology and mechanical properties of PGL/PCL scaffolds primarily depend on the time 

of cryomilling. Zhu et al.[239] has found that the thermal behavior of cryomilled 

poly(ethylene terephthalate) polymer is different in comparison to original and quenched 

PET. The heating curve of the cryomilled PET doesn’t show the recrystallization, whereas 

the quenched and cryomilled PET are amorphous in nature, and the original PET is non-

amorphous [239]. Hence, cryomilling can expand the processing of polymers by using 

different ingenuity of the process and process variables. 

 

Figure 23: SEM micro-graphs of scaffolds PCL/PGA moulded at100oC and made 

fromPCL/PGA/PEO (poly(ethylene oxide))powders(a) cryomilled for 12 minutes(b) 

cryomilled for 180min[238]. 

7.2 Cryomilling of  composites 

Cryomilling can also be utilized for the preparation of composites. We have already provided 

a few examples of polymer composites in the last section. The versatile nature of the 

cryomilling process allows synthesizing the nanocomposites, i.e., rapid nanocrystallization, 

homogeneous mixing, and distribution. It is worth mentioning here that the nanocomposites 

are the materials having two or more components with at least one of the components has any 
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one of the dimensions in the nanometric domain. Zhu et al.[240] has reported the preparation 

of polymer-metal nanocomposites using cryomilling techniques and revealed that it is a 

promising technique for such systems because of homogeneous dispersion of the 

nanostructured phase in the matrix.  All the  advantages of cryomilling can be made to 

achieve good nanocomposites. In the preparation of ABS resin powder-based 

nanocomposites with atomized iron particles (ABS1-xFex; x is volume fraction), the composite 

having grains size less than 100 nm with atomized Fe powder  (20 nm) were obtained after 20 

hours milling at a cryogenic temperature [240]. Similarly, PET/SiO2 was cryomilled for 10 

hours and found that the SiO2 nanoparticles are in size <30 nm. The three-step model for the 

formation of nanocomposites has been suggested; the massive reduction of powder, good 

dispersion of SiO2 in the matrix, and size reduction of secondary composites particles[241, 

242]. Pietrzykowska et al.[243] have even prepared orthopedic implant nanocomposite 

(hydroxyapatite and polylactide in the proportion of 1:1) using mechanical milling at 

extremely low temperatures (-195oC). After warm isotactic pressing, the materials exhibit 

compressive strength,   equivalent to natural bones. Cryomilling also provides enhanced 

dispersion of luminescent materials in a polymer matrix, which is the cause of improved 

afterglow characteristics [244]. Similarly, there are many other nanocomposites reported in 

the literature, such as Al-TiB2[52], Al-CNT[245], Al5083/SiC etc [246]. 

The few interesting applications of cryomilling were also reported for the synthesis of even 

advanced materials, indicating the versatile nature of the process. The aluminium foam was 

prepared and reinforced by graphene nanoflakes using cryomilling[247]. Cryomilling can be 

used to apply the strong shear load, which can then convert graphene into nanoflakes and 

cover surfaces of aluminium powder particles to form reinforced aluminium foam [247]. The 

addition of graphene nanoflakes (GNFs) up to 1 wt% GNFs in an aluminum can lead to 

exceptional enhancement of the ductility of the composites [248]. However, the addition of a 
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higher amount of GNFs starts degrading the strength and ductility, as shown in Figure 24(a-

b).  

 

Figure 24: (a)Schematic of Al-GNFs composites(b) tensile properties of the composite[248] 

The cold compacted, homogenized and extruded cryomilled Al Al6061 alloy along with 1 

wt% CNT shows higher resistance against delamination and crack initiation during wear test 

in comparison mechanical milling. 

 

7.3 Hybrid magnet materials 

Cryomilling can also be used to synthesize novel hybrids consisting of inorganic/organic or 

vice versa from waste products, making a unique route for the synthesis of hybrid materials. 

The recycling of waste magnets from the additive manufacturing is considered 

environmentally benign method. These can be recycled using the cryomilling (experimental 

process shown in Figure 25) and simultaneously used to make the hybrids.  The synthesis of 

the recycled bonded magnet, as shown in Figure 26(c), is a fully green synthesis process. 

Importantly, the recycled additive magnets exhibit improved remnant magnetization and 

saturation magnetization by 4% and 6.5%, respectively [249]. The hybrid materials 

(inorganic/organic); Fe-NPs/PANI (polyaniline), and Fe micrometer particles/ PANI have 

been prepared by cryomilling for 10 hours, provide improved coercivity because the 



Accepted in International Materials Reviews; 15 sept 2020 

68 

 

nanoparticles have a high surface area to volume ratio and can homogenously be dispersed as 

shown in Figure 27[250].    

 

Figure 25: Experimental procedure for recycling additively printed bonded magnets by 

Cryomilling [249]. 

 

 

Figure 26: (a) Started additive manufacture (AM) bonded magnet (b) cryomilled powder (c) 

recycled bonded magnet[249]. 
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Figure 27: Coercivity vs Cryomilling time (a) composite PANI/Fe NPs (b) Composites 

PANI/ Fe micro-meter particles[250]. 

In contrast, the Nd-Fe-B magnet has been prepared using cryomilling up to 12 hours after 

hydrogenation disproportionation (HD) of (Nd13.5Fe73Co7.5B6) and found that coercivity of 

the powder decreases from 8.32 to 5.93 kOe after desorption recombination (DR) of the 

cryomilled powder as the time of cryomilling increased. The decrease in the coercivity is due 

to the production of ultra-fine grains using cryomilling as the finer grains are providing 

strong exchange coupling [251]., The milling with surfactant can increase the amount of 

surfactant adsorption over grain surface in both cases of room temperature as well low-

temperature milling. However milling at cryotemperature can cause less adsorption of the 

surfactant due to weak interaction of surfactant and Nd-Fe-B grains as shown in Figure 28 

[252].  
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Figure 28: Comparison of surfactant (TOA: trioctylamine) mass percent in room temperature 

and low-temperature Nd-Fe-B powder milling[252]. 

Therefore, it is evident that cryomilling can effectively be utilized to obtain high-quality 

magnets by incorporation of the nanosize magnetic phase homogeneously in a matrix, even 

from wastes, making this process unique. This approach was further extended to the synthesis 

of other magnetic as well as catalytic materials. There are reports in the literature on magnetic 

materials being prepared by cryomilling in the nanocrystalline form, such as- NiCrAlY [253], 

NiCoCrAlYSi [163, 254] MnBi [255], -MnAlC [256, 257], MnAlC/-Fe [258], Carbon 

doped MnAl [259], Cobalt ferrite [260],-Fe4N [261], BiFeO3 [262]. The change in magnetic 

properties is mainly due to altering in crystallinity of the materials by cryomilling [263]. 

Similarly, Ni-Nb-Y was cryomilled for catalytic activity and showed higher activity for 

hydrogen evolution [264].  
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8 Cryomilling of spices or food materials 

It is well known that conventional mechanical milling at room temperature leads to the 

temperature rise during the milling (discussed in section 2.1) due to the collision of balls with 

vials and powder. This is deemed to have a degrading effect on spices or food. The generated 

heat can affect the qualitative and quantitative properties of these materials. The temperature 

rise can reduce 30-40 % volatile etheric oils/fatty oils present in the spices and loss of the 

appealing color of the spices [84, 265] and hence can be detrimental for properties of spices 

and food materials. On the other hand, cryomilling has the advantage of overcoming these 

limitations and producing high-quality products with finer particle size. Therefore, cryo-

grinding was widely being used to maintain the flavor and color of spices.  At cryo- or low 

temperature, fatty oils solidify in the spices and turn the spice seeds brittle, which is the cause 

for reduction to finer particle size. In addition, the solidified fatty oil allows the spices to 

retain it in each particle equally. There are a number of reports in the literature on the 

utilization of cryo- grinding to provide fine particles of spices [265-268]. Although cryo-

grinding is effective, the spices need to be cooled to temperature low enough prior to the 

milling to avoid any contact with coolant during grinding. To achieve it, Singh et al.[269] 

have modeled the cryo-grinding as a two-step process, in which the spices are first cooled and 

then ground in another chamber. However, the temperature of both the chambers is 

maintained below -70oC, which is suitable to stop clogging the sieves utilized to sort the 

spices subsequently. Specifically, Singh et al. [270] have reported that the increasing 

temperature of the milling operation reduced the quality of king chilli powder. More related 

literature is summarized in Table 7 to showcase the importance of this technique to obtain 

spice powder. 
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Table 7: Summary for food and spices prepared using cryogrinding 

 Spices Name Cryogrinding Finding Reference 

 Spices Cryogriding Comparison of color at ambient and 

cryotemperature 

[271] 

 Cumin seeds Cryogrinding At different temperatures  variation in 

volatile oil content 

[272, 273] 

 Turmeric Cryogrinding Shape and size analysis of cryo and 

ambient grinding temperature 

[274, 275] 

 Cloves Cryogrinding Oil content and sticking nature with the 

sieve 

[276] 

 Black pepper Cryogrinding  Different feed rate and content of volatile 

oils 

[277] 

 Fenugreek Cryogrinding Flow behavior and cryogenic effects [278-280] 

     

 Fenugreek and 

black pepper 

Rotor, ball, 

hammer and 

pin mill 

Effect of different grinders  [281] 

 Coriander Cryogrinding Effect of low-temperature milling and 

anti-oxidant property 

[282] 

 Cassia 

(Cinnamomum) 

Cryogrinding Cryogenic milling optimized [283] 

 Black pepper Cryogrinding The thermal and mechanical property of 

seed at low-temperature cryogrinding 

[284] 

 Pepper Seeds Modeling 

Discrete 

element 

method 

Flow behavior of pepper seeds at in 

cryogrinding 

[285] 

 Black Pepper 

seeds 

Modeling Breakage phenomena of seeds at cryo 

temperature 

[286] 

 Cumin seeds Cryogrinding The optimum condition for high-quality 

cumin powder 

[287] 

 Mango peel Cryogrinding Retention of important gradients [288] 
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9 Cryomilling as Environmentally Friendly Synthesis Route to Prepare 

Nanomaterials 

We have already discussed and demonstrated the versatile nature of the cryomilling process 

to synthesize various nanostructured materials.  Importantly, unlike many other processes for 

the synthesis of nanostructured materials, this process is eco-friendly. During the milling 

process, it does not leave any toxic materials or chemicals in the environment or drainage. It 

even satisfies the conditions of the green synthesis process and detailed conditions (12 –

points) as per the Handbook of green chemistry [77]. In the following, we shall discuss in 

detailed the life cycle assessment, eco-friendliness of the process, and health risk assessment 

to arrive at conclusions regarding the eco-friendly nature of the process. 

9.1 Life cycle Assessment 

The life cycle assessment of the nanomaterials is primarily related to the applications in the 

nanotechnology, and it is meant to provide broad scope about the pros and cons of utilizing 

nanomaterials in different sectors [289, 290], encompassing almost every sector of human 

life. This review article is limited to the production of nanomaterials utilizing 

cryomilling/cryogrinding and their environmental impact. The assessment of the potential 

environment and human health risk from applications of nanomaterials as end products in 

different areas is beyond the scope of the present article. Nonetheless, the large-scale 

synthesis of nanostructured/nanomaterials via cryomilling can be utilized in different areas, 

as shown in Figure 29. The coolant LN2 (liquid nitrogen) is the most economical and efficient 

one to be used because of its eco-friendly nature as it turns into N2 gas, which is the most 

abundant gas in our environment (78%) and non-toxic for humankind. Therefore, the major 

input raw materials in cryomilling are coolants, and milling materials and output materials are 

pristine and nanostructure powder of metals, ceramic, polymers, or their combination. It is 

worth to note that cryomills require sustained power (electricity) for operation. Like any other 
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processing route, the powder is a necessity; hence, we shall not discuss the effect of energy 

usage to make any conclusion on the eco-friendly nature of cryomilling. It would be suffice 

to point out that there are many green and sustainable means for the generation of powder 

(wind, solar, bio, etc.) that are available in the world today. The byproduct is N2 gas, which is 

freed directly to the environment and doesn’t have any worse impact on the environment. In 

addition, the cryomilling does not leave any other by products, and the prepared 

nanomaterials can be used in various applications (Figure 29). Hence, one also needs to 

analyze the effect of these nanostructured materials on the environment, human life. 

 

Figure 29: Life cycle assessment of cryomill product and by-product and final application 

9.2 Conditions for Eco-friendly Process 

Any synthesis process is required to fulfil some conditions to be called an eco-friendly 

process. Wasserscheid et al.[77] have described twelve principles in his classic book 

‘Handbook of green Chemistry’ for deciding any process to be called as a green or eco-

friendly process, and detailed principles can be found elsewhere [77]. The cryomilling/cryo- 

grinding process, is an eco-friendly or green synthesis process to prepare nanomaterials 

because  



Accepted in International Materials Reviews; 15 sept 2020 

75 

 

• Cryogrinding does not leave any toxic waste in the environment 

• It is a process, which can produce nanomaterials in large quantity with high yield 

compared to another existing process 

• There is no use of toxic chemicals or release of the chemical during the synthesis 

process 

• The process can be used for waste beneficiation in large scale (polymers, electronics 

plates, etc.) 

• Easy handling and economical process, where coolant liquid needs to be used 

carefully. 

9.3 Cryomilling: wastage vs. use of eco-friendly materials 

An important aspect of any eco-friendly process is wastage during the manufacture of any 

product. In this process, the yield of nanomaterials is reported to be 97% for metallic 

materials (Ag, Al, Cu), which is much higher as compared to other processes [7, 10, 11]. The 

remaining ~ 3% is mainly consumed as a coating of the metals over balls and vials of the 

milling apparatus. The coated remnant even can be detached from the balls and vials by 

milling with other materials such as table salt, glass, or sand and disposed of them according 

to the protocol. In fact, the materials coated on the surface of the ball are helpful to reduce the 

contamination (milling debris due to friction) in the nanomaterials and provide a high-quality 

product. In some other cases, such as halide (NaCl, CsCl) and polymers, the coating is almost 

not observed, and one can recover almost 100 % as a product. In some cases, the researcher 

may use extra precaution and continuously purge inert gas in the milling chamber to protect 

the oxidation/nitridation of milling materials. It is to be noted that the lightweight materials in 

nanophase can slowly exit with the release of inert gas. Consequently, they mix with the 

environment, and hence, can cause adverse effects. However, such a study is not reported 

regarding cryomilling so far. Nonetheless, it is evident that cryomilling, as compared to 
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another manufacturing process, can be used to minimize wastage, causing the least health-

hazards with high recovery.   

 

9.4 Issues on Sustainability and Environmental Benignness 

In modern days, many developing and some developed countries have been plagued by 

environmental pollution, such as air, soil, and water pollution due to improper waste disposal, 

generation of polluting agents in large quantity left to the environment without treatment 

[291]. The main concern is to reduce the waste from industries, laboratories, and properly 

dispose of them to reduce the effect of such pollutants, which can directly impact life on 

Earth. In the research community, the persistent efforts are being taken across the globe to 

develop eco-friendly processes for the synthesis of nanomaterials/nanostructure, which can 

reduce the wastage and even utilization of the wastage for sustenance. There are many green 

synthesis routes for metallic nanoparticles, utilizing plant leaf or naturally available materials. 

However, these processes suffer from low yield and not economically viable [71, 72, 292]. In 

this regard, cryomilling can fulfill the burgeoning requirements of nanomaterials in the 

market. It is considered a green synthesis route and relatively safe for our ecosystem and 

sustainable in a sense as the supply of liquid N2 as consumable is required. 

9.5 Health Risk Assessment 

We shall now discuss the health risk assessment of the product during usage. It is essential 

because the nature and type of nanomaterials prepared via cryomilling vary substantially 

depending on the requirement. The nanomaterials, after usages, are let into nature, and 

drainage of these can cause a serious health hazard. Like any other process utilized to 

synthesize nanomaterials,  this is a common problem with cryomilling. The drainage of 

nanoparticles, synthesized by cryomilling, can directly contaminate the groundwater, and it is 

even challenging to separate from the water. Various nanoparticles in different size ranges 
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behave distinctly differently during drainage. Therefore, it is too early to generalize 

assessment regarding human health risk from nanomaterials synthesized via cryomilling.  

Nonetheless, the foreign contamination in the human body always creates health risks, when 

it enters into our body by daily chores of life such as breathing, drinking water, and eating 

food.  There are many lightweight materials such as carbon in nanometric size, and certain 

other metallic nanoparticles exist in the environment. They can get mixed with air or water on 

slight disturbance, if not handled properly. Several nanomaterials are even utilized for human 

health, such as silver nanoparticles. They are well known anti-bacterial materials, but it 

shows negative consequences in human macrophages [293].  As compared to other processes, 

the cryomilling is well protected and safe for users if handled carefully. In wet chemical 

synthesis, the nanoparticles, in general, are capped by capping agents to protect them from 

the environment or stop coarsening in the solution [7]. These capping agents or chemical 

process agent can also be harmful to the human. On the other hand, the waste of synthesis is 

directly drained into the drainage, which can eventually are mixed with river and ocean 

water. Nanomaterials contaminated water can be highly dangerous for our marine system as 

well as human because of the consumption of infected food.   

The study of nanotechnology has a high impact on human life, such as medicines, drug 

delivery, smaller electronic devices, solar cells, and cosmetics, etc., and it is envisaged to 

create more impact on our life in the near future. However, it might be turned into a 

nightmare if not handled in a controlled way. Many developing countries have a huge 

population and do not have any protocol to dispose of nanomaterials properly with no 

specific norms for their utilization. For example, the utilization of nanoparticles in cosmetics 

is extremely large in quantity. The cosmetics/creams are directly washout during bathing 

from our body, and they contain NPs, which are subsequently mixed into the drainage. If a 

huge population utilizes such products, it can spread massively in the drainage system. 
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Therefore, by utilization of nanomaterials in an uncontrolled way means we are placing 

human health at stake. Hence, like any other manufacturing process, the health hazard of the 

nanoparticles, synthesized by cryomilling, will remain a burning issue, if not handled with 

proper care. 

10 Scale Up and Cost Effectiveness of Cryomilling in Nanomaterial Synthesis 

The synthesis of nanomaterials is still challenging because we need to control the size, shape, 

distribution, prevent the tendency of agglomeration/coarsening behavior, protection of the 

surface of nanoparticles as they have a high surface area to volume ratio and proneness to 

bind with other contamination in the environment/solution (gas molecules, nascent oxygen 

atoms or other gases and organic atoms or molecules). These challenges make the cost of the 

nanomaterials is reasonably high. In this regard, cryomilling has the advantage of overcoming 

some of these problems, making the synthesis of nanoparticles cost-effective [294]. This is 

important, in particular, for the processing of nanoparticles as compared to room temperature 

mechanical milling or other chemical routes. It is now evident (earlier discussion) that it is 

possible to achieve better process control during the synthesis of nanoparticles and hence 

reduce/nullify many problems associated with other similar processing routes. In addition, 

cryomilling can easily be scaled up without compromising product quality [9, 11]. Like other 

mechanical milling routes, it is possible to scale up easily by design and development of 

larger mills with better cooling efficiency as liquid nitrogen usage will exponentially increase 

with bigger mills due to heat loss and evaporation. In this regard, one needs to design the mill 

(geometry, milling materials, thermal management, etc.) considering all possible aspects for 

scaling up. The literature has not discussed and hence, would require the attention of the 

researchers and technologists for the design and development of cryomills for industrial 

usage. 
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10.1 Method to Prepare Nanomaterials in Large Quantity 

Like conventional mechanical mills, cryomills can be scaled up to industrial-level production 

of nanomaterials. The burgeoning need of nanotechnology can only be satisfied by the supply 

of a large quantity of high-quality nanomaterials, i.e., size, distribution, chemistry, 

contamination; determining the quality. Most of the available techniques in the niche market 

are not capable of preparing good quality nanomaterials encompassing metals, ceramics, 

polymer, composites, medicines, and spices. To the best of the authors’ knowledge, there is 

no processing route available, other than cryomilling, which is capable of preparing such 

gamut of nanoparticles in large quantities. In the following, we shall provide the production 

capability of metallic materials of an existing cryomills and the possibility of scaling up to 

obtain nanomaterials in large quantity. In the case of metals and alloys, a custom-built 

cryomill having 250 cc of the vial and 150 cc ball can mill 24 g powder at a time, and milling 

of 7 hours is required to produce nanoparticles [9, 11]. Therefore, in a day or 24 hours 

(approximates three batches of production) of the desired quality, one can produce around 70 

g nanoparticles. This process has a yield of around 97% with little (3%) lost due to the 

coating on ball and vial during milling [10, 11]. In addition, the cryomill also can be scaled to 

have a large volume with a large number of balls to prepare nanomaterials. It is evident that it 

is a flexible processing route in order to scale up, and fulfill the requirement of the market 

needing a large amount of various nanomaterials for a gamut of applications,  thermo-

nanofluids, cosmetics, antifouling nanoparticles, semiconductor, thermoelectric, applications, 

etc. [188, 295, 296].  

10.2 Cost-Effectiveness of This Route vis-a-via Other SPD processes 

The cryomilling process can produce the nanopowder in large quantity, and the requirement 

of these nanopowders are felt in many active sectors such as structural materials (nano-
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composites), antifouling coating (ship hull, etc.), catalytic nanomaterials, biosensors, solar 

voltaic cell, etc.  

It is indeed a tedious effort to estimate cost of any nanomaterials in the world today. It 

depends on the availability of raw materials, synthesis route, yield, social structure, and even 

environmental friendliness. Some of these are extremely difficult to estimate. Nonetheless, 

the cost of nanoparticles primarily depends on the cost of raw materials. For example, there is 

a huge difference in their basic prices of micron sized powder of gold and copper as raw 

materials. However, the copper is highly prone to oxidize and required extra precaution to 

store them in the nanosized form in comparison to the gold. Therefore, storing of the 

nanoparticles, maintaining their purity, and transporting them in less quantity might have 

exceeded the cost compared to bulk gold. The cost also depends on the processing parameters 

required to achieve specific size range, surface functionalization, treatment, their property 

specification (crystallinity, amorphous, shape, surface plasmon resonance, stable dispersion 

solvent, etc.) as characterization of nanomaterials is quite costly. 

The cost even depends on their production volume (lab-scale, small scale, and large scale) 

and their largely unknown requirement. At present, this field of synthesis of nanomaterials is 

growing, and hence their research and development cost itself is high. In the future, the cost 

of nanomaterials will also depend on the social or government restriction on different 

materials or their end-user policy, which will depend on their evolution to human 

friendliness, toxicity, etc. As nanotechnology is a rapidly growing field, the products are 

rapidly miniaturized with lower costs. Hence, the exact estimation of the cost of 

nanomaterials is not easy at present. Ashby et al.[294] has described the comparison of the 

cost of nanomaterials in the USA and found that the price of nanoclays is approximately the 

same as the gold. With  functionalization, the cost of the nanomaterials will definitely 

increase manifold. Therefore, it is difficult to estimate the cost of any particular nanomaterial. 
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Nonetheless, the preparation of the nanomaterials utilizing cryomilling will reduce the 

processing cost as this technique requires electricity and liquid coolant (preferably LN2), 

which is also quite cheaper. However, other costs, such as storing,  functionalization, will still 

remain high.   

11 Summary and future direction 

The milling or grinding at cryogenic temperature, popularly known as cryomilling, is 

considered a novel eco-friendly processing route to prepare various types of nanostructured 

materials; metallic, ceramics, polymeric, composites, hybrids, spices, with low contamination 

and high yield. Mechanical milling at room temperature was widely utilized to synthesize 

some of these nanostructured materials. However, mechanical milling at room temperature 

has the many drawbacks; agglomeration, extensive cold welding, oxidation, contamination 

from milling the media, etc. These can easily be overcome by the cryomilling. In this 

background, the present review is intended to provide a detailed account of the cryomilling 

technique with emphasis on materials development as well as recovery from waste. The 

salient features of material synthesis and recovery via cryomilling with future perspectives 

are provided here. Starting with the basics of mechanical milling as a synthesis route for 

nanomaterials, the advantage of cryomilling over room temperature milling has been 

described with the mechanical behaviour of materials at extremely low temperatures. 

Cryomilling as a severe plastic deformation (SPD) route has many advantages, including 

suppression of recovery and recrystallization, dominant fracturing over cold welding, low 

oxidation and contamination primarily due to extremely low temperature.   

However, material synthesis will strongly depend on the design of cryomill available in the 

niche market. In the simplified version of a cryomill, the powder and the milling media are 

mixed with the cryogenic liquid (LN2) to reach extremely low temperatures. As metals and 
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some ceramics are prone to nitridation, and hence, latter design has been made such a way 

that powder can never come in contact with LN2, reducing the chance of nitridation of the 

milled powder. However, this leads to lower cooling efficiency, which can be compensated 

by online measurement of the temperature of the milled powder. The fundamental aspects 

related to these factors have been dealt with scientifically to provide an in-depth 

understanding of deformation and oxidation behavior of the materials at cryogenic 

temperature leading to the synthesis of nanoparticles. The synthesis of various nanomaterials, 

especially metallic, ceramics, polymeric, spices, hybrids and medicines along with 

composites is discussed in details to prove the efficacy of the technique for the synthesis of 

nanostructured materials in large quantity. This is considered as the need of the hour for 

various applications, including nano-ink for printing electronic circuit boards, large-scale 

production of for smart devices; nanofluids, semiconductor devices, long dispersible (highly 

stable) medicinal and aroma preserving spices for the food industry. Wththe novel 

applications, cryomill have expanded with the economic recovery of materials from 

electronic and other wastes, which are hazardous and detrimental to the environment. Finally, 

the eco-friendly nature and scaling up for industrial use as a processing route for many 

applications has been shared. In a nutshell, cryomilling is economical, environmental -

friendly as well as technologically via the route to obtain various nanomaterials. 

However, cryomilling cannot be considered the panacea for the synthesis of the 

nanostructured materials. It has its own problems. It is evident cryomilling cannot be used for 

mechanical alloying due to problems associated with significantly low diffusion at cryogenic 

temperature. Mechanical alloying from individual powder mixture needs interdiffusion, 

which is sufficient only at elevated temperature, and hence cryomilling cannot be used for 

phase formation from individual powder mixture. Secondly, the cryogenic temperature is, in 

general, achieved by using LN2, which can lead to the formation of nitrides for many metals 
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and ceramics. Hence, extreme care must be exercised to avoid the formation of the unwanted 

nitrides during the synthesis of nanostructured materials. Thirdly, there are materials, which 

undergo phase transformation while cooling down to extremely low temperatures, and thus, 

cryomilling can alter the phase and microstructure in those phase-changing materials. In 

addition, cryomilling is associated with the handling of LN2, which can cause cold burn; if it 

comes in contact with the human skin. Proper care must be taken to ensure that LN2 does not 

come in contact with exposed body parts. Nevertheless, a detailed literature survey reveals 

that cryomilling can provide a solution to the synthesis of various nanomaterials with a 

better-quality product. Therefore, this processing route is deemed to grow to satisfy the 

burgeoning area of nanotechnology. However, fundamental research as well as technological 

issues on scaling up need to be looked into by the research community to take it to the next 

level for better productivity, quality of product, and economy.  
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