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Ultrasound Imaging in Human Lower Limb
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Abstract— The structure of microvasculature cannot be
resolved using conventional ultrasound (US) imaging due to
the fundamental diffraction limit at clinical US frequencies.
It is possible to overcome this resolution limitation by localizing
individual microbubbles through multiple frames and forming a
superresolved image, which usually requires seconds to minutes
of acquisition. Over this time interval, motion is inevitable
and tissue movement is typically a combination of large- and
small-scale tissue translation and deformation. Therefore, super-
resolution (SR) imaging is prone to motion artifacts as other
imaging modalities based on multiple acquisitions are. This
paper investigates the feasibility of a two-stage motion estimation
method, which is a combination of affine and nonrigid estimation,
for SR US imaging. First, the motion correction accuracy of the
proposed method is evaluated using simulations with increasing
complexity of motion. A mean absolute error of 12.2 µm was
achieved in simulations for the worst-case scenario. The motion
correction algorithm was then applied to a clinical data set
to demonstrate its potential to enable in vivo SR US imaging
in the presence of patient motion. The size of the identified
microvessels from the clinical SR images was measured to
assess the feasibility of the two-stage motion correction method,
which reduced the width of the motion-blurred microvessels to
approximately 1.5-fold.

Index Terms— Motion correction, motion estimation, non-rigid
motion, super-localization, super-resolution imaging.
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I. INTRODUCTION

AMONG the many medical imaging modalities, ultra-
sound (US) imaging stands out in terms of accessibility

and cost. Using conventional B-mode or contrast-enhanced
US (CEUS) imaging at clinical frequencies, subwavelength
structures, such as the microvasculature, cannot be resolved
due to the fundamental diffraction limit. This limit can, how-
ever, be overcome by the method of US super-resolution (SR)
techniques, such as US localization microscopy [1], where
the final image is formed by localizing spatially isolated
microbubbles (MBs) through multiple acquired frames. Viess-
mann et al. [2] demonstrated that it is possible to spatially
resolve two touching 200-μm internal diameter tubes using
an unmodified clinical CEUS system operating 2 MHz. Since
then, several research groups have demonstrated the use of
SR imaging within microfluidic channels [3], a tissue phan-
tom with microvessels through an ex vivo human skull [4],
and in vivo in mouse and rat models [5]–[9]. A theoretical
localization precision as low as 1.8 μm was predicted for
ultrasonic localization microscopy for human breast imaging
at 7 MHz [10].

In vivo imaging introduces the additional com-
plexity of sample motion during image acquisition.
Christensen-Jeffries et al. [5] mapped the microvasculature
in vivo in a mouse ear where vessel features as fine as
19 μm, which is approximately 6× smaller than the receive
wavelength (∼λrx/6), were visualized in under 10 min of
US acquisition using an unmodified clinical system. In this
paper, a 2-D subpixel cross correlation was used for motion
correction and gating to avoid artifacts due to motion caused
by breathing. Errico et al. [6] imaged an in vivo rat brain that
was fixed within a stereotactic frame to minimize the motion.
A 10-min acquisition was required for each coronal plane of
the whole-brain scan to form the SR images that can resolve
two vessels located 16 μm (∼λrx/6) apart. In their later study,
Hingot et al. [11] used a cross correlation-based method
to correct the motion between frames, which was applied
within a block of 200 images acquired at 500 frames/s.
Ackermann and Schmitz [7] performed multiple MB tracking
in vivo in a tumor xenograft-bearing mouse and measured
capillary blood flow (<1 mm/s). Due to respiratory motion,
they discarded 1151 frames out of 6000 frames acquired over
4 min. Lin et al. [8] detected vessels in vivo in tumor-bearing
rats as small as 25 μm (∼λrx/7) by 3-D US localization
microscopy with a total acquisition time of 11.5 min (16 s for
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each 2-D slice). They excluded 20%–30% of the acquired
frames due to the breathing induced motion artifacts to avoid
the interference of bubble positions.

Rather than gating or stabilizing the sample, another
approach to reducing motion artifacts is to use a higher
concentration of MBs and shorter acquisition times to form SR
images; however, the final resolution of SR images obtained
via localization of spatially nonisolated MBs is currently
poorer than those obtained using the methods described earlier.
Bar-Zion et al. [9] imaged in vivo rabbit kidney and tumor
models using higher order statistics by acquiring less than
a second of high frame rate US data. They achieved an
improvement of 50% in spatial resolution with a significantly
shorter acquisition time as low as 0.1 s that makes the proposed
approach clinically applicable. However, even at this short
time scale, SR images will still be prone to motion artifacts at
the micrometer level and motion correction may be required,
especially for handheld clinical scans.

For SR US imaging to become useful clinically, motion
artifacts must be addressed first. During normal breathing,
the diaphragm moves 15 mm and the chest circumference
changes 7 mm, and respiration causes translation of organs in
the upper body [12]. Although respiratory motion is usually
considered to be rigid, human soft tissue is mostly anisotropic
and tissue deformation is only in the linear elastic region of
the stress–strain curve for tissue strains up to 5% [13]. Cardiac
motion is very complex and nonrigid, involving longitudinal
and radial contractions. Although it does not generate as much
motion as respiration, the region of the liver adjacent to the
heart is typically displaced by approximately 4 mm [12].
Moreover, there are many unpredictable and unavoidable
sources of motion in the body generating rigid and nonrigid
motion such as swallowing, coughing, peristalsis, bowel move-
ments, pulsations of arterioles and venules, and other local
muscle movements. Motion is an inherent part of diagnostic
imaging and, unless corrected, it sets the achievable resolution
limit in SR US imaging.

Doppler-based motion estimation is sensitive to small phase
delays in the RF data and it can compensate for the local
motion in the axial (or equivalently the radial) direction.
Poree et al. [14] achieved contrast and image quality improve-
ment by applying this technique to high frame rate echocar-
diography. Doppler-based motion estimation worked well for
this application since the lateral motion observed in their study
was smaller than half of the lateral (or equivalently the cross-
range) resolution. Gammelmark and Jensen [15] demonstrated
that the axial motion compensation alone is not sufficient when
the total motion in lateral direction is large in comparison to
the wavelength. They have performed the motion correction
by tracking the position of the pixels in each low-resolution
image acquired with the synthetic transmit aperture method,
which is similar to SR imaging in a way that a combination of
many low-resolution images is necessary to generate a high-
resolution image.

Ideally, the motion should be compensated with an accuracy
higher than the spatial resolution to be achieved in the SR
image. When the problem of motion correction is solved
for clinical US imaging, it will be possible to achieve a

resolution below 10 μm, which will enable the imaging of
human capillary vessels that may benefit many applications.
Imaging blood vessels at microscale can reveal the elements
that modulate endothelial barrier function, such as blood–brain
barrier opening [16]. Many features of the immune system’s
interactions with small blood vessels and microcirculatory
networks can be observed by using SR imaging. Vascular
abnormalities associated with tumor growth can be monitored
in detail, where the acoustic angiography using contrast agents
already revealed the potential of using high-resolution imag-
ing [17]. High-resolution and accurate imaging is the key
to success for the diagnosis and endovascular treatment of
peripheral arterial disease [18].

In this paper, a two-stage motion estimation algorithm
previously used in magnetic resonance imaging was applied
to SR US imaging [19], with the goal of correcting for
both rigid and nonrigid sample motion. The accuracy of the
motion estimation method was analyzed in silico and also
the application of this method to clinical SR imaging was
demonstrated in vivo.

II. MOTION ESTIMATION AND CORRECTION

Here, we refer to motion as the combination of US probe
motion and tissue motion such as respiratory motion, car-
diac motion, and other patient movements. It is not usually
possible to control these sources of motion, which can be
on the order of millimeters for an in vivo SR image that
requires seconds to minutes of data acquisition. In SR imaging,
motion can be as low as a micrometer for high frame rate
imaging (>1000 frames/s). However, the total acquisition time
is determined by the speed of the physiological processes, such
as the blood flow velocity in microvessels, not by the imaging
frame rate [5], [20]. Over such a long duration, the motion
between the first and the last frame will be a combination of
rigid motion and local nonrigid deformations with different
amplitudes.

A. Two-Stage Motion Estimation

The motion estimation is based on an image registration
approach, which was previously applied to the MRI and the
MATLAB (The MathWorks, Natick, MA, USA) codes is
currently available to download [21]. This approach is based
on the work of Rueckert et al. [22] and Lee et al. [23]
and it is capable of performing rigid, affine, nonrigid, and
two-stage motion estimation. The rigid registration is capable
of capturing the translation and rotation. The affine registration
can estimate translation, rotation, shearing, and resizing. The
nonrigid registration is a B-spline-based free-form deforma-
tion that can estimate the local compression and rarefaction of
tissue [22]. Nonrigid registration is achieved by minimizing a
cost function, which is a combination of the cost associated
with the smoothness of the transformation and the cost asso-
ciated with the image similarity. Smoothness of the transfor-
mation is crucial to mimic the local deformation of the soft
tissue, where adjacent points move cohesively. Smoothness is
achieved by introducing a penalty term Cregularization(T ), which
regularizes the transformation and ensures that the resultant
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transformation field is not noisy. In summary, a high value of
the regularization parameter ensures neighboring transforma-
tion points are similar and that they vary smoothly over space.
A low value allows greater freedom of changes in neighboring
transformation points. It is hard to relate this term to an actual
physical quantity or fit a model to predict the optimal value;
therefore, this paper used a grid search method to determine
an appropriate value of Cregularization(T ). When the registration
algorithm finishes optimizing the cost function for a given
Cregularization(T ) and converges, the transformation matrix T
saves the estimation result that can be used to correct the
motion in the registered frames. Two-stage image registration
is a combination of affine registration that estimates the global
motion, and nonrigid registration that can estimate the local
deformation of tissue.

For a small regularization penalty, motion estimation results
in a viscous fluidlike registration with long computational
time where pixels can move almost independently, which is
not realistic for human soft tissue. For a large regularization
penalty, registration finishes after a small number of iterations
and can result in large errors for complex motion fields,
such as combinations of large global movement and small
local deformations. The two-stage registration approach is
advantageous because the affine registration finds a rough
global estimate first and then the nonrigid registration refines
the final solution. The two-step approach effectively increases
the range over which the nonrigid registration will work and
improves the speed and the convergence of the optimization
process.

There is an obvious tradeoff between the resolution of the
mesh size used in the registration model and computational
complexity. In order to achieve the best compromise between
the resolution or the accuracy of the nonrigid deformation and
the computational cost, this model implements a hierarchical
multiresolution approach [23]. Resolution of the control grid
spacing is increased along with the image resolution from a
coarse to a fine level and several iterations are performed at
each stage until the cost function is minimized [22].

B. Application of Motion Correction to Super-Resolution

Fig. 1 shows the SR image processing chain. Motion
estimation was performed as the first step on the B-mode
image and the transformation matrix was used to correct the
motion in the CEUS images. Two-stage registration implicitly
performs affine and nonrigid registrations and outputs one
transformation matrix and the motion corrected image.

For the clinical study, the CEUS images were generated
by the clinical US system. After the motion correction stage,
a spatio-temporal filtering based on singular value decom-
position was applied to remove the residual tissue echoes
from the CEUS images [24]. Separation of MB and tissue
signals is crucial for SR imaging and it is not a straightfor-
ward procedure since nonlinear propagation of US through
MB contrast agents can lead to imaging artifacts including
subsequent erroneous localization of MBs [25], [26]. After
the filtering stage, a threshold was applied to remove the noise

Fig. 1. Processing chain of SR imaging. Affine and nonrigid motion
estimation are the first two steps of the process.

before MB detection. In the MB detection stage, an intensity
threshold was used to reject large signals, which might be
due to multiple MBs. Finally, the super-localization stage was
performed as explained in [27].

III. MATERIALS AND METHODS

A. Simulation Study

To verify the accuracy of the proposed motion estima-
tion method, Field II simulations were performed [28], [29].
Controlled motion patterns were simulated on a tissue
phantom with increasing complexity of motion as shown
in Figs. 2–4. In all simulations, white Gaussian noise was
added to the simulated data before the beamforming operation
and the SNR was calculated as a ratio between mean tissue
signal and standard deviation of the white Gaussian noise.

Probe motion was simulated by moving the location of
scatterers together in the axial or lateral direction as shown
in Fig. 2. Translation of scatterers in the axial or lateral direc-
tion creates a rigid tissue motion with uniform displacement.
These simulations were performed for 11 different exponen-
tially spaced motion amplitudes for a range of 1–1024 μm
and they were repeated 20 times with each repeat having a
different noise.

Tissue deformation was generated by displacing the scatter-
ing points as a function of depth or lateral distance using a
linear stress–strain relation to mimic the effect compression
from top by an US probe or compression from side by a
moving organ or muscle. By moving scatterers independent
of each other, a nonrigid tissue motion was created, as shown
in Fig. 3 (left) and (middle). As shown in Fig. 3 (right),
the motion within the imaging field changes from a few
micrometers to up to a millimeter, which corresponds to a
maximum of 2% compression in the axial direction and 2.5%
compression in the lateral direction.

For the last simulation, a more realistic motion pattern was
simulated in Field II by using the motion field estimated
from a clinical scan. Two frames acquired approximately
10 s apart were chosen as the reference frame and the frame
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Fig. 2. Simulated probe motion in axial (left) and lateral (middle) directions.
By moving the probe away from the center of the tissue phantom, a rigid
motion is generated. Right: tissue motion direction with arrows and the
colorbar represents the motion amplitude for both cases. Probe motion was
simulated for a motion range of 1–1024 μm, but only 256-μm motion is
shown here for clarity.

Fig. 3. Simulated tissue deformations in the axial (left) and lateral (middle)
directions. A nonrigid motion is generated to mimic tissue deformation caused
by probe compression or muscle contraction. Right: tissue motion direction
with arrows and the colorbar represents the motion amplitude for both cases.
Tissue deformation was simulated for a wide range of values, but only 2%
and 2.5% compression in the axial and lateral directions are shown here for
clarity.

with motion. The extracted motion field from these two frames
accommodates a combination of a large scale counterclock-
wise motion located at the south–east of the image and a
small scale clockwise motion located at the north–west of the
image with an average motion of 203 ± 113 μm as shown
in Fig. 4 (middle). This motion field was then applied to a
numerical simulation of a homogeneous tissue phantom shown
in Fig. 4 (left).

Simulation parameters were chosen specifically to match
the parameters of the clinical study with a center fre-
quency 6 MHz, 80% bandwidth, 160 elements, and a pitch
of 237.5 μm. The −6-dB width of the point spread function
at 25-mm depth was 287 and 397 μm in the axial and lateral
directions, respectively.

Fig. 4. Left: simulated realistic motion in Field II on a homogeneous tissue
phantom without any dominant structures. Middle: Extracted motion field
from a clinical data set that was subsequently applied on the homogeneous
phantom shown on the left to simulate a realistic motion. The colorbar
represents the motion amplitude in micrometers and the white arrows show
the direction of the tissue motion. Right: Example B-mode frame acquired
with a commercial US scanner that was used to extract a realistic motion.

The simulated tissue phantom had 10 scatterers per reso-
lution cell for every simulation to generate a fully developed
speckle pattern [30]. For the simulations with probe motion
and tissue deformations, the phantom included circular hypoe-
choic and hyperechoic regions with a diameter of 2, 3, 4,
and 5 mm and 4-point scatterers (Figs. 2 and 3). For the
realistic motion simulations (Fig. 4), a homogeneous phantom
was used without any structure, which makes the motion
estimation harder, because in this case, there are no dominant
features in the B-mode frames to aid the motion estimation,
and the motion estimation is, therefore, obtained purely from
the simulated speckle pattern. The attenuation coefficient was
set to 0.5 dB/cm/MHz and white Gaussian noise was added
to the simulated data before beamforming. By shifting the
scatterers together or independently, a different speckle pattern
was generated for all tested scenarios. The signal to noise ratio
in the simulated B-mode image was varied between 20 dB,
which is the empirical lower bound where a suitable motion
correction is possible for SR imaging with the proposed
approach, and 50 dB, which is the dynamic range of the US
scanner used in the clinical study.

The motion estimation algorithm was applied to the
simulated B-mode image after envelope detection, log-
compression, and downsampling. The resulting images had
a pixel size of 60 × 60 μm2 and a 50-dB dynamic range.
During image registration, most of the parameters were kept
the same except the grid spacing and the regularization penalty,
which had a large effect on motion estimation accuracy for
some cases. The similarity measure of squared pixel distance
(also called squared difference) was used for all estimations.
Among two interpolation techniques available with this motion
estimation method, linear interpolation was used instead of
cubic, as cubic interpolation was found to have higher error
values due to the discontinuities inside and at the boundaries
of the image [31]. The final result was cubic interpolated.
The registration was always initialized with a uniform grid
and the maximum number of grid refinement steps used by
the multiresolution method was fixed to two. The registration
method was changed between rigid, affine, nonrigid, and
two-stage (also referred to as both inside the MATLAB code)
in order to demonstrate the accuracy of each method for
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Fig. 5. Results of simulations carried out with rigid sample translation (also referred to as probe motion) as shown in Fig. 2. The average absolute motion
estimation error for all simulated motion values (11 simulations spanning 1–1024 μm, each repeated 20 times) are shown for the axial (left) and lateral (right)
directions, respectively. Error bars show the standard deviation in absolute motion estimation error over all simulated motion values. Values are shown for
SNR values of 50, 40, 30, and 20 dB for all motion estimation methods.

different scenarios. A grid spacing of 128 × 128 was used
for all simulations except the simulated translational motion,
where a larger spacing of 256 × 256 and 512 × 512 showed
an improvement. When a grid size of 128 × 128 was chosen
initially, the registration function also used a 64 ×64 grid and
a 32×32 grid thanks to two subsequent grid refinement steps.
To demonstrate the potential of the motion estimation method,
the regularization of the two-stage and nonrigid registrations
were optimized for each simulation. Each simulation was run
for a set of regularization values (10−6 ≤Cregularization(T ) ≥1)
and the penalty parameter that achieved the minimum error
was chosen as the optimum value. For the simulated probe
motion, lowest error values were achieved by using a higher
regularization parameter as opposed to the cases for simulated
tissue deformation and realistic motion.

B. Clinical Study

Healthy volunteers were recruited from a research cen-
ter (Charing Cross Hospital, Imperial College London,
London, U.K.). The study was approved by the National
Research and Ethics Committee (Reference 13/LO/0943), and
each participant provided written informed consent.

Clinical data was acquired in the tibialis anterior muscle
using a Philips iU22 US scanner (Philips Medical Systems,
Bothell, WA, USA) with a handheld 3–9-MHz linear array
probe. A vial of Sonovue (Bracco S.p.A, Milan, Italy) was
diluted using normal saline (25 mg in 20 mL) and was admin-
istered as an intravenous infusion (VueJect, Bracco S.p.A,
Milan, Italy) at a rate of 4 mL/min via an 18G cannula placed
in an antecubital vein. The cannula was flushed with saline
[5 mL of sodium chloride 9 mg/mL (0.9%) solution] and
disconnected. B-mode and CEUS (power modulation) frames
were acquired using the RS imaging mode of the Philips
scanner operating around a 6-MHz center frequency with a
mechanical index of 0.06 and a dynamic range of 50 dB.

Several acquisitions from three healthy volunteers were
recorded over a duration of 40–55 s with 500–700 B-mode and

CEUS frames at a frame rate of 13 Hz and the resulting data
was saved to disk as video files. Supplementary video shows
the in vivo CEUS and B-mode data. It can be seen that
the tissue signal dominates the B-mode images and that the
moving bubble signals will not significantly affect the motion
estimation. B-mode frames were used for motion estimation
and the motion correction was performed on CEUS frames
before formation of the SR images.

IV. RESULTS

A. Simulation Study

The accuracy of the motion estimation for the simu-
lated probe motion in the axial and lateral directions are
given in Fig. 5 (left) and (right), respectively. The mean
absolute error values are plotted with an error bar that rep-
resents the standard deviation for a range of motion between
1 and 1024 μm.

In the case of rigid probe motion in the axial direction, all
methods estimated the motion with less than 3.5-μm absolute
error and with a standard deviation smaller than 3 μm. In the
case of rigid probe motion in the lateral direction, the absolute
error increased for all motion estimation methods, where
nonrigid motion estimation gave larger error values (8±7 μm)
for the simulations with 20-dB SNR.

Results of the nonrigid tissue deformation simulations are
shown in Fig. 6 (left) and (right) for all motion estimation
methods. Results of the rigid motion estimation for all noise
levels were above 45 μm, which is not suitable for SR
US imaging. Both affine and two-stage motion estimation
performed similarly for tissue deformation shown in Fig. 3
with absolute error values below 5.4 ± 5.2 μm for lateral
and below 3.7 ± 2.9 μm for axial motion. Due to the nature
of the simulated linear elastic compression of tissue, affine
motion estimation performed better than the nonrigid motion
estimation.

The computation time including both the motion estimation
and motion correction were measured for an image with a size
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Fig. 6. Results of simulations carried out with nonrigid sample deformation (also referred to as tissue deformation) as shown in Fig. 3. The average
absolute motion estimation error for all simulated motion values (11 pairs of simulations with a compression ratio of 0.002%–2% in the axial direction and
0.0025%–2.5% in the lateral direction, each repeated 20 times) are shown for the axial (left) and lateral (right) directions, respectively. Error bars show the
standard deviation in absolute motion estimation error over all simulated motion values. Values are shown for SNR values of 50, 40, 30, and 20 dB for all
motion estimation methods.

Fig. 7. Left: Simulated motion field applied on the B-mode image as shown in Fig. 4. Top: motion estimated with affine, nonrigid, and two-stage registration
methods for the simulated motion given on the left. Bottom: absolute difference between induced and estimated motion fields.

of 641 × 670 pixels while using only a single core of 12 core
processor at 2.6 GHz. For this given setup, rigid registration
and motion correction took 42 iterations and approximately
10 s. The second fastest method was the affine registration,
which took 47 iterations and approximately 15 s. Nonrigid
registration with an optimized Cregularization(T ) = 2 × 10−4

was the slowest method, which took 201 iterations and
approximately 90 s. Two-stage registration with an optimized
Cregularization(T ) = 3 × 10−2 took 47 iterations for affine and
eight iterations for nonrigid registration with a total of 20 s
approximately.

B. Simulation Results for the Realistic Motion

A B-mode image with motion was generated with 20-dB
SNR using the motion field extracted from the clinical scan

shown in Fig. 4 (middle). This frame with motion was regis-
tered to a reference B-mode image without motion by using
nonrigid, affine, and two-stage motion estimation methods.
Fig. 7 (top) shows the motion field estimated by different
methods and Fig. 7 (bottom) shows the absolute difference
between induced and estimated motion fields. Amongst all
the methods presented, the two-stage method has the lowest
mean absolute error value of 12.2 μm, which increased to
15.3 μm for the nonrigid method and 28.7 μm for the
affine method. When using the two-stage method, the absolute
motion estimation error was less than 15 μm for 70% of the
total image area, whereas this area drops down to 65% for the
nonrigid and 38% for the affine method.

Overall, the rigid method has the worst performance since
it cannot accommodate the localized shearing and rotation of
the tissue for this case of simulated realistic motion. The affine
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method has good performance for this case; however, it per-
forms worse than the two-stage method. The second nonrigid
registration stage of the two-stage method compensates for
the local deformations and gives an advantage over the affine
method. The nonrigid method works best for small local
deformations, however, when the motion is larger than a few
pixels the performance drops significantly, which is visible in
the south–west corner of Fig. 7 (bottom–middle). Therefore,
the two-stage method is a good composite method that com-
pensates the large global motion first and provides a better
starting point for the nonrigid registration stage.

C. Effect of Regularization Parameter

By comparing the computation time, it is easy to notice
the advantage of the two-stage registration against nonrigid
registration. According to the previously given example,
nonrigid registration with an optimized regularization parame-
ter performed 201 iterations, where the two-stage registration
with an optimized regularization parameter performed a total
of 55 iterations to minimize the cost function. The first
stage compensates a large portion of the motion by using
the faster affine method and requires fewer iterations for the
slower second stage based on the nonrigid registration.

Although speed improvement is a big advantage when
using the two-stage method, the most important benefit of
this method is improved estimation robustness when using a
nonoptimized regularization parameter. To demonstrate this,
a large image region (between 10 to 35 mm in depth and
between −13 to 13 mm in lateral) and a smaller region
(between 10 to 30 mm in depth and between −8 to 13 mm
in lateral) were chosen from the same data set simulated with
the realistic motion, where the small region avoids the large
motion at the south–west corner of Fig. 4 (middle).

Performance of all estimation methods for this simulation
is shown in Fig. 8 (top) for the small region and (bottom) the
large region. The mean absolute error values calculated for
each method is plotted against the regularization parameter.
Rigid and affine registration methods do not use a regular-
ization parameter, so they have the same constant value for
the whole range. The performance of the nonrigid and the
two-stage registration methods depends on the regularization
parameter, where the performance is best for the optimized
values highlighted by red and blue circles in Fig. 8.

For the small region, the rigid method has the largest
error between all methods due to the shearing and rotation
of the tissue. When the regularization parameter is optimized,
the nonrigid and the two-stage methods have similar error
values. However, the two-stage method provides a better
performance for a broader range of regularization parameters,
which is advantageous for real-time applications where the
optimization of the regularization parameter may not be pos-
sible for every frame.

For the large region, the rigid method again has the largest
error as shown in Fig. 8 (bottom). The affine and the two-stage
methods performed similarly for both the large and small
regions, but the performance of the nonrigid method dropped
significantly. By comparing the results after choosing a large

Fig. 8. Performance of nonrigid and two-stage methods are demonstrated
with a varying regularization parameters. Top: small region of interest.
Bottom: large region of interest. Rigid and affine methods are not regularized,
so they always estimate the same motion field for a given image.

and a small area from the same B-mode image, one can con-
clude that the robustness of the two-stage motion estimation
method is better than the nonrigid method.

D. Clinical Results

It is hard to demonstrate the accuracy of the motion estima-
tion and correction on the clinical data set without knowing
the ground truth. Therefore, this section demonstrates the use
of the two-stage motion estimation on clinical SR images
based on the assumption that healthy volunteers without
peripheral arterial disease should have long straight vascular
structures without stenosis and tortuous vessels, as demon-
strated by [32] and [33] using angiograms and micrographs.

Fig. 9 shows the CEUS maximum intensity projection (MIP)
and the SR image generated from a 45-s clinical scan with
580 frames. Using less than a minute of clinical data acquisi-
tion, the imaging region was visualized using the SR method
with an average number of localizations of 30 MBs/frame.
Motion correction was performed by using the estimated
motion with the two-stage method, where the estimated motion
from two selected regions are shown in Fig. 9 (bottom) as
a demonstration. An average motion of 233 ± 17 μm/s was
estimated from the clinical US scans. Qualitatively, it is clear
that the spatial resolution of the SR image is higher than that
of the MIP.

Fig. 10 (top) demonstrates the effect of motion correction on
a chosen vessel. The average thickness of the vessel inside the
boxes are given in Fig. 10 (bottom). The sizes of the vessels
from these images were measured by using linear interpola-
tion [34]. The full width at half maximum (FWHM) of the
vessel was measured as 1075 μm from the MIP image without
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Fig. 9. Top: MIP of the CEUS frames acquired from healthy human
volunteers. Middle: SR image created using the same CEUS frames after
motion correction. Colorbar corresponds to the number of localized MBs.
Bottom: estimated motion from the clinical data is plotted for the red and
blue rectangles shown in the MIP image as a function of time.

Fig. 10. Top: CEUS MIP and SR image of a selected vessel is shown with
and without motion correction. Bottom: average thickness of the vessel inside
the green boxes are plotted to demonstrate the achieved improvement after
motion correction.

motion correction. The SR image without motion correction
achieved a subwavelength vessel FWHM of 220 μm; however,
after the application of proposed two-stage motion correction
method, the FWHM of the vessel was reduced to 104 μm and
the double-vessel feature disappeared.

The benefit of using two-stage motion estimation and
motion correction on SR imaging in human microvasculature
is demonstrated in Fig. 11. The microvessels were chosen
from four different SR images acquired from three healthy
volunteers. Fig. 11 shows the effect of the proposed two-
stage motion correction on different microvessels, where the
thickness of vessels are given in Table I. After motion correc-
tion the torturous vessels appeared as straight vessels, which
shows the significance of the two-stage motion correction on
clinical interpretation of SR US images. Motion correction
also potentially removed blurred vessels and artificial double
copies, which were mostly visualized as single vessels after
correction. After motion correction, the size of the average
vessel in the SR image dropped from 146 μm down to 94 μm
by reducing the width of the motion-blurred microvessels
approximately 1.5-fold as listed in Table I.

V. DISCUSSION

Motion is an inherent part of in vivo imaging and US
imaging methods based on multiple acquisitions suffer from
motion artifacts even for images acquired at high frame rates
with or without MBs [35]–[37]. For SR imaging, subwave-
length motion correction methods are required to visualize
microvascular structures and flow beyond the diffraction limit
through localization of spatially isolated MBs. Rigid motion
estimation techniques using image data cannot compensate for
local deformations as demonstrated in the simulation study
presented here.

This paper employed an image-based motion estimation
approach for SR US imaging. The applied two-stage method
is a combination of affine image registration that can estimate
the global motion, and nonrigid image registration that can
estimate the local deformation of tissue. The main advan-
tage of using a two-stage registration instead of a nonrigid
registration is that the nonrigid method is more complex
and computationally heavy. The first stage, affine registration,
compensates for the global motion and it gives a better starting
point for the nonrigid stage, which also reduces the number
of iterations required to minimize the cost function.

For the first two simulation studies with the probe motion
and tissue deformations, presented in Figs. 5 and 6, the stan-
dard deviation values are relatively large since the displayed
results present a combination of many simulations performed
for 11 different motion amplitudes between 1 and 1024 μm.
For the same simulations, the accuracy of the motion estima-
tion was better in the axial direction for all methods due to the
shape of the point spread function, which was narrower in the
axial direction. These two sets of simulations were performed
to assess the feasibility of the motion estimation methods;
however, the motion field was too simplistic to highlight the
advantages of the two-stage registration method compared
with affine registration. The affine method has the degrees of
freedom required to correct for the simplistic motion, whereas
the two-stage method has many more degrees of freedom. For
these simulations, the proposed two-stage method achieved
similar results with the affine method with a mean absolute
motion estimation error of 7.5 ± 5.8 μm or less for the
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Fig. 11. Effect of motion correction is presented in 12 SR image pairs. Images are displayed in three columns. Left: image is without motion correction.
Right: image is with motion correction. Colorbar is the same as Fig. 9 and it corresponds to the number of localized MBs.

TABLE I

MICROVESSEL THICKNESS (MICROMETERS)

simulated motion range of 1–1024 μm with 20-dB SNR.
However, for the simulation with realistic motion field,
the advantage of using the two-stage method over affine
method became obvious, where the mean absolute error was
2.3 times smaller for the two-stage method.

The error values presented in this paper will change as
a function of many variables such as wavelength, sampling
frequency, imaging resolution, SNR, and regularization para-
meter. Improving some of these parameters and also using
RF data instead of image data can increase the estimation
accuracy. Although, in this paper, the motion estimation was
performed on B-mode images acquired by a commercial
scanner, the application of the proposed motion correction
scheme to RF data is possible [38]. Using RF data instead
of image data can increase the estimation accuracy, as the RF
domain is a superset of the image domain with an additional
signal phase information.

The regularization penalty might have a significant impact
on the motion estimation error for the nonrigid method;
however, it is possible to achieve a reasonable estimation
accuracy for a large range of regularization values while

using the two-stage method as shown in Fig. 8. For both the
simulation and clinical US data used in this paper, the smallest
used value was Cregularization(T ) = 2 × 10−4. Below this
value, the computation time of the estimation process increases
without a benefit since a lower penalty results in a viscouslike
registration, which is not realistic for human soft tissue. Above
the largest used value of Cregularization(T ) = 0.5, estimation
results in an affinelike registration, which is not suitable for
estimating complex nonrigid motion fields.

The motion estimation can be performed using either a
dynamic or a static reference frame. It is possible to perform
registration between each pair of consecutive frames by chang-
ing the reference frame for every registration; however, this
results in an accumulation of error over every registered frame.
In this paper, motion estimation was performed by using a
single reference frame. In this case, the choice of the refer-
ence frame becomes crucial. If the specific chosen reference
frame is corrupted with artifacts or significant motion, this
can make it very different from the rest of the frames in
the sequence. An automatic and systematic way of choosing
a good quality reference frame may eliminate this problem.
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Future improvement can include groupwise registration of
the entire video sequence together rather than pairwise
registration [39].

There are two significant limitations in SR US imaging per-
formed in 2-D. The biggest problem is the out-of-plane motion
that cannot be compensated using 2-D imaging methods.
Before starting the motion correction procedure for the clinical
study, the B-mode and CEUS frames were visually inspected.
Video files were segmented into smaller sections with no
obvious out-of-plane motion in the B-mode images. From
these segmented videos, only those with 250 or more frames
were selected for further processing. Out of 5–7 min of US and
CEUS acquisitions from three volunteers, only four continuous
acquisitions with a duration of 40–55 s were suitable for SR
imaging after motion correction. The tibialis anterior muscle is
located at one of the extremities of human body and is, there-
fore, not affected by respiration and cardiac motion. When
imaging in the abdomen and chest region, while the motion
correction algorithm was designed to cope with large motion
amplitude including that expected in abdomen, increased out-
of-plane motion will limit the applicability of our approach in
its 2-D form, as the current correction procedure relies on a
constant 2-D plane in the sample being imaged over time.
In the future, it should be possible to apply our approach
when imaging in the liver, pancreas or kidney using a 3-D
imaging approach, or 2-D SR US provided that an experienced
clinician places the probe in a way that the imaging region
only moves in-plane with the probe. Second, the acquired SR
images did not have the required resolution in the elevation
direction. Both of these issues can be addressed by using 3-D
imaging methods, which can achieve the required elevational
resolution and SNR for 3-D SR imaging [40]–[42]. Although
3-D imaging offers a solution to the problem of out-of-plane
motion, it may introduce other limitations for SR US imaging.
For multiplexed 3-D US systems, the acquired volume data is a
combination of multiple transmissions and acquisitions, which
may generate intravolume motion artifacts. High frame rate
3-D US imaging with plane waves is capable of imaging the
whole volume with a single acquisition. However, this method
suffers from low SNR due to the lack of elevational focusing,
which may increase the localization error in SR US imag-
ing. A carefully chosen imaging strategy is required for the
3-D SR US to balance the tradeoffs between motion artifacts
and localization error. High speed implementation of 3-D SR
remains a big challenge due to postprocessing complexity
and data size for both multiplexed and plane wave 3-D US
imaging.

The SR images shown in Fig. 11 have all been selected
using visually perceived improvement in image quality, based
on an assumption that the microvessels should be long and
straight in healthy patients [32], [33]. It is not possible to
calculate the resolution of the SR images due to the lack
of the ground truth. Nevertheless, it is possible to measure
the width of the microvessels, where the motion corrected SR
imaging method will not give an underestimate of the width
due to motion and localization error. For this reason, the spatial
resolution of the SR images generated in this paper using a
clinical US system has to be <94 μm (λ ≈ 250 μm), and

therefore, these results represent the first clinical localization-
based SR US imaging.

This paper used a data set acquired by a clinical scanner
with normal frame-rate and demonstrated the use of a motion
correction method without considering the computational
speed. The motion estimation and correction were performed
by using a MATLAB code and executed on a CPU; however,
it is possible to significantly improve the computational time
of the applied method by using a GPU or other parallel
processing approaches. A fast motion correction can empower
the image-based superlocalization technique and lead to quick
clinical translation of SR US imaging.

VI. CONCLUSION

Clinical motion observed in US imaging is an aggregation
of various motion types. Probe movement, respiration, cardiac
motion, and many other unavoidable sources of body motion
result in a combination of translation, shearing, and nonrigid
deformations at different scales. SR images are generated
through multiple US frames acquired over a duration of sec-
onds to minutes, where both large tissue movements and small
local deformations can be observed. To estimate both large-
and small-scale motion and local deformations simultaneously
with high precision, this paper used a two-stage approach for
US SR imaging.

Ideally, SR US imaging should be limited by the localization
precision rather than sample motion. Therefore, motion should
be compensated with an accuracy higher than the spatial
resolution of the SR image as demonstrated in this paper.
The feasibility study showed that it was possible to achieve a
subpixel (x = 60 μm) and subwavelength (λ ≈ 250 μm)
motion estimation accuracy of 7.5 ± 5.8 μm or better for
the simulated probe motion and tissue deformations while
using the two-stage image registration method. Similar results
were achieved for the simulations with a realistic motion
extracted from a clinical data set, where the mean absolute
error was 12.2 μm and 70% of the motion was estimated
with an absolute error smaller than 15 μm. The two-stage
method was then applied to achieve clinical SR US imaging of
microvasculature in human lower limb using a commercially
available clinical US scanner.
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