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Abstract This paper focuses on the long memory of prices and returns of an asset
traded in a �nancial market. We consider a microeconomic model of the market, and
we prove theoretical conditions on the parameters of the model that give rise to long
memory. In particular, the long memory property is detected in an agents' aggrega-
tion framework under some distributional hypotheses on the market's parameters.

1 Introduction

During last years quantitative studies of �nancial time series have shown several
interesting statistical properties common to many markets. Among the others, long
memory is one of the most analyzed. This concept raised by time series empirical
analysis in terms of the persistence of observed autocorrelations. The long memory
property is ful�lled by a time series when the autocorrelation decays hyperbolically
as the time lag increases. Therefore, this statistical feature is strongly related to the
long run predictability of the future phenomenon's realizations.
Long memory models were introduced in the physical sciences since at least 1950,
when some researches in applied statistics stated the presence of long memory
within hydrologic and climatologic data. The earliest studies on this �eld are due to
Hurst (1951, 1957), Mandelbrot and Wallis (1968), Mandelbrot (1972), and McLeod
and Hipel (1978) among others.
In this paper a theoretical microeconomic structural model is constructed and devel-
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oped. We rely on time series of assets traded in a �nancial market and we address
the issue of giving mathematical proof of the exact relation between model param-
eters evidencing the presence of long memory.
The literature on structural models for long-memory is not wide. Some references
are Willinger et al. (1998), Box-Steffensmaier and Smith (1996), Byers et al. (1997),
Tschernig (1995), Mandelbrot et al. (1997). The keypoint of the quoted references
is to assume distributional hypotheses on parameters of models in order to detect
the presence of long memory in time series.
We adopt the approach of the structural model of Kirman and Teyssiere (2002) is
based on the assumption that the market is populated by interacting agents. The in-
teraction among agents leads to an imitative behavior, that can affect the structure
of the asset price dynamics. Several authors focus their research on describing the
presence of an imitative behavior in �nancial markets (see, for instance, Avery and
Zemsky (1998), Chiarella et al. (2003), Bischi et al. (2006)).
The traditional viewpoint on the agent-based models in economics and �nance relies
on the existence of representative rational agents. Two different behaviors of agents
follow from the property of rationality: �rstly, a rational agent analyzes the choices
of the other actors and tends to maximize utility and pro�t or minimize the risk.
Secondly, rationality consists in having rational expectations, i.e. the forecast on the
future realizations of the variables are assumed to be identical to the mathematical
expectations of the previous values conditioned on the available information set.
Thus, rationality assumption implies agents' knowledge of the market's dynamics
and equilibrium, and ability to solve the related equilibrium equations.
Simon (1957) argues that it seems to be unrealistic assuming the complete knowl-
edge about the economic environment, because it is too restrictive. Moreover, if the
equilibrium model's equations are nonlinear or involve a large number of parame-
ters, it can be hard to �nd a solution.
An heterogeneous agent systems is more realistic, since it allows the description
of agents' heterogeneous behaviors evidenced in the �nancial markets (see Kirman
(2006) for a summary of some stylized facts supporting the agents' heterogeneity
assumption). Moreover, heterogeneity implies that the perfect knowledge of agent
beliefs is unrealistic, and then bounded rationality takes place (see Hommes, 2001).
Brock and Hommes (1997, 1998) propose an important contribution on this �eld.
The authors introduce the learning strategies theory to discuss agents' heterogeneity
in economic and �nancial models. More precisely, they assume that different types
of agents have different beliefs about future variables's realizations and the forecast
rules are commonly observable by all the agents.
Brock and Hommes (1998) consider an asset in a �nancial market populated by two
typical investor types: fundamentalists and chartists. An agent is fundamentalist if
he/she believes that the price of the aforementioned asset is determined by its fun-
damental value. In contrast, chartists perform a technical analysis of the market and
do not take into account the fundamentals.
More recently, important contributions on this �eld can be found in Chiarella and
He (2002), Föllmer et al. (2005), Alfarano et al. (2008), Chiarella et al. (2006). For
an excellent survey of heterogeneous agents models, see Hommes (2006).
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In this paper, heterogeneity is assumed to be involved within each single agent, that
wears simultaneously two hats: the forecast of the assets' prices are driven by tech-
nical analysis of the market (chartist approach) but also by the fundamentals' value
(fundamentalist point of view).
In our model each agent performs price forecasts following a short term approach,
but the collective behavior can exhibit long memory property. In this context, we ex-
tend some existing results (see Zaffaroni 2004, 2007a, 2007b) about the arise of the
long memory property due to the aggregation of micro units, by enlarging the class
of probability densities of agents' parameters. The contribution of cross-correlation
parameters among the agents to the long memory of the aggregate is shown. Fur-
thermore, it is also evidenced that the presence of long memory in the asset price
time series implies that the log returns have long memory as well.
The rest of this paper is organized as follows: section 2 introduces the model; section
3 provide the proof of long memory property of the prices. Section 4 provides the
analysis of the returns, and section 5 is devoted to the conclusions. The Appendix
contains some well-known de�nitions and results, for an easier reference.

2 The model

The basic features of the market model, that we are going to set up, are the existence
of two groups of agents, with heterogeneity inside each group.
Let us consider a market with N agents that can make an investment either in a risk
free or in a risky asset. Furthermore, the risky asset has a stochastic interest rate
ρt ∼ N(ρ,σ2

t ) and the risk free bond has a constant interest rate r. We suppose that
ρ > r for the model to be consistent.
Let Pi,t be the estimate of the price of the risky asset done by the agent i at time t.
The change of the price at time t +1 forecasted by the i-th agent, conditioned to his
information at time t, It , is given by ∆Pi,t+1|Ii,t .
Let us assume that the market is not ef�cient, i.e. we can write the following rela-
tionship:

E(Pt+1|It) = ∆Pt+1|It +Pt (1)
where E is the expected value operator, as usual.
In this model, we suppose that the behavior of the investors is due to an analysis
of the market data (by a typical chartist approach) and to the exploration of the
behavior of market's fundamentals (by a fundamentalist approach). Moreover, the
forecasts are in�uenced by an error term, common to all the agents:

(∆Pi,t+1|Ii,t) = (∆Pc
i,t+1|Ii,t)+(∆P f

i,t+1|Ii,t)+ut , (2)

where (∆Pc
i,t+1|Ii,t) is the contribute of the chartist approach, (∆P f

i,t+1|Ii,t) is associ-
ated to the fundamentalist point of view and ut is a stochastic term representing an
error in forecasts.
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As a �rst step we assume that all the agents have the same weight in the market and
that the price Pt of the asset in the market at time t is given by the mean of the asset
price of each agent at the same time. So we can write

Pt =
1
N

N
∑
i=1

Pi,t . (3)

The chartists catch information from the time series of market prices. The forecast
of the change of prices performed by the agent i is assumed to be given by the
following linear combination:

∆Pc
i,t+1|Ii,t = α(1)

i (Pi,t −Pi,t−1)+α(2)
i (Pt −Pt−1), (4)

with α(1)
i ,α(2)

i ∈ R, ∀ i. Formula (4) captures the idea of a stochastic relationship
providing the estimate changes of prices by relying on a linear combination of the
two previous price's forecasts, each of them adjusted to the actual market prices got
at the relative time.
The fundamentalist approach takes in account the analysis made by the investors on
the fundamental values of the market.
The fundamental variables P̄i,t can be described by the following random walk:

P̄i,t = P̄i,t−1 + εt , εt ∼ N(0,σ2
ε ). (5)

The fundamental prices observed by the agent i at time t, �Pi,t , are assumed to be
biased by a stochastic error:

�Pi,t = P̄i,t + ᾱi,t

with ᾱi,t = βiPt , where βi, i = 1, . . . ,N, are parameters drawn by sampling from the
cartesian product (1− ξ ,1 + ξ )N , ξ > 0, equipped with the relative product prob-
ability measure. The de�nition of ᾱi,t takes into account the fact that the error in
estimating depends on the adjustment performed by each agent of the market price.
More precisely, the observation of the fundamental prices is affected by the subjec-
tive opinion of the agents on the in�uence on the fundamental of the market price.
If βi > 1, then agent i guesses that market price is responsible of an overestimate of
the fundamental prices. Otherwise, the converse consideration applies.
Moreover, the forecasts of the fundamentalist agents is based on the fundamental
prices and his/her forecast on market prices at the previous data. So we can write

∆P f
i,t+1|Ii,t = ν( �Pi,t −Pt), (6)

with ν ∈ R. Thus
∆P f

i,t+1|Ii,t = νP̄i,t +ν(βi−1)Pt . (7)
Let us de�ne di,t to be the demand of the risky asset of the agent i at the date t. Thus
the wealth invested in the risky asset is given by Pt+1di,t and, taking into account
the stochastic interest rate ρt+1, we have that the wealth grows as (1+ρt+1)Pt+1di,t .
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The remaining part of the wealth, (Wi,t −Ptdi,t) is invested in risk free bonds and
thus gives (Wi,t −Ptdi,t)(1+ r) (Cerqueti and Rotundo, 2003).
The wealth of the agent i at time t +1 is given by Wi,t+1, and it can be written as

Wi,t+1 = (1+ρt+1)Pi,t+1di,t +(Wi,t −Pi,tdi,t)(1+ r).

The expression of Wi,t+1 can be rewritten as

Wi,t+1 = (1+ρt+1)∆Pi,t+1di,t +Wi,t(1+ r)− (r−ρt+1)Pi,tdi,t (8)

Each agent i at time t optimizes the mean-variance utility function

U(Wi,t+1) = E(Wi,t+1)−µV (Wi,t+1),

where E and V are the usual mean and variance operators and thus:

E(Wi,t+1|Ii,t) = (1+ρ)(∆Pi,t+1|Ii,t)di,t +Wi,t(1+ r)− (r−ρ)Pi,tdi,t

and
V (Wi,t+1|Ii,t) = V [(1+ρt+1)(Pi,t+1|Ii,t)](di,t)2.

Each agent i maximizes his expected utility with respect to his demand di,t , con-
ditioned to his information at the date t. For each agent i the �rst order condition
is

(1+ρ)(∆Pi,t+1|Ii,t)− (r−ρ)Pi,t −2µV [(1+ρt+1)(Pi,t+1|Ii,t)]di,t = 0,

By the �rst order conditions we obtain

di,t = bi,tPi,t +gi,t(∆Pi,t+1|Ii,t)

with

bi,t =
ρ− r

2µV ((Pi,t+1|Ii,t)(1+ρt+1))
; gi,t =

ρ +1
2µV ((Pi,t+1|Ii,t)(1+ρt+1))

.

Let Xi,t be the supply function at time t for the agent i. Then

Xi,t = bi,tPi,t +gi,t(∆Pi,t+1|Ii,t). (9)

Let us denote

γi,t =
Xi,t
bi,t

, c =
1+ρ
r−ρ

=
gi,t
bi,t

, λi := −cα(2)
i

1+ cα(1)
i

. (10)

By (2), (4), (7) and (9) we get:

Pi,t =
1

1+ c ·
1−λi

1−λiL

(
γi,t − cνP̄i,t

)
− c

1+ c ·
1−λi

1−λiL
ut−
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− c
1+ c ·

1−λi
1−λiL

[
ν(βi−1)−αi

]
Pt − λi

1−λiL
Pt−1, (11)

where L is the backward time operator.
Condition (3) and equation (11) allow to write the market price as

Pt =
1
N

N
∑
i=1

{ 1
1+ c ·

1−λi
1−λiL

(
γi,t − cνP̄i,t

)
− c

1+ c ·
1−λi

1−λiL
ut−

− c
1+ c ·

1−λi
1−λiL

[
ν(βi−1)−αi

]
Pt − λi

1−λiL
Pt−1

}
. (12)

3 Long term memory of prices

This section shows the long term memory property of market price time series.
Equation (12) evidences the contribution of each agent to the market price forma-
tion.
Each agent is fully characterized by her/his parameters, and it is not allowed to
change them. Parameters are independent with respect to the time and they are not
random variables, but they are �xed at the start up of the model in the overall frame-
work of independent drawings.
The heterogeneity of the agents is obtained by sampling αi, i = 1, . . . ,N from the
cartesian product RN with the relative product probability measure. No hypotheses
are assumed on such a probability up to this point.
In order to proceed and to examine the long term memory property of the aggregate
time series, the following assumption is needed:
Assumption (A)

αi = ν(βi−1) <−1
c . (13)

This Assumption thus introduces a correlation in the way in which actual prices Pt
play a role in the fundamentalists' and chartists' forecasts, and meets the chartists'
viewpoint that market prices re�ect the fundamental values. Moreover, a relation-
ship between the parameters of the model describing the preferences and the strate-
gies of the investors, αi and ν , and the interest rates of the risky asset and risk free
bond (combined in the parameter c) is evidenced.
By a pure mathematical point of view, since ρ > r (and, consequently, c <−1), the
variation range of αi is, in formula (13), respected.
We assume that Assumption (A) holds hereafter.
By (12) and (13), market's price can be disaggregated and written as

Pt =
1
N · 1

1+ c
N
∑
i=1

1−λi
1−λiL

γi,t − 1
N · c

1+ c
N
∑
i=1

1−λi
1−λiL

ut−
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− 1
N · cν

1+ c
N
∑
i=1

1−λi
1−λiL

P̄i,t − 1
N

N
∑
i=1

λi
1−λiL

Pt−1 =: A1
t +A2

t +A3
t +A4

t , (14)

and λi ∈ (0,1), for each i = 1, . . . ,N.
Equation (14) �xes the role of the parameters of the model in the composition of the
price.
The theoretical analysis of the long term memory of the time series (14) is carried
on through two steps:
• long memory is detected for each component of Pt ;
• the terms are aggregated.

3.1 The idiosyncratic component

A1
t is the idiosyncratic component of the market, and it gives the impact of the supply

over market's prices, �ltered through agents' forecasts parameters.
The degree of long term memory can be �xed through a direct analysis of the rate
of decay of the correlation function. In the next result a suf�cient condition for the
long term memory property of A1

t is shown.

Theorem 1. Let us assume that there exists a, b ∈ (0,+∞) such that λi ∈ [0,1] and
λi are sampled by a B(a,b) distribution.
Fixed i = 1, . . . ,N, let γi,t be a stationary stochastic process such that

E[γi,t ] = 0, ∀ i ∈ {1, . . . ,N}, t ∈ N; (15)

E[γi,uγ j,v] = δi, jδu,vσ 2
γ , ∀ i, j ∈ {1, . . . ,N}, u,v ∈ N.1 (16)

Then, as N →+∞, the long term memory property for A1
t holds, with Hurst's expo-

nent H1, in the following cases:

• b > 1 implies H1 = 1/2:
• b ∈ (0,1) and the following equation holds:

+∞

∑
h=−∞

E[A1
t A1

t−h] = 0, (17)

imply H1 = (1− b)/2. In this case it results H1 < 1/2, and the process is mean
reverting.

Proof. First of all, we need to show that

E
[
A1

t A1
t−h

]
∼ h−1−b, as N →+∞. (18)

1 δi, j is the usual Kronecker symbol, e.g. δi, j = 1 for i = j; δi, j = 0 for i 6= j.
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Let us examine A1
t A1

t−h.

A1
t A1

t−h =
1

N2(1+ c)2

N
∑
i=1

1−λi
1−λiL

γi,t
N
∑
j=1

1−λ j
1−λ jL

γ j,t−h =

=
1

N2(1+ c)2

N
∑
i=1

(1−λi)
[ ∞

∑
l=0

(λiL)l
]
γi,t ·

N
∑
j=1

(1−λ j)
[ ∞

∑
m=0

(λ jL)m
]
γ j,t−h.

The terms of the series are positive, and so it is possible to exchange the order of the
sums:

A1
t A1

t−h =
1

(1+ c)2

∞

∑
m=0

∞

∑
l=0

1
N2

N
∑
i=1

N
∑
j=1

(1−λi)λ l
i (1−λ j)λ m

j γi,t−mγ j,t−h−l . (19)

In the limit as N →+∞ and setting x := λi, y := λ j, (19) becomes:

A1
t A1

t−h =
1

(1+ c)2

∞

∑
m=0

∞

∑
l=0

∫ 1

0

∫ 1

0
(1− x)xl(1− y)ymγx,t−mγy,t−h−ldF(x,y), (20)

where F is the joint distribution over x and y.
Taking the mean w.r.t. the time and by using the hypothesis (16), we get

E
[
A1

t A1
t−h

]
=

1
(1+ c)2

∞

∑
m=0

∞

∑
l=0

∫ 1

0

∫ 1

0
(1− x)xl(1− y)ymδx,yδm,l+hσ2

γ dF(x,y) =

(21)

=
1

β (a,b)
· σ 2

γ

(1+ c)2

∞

∑
l=0

∫ 1

0
(1− x)1+bx2l+h+a−1dx. (22)

By using the distributional hypothesis on λi, for each i, we get

E
[
A1

t A1
t−h

]
=

1
β (a,b)

· σ2
γ

(1+ c)2

∞

∑
l=0

Γ (h+a+2l)Γ (b+2)
Γ (h+a+b+2l +2)

∼

∼ 1
β (a,b)

· σ2
γ

(1+ c)2 h−1−b. (23)

Now, the rate of decay of the autocorrelation function related to A1 is given by (23).
By using the results in Rangarajan and Ding (2000) on such rate of decay and the
Hurst's exponent of the time series, we obtain the thesis.
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3.2 The common component

A2
t describes the common component of the market. In fact, A2

t represents the portion
of the forecast driven by an external process independent by the single investor.

Theorem 2. Let us assume that ut is a stationary stochastic process, with

E[ut ] = 0;

E[usut ] = δs,tσ2
u . (24)

Moreover, let us assume that there exists a, b ∈ (0,+∞) such that the parameters λi
are drawn by a B(a,b) distribution.
Then, as N →+∞, the long term memory property for A2

t holds, with Hurst's expo-
nent H2, with the following distinguishing:

• b > 1 implies H2 = 1/2:
• b ∈ (0,1) and the following equation holds:

+∞

∑
h=−∞

E[A2
t A2

t−h] = 0, (25)

imply H2 = (1− b)/2. In this case it results H2 < 1/2, and the process is mean
reverting.

Proof. The proof is similar to the one of Theorem 1.

3.3 The component associated to the perception of the
fundamentals' value

A3
t is a term typically linked to the perception of the fundamentals' value by the

agents.
By the de�nition of P̄ given in (5), we can rewrite A3

t as

A3
t =

1
N

N
∑
i=1

−c
1+ c

1−λi
1−λiL

[ t−1
∑
j=0

εt− j + P̄i,0
]
, (26)

where ε ∼ N(0,σ2
ε ) and {P̄i,0}i=1,...,N is a set of normal random variable i.i.d. with

mean 0 and variance σP̄, for each i = 1, . . . ,N.
The stability of the gaussian distribution implies that

t−1
∑
j=0

εt− j + P̄i,0 =: Γt ∼ N(0,σ2
Γ ). (27)



10 Roy Cerqueti and Giulia Rotundo

In particular, Γt is a stationary stochastic process.
By (26) and (27), we can write

A3
t =

1
N

N
∑
i=1

−c
1+ c

1−λi
1−λiL

Γt , (28)

The long memory property is formalized in the following result.

Theorem 3. Suppose that λi are parameters drawn by a B(a,b) distribution, for
each i = 1, . . . ,N, and a,b > 0.
Then, as N →+∞, the long term memory property for A3

t holds, with Hurst's expo-
nent H3, with the following distinguishing:

• b > 1 implies H3 = 1/2:
• b ∈ (0,1) and the following equation holds:

+∞

∑
h=−∞

E[A3
t A3

t−h] = 0, (29)

imply H3 = (1− b)/2. In this case it results H3 < 1/2, and the process is mean
reverting.

Proof. The proof is similar to the one provided for Theorem 1.

3.4 The component associated to the empirical analysis of the
previous data of the market's price

A4
t , �nally, takes in account that the behavior of the investors at time t in strongly

in�uenced by the situation of the market's price observed at time t−1. The analysis
of the previous results is subjectively calibrated, and this fact explains the presence
in this term of a coef�cient dependent on i.
In order to treat this case, we need to point out that Pt is a stationary process, since it
can be viewed recursively as a sum of stationary processes. Therefore, the following
result holds:

Theorem 4. Suppose that λi are parameters drawn by a B(a,b) distribution, for
each i = 1, . . . ,N, and a,b > 0.
Then, as N →+∞, the long term memory property for A4

t holds, with Hurst's expo-
nent H4, with the following distinguishing:

• b > 1 implies H4 = 1/2:
• b ∈ (0,1) and the following equation holds:

+∞

∑
h=−∞

E[A4
t A4

t−h] = 0, (30)
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imply H4 = (1− b)/2. In this case it results H4 < 1/2, and the process is mean
reverting.

Proof. The proof is similar to the one provided for Theorem 1.

3.5 Aggregation of the components

In this part of the work we want just summarize the results obtained for the disag-
gregate components of the market's forecasts done by the investors.

Theorem 5. Suppose that λi are sampled by a B(a,b) distribution, for each i, with
b ∈ R.
Then, for N →+∞, we have that Pt has long memory with Hurst's exponent H given
by

H = max
{

H1,H2,H3,H4
}

, (31)

Proof. It is well-known that, if X is a fractionally integrated process or order d ∈
[−1/2,1/2], then X exhibits the long term memory property, with Hurst's exponent
H = d +1/2. Therefore, using Proposition 1, by Theorems 1, 2, 3 and 4, we obtain
the thesis.

Remark 1. Theorem 5 provides the long term memory measure of Pt . The range of
the Hurst's exponent includes as particular case H = 1/2, that correspond to brow-
nian motion. Thus the model can describe periods in which the ef�cient market
hypothesis is ful�lled as well as periods that exhibit antipersistent behavior. More-
over, the long term memory property can not be due to the occurrence of shocks in
the market. This �nding is in agreement with the impulsive nature of market shocks,
not able to drive long-run equilibria in the aggregates.

4 Analysis of returns

This section aims at mapping the long memory exponent of price time series gen-
erated by the model into long memory of log-returns. In order to achieve this goal,
we analyze the effect of log-transformation of a long-memory process. Dittman and
Granger (2002) provide theoretical results on the long memory degree of nonlinear
transformation of I(d) processes only if the transformation can be written a �nite
sum of Hermite polynomials. Therefore they cannot be used for examining log-
returns, which the logarithms is involved in.
The same authors provide further results through numerical analysis. Let {Xt}t be
I(d), Yt = g(Xt) with g(·) a transcendental transformation. Numerical estimates of
the degree of long memory of Yt , d′, suggest the following behaviour:
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1. − 1
2 < d < 0 antipersistence is destroyed by non-odd transformations, hence d′ =

0;
2. d = 0 uncorrelated processes remain uncorrelated under any transformation: d′ =

0;
3. 0 < d < 1

2 stationary long memory processes. The size of the long memory of
stationary long memory processes (0 < d < 1

2 ) diminishes under any transfor-
mation (d′ ≤ d). The higher is the Hermite rank of the transforming function,
the bigger is the decrease, even if none of the functions examined can be written
as a �nite sum of Hermite polynomials. If the transforming function has Her-
mite rank J and it can be written as a �nite sum of Hermite polynomials, then
d′ = max{0,(d−0.5)J +0.5}. Therefore, if J = 1, then d′ = d;

4. d ≥ 1
2 nonstationary processes. The size of the long memory diminishes under

any transformation. d′ ≤ d

Extensive simulations reported in Chen et al., (2005) on the effects of nonlinear
�lters on the estimate of long term memory provide further con�rmation the results
reported above. In particular, they show that in case of logarithm transformation,
the degree of long memory is not changing in the interval (−0.1,0.8). Discrepancy
from (0,1/2) could rise from precision and biases of the numerical estimate. Small
changes in the degree of long memory were expected, due to the violation of the
hypothesis of the transforming function being a �nite sum of Hermite polynomials,
but they aren't got from the analysis of Chen et al., (2005).

Remark 2. From the usual results on differencing, we remark that if log(Pt) is I(d)
then the log-returns time series rt = log(Pt)− log(Pt−1) is d′ = d−1.

We can state the following

Theorem 6. If the price history is I(d), then returns are I(d'), where

1. if −1/2 < d ≤ 0, then d′ =−1
2. if 0 < d < 1/2, then d′ = d−1
3. (d > 1/2) the degree of long memory diminishes, but no analytical expressions

are available.

Corollary 1. Uncorrelated returns(d′ = 0) are obtained if d = 1.

Corollary 2. Long memory in returns (d′ > 0) is obtained if d > 1.

5 Conclusions and further developments

In this paper a theoretical microeconomic model for time series of assets traded in
a �nancial market is constructed. The market is assumed to be populated by hetero-
geneous agents. We provide mathematical results concerning the presence of long
memory in prices and log-returns.
Our work extends Zaffaroni (2004, 2007a, 2007b), discussing the long term memory
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property in an agents' aggregation framework by enlarging the class of probability
densities of agents' parameters.
Moreover, we study the shift of the memory property from the asset price time se-
ries to the log-returns. In particular, it is also evidenced that the presence of long
memory in the asset price time series implies that the log returns have long memory
as well.
The model allows also for the correlation between the agents and its approach can
be useful for modeling also other kind of interaction between the agents.

Appendix

5.1 Beta distribution

We recall in this subsection the beta distribution.
De�nition 1. If Z is an ordinary beta-distributed random variable which can take
values between 0 and 1, the probability density function of Z is

p(z) =
1

β (a,b)
za−1(1− z)b−1, 0 < z < 1, (32)

where a e b are positive parameters and

β (a,b) =
∫ 1

0
za−1(1− z)b−1dz.

We refer to this distribution as B(a,b).

5.2 Sum of integrated processes

We recall a result due to Granger, (1980):
Proposition 1. If {Xt}t and {Yt}t are independent integrated processes of order,
respectively, dX and dY , then the sum Zt := Xt +Yt is an integrated process of order
dZ , where

dZ = max
{

dX ,dY
}

.
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