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Abstract

In recent years, the huge expansion of digital technologies has vastly increased the volume of

data to be explored. Reducing the dimensionality of data is an essential step in data exploration

and visualisation. The integrity of a dimensionality reduction technique relates to the goodness

of maintaining the data structure. The visualisation of a low dimensional data that has not

captured the high dimensional space data structure is untrustworthy. The scale of maintained

data structure by a method depends on several factors, such as the type of data considered and

tuning parameters. The type of the data includes linear and nonlinear data, and the tuning

parameters include the number of neighbours and perplexity. In reality, most of the data under

consideration are nonlinear, and the process to tune parameters could be costly since it depends

on the number of data samples considered.

Currently, the existing dimensionality reduction approaches suffer from the following problems:

1) Only work well with linear data, 2) The scale of maintained data structure is related to

the number of data samples considered, and/or 3) Tear problem and false neighbours prob-

lem.To deal with all the above-mentioned problems, this research has developed Same Degree

Distribution (SDD), multi-SDD (MSDD) and parameter-free SDD approaches , that 1) Saves

computational time because its tuning parameter does not 2) Produces more trustworthy visu-

alisation by using degree-distribution that is smooth enough to capture local and global data

structure, and 3) Does not suffer from tear and false neighbours problems due to using the same

degree-distribution in the high and low dimensional spaces to calculate the similarities between

data samples. The developed dimensionality reduction methods are tested with several popu-

lar synthetics and real datasets. The scale of the maintained data structure is evaluated using

different quality metrics, i.e., Kendall’s Tau coefficient, Trustworthiness, Continuity, LCMC,

and Co-ranking matrix.

Also, the theoretical analysis of the impact of dissimilarity measure in structure capturing

has been supported by simulations results conducted in two different datasets evaluated by

Kendall’s Tau and Co-ranking matrix.

The SDD, MSDD, and parameter-free SDD methods do not outperform other global methods

such as Isomap in data with a large fraction of large pairwise distances, and it remains a further

work task. Reducing the computational complexity is another objective for further work.
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Chapter 1

Introduction

In recent years, the huge expansion of digital technologies has vastly increased the volume

of data to be explored. There are problems relating with high-dimensional data such as the

curse of dimensionality and concentration phenomenon. Reducing the data dimensionality is

an essential step in data analytics to overcome the problems relating to high dimensional data.

Although many dimensionality reduction methods have been proposed, their performance in

maintaining the high dimensional space data structure is related to the type of data, similarity

function (i.e., Euclidean distances) used, and some tuning parameters1 such as the number of

neighbours, and perplexity. In other words, some dimensionality reduction methods do not

require tuning parameters; however, they only perform well in linear data2. On the other hand,

some other methods can perform well in nonlinear data3, but their performance relates to pa-

rameter tuning that makes them costly methods. Also, the impact of a similarity functions4

used in a dimensionality reduction method in structure maintaining requires further investiga-

tion.

This research aims to develop nonlinear dimensionality reduction methods that work well in any

data (linear or complex nonlinear data) and do not require parameter tuning (i.e., the number

1Parameters include the parameters of a model such as the number of neighbours, perplexity, and does not
include optimisation parameters such as learning rate.

2The low dimensional representation lies on linear manifolds.
3The low dimensional representation lies on nonlinear manifolds.
4A similarity function measures the similarity between data samples, i.e., Euclidean distance.

1
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of neighbours or perplexity), making a dimensionality reduction method costly in terms of

computational time and resources. Also, this research aims to investigate the impact of a

similarity function on the scale of the maintained structure of high dimensional space data

during the dimensionality reduction process.

This Chapter will introduce the research by first providing the technical background of the

study, background information in the high dimensional space data and problems relating to

their analysis, and presenting the problems of current dimensionality reduction methods in

maintaining high dimensional space data structure. Also, this Chapter will provide research

aims, objectives and questions, and finally, will demonstrate the main contributions of this

research.

1.1 Research Background

1.1.1 Terminology and Definitions

Terminology and definitions used through the thesis are presented in this Section. This in-

cludes definitions of topological space, manifold, intrinsic dimensionality, linear or nonlinear

dimensionality reduction methods, and order sets.

A topological space is a set for which topology is defined [1]. Suppose that Y is a set, and T is

defined as a collection of subset Y that obey the following properties:

1. Ø ∈ T, and Y ∈ T .

2. If A,B ∈ T then A ∩B ∈ T .

3. If A,B ∈ T then A ∪B ∈ T .

From a geometrical viewpoint, a topological space can be defined using neighbourhoods and

Haussdrof’s axioms as follows:
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1. To each point y there corresponds at least one neighbourhood U(y), and U(y) contains y.

2. If U(y) and V (y) are neighborhoods of the same point y, then a neighborhood W (y) exists

such that W (y) ⊂ U(y) ∪ V (y).

3. If z ∈ U(y), then a neighborhood V (z) of z exists such that V (z) ⊂ U(y).

4. For two distinct points, two disjoint neighbourhoods of these points exist.

A manifold Md, also known as topological manifold, is a topological space that is locally a

Euclidean space, and it has to be a second countable space. A Euclidean space is a space with

a finite number of dimensions, where coordinates present each sample (one per dimension).

The distance between any two samples is calculated using the Pythagorean theorem, where the

distance between the data sample a with n coordinates (a1, ..., an) and data sample b with n

coordinates (b1, ..., bn) is calculated using
√

(a1 − b1)2 + ...+ (an − bn)2, which corresponds to

an Euclidean distance. According to [2], the Hausdorff and the second-countability conditions

ensure that distinct samples on the manifold can be separated by their neighbourhoods and

not large manifold, respectively. Let assume that a data set X resides on a d-manifold M that

is embedded in RD dimensional space. From statistics prospective, X can be considered as a

sample set in RD. A random vector Y ∈ Rd and a function f : Rd → RD such that f(Y ) = X,

then the random vector X is said to have intrinsic dimensions d.

The terms intrinsic dimensions refer to the number of latent variables. It reveals topological

structure in data when the intrinsic dimension d < D, data points are constrained to lie in

a well-delimited subspace. A low intrinsic dimension indicates that a topological object or

structure underlines the data set.

Linear dimensionality reduction methods are based on the assumption that the observed dataset

resides on linear manifolds. On nonlinear manifolds, a tangent space exists at each point of a

nonlinear manifold, which locally approximates the manifold [3]. The tangent space is a linear

manifold. A smooth manifold, also called an infinitely differentiable manifold, is a manifold

with its functional structure (parametric equations), and it differs from standard topological

manifold differentiability. A smooth manifold with boundaries are named submanifolds if the
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following conditions are met: All points y ∈M there exist two open sets U, V ⊂M with y ∈ U ,

and a diffeomorphism h : U → V, y 7→ x = h(y) such that h(U ∩M) = V ∩ (RP × 0). As can

be seen,x can be reduced to d- dimensional coordinates.

Order sets (or partially order sets) is a set S and a relation ≤ on the set S if the following

properties are satisified:

1. Reflexivity: for all a ∈ S, a ≤ a.

2. Antisymmetry: a, b ∈ S, a ≤ b and b ≤ a, then a = b.

3. Transitivity: a, b, c ∈ S, a ≤ b and b ≤ c, then a ≤ c

1.1.2 Dimensionality Reduction

Fields of technologies or sciences where high dimensional space data are typically encountered

include: processing of sensor data such as anomaly detection [4, 5, 6], fingerprint identification

[7, 8], face recognition [9, 10], hyperspectral image analyses [11, 12, 13], text document clas-

sification [14, 15], speech recognition [16, 17], computer vision [18], neuroinformatics [19, 20],

bioinformatics [21, 22], social media [23, 24], and telecoms [25]. High dimensional space data

can be generated by arrays of antennas, electrodes recording time signals at different places

on the chest or the scalp for biomedical applications, several stations or satellites deliver data

weather forecasting, fingerprints, and hyperspectral image. An example of high dimensional

data can be a digital fingerprint with a resolution of 64 × 64 that can be converted into a

raw data sample with a dimension of 4, 696. Also, a face image resolution is 256 × 256, and

a text document with a pre-defined dictionary of keywords consisting of 10, 000 words can be

converted in raws with 65, 536 and 10, 000 dimensions, respectively.

From a practical viewpoint, high dimensional data is not always high dimensional, as the data

analysis community has agreed that high dimensional data points reside on low-dimensional

manifolds [3]. In other words, a large set of variables can be represented by a smaller one, with
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no or less redundancy5. From a theoretical perspective, all difficulties that occurred when deal-

ing with high dimensional data are related to the curse of dimensionality [26] and concentration

phenomenons [27]. The term curse of dimensionality refers to the situation that to estimate a

function with a certain accuracy, the number of data samples considered has to be exponen-

tially higher than the number of variables accuracy [3]. The concentration phenomenon refers

to the weak discrimination power of a metric that measures similarity between data samples.

As the dimensionality of data increases, the similarity generated by the metric becomes less

discriminant. In practice, the concentration phenomenon makes the nearest-neighbour search

problem challenging in high dimensional space data. To avoid the problems mentioned above,

embedding high dimensional space data into a lower dimensional space has been considered

significantly recently. Ideally, an embedding method should be able to:

1. Estimate the intrinsic dimensionality,

2. Embed data to reduce their dimensionality, or

3. Embed data to recover latent variable.

Estimating the intrinsic dimensionality means counting the number of variables that describe

data given a few samples. Intrinsic dimensionality is closely related to having a topological

structure of data. If d = D, there is no data structure, whereas there is a data structure if

d < D. Having that data structure means that the d-dimensional space data can represent the

D- dimensional space data. Embedding data to reduce dimensionality refers to re-embedding D

dimensional space data in d dimensional space with the aim to preserve the manifold structure

of the high dimensional space data. The embedding techniques that aim to reduce the dimen-

sionality of data to capture the structure of manifolds that contain the low dimensional rep-

resentation are also called dimensionality reduction techniques. The fundamental assumption

of a dimensionality reduction technique is that the high dimensional space data lies approx-

imately on a manifold (often nonlinear) with lower dimensions than the original space data.

Overall, a dimensionality reduction technique aims to find a representation of that manifold

5Redundancy means variables that are not independent of each other.
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(a coordinate system) that will allow the high dimensional space data to be projected on a

lower-dimensional representation, where the manifold structure has been preserved as good as

possible. Some embedding methods aim to decrease the number of variables by keeping those

statistically independent and removing the others dependent on each other.

Methods that aim to estimate the intrinsic dimensionalities and latent variables will be behind

the scope of this research, and this research focuses on dimensionality reduction methods and,

more specifically, on the visualisation of the high dimensional space data. The dimensionality

reduction methods focusing on visualisation seek that the two- or three-dimensional space data

represents the high dimensional space data by reviling their data structure.

To analyse a dimensionality reduction method, four following characteristics should be consid-

ered:

1. Type of data,

2. Criterion,

3. Similarity function, and

4. Parameters.

The type of data relates to the shape of the manifold, where the low dimensional representation

of the high dimensional data lies. If the shape of a manifold is linear, then the data is known

as linear data; otherwise, it is known as nonliear data. Furthermore, nonlinear data are also

categorised in smooth and heavy-curved manifolds. Usually, a dimensionality reduction method

assumes the data type. Some dimensionality reduction methods assume that data is linear, and

some assume it is nonlinear but in smooth manifolds.

Criterion is also known as the cost function and relates to the purpose of using the embedding

method. If the purpose of an embedding method is to preserve the data structure, it means

maintaining the pairwise distances between data spaces. Then the criterion could be the mean

square error between high and low dimensional spaces pairwise distances [3].
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The similarity function calculates how similar or dissimilar two data samples are. Usually,

standard dimensionality reduction methods use Euclidean distances to calculate the similarity

between data samples. However, the change of the similarity function in standard dimension-

ality reduction methods leads to generating their supervised or nonlinear versions.

Parameters include the parameters involved in the dimensionality reduction model, i.e., in the

similarity functions (number of neighbours, perplexity), and as a consequence, their structure

depends on their value.

Although many dimensionality reduction techniques have been proposed, most of them have

limitations in the type of data they can successfully be applied. Also, some dimensionality

reduction methods assume that the low dimensional representation lies on linear or smooth

manifolds, which makes them limited to application in real-world, complex nonlinear data6.

On the other hand, some dimensionality reduction methods such as SNE, t-SNE [28], Umap

[29] and Trimap [30] and DD-HDS [31] are able to maintain the data structure of complex non-

linear data due to calculating the similarity between data samples using Gaussian distribution.

The key success of employing the Gaussian distribution is prioritising the maintenance of the

close data samples than the faraway data samples, which is a limitation of other dimensionality

reduction methods such as PCA, MDS, and Isomap. However, employing Gaussian distribution

as a similarity measure leads to further problems: 1) methods that employ Gaussian distribu-

tion neglects the global data structure capturing, 2) their scale of maintained data structure is

closely related to tuning the number of neighbours or perplexity, making them costly methods,

especially when the number of data samples is considerably high, and 3) the Gaussian distribu-

tion is an expensive distribution due to using the exp function. Note that tuning the number

of neighbours or perplexity ranges from 1 to the number of samples -1, and if the number of

data samples considered is 10,000, then the number of neighbours or perplexity has to be tuned

from 1 to 9,999. To deal with the costly procedure of tuning parameters, multiscale approaches

such as multiscale-SNE have been proposed; however, this approach remains a costly method

due to both the multiscale calculations and the utilisation of Gaussian distribution.

6High dimensional data, where their low dimensional representation lies on heavily curved manifolds.
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In addition, this research has identified two common problems in maintaining the high di-

mensional space data structure, tear 7 and false neighbours8 [32]. However, there is a lack of

information on the leading causes of those problems.

In addition to dimensionality reduction techniques, this research has also been focused on

their supervised versions. A supervised dimensionality reduction technique differs from its

unsupervised version by using a dissimilarity measure instead of its standard metric. i.e.,

Euclidean distance, to calculate similarities between data samples. Supervised dimensionality

reduction techniques have been proposed to increase the classification accuracy and capture

better the structure of high dimensional space data. However, all work done in this field

has been experimental-based, and there is a lack of theoretical foundation on the impact of

dissimilarity measures on structure capturing and classification accuracy.

This research has defined two main research problems in the current literature related to 1)

dimensionality reduction techniques, and 2) supervised dimensionality reduction techniques

presented as follows:

1. Although there are many dimensionality reduction methods, their performances in terms

of maintained data structure and computational time and resources is related to some

other factors. The dimensionality reduction methods either work well in linear data and

do not require parameter tuning (PCA and MDS) or perform well in nonlinear data but

require parameter tuning that is a costly process. Since the data generated nowadays are

mostly nonlinear, only nonlinear dimensionality reduction techniques (manifold learning

techniques), can maintain the data structure. However, the scale of the maintained struc-

ture of high dimensional space data from nonlinear dimensionality methods relates to

parameters, i.e., the number of neighbours (number of data samples -1), perplexity, or

other parameters that require a lot of computational time and resources to be tunned.

Consequently, applying the current nonlinear dimensionality reduction techniques to vi-

sualise high dimensional space data is significantly costly. Also, nonlinear dimensionality

7Close data samples in the original space embed far away in the low dimensional space.
8Faraway data samples in the high dimensional space embed close in the low dimensional space.
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reduction methods that use distributions ( i.e., Gaussian or Student-t) as similarity func-

tions focus more on preserving the local than the global structure of the high dimensional

space data. Note that visualising high dimensional data without capturing the local data

structure is nonsense [33]. Also, two problems, such as tear and false neighbours, usually

occur in dimensionality reduction methods; however, there lacks an investigation on the

leading causes of those problems.

(a) Overall, this research has identified several problems with the current dimensionality

reduction techniques, and it aims to develop a dimensionality reduction technique

that:

i. works well in heavily curved manifolds,

ii. does not require parameter tuning,

iii. does not include a distribution that has exponential function (exp), and

iv. is not prone to tears and false neighbours problems.

2. Dissimilarity measures instead of Euclidean distance has been used in supervised dimen-

sionality reduction methods to improve classification accuracy and visualise high dimen-

sional data better in terms of data structure-preserving. However, there lacks theoretical

analysis on the impact of dissimilarity measures on the scale of maintained data structure

and classification error.

As a result, the literature review has identified that there lacks:

1. A dimensionality reduction is more trusty and less expensive in time and resources than

the current dimensionality reduction methods, and

2. Theoretical foundation on whether the unsupervised or supervised dimensionality reduc-

tion methods can better maintain the high dimensional space data structure and generate

a better classification-accuracy model.
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1.2 Research Aims, Objectives, and Questions

Given the research problems, this research aims

1. To propose a dimensionality reduction technique that:

(a) captures the structure of heavily curved manifold data,

(b) does not require tuning number of neighbours, perplexity or other time-consuming

parameters, and

(c) does not suffer from tears and false neighbours problems.

2. To provide a theoretical and practical study on the impact of dissimilarity measures

employed in a dimensionality reduction have on maintaining the high dimensional space

data structure and generating a better classification-accuracy model.

To support the research aims, the main objective that needs to be achieved are:

1. To investigate the impact of the type of similarity function employed in a dimensionality

reduction method to calculate the similarity between data samples and the scale of the

maintained structure of the high dimensional space data structure.

2. To investigate the leading causes of the tear and false neighbours problems in dimension-

ality reduction methods.

3. To investigate the impact of parameter tuning on the scale of the maintained structure

of the high dimensional space data.

4. To theoretically prove the impact of dissimilarity measures on the scale of the maintained

structure of the high dimensional space data.

5. To theoretically prove the impact of dissimilarity measures on the classification error

generated by a classification model in the low dimensional space produced by a supervised

dimensionality reduction method.
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6. To practically demonstrates the impact dissimilarity measures have on visualising inter-

pretability and trustworthiness.

Based on the research aims and objectives, the main identified research questions are:

1. Does the similarity measure employed to calculate the similarities between high dimen-

sional space data samples impact the maintained structure of the high dimensional data?

2. Which are the main leading causes of the problems of tear and false neighbours in dimen-

sionality reduction techniques?

3. Is it possible that a nonlinear dimensionality reduction technique that does not require

tuning the number of neighbours, perplexity or other time-consuming parameters captures

the structure of nonlinear data (heavily curved manifold(s)) usefully?

4. Does dissimilarity measure employed to calculate the similarities between high dimen-

sional space data samples impact the maintained structure of the high dimensional data?

5. Does dissimilarity measure used to calculate the similarities between high dimensional

space data samples affect the classification model performances?

1.3 Research Contributions

The main contributions of this research are:

1. Developed a nonlinear dimensionality reduction technique named Same Degree Distri-

bution (SDD) that captures the data structures better than other current dimension-

ality reduction methods in less computational time. SDD employs degree-distribution,

which is the same as Student-t with degree 1, and for higher degrees, it has longer tails

than Student-t. By using the degree-distribution, which has longer tails than Gaussian

distribution, SDD ensures that it captures the global data structure better than other

Gaussian-based methods and uses the same degree-distribution in high low dimensional
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spaces; SDD ensures that tears and false neighbours problems are prevented. Also, SDD

does not require tuning the number of neighbours, perplexity or other expensive param-

eters but instead, it requires tuning the degree, which usually ranges from 1 to 15.

2. Developed an extension of SDD named Multi Same Degree Distribution (MSDD) method

to capture better the high dimensional space data structure than SDD. MSDD ensures

that both the local and global structure of the data has been preserved by employing

more than one degree-distribution and correspondingly more than one objective function

that is optimised by a multi-objective optimisation method.

3. Developed a parameter-free same degree-distribution (parameter-free SDD) dimension-

ality reduction method that captures the same scale of data structure with SDD but

does not require tuning the degree of distribution or any other parameter that makes

parameter-free SDD a significantly low costly method.

4. This research has also analysed theoretically and practically the impact of dissimilarity

measures on structure capturing and classification accuracy. This research generates two

beneficial findings that clarify the true impact of dissimilarity measures on structure

capturing of the high dimensional space data and classification model performance. Note

that one of the conclusions of this research is completely different from what previous

researchers in the field had claimed.

1.4 Publications

Most of the achieved contributions have been presented in publications listed as below:

� Peer reviewed journal papers

1. Hajderanj, L., Chen, D., Dudley, S., Gilloppe, G., and Sivy, B., Novel Parameter-

Free and Parametric Same Degree Distribution-based Dimensionality Reduction Al-

gorithms for Trustworthy Data Structure Preserving.

Status: Under Reviewing
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2. Hajderanj, L., Chen, D. and Weheliye, I., 2021. The Impact of Supervised Manifold

Learning on Structure Preserving and Classification Error: A Theoretical Study.

IEEE Access, 9, pp.43909-43922.

3. Hajderanj, L., Chen, D., Grisan, E. and Dudley, S., 2020. Single-and multi-distribution

dimensionality reduction approaches for a better data structure capturing. IEEE Ac-

cess, 8, pp.207141-207155.

� Conference papers:

1. Fenghour, S.,Chen, D., Hajderanj, L., Weheliye, I., and P. Xiao, P., 2021. A novel

Supervised t-SNE based approach of viseme classification for automated lip reading.

IEEE International Conference on Electrical Computer and Energy Technologies.

To appear in 2021 Proceedings of the IEEE International Conference on Electrical

Computer and Energy.

2. Chen, D., Hajderanj, L., Mallet, S., Camenen, P., Li, B., Ren, H. and Zhao, E., 2021.

Deep Learning Causal Attributions of Breast Cancer. In Intelligent Computing (pp.

124-135). Springer, Cham.

3. Chen, D., Hajderanj, L. and Fiske, J., 2019, July. Towards automated cost analy-

sis, benchmarking and estimating in construction: a machine learning approach. In

13th Multi Conference on Computer Science and Information Systems (MCCSIS)

(pp. 85-91).

4. Hajderanj, L., Weheliye, I. and Chen, D., 2019, April. A new supervised t-SNE with

dissimilarity measure for effective data visualization and classification. In Proceed-

ings of the 2019 8th International Conference on Software and Information Engi-

neering (pp. 232-236).
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1.5 Thesis Organisation

The thesis is organised into seven chapters.

Chapter 1, Introduction introduces the research, briefly identifying problems with high dimen-

sional space data, identifying the research questions, aims and objectives, and providing the

research contributions.

Chapter 2, Literature Review presents a comprehensive review of current dimensionality reduc-

tion techniques, emphasising the strengths and limitations of most dimensionality reduction

techniques and identifying the main problems and gaps in the current literature. Chapter 2

also reviews the supervised dimensionality reduction techniques and the quality assessments of

dimensionality reduction techniques and concludes by identifying the literature gap.

Chapter 3, Methodology presents the developed dimensionality reduction approaches by provid-

ing pseudocode and complexity analyses, followed by Chapter 4, Experiments and Discussions

on Developed Approaches showing experimental results and discussions on the developed ap-

proaches.

The Impact of Dissimilarity Measures on Visualization and Classification Error has been pre-

sented in Chapter 5, followed by Experiments on the Impact of Dissimilarity Measures on

Structure Capturing in Chapter 6.

A summary and conclusions of the thesis achievements are given in Chapter 7, Conclusions.



Chapter 2

Literature Review

The literature review provides a broader view of the existing embedding techniques that re-

duce data dimensionality, focusing on maintaining manifold data structure, and supervised

dimensionality reduction techniques, focusing on the similarity measure employed (dissimilar-

ity measure) and the main differences to their unsupervised versions. The literature review also

includes methods that measure the quality of a dimensionality reduction method in terms of

maintained data structure. This Chapter will be summarised by emphasising what is missing

in the literature and why addressing them is essential.

2.1 Dimensionality Reduction Techniques

In this Section, dimensionality reduction techniques shown in Table 2.1 will be described more

deeply in technical details. Dimensionality reduction methods considered will be compared

based on the two main criteria:

1. Parameters1 refers to the parameters that impact the performance type of the dimen-

sionality reduction method.

1Parameter include all parameters that each technique has to tune to achieve the best by excluding optimi-
sation parameters.

15
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Table 2.1: DIMENSIONALITY REDUCTION METHODS

Year DR algorithm Parameters Type of Data References

1901 PCA none Linear [34]
1962 MDS none Linear [35]
1969 Sammon Mapping none nonlinear [36]
1997 CCA λ nonlinear [37]
1997 CDA λ nonlinear [37]
1997 GTM K(., .) nonlinear [38]
1998 KPCA K(., .) nonlinear [39]
1998 SOM σ ,vλ nonlinear [40]
2000 Isomap k nonlinear [41]
2000 LLE k nonlinear [42]
2001 LE k, σ nonlinear [43]
2003 HLLE k nonlinear [44]
2004 MVU k nonlinear [45]
2005 nonlinear PCA NetSize nonlinear [46]
2005 LTSA k nonlinear [47]
2006 Diffusion Maps σ, t nonlinear [48]
2006 Autoencoders NetSize nonlinear [49]
2007 MLLE k nonlinear [50]
2007 DD-HDS λ1 nonlinear [31]
2008 t-SNE pr nonlinear [28]
2008 Manifold Sculpting k nonlinear [51]
2009 RankVisu k nonlinear [52]
2010 TCIE k nonlinear [53]
2018 Trimap k nonlinear [30]
2018 UMAP k nonlinear [29]

2. Type of data refers to the shape of a manifold (linear or nonlinear) that contains the low

dimensional representation of the original data.

2.1.1 Principal Component Analysis (PCA)

PCA is the most popular dimensionality reduction technique [3]. The low dimensional data

Y N×d is generated using the linear transformation MD×d, which is an orthogonal matrix: such

that MTM = Id and MMT = ID, where Id and ID are the identity matrix. A constrain of PCA

is that both variables in high and low dimensional space are centred such that Eyy = 0d and

Exx = 0D. In case where data x ∈ X are not centred, then they can be centred by removing

the expectation of x from each observation x as xi = xi − Exx, where Exx = 1
N

∑N
i=1 x(i).
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This approach was proposed by Pearson [54], and it is composed of two stages, coding and

decoding, where the coding and decoding functions are as follows:

cod : RD −→ Rd, x −→ y = cod(x) = M+x, (2.1)

dec : Rd −→ RD, y −→ x = cod(y) = My, (2.2)

W+ = W T (2.3)

where W+ is the left pseudo-inverse of W.

The reconstruction error between original data and the linear transformation of the original

data can be defined as:

Ecodec = Ex{
∥∥∥∥x−MMTx

∥∥∥∥2
2

} (2.4)

In an ideal situation, if the original data x has been generated ideally using PCA, and if x = My,

then MMTx = MMTMy = MIdy = x, and the reconstruction error is zero. However, most

of the data are nonlinear, such that M cannot be identified ideally, which then results in a

nonzero reconstruction error. To find the best linear transformation of the original data is to

minimize the reconstruction error:

Ecodec = Ey{
∥∥∥∥x−MMTx

∥∥∥∥2
2

} = Ex{xTx} − Ex{xTMMTx} (2.5)

where Ex{xTx} is constant and the minimization of Ecodec end up to maximize the terms

Ex{xTMMTx} (2.6)

Ex{xTMMTx} ≈ 1

N

N∑
i=1

(x(i))TMMT (x(i)) ≈ 1

N
tr(XTMMTX) (2.7)
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where tr(L) denostes the trace of a matrix L.

X = V ΣUT , Ex{xTMMTx} ≈ 1

N
tr(UΣTV TMMTV ΣUT ) (2.8)

argmax
M

tr(UΣTV TMMTV ΣUT ) = V ID×d (2.9)

since V, U are unitary matrixes and are orthonormal vectors by construction. Maximum of the

expression shown in E.q (2.9) can be achieved when d columns of the matrix M are colinear

with columns of the matrix V that are associated with the d largest singular values of Σ.

And finally, the low dimensional data can be generated using:

y = Id×DV
Tx (2.10)

.

PCA has many advantages as a dimensionality reduction method, such as it is a low compu-

tational time method and does not require tuning parameters. However, PCA applies a linear

transformation of the data, assuming that high dimensional space data has a low dimensional

representation in a linear manifold. As a result, PCA fails to maintain the data structure of high

dimensional data if having the low dimensional representation in nonlinear manifolds. Also,

suppose a given data has a high number of dimensions. In that case, PCA needs relatively many

(probably more than three) latent variables to capture the variances of high dimensional space

data. Consequently, PCA is not feasible for visualising high dimensional space data having

considerably high dimensions.

2.1.2 Multidimensional Scaling (MDS)

Classical metric MDS preserves pairwise scalar products and achieves dimensionality reduc-

tion linearly, and it has been considered a motivation for all the nonlinear methods further
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considered. The observed variables x can be calculated using:

x = My (2.11)

, where y are independent and uncorrelated variables, and M is a D × d matrix such that

MTM = Id. As mentioned above, classical metric MDS calculates the scalar product of S

known as Gram metric, defined as:

S = Y TY (2.12)

The low dimensional space variables can be obtained by calculating eigenvalue decomposition

of S as:

S = UΛUT (2.13)

= (UΛ
1
2 )(Λ

1
2UT ) (2.14)

= (Λ
1
2UT )T (Λ

1
2UT ) (2.15)

where U is N×N orthonormal matrix and Λ is a N×N diagonal matrix containing eigenvalues.

The low dimensional variables are calculated as the product:

Y = Id×NΛ
1
2UT (2.16)

Metric MDS

Clasical metric MDS has been further replaced with metric MDS, which uses Euclidean pairwise

distances as criterion instead of scalar production

EmetricMDS =
1

2

N∑
i,j=1

(dis(xi, xj)− dis(yi, yj))2 (2.17)
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Advantages and Limitations

MDS is equivalent to PCA [3] in terms of simplicity and robustness, and it does not require

parameter tuning. Also, like PCA, MDS successfully applies to linear data, but it is a useless

method in high dimensional data with low dimensional representation located in nonlinear man-

ifolds. Because the metric MDS uses Euclidean pairwise distances and uses the reconstruction

error in Eq. (2.17) to measure the reconstruction error between high and low dimensional space

pairwise distances, it favours the maintenance of large distances since the cost function in Eq.

(2.17) is impacted more by changes on the large distances than shorter ones. Consequently,

MDS is less effective in cases when short distance maintenance is essential.

2.1.3 Sammon’s mapping

Sammon’s mapping is based on metric MDS, but it minimize the following criterion (cost

function):

ESammon′sMapping =
1∑N

i,j=1 dis(xi, xj)

√√√√∑N
i,j=1((dis(xi, xj)− dis(yi, yj))2∑N

i,j=1(dis(xi, xj))
(2.18)

Sammon’s mapping uses 1
dis(xi,xj)

to reduce the influence of the errors generated by large dis-

tances, which is a problem that occurred in MDS.

Advantages and Limitations

Sammon’s mapping can effectively handle nonlinear manifolds, especially if they are not too

heavy manifold(s) [3]. And it requires a lot of resources due to building the complete distance

matrix. Furthermore, Sammon’s Mapping addresses the problem of MDS by adapting the

weight scaling to reduce the impact of large distances and increasing the effect of short distances

in the cost function. Consequently, boosting the contribution of very close points in the cost

function (Eq. (2.18)) is the main weakness of Sammon’s mapping.
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2.1.4 Curvilinear component analysis (CCA)

CCA is similar to Sammon’s mapping; however, it minimises the cost function in Eq. (2.19).

ECCA =
1

2

N∑
i,j=1

(dis(xi, xj)− dis(yi, yj))2Fλ(dis(yi, yj)) (2.19)

CCA and Sammon’s mapping changes in two ways:

1. no scaling factor, and

2. 1
dis(xi,xj)

is replaced with Fλ(dis(yi, yj)).

The use of Fλ is to prioritise the preservation of short distances over larger ones. The main

focus of CCA is to unfold the manifold, such that large distances have to be stretched, and

their contribution in the stress function is low, thanks to using the function Fλ. Usually, the

effect of the large distances in the cost function is huge, and it can be minimised by employing

Fλ. However, Fλ depends on distances of the low dimensional space data, which are usually

very small. When pairwise distances of high and low dimensional spaces are equal, CCA

and Sammon’s mapping behaves the same. However, in other scenarios, when dis(yi, yj) �

dis(xi, xj) and dis(yi, yj) � dis(xi, xj), the two reduction methods behaves totally different

from each other. If dis(yi, yj) � dis(xi, xj), the manifold has been highly unfolded and Fλ

helps to correct the flaw. In another scenario, (dis(yi, yj)� dis(xi, xj)), than the contribution

of Fλ will be decreased, meaning that stretching on large and short distances will be occurred.

Fλ = H(λ− dis(y, y)) (2.20)

where H(u) has been defined as:

H(u) =

0 if u ≤ 0

1 if u ≥ 0
(2.21)
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Advantages and Limitations

The main limitation of CCA is the choice of λ, which affects the method’s performance. Fλ

depends on distances of the embedded space, then in some cases, it allows tearing some regions

of the manifold, but it can be better than Sammon’s mapping [3].

In general, Sammon’s mapping and CCA are variants of MDS, which makes modifications in

the cost function to maintain a nonlinear data structure. However, a measure that better

represents the true structure of high dimensional space data has been considered instead of

modifying the cost function. Geodesic distance has further been considered a better measure

than Euclidean distance for calculating the similarity of nonlinear high dimensional space data.

Isomap and Curvilinear Distance Analysis (CDA) are the two methods that employ Geodesic

Figure 2.1: Manifold and distances [3].

distance instead of Euclidean distance to measure the similarity between data samples in high

dimensional space.
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2.1.5 Isomap

Isomap exploits high dimensional space nonlinear data geometry by employing the Geodesic

distance. Geodesic distance is computed as the sum of the shortest path between two data

samples in the neighbourhood graph. Isomap is similar to metric MDS, and the only difference

between them is that metric MDS use Euclidean distance to calculate the pairwise distances

matrix, whereas Isomap uses Geodesic distance. Because of using graph distances to calculate

the pairwise distances, Isomap is a nonlinear dimensionality reduction method [3]. Indifference

to Sammon’s mapping and CCA, Isomap uses graph distance to make the technique nonlinear.

In contrast, Sammon’s mapping and CCA modify the optimization function, which can be

more complex due to tunning parameters. It is assumed that the graph distances perfectly

approximate the true Geodesic distance for theory purposes. On the other hand, it is also

assumed that d-manifold is a a developable d- manifold2. As such, having a good performance

of Isomap, the high dimensional space data must have the low dimensional space data lies

on a developable manifold. To check if a manifold is developable, the Jacobian matrix of a

developable manifold must be a D× d matrix whose columns are orthogonal vectors with unit

norms.

JXm(y) = QV (x) (2.22)

where Q is a constant orthonormal matrix and V (x) is a D×d matrix with unit-norm columns

and only one nonzero entry per row. Furthermore, a d -space developable manifold embedded

2A manifold is developable if and only if a diffeomorphism between d- manifold and a convex subset of
d -dimensional Euclidean space exist in such way that the Geodesic distances are mapped to the Euclidean
distances by an identity map.
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in a D dimensional space can be written as follows:

x = Qf(y) =



f1(y1 ≤ d1 ≤ d)

...

fi(y1 ≤ d1 ≤ d)

...

fD(y1 ≤ d1 ≤ d)


(2.23)

where Q is the same as above, Jxf(x) = V (x), and f1, f2, ..., fD are constant, linear or nonlinar

functions from R toR. The conditions on the functions fi(y1 ≤1≤ d) are important to obtain

a Jacobian matrix with orthogonal columns. Visually, a manifold is developable in three-

dimensional space if it is a curved sheet of paper. A sphere or a piece of hollow is not developable,

and if the manifold has a hole, it is not also developable.

Advantages and Limitations

Isomap successfully can be applied to a developable manifold. In nondevelopable manifolds,

Isomap is prone to tear and false neighbours, which occurs because using two different similarity

measures in the high and low dimensional space, to calculate the similarity of data samples.

An identity map cannot embed Geodesic distances in a Euclidean distance. As a result, using

Isomap is the same as applying linear dimensionality reduction methods such as PCA or MDS in

nondevelopable manifolds. Another problem of Isomap that calculates the Geodesic distance is

to approximate the graph distances. Their quality depends on the data itself and the parameters

(number of neighbours k or a threshold ε for building the graph). Consequently, parameter

selection hugely impacts the performance of a dimensionality reduction method [3].

2.1.6 Geodesic Sammon’s mapping

Geodesic Sammon’s mapping is like Sammon’s mapping; however, it uses Geodesic distances

instead of Euclidean distances to calculate the similarity between data samples in the high
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dimensional space.

Advantages and Limitations

Geodesic Sammon’s mapping has the same advantages and drawbacks as Sammon’s mapping,

but it can better deal with heavily curved manifolds [3]. On the other hand, using Geodesic dis-

tances (graph distances) requires tuning the number of neighbours, making Geodesic Sammon’s

mapping a more expensive method than Sammon’s mapping.

2.1.7 Curvlinear distance analysis (CDA)

CDA is similar to CCA, but it calculates the similarity between data samples using Geodesic

distances instead of Euclidean distances. Consequently, CDA captures the manifold shapes

better than CCA and removes the shortcuts generated by Euclidean distances. Using Geodesic

distances can be beneficial since the manifolds embedded in a high dimensional space data

might be manifold(s) on themself, and Euclidean distances are not appropriate to describe the

structure of a manifold.

Advantages and Limitations

CDA performs better in nonlinear manifolds (developable) than CCA. However, like Isomap,

CDA suffers from tear and false neighbours problems since the similarity between high and low

dimensional space data samples have been calculated using two different similarity measures.

2.1.8 Kernel Principal Component Analysis (KPCA)

KPCA uses kernel function over pairwise distances, and it is more similar to metric MDS than

PCA [3]. The main idea of KPCA is to linearize the manifold M , and it supposes a mapping

that a linear subspace can be mapped in a nonlinear subspace with dimensionality higher than
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the previous one.

φ : M ⊂ RD 7→ RQ, x 7→ z = φ(x) (2.24)

So, KPCA starts with increasing data dimensionality, and then compute the matrix

Φ = [
〈
φ(x(i)) · φ(x(j))

〉
]16i,j6N (2.25)

= [
〈
z(i) · z(j)))

〉
]16i,j6N (2.26)

After Φ has been defined, than the procedure is the same as for metric MDS.

Φ = UΛUT (2.27)

Y = Id×NΛ
1
2UT (2.28)

There exist some kernel functions:

1. Polinomial Kernel :

κ(u, v) = (〈u · v〉+ 1)int (2.29)

2. Gaussian kernels:

κ(u, v) = exp

(
−‖u− v‖

2

2σ2

)
(2.30)

3. MLP Kernel :

κ(u, v) = tanh(〈u · v〉+ b) (2.31)
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Advantages and Limitations

KPCA is considered an extension of MDS, but it better captures the nonlinear high dimensional

data structure than MDS. However, choosing the proper kernel function and its parameter is

the main difficulty of KPCA.

2.1.9 Maximum Variance Unfolding (MVU)

One of the main disadvantages of KPCA is choosing the right kernel function, which is solved by

MVU. MVU tries to maintain high dimensional space data structure by constructing the graph,

where each data sample is connected with its nearest neighbours and imposes the preservation

of angles and distances for all k neighbourhoods as in Eq. (2.32):

〈
(xi − xj) · (xi − xk)))

〉
=
〈
(yi − yj) · (yi − yk)

〉
(2.32)

Let be A the N × N adjacency matrix of this graph, and then the local constraint can be

expressed as:

∥∥yi − yj∥∥22 =
∥∥xi − xj∥∥22 if Aij = 1 (2.33)

MVU uses the objective function:

φ =
1

2

N∑
i=1

N∑
j=1

dis2y(i, j) (2.34)

All edges are subject to the local isometry constrained, it results that,

φ ≤ 1

2

N∑
i=1

N∑
j=1

graph2x(i, j) (2.35)
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where graph dis2x(i, j) is the graph distance between data points xi and xj. The formulation of

the problem can be simplified by using the dot products:

φ = tr(L) (2.36)

where

φ =
1

2

N∑
i=1

N∑
j=1

dis2y(i, j) (2.37)

,and

φ =
1

2

N∑
i=1

N∑
j=1

sx(i, j)− 2sx(i, j) + sx(j, j) =
N∑
i=1

sx(i, i) = tr(L) (2.38)

, where tr(L) is the trace of L and L = [sx(i, j)]1≤,j≤N , and

sx(i, j) = sy(i, j) if a(i, j) = 1 (2.39)

Overall, the goal of MVU consists of maximizing the trace of some N ×N matrix L subject to

the following constraints:

1. The matrix L is symmetric and positive semidefinite.

2. The sum of all entries of L is zero.

3. For nonzero entries of the adjacency matrix, the quality sx(i, j) = sy(i, j) must hold.

MVU may overcome some shortcomings of Isomap, such as:

1. Isomap performs low in estimating Geodesic distances of sparse data.

2. Isomap fails to embed correctly nonconvex manifolds (manifolds with holes): in this case,

graph paths are longer than necessary because they need to go around the hole.
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Advantages and Limitations

MVU, like Isomap, suffers from the short-circuiting problem as it adds constraints to the

optimization problem that may affect the manifold unfolding performance. Moreover, MVU is

very slow due to Semidefinite Programming problem (SDP) [3]. Also, the scale of the maintained

structure of the high dimensional space data depends on the number of neighbours, in which

its tuning is a costly process.

All nonlinear methods mentioned above reduce the data dimensionality intending to minimize

the difference between high and low dimensional space data. However, most real data have their

low dimensional representation placed on curved and nonlinear manifolds. A dimensionality

reduction technique requires some flexibility during the dimensionality reduction process since

some regions need to be shrunk or stretched. In other words, maintaining the high dimen-

sional data structure means maintaining the topology of the manifold (i.e., the neighbourhood

relationships between subregions of a manifold) where the low dimensional representation lies.

There are many dimensionality reduction methods focused on topology preservation categorized

as Predefined lattice methods and Data-Driven lattice methods.

Predefined lattice methods

Predefined lattice methods are methods that define lattice in advance. In other words, the

shape of the manifold is predefined. This makes the applicability of this method very limited

as a few data may have the same manifold as the predefined one. Some predefined lattice

methods are Self -Organizing Maps (SOM) and Generative Topographic Mapping (GTM).

2.1.10 Self-Organizing Maps (SOM)

SOM consists of the following steps:

1. A set of c(i) ∈ C data points with dimension D
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2. A function dg(r, s) which defined the neighbourhood relationship between prototipes ci.

Prototypes have coordinates in the original and the low dimensional spaces, where the points

of the low dimensional space are known in advance. Still, the corresponding data c(i) in the

original space are unknown and must be determined by SOM. Since c(i) is determined, than,

the low dimensional data samples are calculated as:

y(i) = g(r) (2.40)

, where r = argmins d(y(i), c(s)), where d is the distance function and usually is Euclidean

distance. c(s) can be determined iteratively by following the Robbins-Monro scheme.

c(s)← c(s) + αvλ(r, s)(x(i)− c(s)) (2.41)

, where α is the learning rate and α ∈ [0, 1], whereas vλ(r, s) can be dettermined in different

forms

1. vλ(r, s) =

0 if dg(r, s) > λ

1 if dg(r, s) ≤ λ

2. vλ(r, s) = exp(−d2g(r,s)

2σ2 )

3. vλ(r, s) =

0 if r 6= s

1 if r = s

where σ replaces the standard deviation. Data points g(r) are placed on a plane in most

implementations. The global shape of a lattice is often a rectangle or a hexagon (or a par-

allelepiped in higher dimensions). Neighbourhood shapes employed are square (eight neigh-

bours)—Hexagonal (six neighbours), and (hyper)-cubic neighbourhoods in higher-dimensional

lattices. As mentioned, the performance of SOM depends on a number of parameters such as:

1. Lattice shape (width, height, additional dimensions),

2. Neighbourhood shape (square, hexagon),
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3. The neighbourhood function vλ, and

4. Learning rate α and neighbourhood width σ.

Advantages and Limitations

The main drawback of SOM is that it predefines the shape of lattice in advance and does not

capture the true structure of data. Also, SOM requires tuning parameters, which is a tedious

task.

2.1.11 Generative Topographic Mapping (GTM)

GTM provides a generative model and calculates the probability of embedding at coordinates

Y in the low dimensional space. GTM starts with initializing low dimensional data samples

g(r) and then computes the squared distances matrix

D = [
∥∥x(i)−Wθ(g(r))

∥∥2] (2.42)

where W is initiliazed randomly or using PCA, and Θ is the value of basis functions at the low

dimensional data samples g(r). The low dimensional space data are computed using d

y(i) = argmax
g(r)

p(g(r)|x(i)) (2.43)

or

y(i) =
C∑
r=1

g(r)p(g(r)|x(i)) (2.44)



32 Chapter 2. Literature Review

where

p(g(r)|x(i)) = ρi,r(Wopt, βopt) (2.45)

ρi,r(Wopt, βopt) =
p(x(i)|g(r),W, β)∑C
s=1 p(x(i)|g(s),W, β)

(2.46)

p(x(i)|y,W, β) = (
β

2π
)
D
2 exp(−β

2

∥∥x(i)−m(y,W ))
∥∥2) (2.47)

and C is the set of representative data points with D dimensions.

Advantages and Limitations

Like SOM, GTM also predefines the shape of lattice and is limited to one or two low dimensional

spaces. GTM does not perform well in data with significantly high dimensional space for the

two main reasons: 1) it requires increasing the number of kernels defining m together with

increasing the number of grid data points, and 2) the Gaussian kernel function employed in

GTM behaves surprisingly in the high-dimensional space data [3].

Data-driven lattice methods

Data-driven lattice methods, indifferent from predefined lattice methods, do not use a prede-

fined topology of the manifold, but they use the topology of the manifold itself and try to keep

its structure accordingly. The data-driven lattice methods are LLE, LE, LTSA, Hessian LLE,

Diffusion Map, t-SNE, UMAP, TriMap, DD-HDS, and RankVisu.

2.1.12 Locally Linear Embedding (LLE)

LLE is one of the methods known as data-driven lattice methods, and it starts determining

which angle to consider by accounting k nearest neighbours of each data sample xi. If the

dataset is large and without noise and the manifold is well-sampled, then the manifold of k

neighbourhood is approximately linear. The main stage of LLE [55] is the one that replaces
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each data sample xi with the linear combination of its neighbours, and the reconstruction error

is measured using the following formula:

ε(W ) =
N∑
i=1

∥∥∥∥∥∥x(i)−
∑
j∈N(i)

wi,jx(j)

∥∥∥∥∥∥ (2.48)

where N(i) is the set containing all neighbours of a data sample x(i), and W is the matrix with

N × N whose entries are the weight of neighbours for the reconstruction of the data sample

x(i). To compute the matrix W , the cost function needs to be minimized under two constrains:

1. coefficients wi,j = 0 for points j /∈ N(i) and,

2.
∑N

j=1wi,j = 1

The weights wi,j reflects the intrinsic geometry of the data [3] that are invariant exactly to

these transformations. So, the characterisation of the geometry in the original data space is

expected to be equally valid for local patches on the manifold. Accordingly, the same weights

that reconstruct data samples in the high-dimensional space D also reconstruct its manifold

coordinates in a d-coordinate space. Data samples in the low dimensional space are chosen to

minimise the Φ(Y ) cost function.

Φ(Y ) =
N∑
i=1

∥∥∥∥∥∥y(i)−
∑
j∈N(i)

wi,jy(j)

∥∥∥∥∥∥ (2.49)

Y is the d dimensional data that best reconstruct X given W . In practice, wi,j can be computed

in closed form, for each data sample x(i), separately.

εi(W ) =
N∑
i=1

∥∥∥∥∥∥x(i)−
∑
j∈N(i)

wi,jx(j)

∥∥∥∥∥∥ (2.50)
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can be reformulated as:

εi(w(i)) =

∥∥∥∥∥∥x(i)−
k∑
r=1

wr(i)v(r)

∥∥∥∥∥∥
2

(2.51)

=

∥∥∥∥∥∥
k∑
j=1

wr(i)x(i)− v(r)

∥∥∥∥∥∥
2

(2.52)

=

∥∥∥∥∥∥
k∑

r,s=1

wr(i)ws(i)gr,s(i))

∥∥∥∥∥∥
2

(2.53)

where w(i) is the vector that contains the i− th raw of W and v(r) is the r-th neighbour of x(i),

corresponding to x(j). There is also that
∑K

r=1wr(i) = 1 and gr,s(i) = (yi − v(r))T (yi − v(s)).

The matrix G(i) can be interpreted as a kind of local covariance of x(i). The reconstruction

error can be minimized in closed form, using Lagrange multiplier and the optimal weights.

wr(i) =

∑k
s=1(G

−1(i))r,s∑k
r,s=1(G

−1(i))r,s
(2.54)

G(i) is symmetric and semi-definite.

Minimisation of Φ(Y ) can be done by solving an eigenproblem.

Φ(Y ) =
N∑
i=1

∥∥∥∥∥∥y(i)−
∑
j∈N(i)

wi,jy(j)

∥∥∥∥∥∥ (2.55)

=
N∑
i=1

∥∥∥∥∥∥
∑
j∈N(i)

wi,jy(i)− y(j)

∥∥∥∥∥∥ (2.56)

=
N∑
i=1

∥∥∥∥∥∥
∑
j∈N(i)

mi,jy(i)Ty(j)

∥∥∥∥∥∥ (2.57)

where mi,j are the entries of an N ×N matrix M , M = (I −W )T (I −W ), which is symmetric,

sparse and positive semi-definite. The optimal embedding has been found by the bottom d+ 1

eigenvectors of the matrix M , where the last eigenvectors have been discarded by keeping d

eigenvectors representing the d dimensional space coordinates of Y .



2.1. Dimensionality Reduction Techniques 35

Advantages and Limitations

The structure capturing of LLE is related to the number of neighbours k. If k is large, then

the method approximates the manifold to be linear, which might not be a good representation

for most datasets.

2.1.13 Local Tangent Space Alignment (LTSA)

LTSA is a technique that describes the local properties of high dimensional data using the local

tangent of each data point. The main idea of LTSA is that if the local linearity of the manifold

is assumed, there is a linear mapping from high dimensional space data to its local tangent

space and a linear mapping from low-dimensional space data to the same local tangent space.

LTSA simultaneously searches for the low-dimensional data representations’ coordinates and

the linear mappings of the low-dimensional data samples.

LTSA starts with graph G = [X,A] construction considering neighbourhood size k or ε-ball

neighbourhood is the first stage of LTSA. The second step is calculation of local coordinates.

Let be Xi = [xi1...xik] whose columns are the k neighbours of xi. Data are centralized by

subtracting their mean: Xi = [xi1 − x̄...xik − x̄]. The local coordinated can be found by PCA

and then the best approximation of Xi be

d∑
j=1

σjuj(vj)
′ (2.58)

Write V = [v1...vd] and set Gi = [ 1|Vi] then Wi = I −GiG
′
i. The third step of LTSA is kernel

construction via global alignment. The LTSA kernel K is the alignment matrix of all local

matrices Wi.

K(N(i), N(i)) = I −GiG
′
i (2.59)
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Te last step of LTSA is Eigen decomposition of kernel K.

K = UΛU ′ (2.60)

where Λ = diag(λ0, λ1, ..., λn − 1) with 0 = λ0 ≤ λ1 ≤ ... ≤ λn−1. The low dimensional data

Y = [u1...ud]
′ corresponding to the 2nd− (d+ 1) smallest eigenvalues of K.

Advantages and Limitations

The main problem of LTSA is its sensitivity to noise, which impacts its performance. Neigh-

bourhood size also affects the performance. So, LTSA usually performs well in smooth and

connected manifolds. The smoothness of the manifold and selecting the neighbourhood size

impacts the performance of LTSA.

2.1.14 Laplacian Eigenmaps (LE)

LE has been invented to overcome some shortcoming of Isomap by concentrating on local

distances. LE also assume that data samples lie on a smooth d- manifold. For a large N , the

underlined manifold can be represented very good by a graph G = (VN , E). The neighbourhood

relationship can be determined using k neighbours or ε ball neighbourhoods. The aim of LE is

to keep the neighbourhood relationship and minimize the ELE as shown in Eq. (1.61).

ELE =
1

2

N∑
j=1

∥∥y(i)− y(j)
∥∥2
2
wi,j (2.61)

where

wij =

exp(−
dis(xi,xj)

2)

2σ2 ) if xj ∈ Neigi

0 otherwise

 (2.62)
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ELE = tr(Y LY T ) (2.63)

and L is the weighted Laplacian matrix of the graph G, defined as

L = W −D (2.64)

and D is a diagonal matrix with entries di,i =
∑N

j=1wi,j Minimization of ELE with respect to

Y under the constrain Y DY T = Id×d reduces to solving the generalized eigenvalues problem

λDf = Lf and looking for d eigenvectors of L associated with smallest eigenvalues. Then

normalize the Laplacian matrix L as

L′ = D−
1
2LD−

1
2 (2.65)

and then compute the

L′ = UΛUT (2.66)

The low dimensional data can be generated by multiplying eigenvectors by D
1
2 , transposing

them and keeping them associated with d eigenvalues, except the last one, which is zero.

Advantages and Limitations

LE cannot preserve the local Euclidean distances since this method is not very good in short

distance preservation. LE can be flexible with moderate noise data; however, when noise is

intense, then LE becomes unstable. Also, the performance of LE dramatically depends on the

number of neighbours tuning and kernel function that is used for generating the weight matrix

W .
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2.1.15 Hessian LLE

HLLE is a variant of LLE that minimises the curviness of a high dimensional manifold when

embedding it into a low dimensional space but to satisfy the constrain that the low dimensional

data is locally isometric. Similar to LLE, the first step of HLLE is defining the neighbourhood

system using k or ε -ball, where k ≥ (d+2)(d+1)
2

. The second step is calculating the coordinates

of tangent space on its neighbourhood using PCA. Let be LX i = xj1, ..., xjk then apply PCA

on LX i to obtain d principal components of LX i in the k × d matrix V i = [v1...vd], then the

columns of V i are tangent coordinate functions on LX i. Local Hessian functional construction

is the third step of HLLE. Define with:

V a = [1, V i, Qi] (2.67)

where Qi = [vi � vj]1≤i≤j≤d and 1 = [1, ..., 1]′ ∈ Rk. Apply the Gram-Schmidt procedure over

V a to obtain its orthonormalization [1, V i, Q̌i], and then the Hessian functional is Wi = Q̌i(Q̌i)′.

Initialize the kernelK to an n×n zero matrix and then updateK(N(i), N(i)) = K(N(i), N(i))+

Wi, where K(N(i), N(i)) is the submatrix containing both the rows and columns with indices

in N(i). Finally, let be Y 0, Y 1, ..., Y d are d+ 1 eigenvectors corresponding to the d+ 1 smallest

ascending eigenvalues of K and the low dimensional dataset is Y = [Y 1, ..., Y d]′.

Advantages and Limitations

HLLE minimises a Hessian function, which is defined in a smooth manifold, and in nonsmoothed

manifolds, HLLE performs poorly. HLLE adopts a local isometric manifold coordinate mapping,

captures well the local Euclidean distances [3]. Furthermore, HLLE may not preserve the

data structure very well when noise exists, as the data has a large deviation that distorts the

smoothness. Another drawback of HLLE is that performance is based on the neighbourhood

size.
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2.1.16 Diffusion Maps

The diffusion maps aim to embed the dataset into a Euclidean distance. The Euclidean distance

in the low dimensional space is equal to the diffusion distance on the data. The first step of

Diffusion Maps is building the graph G(X,A) neighbour giving k- or ε-ball.

gij = e
dis(xi,xj)

2

t (2.68)

and

wij =

gij gij ≤ τ

0 gij ≥ τ

 (2.69)

The Diffusion Kernel has been constructed using kij =
wij
vivj

, where vi =
√
W i1 and W i is the

ith row of W . And the low dimensional representation is

Y = [ṽ1, ..., ṽd]
T (2.70)

where

ṽi =

[
v1i
v10
, ..., vni

vn0

]
, 1 ≤ i ≤ d. (2.71)

and v0, ..., vd are eigenvectors of K achieving the (d+ 1) eigenvalues 1 = λ0, ...., λd > 0.

Advantages and Limitations

Like MDS, Diffusion Maps favours the preservation of large distances at the expense of neglect-

ing small distances. Additionally, its structure capturing is related to tuning the parameter

t [3]. Diffusion maps are sensitive to the neighbourhood size as well. Diffusion maps employ

diffusion processing, making them insensitive to noise [3].
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2.1.17 Stochastic Neighbour Embedding (SNE)

What happens if the low dimensional representation is placed in different manifolds? All men-

tioned methods can unfold submanifolds located in one place. This can be done by proposing

probable neighbours employed to SNE [56] to preserve the neighbourhood identity, even when

the low-dimensional representation is placed in different manifolds.

SNE, for each data sample x(i) and a potential neighbour x(j) calculates asymmetric probability

pij

pij =
exp(−dis(xi, xj)2)∑
k 6=i exp(−dis(xi, xk)2)

(2.72)

dis(xi, xj) =

∥∥xi − xj∥∥2
2σ2

i

(2.73)

where σi is the value that makes the entropy of the distribution over neighbours equal to

log k, and k is the number of neighbour (k) or perplexity (pr) chosen by the user. In the low

dimensional space, the neighbourhoods have been calculated using Gaussian distribution with

a fixed variance:

qij =
exp(−

∥∥yi − yj∥∥2)∑
k 6=i exp(−‖yi − yk‖

2)
(2.74)

The aim of embedding is to match these distributions as much as possible, and this has been

done using Kullback-Leibler divergences as:

C =
∑
i

∑
j

pij log
pij
qij

(2.75)

Advantages and Limitations

The performance of SNE is closely related to pr or k. In addition, i-th Gaussian distributions

in the high dimensional space have been converted in a Gaussian distribution with a standard
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distribution, which may cause tears or false neighbours in the low dimensional space data.

2.1.18 t-Stochastic Neighbour Embedding (SNE)

t-SNE is a dimensionality reduction method based on SNE, but it changes from SNE in two

ways: (1) it uses the symmetric version of SNE, and (2) uses a Student-t distribution instead of

Gaussian distribution to compute similarity in the low-dimensional space. t-SNE is a nonlinear

dimensionality reduction technique which calculates the conditional probability pi|j between

samples xi and xj using the Gaussian distribution, centred at xj with the variance σi as shown

in Eq. (2.76).

pi|j =
exp(

−dis(xi,xj)2
2σ2
i

)∑
k 6=i

exp(−dis(xi,xk)
2

2σ2
i

)
(2.76)

The high dimensional space similarity pij is calculated using Eq. (2.76): pij =
pi|j+pj|i

2N
, whereas,

the low dimensional similarity is calculated as shown in Eq. (2.77).

qij =
(1 + dis(xi, xj)

2)−1∑
k 6=l

(1 + dis(xi, xj)2)−1
(2.77)

t-SNE tries to make the low dimensional similarity qij as similar as possible to its corresponding

high dimensional similarity pij. Consider Eq. (2.76), t-SNE builds N -Gaussian distributions

related to density σ and the distance of each sample xi to its neighbours. If the distance between

the sample xi and its neighbours is small, the Gaussian distribution is sharp; otherwise, it

broadens.

Advantages and Limitations

t-SNE is a very popular method in visualisation due to the ability to maintain the data structure

with the low dimensional representation in one (or more) curved and nonlinear manifold(s). De-

spite all benefits of t-SNE, the low dimensional space data produced has two problems, tear and
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false neighbours. The main cause of those problems is using two different similarity functions to

measure the similarity between high and low dimensional space data. In high dimensional space

data, the similarity between data samples is measured by N -Gaussian distributions, whereas in

the low dimensional space, the similarity between data samples has been defined using Student-

t distribution (degree of freedom=1). In other words, data samples with different Euclidean

distances in the high dimensional space might be mapped so that they have the same Euclidean

distance in the low dimensional space, resulting in a failure with regards to data structure cap-

turing. Besides, the goodness of the captured structure of low dimensional data generated by

t-SNE relies on perplexity, making t-SNE a costly method. Also, t-SNE is considered a local

dimensionality reduction technique because the Gaussian distribution measures the similarity

between high dimensional space data and is a sharp distribution. As the distance between data

becomes larger, the similarity produced by Gaussian distributions becomes closer to zero. As a

result, Global t-SNE has been proposed to make t-SNE a better method to capture the global

data structure.

2.1.19 Global t-SNE

Zhou and Sharpee [57] presented the Global t-SNE method to capture a more global structure

of the high dimensional space data. Global t-SNE suggests using an exponential distribution in

addition to Gaussian distribution. If the Gaussian distribution is sensitive to smaller distances,

the exponential distribution is unstable to larger distances because of its heavy tails.

Advantages and Limitations

Global t-SNE like t-SNE is costly due to tuning perplexity. Also, Global t-SNE is prone to the

two problems that occurred to t-SNE, tear and false neighbours.
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2.1.20 Multiscale SNE

SNE, t-SNE and Global t-SNE are considered costly due to the number of neighbours or

perplexity tunning requirements. To deal with that issue, Multiscale SNE [58] has proposed

employing multi-perplexities distributions in high dimensional space to maintain small and

large distances. Multiscale SNE is an extension of SNE, using Gaussian distributions in high

and low dimensional spaces to keep the data structure; it defines the probabilities as follows:

phij =
exp(

−rhidis(xi,xj)2
2

)∑
k 6=i

exp(
−rhidis(xi,xj)2

2
)

(2.78)

qhij =
exp(

−shidis(xi,xj)2
2

)∑
k 6=i

exp(
−shidis(xi,xj)2

2
)

(2.79)

pij =
1

L

Lmax∑
h=Lmin

phij (2.80)

qij =
1

L

Lmax∑
h=Lmin

qhij (2.81)

where rhi and shi denote precision in high and low dimensional spaces, respectively, and 1 ≤

Lmin ≤ h ≤ Lmax, where L = Lmax − Lmin + 1 is considered the number of scales (number of

different perplexities employed). In [58] it is suggested using Lmin = 2 and Lmax = log2
N
2

.

Advantages and Limitations

Multiscale SNE improves capturing a more global structure but increases the computational

complexity by log2
N
2

. Tuning the scale parameters determines the algorithm’s efficiency, mak-

ing multiscale SNE a complex and costly method. Also, employing Gaussian distribution in

high and low dimension space to measure the similarity between data samples makes Multiscale
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SNE unsuitable for preserving large distances.

2.1.21 Multiscale t-SNE

Multiscale t-SNE [59, 60] employs multi-perplexities Gaussian distributions in high dimensional

space like Multiscale SNE [58], and it has two main drawbacks: 1) is prone to tear and false

neighbour problems, which occurs by employing different distributions in high and low dimen-

sional spaces to measure similarities between data samples, and 2) it is not suitable for large

distances preservation since Gaussian distribution gives a low priority to large distances.

2.1.22 Uniform Manifold Approximation and Projection (UMAP)

UMAP, a similar method to t-SNE is a useful technique to capture the local structure of the

high dimensional space data. For each data sample in the high dimensional space xi let define

ρi and σi, where

ρi = min (dis(xi, xj), 1 ≤ j ≤ k, dis(xi, xj) ≥ 0) (2.82)

k∑
j=1

exp(
−max 0, dis(xi, xj)− ρi

σi
) = log2 k (2.83)

and the similarity function is defined as in Eq. (2.84).

wij = exp(
−max 0, dis(xi, xj)− ρi

σi
) (2.84)

w̄i,j = w(xi, xj) + w(xj, xi)− w(xi, xj)w(xj, xi) (2.85)
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A be the weighted adjacency matrix of G. D degree matrix of graph A, and

L = D
1
2 (D − A)D

1
2 (2.86)

evec = Eigenvectors of L (2.87)

Y = evec[1...d+ 1] (2.88)

Advantages and Limitations

UMAP gives more importance to the local structure capturing than the global structure. Also,

the scale of maintained data structure relates to the number of neighbours, which its tuning

makes UMAP a very costly method.

2.1.23 Trimap

To capture a more global structure of the data, Amid and Warmuth [40] presented the TriMap

method, which considers the similarities of three data samples (triplets) instead of a pair of

data samples. TriMap defines a set of triplets T = {(i, j, k) : pij > pik}, where the satisfaction

probability of the triplet (i, j, k) is defined as in Eq. (2.89).

Prijk =
qij

qij + qik
=

1

1 + qik
qij

(2.89)
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The low dimensional representation can be calculated by minimising the cost function

∑
(i,j,k)∈T

li,j,k (2.90)

li,j,k = wi,j,k
s(yi, yk)

s(yi, yj)s(yi, yk)
(2.91)

wi,j,k = log(1 + 500(
exp

dis(xi,xk)
2

σiσk
−
dis(xi,xj)

2

σiσj

maxi′,j′,k′∈T exp
dis(xi,xk)

2

σiσk
−
dis(xi,xj)

2

σiσj

)) (2.92)

s(yi, yj) = (1 +
∥∥yi − yj) ‖2)−1 (2.93)

The inilitazion of Y has been done using PCA.

Advantages and Limitations

TriMap, like t-SNE, employs Gaussian distributions in the high dimensional space and Student-

t distribution in the low dimensional space to measure similarities between data samples. As

demonstrated with t-SNE, using different N - Gaussian distributions in the high dimensional

space and one Student-t distribution in the low dimensional space cause tears or false neigh-

bours, which also occurs in TriMap.

2.1.24 Autoencoders and Restricted Boltzmann Machine (RBM)

Autoencoders3 are neural networks composed of two parts encoder and decoder. The encoder

uses φ function (2.94) to embed the original high dimensional data X to the low dimensional

data Y . In contrast, the decoder uses the function ψ (2.95) to embed the low dimensional

data Y to the output data X ′, where X ′ is the reconstructed data of the original data X by

minimising the cost function in (2.96).

φ : X → Y (2.94)

3Autoencoders are neural networks composed of one input layer, one output layer and one hidden layer,
whereas deep autoencoders are multi-layered neural networks composed of one input layer, one output layer
and many hidden layers.
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ψ : Y → X (2.95)

φ, ψ = arg min
φ,ψ
||X − (ψ ◦ φ)X ′||2 (2.96)

Advantages and Limitations

Deep autoencoders [49, 61, 62, 63, 64] are multi-layered neural networks, where each pair of

neighbourhood layers is considered to be a Restricted Boltzmann Machine (RBM). However,

like all neural networks, it isn’t easy to find the optimal parameters for RBMs; and as such, their

selection is heuristic or based on previous experiments [65]. Above all, most of the methods

disregard the preservation of the data manifold structure [66]. Hence, to improve RBM and

to capture the local data structure, neighbourhood graphs have been used [66]. However, it is

complex to implement this approach since it requires tuning the number of neighbours and the

number of hidden layers, the number of nodes in each hidden layer, the number of epochs, and

the batch size.

2.1.25 DD-HDS

DD-HDS is a nonlinear dimensionality reduction method similar to MDS, but it favours more

preservation of small distances, possibly at the price of distortions in large distances. DD-HDS

uses athe weighting function

k(dij) = 1−
∫ dij

−∞
f(u, µ, σ)du, (2.97)

where f(u, µ, σ) is the probability density function of a Gaussian variable with mean µ and

standard deviation σ.

µ = mean1≤i≤j≤N(dij − 2(1− λ)std1≤i≤j≤N(dij)) (2.98)
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σ = 2λstd1≤i≤j≤N(dij)) (2.99)

where mean and standard deviation (std) are taken over the distribution distances between all

pairs of data in the original space. The scale of the influence of large distances have over the

small distances is controlled by λ, which is a positive user-defined parameter, and usually takes

value between 0.1 and 0.9. The cost function of DD-HDS is

EDD−HDS =
∑
i<j

(∥∥∥dij − d′ij∥∥∥(1−
∫ min(dij ,d′ij)
−∞ f(u, µ, σ)du

))
(2.100)

This method uses symmetric measures in high and low dimensional space, which helps to

prevent the problems tear and false neighbours.

Advantages and Limitations

DD-HDS performance depends on tuning the parameter λ1, and it is not good in preserving the

global data structure (large distances). Furthermore, it employs Gaussian distribution, which

includes exp, and it can be costly. The tails of the gaussian distribution are not long enough

to capture the global structure, and that is why the authors claimed that DD-HDS did not

perform well in capturing large distances.

2.1.26 RankVisu

RankVisu is a similar method to DD-HDS. However, DD-HDS aims to preserve distances,

whereas RankVisu aims to preserve the neighbourhood with small neighbourhood ranks. Be-

cause it preserves the neighbourhood rank, it is similar to non-metric MDS. Neighbourhood

rank can be derived directly from pairwise distances, where the closest neighbour can be allo-
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cated with 1 and the less closest neighbour with 2 and as follows.

ζ1(i, j) = (k + 1−min(Dij,∆ij))×
∣∣Dij −∆ij)

∣∣ (2.101)

ζ1 =
∑
i,j

ζ1(i, j) (2.102)

ifδ < k + 1 and δij < min(Dij, Dji)

ζ2(i, j) = (k + 1− δij)×
∣∣min(Dij, Dji)− δij)

∣∣ (2.103)

if else min(Dij, Dji) < k + 1 and δij > max(Dij, Dji)

ζ2(i, j) = (k + 1−max(Dij, Dji)×
∣∣min(Dij, Dji)− δij)

∣∣ (2.104)

else ζ2(i, j) = 0 (2.105)

ζ = (1− α)× ζ1 + α× ζ2 (2.106)

whereD and ∆ are the Neighbourood Ranks in the high and low dimensioanl space, respectively,

and α is a balancing parameter belongnig to [0, 1].

Advantages and Limitations

Although RankVisu works well in heavy curved manifold data, its performance also depends

on the number of neighbours, making it an expensive method.

2.1.27 Summary and Literature Gap

From the review made on the current literature, it has been identified that the performance of

a dimensionality reduction method in terms of maintained data structure is related to:
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1. The type of data, and

2. Parameter tuning.

PCA and MDS work well in linear data, do not require parameter tuning, and therefore can

save computational time; they neglect the maintenance of local information of high dimensional

space data.

On the other hand, nonlinear data has its low dimensional representation lying on :

1. Smooth manifolds

2. Non-smooth manifolds that are further categorised into:

(a) developable curved manifolds

(b) heavy curved manifolds

Methods that work well in smooth nonlinear data are Sammon’s mapping, CCA, LLE, HLLE,

MVU, LTSA, MLLE, and diffusion maps. However, in cases of having non-smooth nonlinear

data, the above-mentioned methods do not perform well.

Non-smooth nonlinear data are further classified in developable manifolds and heavily curved

manifolds. Dimensionality reduction techniques that can perform well in developable manifolds

are Isomap and CDA. Isomap and CDA employ Geodesic distances to measure the similarity be-

tween high dimensional spaces data and Euclidean distances to measure the similarity between

low dimensional space data samples.

All the above-mentioned methods work well in linear, simple smooth, or developable manifolds.

However, suppose the low dimensional representation is on heavily curved manifolds. In that

case, a group of methods such as SNE, LE, Autoencoders, DD-HDS, t-SNE, RankVisu, Trimap

and Umap can maintain the data structure. Also, t-SNE, DD-HDS, UMAP, and TriMap have

proposed using Gaussian or Student-t distributions to provide a softer border between local

and global structure maintenance. However, the scale of the maintained data structure is
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closely related to tuning the number of neighbours, perplexity, or λ1, to generate the best

low dimensional representation. Multiscale approaches such as Multiscale-SNE and Multiscale

t-SNE attempted to overcome this shortcoming; however, it still is a costly method due to

both the multiscale calculations and the utilisation of Gaussian distribution, and it is much

slower than using Student-t distribution. In addition, Gaussian-based dimensionality reduction

methods have two other problems:

1. They favour the local structure capturing at the expense of neglecting the global structure

capturing, due to the shape of Gaussian distribution4, and

2. Gaussian distribution is expensive due to including the exponential function.

Also, two other problems spotted in dimensionality reduction techniques, tears and false neigh-

bours. The main cause of tears and false neighbours problems is due to employing different

distributions or different similarity measures in high and low dimensional spaces. By employing

different distributions in high and low dimensional spaces, the same distance is converted into

different similarities, or different distances are converted into the same similarities.

In summary, the current dimensionality reduction methods, t-SNE, UMAP, Trimap and DD-

HDS work well in heavily curved manifolds. However, they still require costly tuning parame-

ters, and also, they are strictly local dimensionality reduction methods and suffers form tears

and false neighbours problems. A summary of dimensionality reduction methods is presented

in Table 2.2.

4Gaussian distribution generates large similarity values for short distances, and as distance increases, the
similarity converges to zero sharply.
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Table 2.2: SUMMARY OF TYPE OF DATA AND REQUIRED PARAMETERS THAT AFFECT
THE PERFORMANCE OF EACH DIMENSIONALITY REDUCTION METHOD

DR algorithm Parameters Type of Data Type of Manifold

PCA None Linear Linear manifold
MDS None Linear Linear manifold
Sammon Mapping None nonlinear Smooth manifold
CCA λ nonlinear Smooth manifold
CDA λ nonlinear Developable Heavily curved manifold
Isomap k nonlinear Developable heavily curved manifold
LLE k nonlinear Smooth manifold
LE k, σ nonlinear Heavy curved manifold
HLLE k nonlinear Smooth manifold
MVU k nonlinear Smooth manifold
LTSA k nonlinear Smooth manifold
Diffusion Maps σ, t nonlinear Smooth manifold
Autoencoders NetSize nonlinear Heavily curved manifold
MLLE [33] k nonlinear Smooth manifold
DDHDS λ1 nonlinear Heavily curved manifold
t-SNE pr nonlinear Heavily curved manifold
RankVisu k nonlinear Heavily curved manifold
Trimap k nonlinear Heavily curved manifold
UMAP k nonlinear Heavily curved manifold
Missing None nonlinear Heavily curved manifold

Finally, the literature misses a dimensionality reduction technique that does not require tun-

ing parameters and maintains the structure of data with low dimensional representation on

heavily curved manifold(s). To fill the literature gap, the Same Degree Distribution (SDD)

method for dimensionality reduction has been proposed, together with Multi Same Degree Dis-

tributions (MSDD) and parameter-free SDD, aiming to capture the geometry of data having

low dimensional representation in heavily curved manifolds, in significantly less computational

time.

2.2 Supervised Dimensionality Reduction Techniques

Dimensionality reduction methods have been commonly applied in different fields, including

medical images [67, 68] and financial markets [69], to visualise high dimensional data or as a

pre-processing step of classification. However, the main focus of manifold learning techniques
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is preserving data structure; thus, they may not be helpful in classification. In addition to the

current dimensionality reduction techniques, their supervised versions have been considered to

improve maintaining the data structure or improving the classification accuracy. Supervised

dimensionality reduction methods use dissimilarity measures instead of Euclidean distance to

define the similarity between data samples. Data samples of the same class are enforced to be

close, and data samples of different classes are enforced to be located far away.

Four common used dissimilarity measures are as follows:

dis1 =


√

1− e
−dis(xi,xj)2)

β li = lj√
e
dis(xi,xj)

2)

β − α li 6= lj

(2.107)

dis2 =


1
ψ
dis(xi, xj) li = lj

dis(xi, xj) li 6= lj

(2.108)

dis3 =

 dis(xi, xj) li = lj

dis(xi, xj) + µmax(dis(xi, xj))λij li 6= lj

(2.109)

dis4 =

dis(xi, xj)e
v(xi)−v(xj)

li = lj

dis(xi, xj) li 6= lj

(2.110)

Dissimilarity measure dis1 was applied in supervised t-SNE by Hajderanj et al. [70] in datasets

MNIST, SEER Breast Cancer and Chest X-ray, where supervised t-SNE generated visualisation

with higher class separability, and the classification error were lower than using original t-SNE.

Dissimilarity measure dis1 was also implemented to LLE to produce Enhanced Supervised

Locally Linear Embedding (ESLLE) [71] to achieve a higher classification accuracy in Swiss

Roll data.
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WeightedIso approach [72] is a supervised manifold learning method that uses dissimilarity

measure dis2 Eq. (2.108) in Isomap implemented in Iris, Liver, Lung Sonar, Glass, and Image.

Supervised Locally Linear Embedding (SLLE) [73] separates data samples of different classes

and make closer data samples of the same class as in Eq. (2.109), where µ ∈ [0, 1] and λij is

0 if data samples i and j are from the same class, and 1 otherwise. Yu et al. [74] and Cheng

et al. [75] proposed a supervised version of t-SNE, where the distance between different classes

data samples is defined in Eq. (2.110), where v(xi) refers to the angle information [72] and the

silhouette frame information [75] of the sample xi.

Although it is not a published article, a supervised version of UMAP5 has been proposed to

capture the high dimensional data structure. However, some researchers [71, 72, 76] have

proposed using dissimilarity measures to generate a better structure capturing visualisation.

The main reason for using the dissimilarity measures is to apply the low dimensional space data

for classification. Accordingly, Hajderanj et al. [70], Vlachos et al. [72], Geng et al. [76], and

Wei et al. [77] have proposed supervised dimensionality reduction techniques that use the class

information to guide the dimensionality reduction process to improve the classification accuracy.

Furthermore, they have used supervised dimensionality reduction techniques to improve the

data structure preservation of their unsupervised versions. The experimental findings in [ 70, 72,

76, 77, 78] have illustrated the effectiveness of supervised dimensionality reduction techniques

in gaining a better classification model and capturing the data structure more accurately.

2.2.1 Summary and Literature Gap

There are many supervised dimensionality reduction methods. Some researchers have claimed

that dissimilarity measures improve structure maintaining of the high dimensional space data.

In addition, some other researchers argued that employing dissimilarity measures in a reduc-

tion method helps generate a higher classification accuracy than using standard metrics such

as Euclidean distances or Geodesic distances. However, there lacks in the literature theoretical

foundation on the impact of dissimilarity measures on the structure maintaining and classifi-

5https://umap-learn.readthedocs.io/en/latest/supervised.html
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cation accuracy.

2.3 Dimensionality Reduction Quality Assessment

In general, the parameter that indicates the performance of a dimensionality reduction tech-

nique is its loss (cost) function. In each method, the cost function is formulated to achieve a

specific aim, such as minimising the distances between high and low dimensional space data

or maximising the covariance. Since the dimensionality reduction methods may have different

aims, their cost function values can not be used to compare the performances of dimensional-

ity reduction techniques. To compare dimensionality reduction methods should be considered

quality assessment techniques that aim at a single objective, such as geometry-preservation

(preserving the local geometry of data or the global geometry of data). Table 2.3 has presented

some quality assessments techniques, described byS the criterion (Local or Global).

Table 2.3: METHODS FOR DIMENSIONALITY REDUCTION QUALITY ASSESSMENTS

Year Name of the Measure Criterion References

1968 Kendall’s Correlation Local [79]
1964 Kruskal Stress Measure Global [80]
1988 Spearman’s Rho Local [81]
1992 Topological Product Local [82]
2000 Koing’s Measure Local [83]
2006 Trustworthiness and Continuity Local [84]
2006 Local Continuity/Meta Criterion Local [85]
2008 Mean Relative Rank Errors Local [86]
2009 Co-Ranking Matrix Local [87]

2.3.1 Kendall’s Tau (τ)

Kendall’s Tau (τ) is one of the first measures to estimate rank correlation and has been success-

fully applied on the topology preservation after a DR process [79]. This coefficient (τ) measures
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the correlation between the distance rank of the high and the low dimensional data as follows:

τ =
C −D√

((C +D + T ) ∗ (C +D + U))
(2.111)

where the number of concordant pairs is denoted with C, and the number of discordant pairs

is denoted with D, while T and U are the numbers of ties in pairwise distance matrices of the

high and the low dimensional spaces DIS and dis, respectively. If a tie occurs for the same

pair in both DIS and dis, it will not be added to either T or U , and the input of the data

should be in a one-dimensional array. Therefore, the pairwise distance matrixes in both the

high dimensional space (DIS) and the low dimensional space (dis) will be flattened to a one-

dimensional array. The value of τ ranges between -1 and 1. If τ is close to 1, ranks have a high

correlation. On the other hand, if τ is close to -1 or 0, it means there is no relation or negative

relation between ranks. Ranks of distances between the high and the low dimensional spaces

represent the ranks of neighbours for both spaces, respectively. Consequently, a high value of τ

means that the neighbour’s rank is captured. In terms of comparison, the best dimensionality

reduction method is the method with the highest value of τ .

2.3.2 Kruskal Stress Measure (KSM)

KSM is the residual sum of the squares between dissimilarities δ and fitted distances γ shown

as in Eq.(2.112).

KSM = (
∑

i 6=j=1,...,n

(δij − ‖γij‖)2)
1
2 (2.112)
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2.3.3 Spearman’s Rho

Spearman’s Rho measures the correlation between rank order data and assess how well the

order between datapoints in high dimensional space has been kept.

SR = 1− 6
∑T

i=1(z(i)− ẑ(i))2

T 3 − T
(2.113)

where z(i) and ẑ(i) for i = 1, ..., T are the different ranks (order number) of pairwise distances

in the original and embedded spaces, respectively. T is the total number of distances T =

n(n− 1)/2. SR ∈ [−1, 1]

2.3.4 Topological Product (TPr)

TPr measure the preservation of distances within the local neighbourhoods, and TPr = 0, there

exist a perfect mapping.

TPr =
1

n(n− 1)

n∑
g=1

n−1∑
f=1

log(

f∏
p=1

Q1(g, p)Q2(g, p))
1
2f (2.114)

where Q1(i, j) and Q2(i, j) are the distances between the point i and its jth nearest neighbours.

2.3.5 Konig’s Measures (KM)

KM measures the local structure preservation based on the ranks order of the orignal and the

embedded spaces.

KM =
1

3kn

n∑
i=1

k∑
j=1

KMij (2.115)

KM ∈ [0, 1], and where it is 1, it is a perfect embedding.
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2.3.6 Trustworthiness & Continuity (T&C )

T&C includes two parameters trustworthiness and continuity defined as :

MT = 1− 2

nk(2n− 3k − 1)

n∑
i=1

∑
j∈Uk(i)/∈Vk(i)

(r(i, j)− k) (2.116)

MC = 1− 2

nk(2n− 3k − 1)

n∑
i=1

∑
j∈Uk(i)/∈Vk(i)

(r̂(i, j)− k) (2.117)

where k is the neighbourhood size and r(i, j) and r̂(i, j) are the rank of xi ∈ X and yi ∈ Y ,

whereas Uk(i) and V k(i) is the set of those datasamples that are the k nearest neighbours of

high and low dimensional data samples xi(yi). In other words, MT measures that data point

that originally were farther away in the original space are puted as neighbours in the embedded

space, whereas MC that datapint that are originally close and are embedded farther away in

the embedded space. T&C is measures

Qt = αMT + (1− α)MC (2.118)

where α ∈ [0, 1].

2.3.7 Local Continuity Meta-Criterion (LCMC)

LCMC checks the performance of a dimensionality reduction method based on the degree of

overlap between the neighbours sets of a data samples and their corresponding embedding as:

Qk = 1− 1

nk

n∑
i=1

(
ΨX
k (i) ∩Ψy

k(i)

)
− k2

n− 1
(2.119)

where k is the number of neighbours and ΨX
k (i) and Ψy

k(i) are the index sets of of x(i) and

y(i)’s k data samples. Qk takes value between 0 and 1, where values close to 1 means a high

neighbourhood overlaped between the high and low dimensional spaces.
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2.3.8 Mean Relative Rank Error (MRRE)

(MRRE) is based on the ranks of pairwise Euclidean distances withing local neighbourhoods.

MRRE is similar to T&C and defines two elements:

WT = 1− 1

Hk

n∑
i=1

∑
j∈Uk(i)

∣∣∣∣r(i, j)− r̂(i, j)∣∣∣∣
r(i, j)

(2.120)

WC = 1− 1

Hk

n∑
i=1

∑
j∈Vk(i)

∣∣∣∣r(i, j)− r̂(i, j)∣∣∣∣
r̂

(2.121)

where k is the size of the neighbourhood and

Hk = n
k∑
i=1

∣∣∣∣n− 2i+ 1

∣∣∣∣
i

(2.122)

QM = βWT + (1− β)WC (2.123)

2.3.9 Co-ranking matrix

Co-ranking matrix is also a measure of the dimensionality reduction method quality. Let us

define DISN×N and disN×N the matrixes of pairwise distances in the high and low dimensional

spaces, respectively. In both spaces the rank matrices RNXN and rNXN of the distance matrixes

DISNXN and disNXN are calculated as follows:

Rij =
∣∣{k : DISik < DISij}

∣∣ (2.124)

rij =
∣∣{k : disik < disij}

∣∣ (2.125)
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where |·| defines the set of cardinality. The co-ranking matrix Q is defined by

Qkl =
∣∣{(i, j) : Rij = k and rij = l}

∣∣ (2.126)

Errors generated by a dimensionality reduction method correspond to off-diagonal entries of

the co-ranking matrix [87]. A diagonal co-ranking matrix represents a perfect dimensionality

reduction method.

In addition to the above-mentioned methods, a difference matrix named Retained-Structure is

constructed.

2.3.10 Retained-Structure

Retained-Structure is a matrix that contains the difference between the matrix that contains

the neighbourhood rank of the high dimensional space data and the matrix that contains the

neighbourhood rank of the low dimensional space data. In an ideal case, the Retained-Structure

is a matrix that contains only element 0 (zero). Non-zero elements indicate a failure to retain the

neighbourhood structure and are positive or negative. A positive number Pij = +in indicates

that the method has jumped +in closer the jth data sample to the ith data sample. By contrast,

a negative number Pij = −in indicates that the method has enforced the ith data sample to be

in positions far away from the jth data sample. Overall, positive values in Retained-Structure

can cause tear whereas negative values can cause false neighbours. Also, error E has been

defined as E = sum(abs(in)), such that the lower the E, the better the method.

As can be seen, there are many quality assessment methods, but not all of them will be used

in this research. Kendall’s Tau, Trustworthiness & Continuity, and Co-ranking matrix will be

employed to analyse the dimensionality reduction methods in terms of the scale of structures

they have captured. In addition, the Retained-Structure matrix has been proposed in this

research to analyse the impact of dissimilarity measures in structure maintaining practically.

However, the Retained-Structure matrix can also be used to compare the dimensionality re-

duction method, although it has been suggested to be used when the number of data samples
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is small.

2.3.11 Summary and Literature Gap

Although there are different quality assessment methods, only a few researchers [88, 89, 90, 91]

have integrated them to demonstrate the performance of the dimensionality reduction method.

The Experimental Results Chapter indicates that tuning parameters has a significant impact

on the maintenance of high dimensional space data structure, and measuring the quality of a

dimensionality reduction is essential in the trustworthiness of the low dimensional space data.

2.4 Chapter Summary

In summary, the literature review presented a broader review on the dimensionality reduction

techniques emphasising the factors that impact the scale of maintained data structure. Also,

a review of supervised dimensionality reduction techniques has been provided by highlighting

their applicability for visualisation and classification purposes. This research has also reviewed

quality assessment techniques for dimensionality reduction techniques in structure maintenance.

The review has been finalised by identifying two major gaps in the literature as follows:

1. Misses a dimensionality reduction technique that captures the best data structure of any

data type without requiring tuning the time-consuming parameters, and

2. Lacks theoretical studies on the impact of dissimilarity measures on the structure main-

taining and classification accuracy.



Chapter 3

Methodology: Developed Approaches

This Chapter presents four developed dimensionality reduction approaches, SDD, MSDD,

parameter-free SDD and parametric SDD. SDD, MSDD, and parameter-free SDD approach

to capture a better data structure in less computational time than existing dimensionality re-

duction approaches. Pseudocode, implementation guide and complexity analyses have been

presented to describe better the developed approaches. In addition, theoretical analyses have

been presented to analyse the performance of parameter-free SDD.

As concluded in the literature gap, there lacks a dimensionality reduction method that success-

fully maintains the structure of heavily curved manifold data types and does not require tuning

the number of neighbours or any costly parameter. t-SNE, UMAP, Trimap and DD-HDS are

the dimensionality reduction methods that work well in heavily curved manifolds; however, their

performance in terms of the maintained data structure scale depends on tuning parameters such

as the number of neighbours, perplexity, and some other parameters that their tuning makes

the dimensionality reduction a very costly process. In addition, t-SNE, UMAP, Trimap and

DD-HDS calculate the similarity between data samples considering the Gaussian distribution,

which itself favours more short distances than larger ones. Consequently, all the mentioned

methods do not work well when the maintenance of large distances is essential. Also, in some

methods like t-SNE, which uses different distribution in high and low dimensional spaces, it

has occurred the problems of tears and false neighbours.

62
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To overcome all problem occurred in the methods mentioned above, Same Degree Distribution

(SDD) method [92] for dimensionality reduction is proposed, together with Multi Same De-

gree Distributions (MSDD) and parameter-free SDD, aiming to capture the geometry of data

having low dimensional representation in non-smooth and developable manifolds, in very less

computational time.

3.1 Same Degree Distribution (SDD) Approach

This research aims to overcome all mentioned problems of the current methods by proposing

Same Degree Distribution (SDD). SDD has been designed to:

1. Captures better the global data structure by employing the degree-distribution. Degree-

distribution uses the probability density function as:

(pdegm)ij =
(1+dis(xi,xj))

−degm∑
k 6=l

(1+dis(xk,xl))−degm
.

Note that probability density function of Student-t distribution is:

(pdegm)ij =
(1+dis(xi,xj))

− degm+1
2∑

k 6=l
(1+dis(xk,xl))−

degm+1
2

.

Degree-distribution (deg = 1) is the same as Student-t (deg = 1), and for greater degrees,

degree-distributions (deg > 1) are sharper than Student-t distributions (deg > 1).

On the other hand, the degree-distribution has longer tails than the Gaussian distribution

(2.76), and this means the similarities generated by degree-distribution converges slower

to zero than the Gaussian distribution. As a result, employing the degree-distribution

instead of Gaussian distribution makes SDD a more global method than other ones that

are Gaussian based.

2. SDD does not require tuning the number of neighbours, perplexity, but instead, it requires

tuning the deg of degree-distribution. The range of degree in degree-distribution is from 1

to 15, where degree-distribution with deg = 1 is smoother, and as the degree increases, the

sharper the method becomes, by favouring the short distance preservation and neglecting

global structure. This makes SDD a significantly less computational method than other
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methods that require the number of neighbours or perplexity, ranging from 1 to the total

number of samples -1.

3. SDD employs the same degree degree-distribution, to prevent the problem of tears and

false neighbours.

SDD is a nonlinear dimensionality reduction technique with pseudocode shown in Algorithm

1. It employes degree-distribution in the high (3.3) and the low (3.4) dimensional spaces to

capture the local and global data structure. Degree-distribution is Student-t distribution when

the degree of freedom is 1, and for greater degrees, it looks as sharper Student-ts. SDD in-

tends to find a suitable degree to best capture the structure of the data. Degree-distributions

are more sensitive to small distances, and the greater the distance, the less sensitive degree-

distribution becomes. Thus, rescaling the pairwise distances of high dimensional data into the

interval range between 0 and 1 would be an essential step in the performance of the proposed

approach in terms of capturing the data structure. As a result, high dimensional space simi-

larities of a degree-distribution will be calculated using the scaled Euclidean distances instead

of the Euclidean distances. Kullback-Leibler is the loss function used in SDD to approximate

the degree-distribution in the low dimensional space with the degree-distribution in the high

dimensional space:

C1 =
∑
i 6=j

(pdegm)ij log(
(pdegm)ij
(qdegm)ij

(3.1)

where degm is the degree of degree-distribution m, m = 1 : n. SDD intends to minimize the

cost function C1 as (3.2):

loss1 = min (C1) (3.2)

where

(pdegm)ij =
(1 + dis(xi, xj))

−degm∑
k 6=l

(1 + dis(xk, xl))−degm
(3.3)
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(qdegm)ij =
(1 + dis(yi, yj))

−degm∑
k 6=l

(1 + dis(yk, yl))−degm
(3.4)

Algorithm 1 SDD

Require: Input :
X ∈ RNxD, number of iterations H, learning rate η, momentum α, number of degree-
distributions n, degree degm, initial low dimensional data Y 0 = y1, ..., yN ∈ N(0, 10−4I), ε.

Step 1 :
Compute the high dimensional space similarities (pdegm)ij using (3.3) and store in matrix
Pdegm .

Step 2 :
Compute the low dimensional space similarities (qdegm)ij using (3.4) and store in matrixQdegm .

Step 3 :
Compute the gradient δC1

δ yi
where C1 is defined in (3.1).

Step 4 :
Minimize the objective function using the Gradient Descent optimisation algorithm
and update the low dimensional space as: Y h = Y h−1 + η δC1

δyi
+ α(Y h−1 − Y h−2).

The optimisation algorithm will stop either achieves the maximum number of it-
erations H or the Kullback-Leibler value is lower than the minimum threshhold ε.

Output :
Low dimensional space represenation Ybestdegm .

However, the minimal loss function value of (3.2) does not reflect how well the data structure

is captured. Thus, to have a better indication of the goodness of a dimensionality reduction

method, we propose the use of Kendall’s Tau correlation coefficient (τ). This coefficient (τ)

measures the correlation between distance rank of the high and the low dimensional data as in

(2.111). A high value of τ means that the neighbour’s rank is captured. In terms of comparison,

the best dimensionality reduction method is the method with the highest value of τ .

3.1.1 Complexity Analysis

SDD needs to create two matrixes with N ×N to store distances in both high and low dimen-

sional spaces and another matrix that stores the difference P −Q with N ×N , where P and Q

are the similarity matrixes of high and low dimensional space data. In total, the computational
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and memory complexity of SDD is O(nN2), since it needs to tune the deg : 1 : n, and n = 15

[92].

3.1.2 Implementation Guidance of SDD

The performance of SDD is related to the degree(s) of degree-distribution(s), and the selection

of the degree of degree-distribution associates with 1) the high dimensional data distance distri-

bution and 2) the dimensionality reduction purpose. In the case of data with a large fraction of

large distances and small fractions of small distances, as shown in Fig. 3.1(a), employing small

degree degree-distribution(s) is suggested. Degree-distributions with a small degree (i.e. deg

1, 2), has heavy tails, which means high sensitivity to large distances. High degree (deg > 5)

degree-distribution(s) is suggested to be employed in datasets that have a large fraction of

small distances (Fig. 3.1(c)), and medium degree degree-distribution(s) should be employed in

datasets with a large fraction of medium distances (Fig. 3.1(b)). However, this is an intuitive

judgement, and the simulations provided later will generate precise results. If for a user, the lo-

cal structure of the data is more important than the global structure, we suggest employing high

degree degree-distribution(s); otherwise, the employment of low degree degree-distribution(s)

may be more beneficial. The degree of degree-distribution which captures the best structure of

the data is named best degree.

Defining the degree of a degree-distribution also depends on the distance range, and it has to

be noted that degree-distributions are less sensitive to large distances. To solve this problem,

it is proposed propose rescaling the distance ranges into the interval range from 0 to 1.

3.1.3 Rescaling Distance Range

To rescale the pairwise distance range, is proposed dividing every single distance on pairwise

distances with a decent positive number. The Euclidean distance between x1, y1 is calcu-

lated as dis(x1, y1) =
√
x21 + y21, whereas the Euclidean distance between αx1, αy1 is calcu-

lated: dis(αx1, αy1) =
√

(αx1)2 + (αy1)2 =
√

(α)2(x1)2 + (α)2(y1)2 =
√

(α)2((x1)2 + (y1)2) =
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(a)

(b)

(c)

Figure 3.1: Three distance distributions.
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Figure 3.2: Scaled Euclidean distance.

(a) (b)

Figure 3.3: Distributions of Euclidean distances(a) and scaled Euclidean distances (b) of Make Blob
data with 500 samples.

α
√

((x1)2 + (y1)2) = αdis(x1, y1). As shown in Fig. 3.2 and proved above, if all sample values

are scaled by a positive number α, the Euclidean distance calculated between the scaled sam-

ples also scales by the positive number α. Distributions of Euclidean distance and the scaled

Euclidean distance can be visually seen in Fig. 3.3(a) and Fig. 3.3(b), respectively. In SDD,

α = 1
max dis(xi,xj)

, due to the high sensitivity of the degree-distribution(s) in the value range

between 0 and 1.

For some datasets, one degree-distribution is not sufficient to capture enough data structure,

and therefore more degree-distributions are needed to be applied. To deal with this, is presented

a multi-distribution-based approach Multi SDD (MSDD), as discussed in the following Section.
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Figure 3.4: Three degree-disstributions.

3.2 Multi Same Degree Distribution (MSDD) Approach

This research proposes an extension of SDD named Multi Same Degree Distributions (MSDD).

MSDD is based on SDD, but it adds more distributions to capture better the global or local

data structure. In other words, SDD can be seen as the simple case of MSDD. All idea behind

the MSDD is that employing one distribution may not be sufficient for capturing both local

and global data structure. Using different degree-distributions may improve the scale of the

maintained data structure since high-degree degree-distribution gives more priority to the short

distances, and as the degree decreases to 1, more favours large distances, as also shown in Fig.

3.4, 3.5. The pseudocode of MSDD is demonstrated below in Algorithm 2.

MSDD employs n degree-distributions, as such n-objective functions must be optimised. Multi-

objective optimisation problems are classically solved using scalarisation techniques [93, 94].

MSDD will be optimised using the composed Kullbak-Leibler (s) as in (3.7) via the scalarisation

techniques [94]:

C2 = a1
∑
i 6=j

(p1)ij log(
(p1)ij
(q1)ij

+ ...+ an
∑
i 6=j

(pn)ij log(
(pn)ij
(qn)ij

(3.5)

To simplify the problem, each degree-distribution has been thought to have the same infuence

(weight am = 1, m = 1 : n) in (3.7). So, the parameters to be tuned are the number of degree-
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Algorithm 2 MSDD

Require: Input :
X ∈ RNxD, calculate matrix DIS of pairwise distance of X and rescale into
the range [0, 1], number of iterations H, learning rate η, momentum α, num-
ber of degree-distributions n, degree degm, Degrees = bestdegm from Algorithm
I, τactual = max(τ), initial low dimensional data Y 0 = y1, ..., yN ∈ N(0, 10−4I), ε.

Step 1 :
Compute the high dimensional space similarities (pdegm)ij using (3.3) and store in matrix
Pdegm .

Step 2 :
Compute the low dimensional space similarities (qdegm)ij using (3.4) and store in matrixQdegm .

Step 3 :
Compute the gradient δC2

δ yi
where C2 defined in (3.5) is reformulated as:

C2 =
∑

m/∈Degrees

∑
i 6=j

(pdegm)ij log(
(pdegm )ij
(qdegm )ij

+
∑

m∈Degrees

∑
i 6=j

(pdegm)ij log(
(pdegm )ij
(qdegm )ij

.

Step 4 :
Minimize the objective function using the Gradient Descent opti-
misation algorithm and update the low dimensional space as:
Y h = Y h−1 + η δC2

δyi
+ α(Y h−1 − Y h−2).

The optimisation algorithm will stop either achieves the maximum number of it-
erations H or the Kullback-Leibler value is lower than the minimum threshhold ε.

Step 5 :
Add more degrees in cases new ∈ {bestdeg − 1, bestdeg + 1}:
if τnew < τactual, Degrees = Degrees

⋃
degmwith τnew , τactual = τnew.

Output :
Low dimensional space represenation YDegrees.
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distributions n and the degree of each degree-distribution degm,m = 1 : n. The problem can

be formulated as below:

C2 =
n∑

m=1

∑
i 6=j

(pdegm)ij log(
(pdegm)ij
(qdegm)ij

(3.6)

loss2 = min (C2) (3.7)

3.2.1 Implementation Guidance of MSDD

MSDD has been projected on top of SDD but including more than one degree-distributions. It

has been proposed at [92] using degree-distributions with one degree up or down the best degree,

such as the combinations of {bestdeg, bestdeg + 1}, {bestdeg, bestdeg − 1}, and {bestdeg, bestdeg −

1, bestdeg + 1}. The benefits of using one degree up or down the bestdeg is it can improve global

structure by including {bestdeg, bestdeg− 1} or local structure by including{bestdeg, bestdeg + 1}

or both of them by including {bestdeg, bestdeg−1, bestdeg+1}. However, it is not guaranteed that

adding more distributions on top of the bestdeg distribution can capture more data structure.

3.2.2 Complexity Analysis

MSDD computational complexity is higher than computational complexity of SDD and it is re-

lated to the number of degree-distributions involved. The computational and space complexity

of MSDD is O((n+3)N2), where n is the number of degree-distributions, since MSDD after cal-

culating the bestdeg (which takes O(nN2)), it checks if the combinations of {bestdeg, bestdeg+1},

{bestdeg, bestdeg−1}, and {bestdeg, bestdeg−1, bestdeg +1}, may generates better structure cap-

turing. The number of degree-distributions used in MSDD will be that number that produces

the highest value of the correlation coefficient Kendall’s Tau (τ).
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3.3 Parameter-free SDD

All benefits using the SDD comes from the degree-distribution with degree 1 (deg = 1), which

is equivalent to Student-t distribution (deg = 1). Degree-distribution generates higher sim-

ilarity values to short distances, and values decrease smoothly as distance increases. When

distance increases infinitely, the degree-distribution with deg = 1 approaches to zero, making

it unfeasible to maintain the large distances structures. To deal with this, Hajderanj et al. [92]

proposed rescaling the pairwise distances of the original data into the range [0, 1]. It has been

demonstrated that the original data X rescales by a single value (maximum value of pairwise

distances), then the distribution of pairwise distances of the rescaled data is the same as the

distribution of pairwise distances of the original data X, as shown in Fig 3.7. (a), (b), and (c).

Rescaling the pairwise distances of the original data is the key to the success of SDD, which has

been demonstrated to capture a good structure of the data; however, SDD still requires tuning

the degree of degree-distribution, which normally ranges from 1 to 15. Degree-distributions

with degrees deg = 15 and deg = 7 are not sensitive to distances between 0.5 and 1, and that

means they can not capture the neighbourhood structure of far away data samples.

To evaluate if close (far away) neighbours in the original high-dimensional space are kept

close (far away) in the embedded low dimensional space, two metrics are commonly used:

Trustworthiness (2.116) and Continuity (2.117). Trustworthiness measures the far away data

samples that embedd close in the low dimensional space, whereas Continuity measures close data

samples that embedd far away in the low dimensional space. As shown in Fig 3.6. (a) and (b),

measured by Trustworthiness and Continuity, degree-distribution with deg = 1, demonstrated

a poorer performance in maintaining the local data structure than degree-distribution with

deg = 7 and deg = 15 (where under consideration is a small number of neighbours). However,

in situations where the number of neighbours under consideration is large, degree-distribution

with deg = 1 shows a better performance in capturing the global data structure than the degree-

distribution with deg = 7 and significantly better than degree-distribution with deg = 15.

Overall, using the degree-distribution with deg = 1 is similar to using the degree-distribution

with the best degree (deg = 7). However, it can be shown that degree-distribution with deg = 1
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Figure 3.5: Two degree-distributions and the sensitivity to large pairwise distances.
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(a)

(b)

Figure 3.6: Trustworthiness (a), and Continuity (b) for SDD with degrees 1, 7 and 15 .
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(a)

(b)

(c)

Figure 3.7: Euclidean Distance (a), Rescaled Euclidean distance to [0,1] (b) and Rescaled Euclidean
distance to [0,2] (c).
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does not perform as good as degree-distribution with deg = 7 in short distances (a small number

of neighbours under consideration). To deal with that issue, it is proposed in the research to

increase the range of pairwise distance of the original data in [0, 2].

3.3.1 Idea and Theoretical Proof

Rescaling pairwise distances in the range [0, 2] can generate a wider range of similarity, as

shown in Fig. 3.8. The range of similarity generated by degree-distribution with deg = 1 having

pairwise distances in [0, 1], ranges in the interval [1, 0.5], whereas the similarity generated by

degree-distribution with deg = 1 having pairwise distances in [0, 2], ranges in a wider interval

[1, 0.2]. Moreover, it can be theoretically proven that rescaling the pairwise distances of the

original data in the range [0, 2] generates a wider range of similarity produced by degree

distribution with deg = 1, as in Proposition 1 below.

Proposition 1 By increasing the rescaled distance range interval, the similarity range of degree-

distribution pij =
(1+dis(xi,xj))

−1∑
k 6=l

(1+dis(xk,xl))−1 also increases.

Proof

Let’s define with d1(xi, xj) the rescaled distance of dis(xi, xj) in the interval [0, 1], and d2(xi, xj)

the rescaled distance of dis(xi, xj) in the interval [0, 2] and d2(xi, xj) = 2 × d1(xi, xj), where

d10(xi, xj) = 0, d11(xi, xj) = 1, d20(xi, xj) = 0, and d22(xi, xj) = 2. Let’s also define with

[L1, U1] and [L2, U2] the the similarity ranges of [0, 1] and [0, 2], respectively.

L1 =
(1 + d10(xi, xj))

−1

S1

=
(1 + 0)−1

S1

=
1

S1

=
1∑

k 6=l
(1 + d1(xk, xl))−1

(3.8)

where S1 =
∑
k 6=l

(1 + d1(xk, xl))
−1

U1 =
(1 + d11(xi, xj))

−1

S1

=
(1 + 1)−1

S1

=
1

2(S1)
=

1

2
∑
k 6=l

(1 + d1(xk, xl))−1
(3.9)
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Figure 3.8: Degree-distribution (deg = 1) in the pairwise distances rescaled in [0-2].
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L2 =
(1 + d20(xi, xj))

−1

S2

=
(1 + 0)−1

S2

=
1

S2

=
1∑

k 6=l
(1 + 2d1(xk, xl))−1

(3.10)

where S2 =
∑
k 6=l

(1 + d2(xk, xl))
−1 =

∑
k 6=l

(1 + 2d1(xk, xl))
−1

U2 =
(1 + d22(xi, xj))

−1

S2

=
(1 + 2)−1

S2

=
1

3(S2)
=

1

3
∑
k 6=l

(1 + 2d1(xk, xl))−1
(3.11)

Based on Eqs. (3.8) and (3.9), the interval of similarity is:

[L1, U1] = [
∑
k 6=l

(1 + d1(xk, xl)),
1

2
∑
k 6=l

(1+d1(xk,xl))−1 ],

and based on Eqs. (3.10) and (3.11) the interval of similarity is:

[L2, U2] = [ 1∑
k 6=l

(1+2d1(xk,xl))−1 ,
1

3
∑
k 6=l

(1+2d1(xk,xl))−1 ].

As such, the length of the interval is

L1 − U1 =
1∑

k 6=l
(1 + d1(xk, xl))−1

− 1

2
∑
k 6=l

(1 + d1(xk, xl))−1
=

1

2
∑
k 6=l

(1 + d1(xk, xl))−1
(3.12)

L2 − U2 =
1∑

k 6=l
(1 + 2d1(xk, xl))−1

− 1

3
∑
k 6=l

(1 + 2d1(xk, xl))−1
=

2

3
∑
k 6=l

(1 + 2d1(xk, xl))−1
(3.13)

To proof that [L2, U2] is wider than [L1, U1], then based on Eqs. (3.12) and (3.13) it has to be

proven that

2

3
∑
k 6=l

(1 + 2d1(xk, xl))−1
>

1

2
∑
k 6=l

(1 + d1(xk, xl))−1
=⇒

2

3
∑
k 6=l

(1 + 2d1(xk, xl))−1
− 1

2
∑
k 6=l

(1 + d1(xk, xl))−1
> 0
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(L2 − U2)− (L1 − U1) =

=
2

3
∑
k 6=l

1
(1+2d1)

− 1

2
∑
k 6=l

1
(1+d1)

=

4
∑
k 6=l

1
(1+d1)

− 3
(∑
k 6=l

1
(1+2d1(xk,xl))

)
6
∑
k 6=l

1
(1+2d1(xk,xl))

∑
k 6=l

1
(1+d1(xk,xl))

=

∑
k 6=l

4
(1+d1(xk,xl))

−
(

3
(1+2d1)

)
6
∑
k 6=l

1
(1+2d1)

1
(1+d1)

=

∑
k 6=l

4((1+2d1))−3((1+d1))
(1+d1)(1+2d1(xk,xl))

6
∑
k 6=l

1
(1+2d1(xk,xl))(1+d1(xk,xl))

=

∑
k 6=l

1
(1+d1(xk,xl))(1+2d1(xk,xl))

∑
k 6=l

4((1 + 2d1(xk, xl)))− 3((1 + d1(xk, xl)))

6
∑
k 6=l

1
(1+2d1(xk,xl))(1+d1(xk,xl))

=

∑
k 6=l

4(1 + 2d1(xk, xl))− 3((1 + d1(xk, xl)))

6

=

∑
k 6=l

(1 + 5d1(xk, xl))

6

Since

∑
k 6=l

(1+5d1(xk,xl))

6
, then the similarity range provided by pairwise distances rescaled in the

range [0, 2] is wider than the similarity range provided by pairwise distances rescaled in the

range [0, 1]. �

However, a further question arises: are the similarity ranges of both short and large distances

expanded the same as the range of pairwise distances increases? To examine the question,

consider short distances d1 short ∈ [L1, H1], d1 large ∈]H1, U1], d2 short ∈ [L2, H2], and d1 large ∈

]H2, U2] as in Fig. 3.9.

To evaluate whether short and large distances have been affected mainly by increasing the range

of pairwise distances, has defined and proven in Proposition 2.

Proposition 2 By increasing the range of rescaled pairwise distances, the similarity range of
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Figure 3.9: Two data segements.

short distances increases more than the similarity range of large distances.

Proof

Since L1, U1, L2, U2 have been calculated in the Proposition 1, then let calculates the H1 and

H2 which are the middle samples of [L1, U1] and [L2, U2], respectively.

H1 =
(1 +

(d10(xi,xj))+(d11(xi,xj))

2
)−1

S1

=
2

3(S1)
=

2

3
∑
k 6=l

(1 + d1(xk, xl))−1
(3.14)

H2 =
(1 +

(d20(xi,xj))+(d22(xi,xj))

2
)−1

S2

=
1

2(S2)
=

1

2
∑
k 6=l

(1 + 2d1(xk, xl))−1
(3.15)

Finally,

[
L1, H1

]
=
[

1∑
k 6=l

(1+d1(xk,xl))−1 ,
2

3
∑
k 6=l

(1+d1(xk,xl))−1

]
, and

[
L2, H2

]
=
[

1∑
k 6=l

(1+2d1(xk,xl))−1 ,
1

2
∑
k 6=l

(1+2d1(xk,xl))−1

]
Then,

L1 −H1 =
1∑

k 6=l
(1 + d1(xk, xl))−1

− 2

3
∑
k 6=l

(1 + d1(xk, xl))−1
=

1

3
∑
k 6=l

(1 + d1(xk, xl))−1
(3.16)
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L2 −H2 =
1∑

k 6=l
(1 + 2d1(xk, xl))−1

− 1

2
∑
k 6=l

(1 + 2d1(xk, xl))−1
=

1

2
∑
k 6=l

(1 + 2d1(xk, xl))−1
(3.17)

To proof that [L2, H2] is wider than [L1, H1], then based on Eqs. (3.16) and (3.17) have to

be checked if 1
2
∑
k 6=l

(1+2d1(xk,xl))−1 >
1

3
∑
k 6=l

(1+d1(xk,xl))−1 which is equivalent with 1
2
∑
k 6=l

(1+2d1(xk,xl))−1 −
1

3
∑
k 6=l

(1+d1(xk,xl))−1 > 0

(L2 −H2)− (L1 −H1)

=
1

2
∑
k 6=l

(1 + 2d1(xk, xl))−1
− 1

3
∑
k 6=l

(1 + d1(xk, xl))−1

=

3
∑
k 6=l

(1 + d1(xk, xl))
−1 − 2(

∑
k 6=l

(1 + 2d1(xk, xl))
−1)

6
∑
k 6=l

(1 + d1(xk, xl))−1
∑
k 6=l

(1 + 2d1(xk, xl))−1

=

3 1∑
k 6=l

(1+d1(xk,xl))
− 2 1∑

k 6=l
(1+2d1(xk,xl))

6
∑
k 6=l

(1 + d1(xk, xl))−1
∑
k 6=l

(1 + 2d1(xk, xl))−1

=

3
∑
k 6=l

(1+2d1(xk,xl))−2
∑
k 6=l

(1+d1(xk,xl))∑
k 6=l

(1+d1(xk,xl))
∑
k 6=l

(d1(xk,xl))

6
∑
k 6=l

(1 + d1(xk, xl))−1
∑
k 6=l

(1 + 2d1(xk, xl))−1

=

∑
k 6=l

(1)+4
∑
k 6=l

(d1(xk,xl))∑
k 6=l

(1+d1(xk,xl))
∑
k 6=l

(1+2d1(xk,xl))

6
∑
k 6=l

(1 + d1(xk, xl))−1
∑
k 6=l

(1 + 2d1(xk, xl))−1

=

∑
k 6=l

(1) + 4
∑
k 6=l

(d1(xk, xl))
1∑

k 6=l
(1+d1(xk,xl))

∑
k 6=l

(1+2d1(xk,xl))

6
∑
k 6=l

(1 + d1(xk, xl))−1
∑
k 6=l

(1 + 2d1(xk, xl))−1

=

∑
k 6=l

(1) + 4
∑
k 6=l

(d1(xk, xl))

6

Also, based on Eqs. (3.14) and (3.9)
[
H1, U1

]
=
[

2
3
∑
k 6=l

(1+d1(xk,xl))−1 ,
1

2
∑
k 6=l

(1+d1(xk,xl))−1

]
, and based
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on Eqs. (3.15) and (3.11)
[
H2, U2

]
=
[

1
2
∑
k 6=l

(1+2d1(xk,xl))−1 ,
1

3
∑
k 6=l

(1+2d1(xk,xl))−1

]
then,

H1 − U1 =
2

3
∑
k 6=l

(1 + d1(xk, xl))−1
− 1

2
∑
k 6=l

(1 + d1(xk, xl))−1
=

1

6
∑
k 6=l

(1 + d1(xk, xl))−1
(3.18)

H2 − U2 =
1

2
∑
k 6=l

(1 + 2d1(xk, xl))−1
− 1

3
∑
k 6=l

(1 + 2d1(xk, xl))−1
=

1

6
∑
k 6=l

(1 + 2d1(xk, xl))−1
(3.19)

To proof that [H2, U2] is wider than [H1, U1], then based on Eqs. (3.18) and (3.19) has to

be checked if 1
2
∑
k 6=l

(1+2d1(xk,xl))−1 >
1

3
∑
k 6=l

(1+d1(xk,xl))−1 which is equivalent with 1
6
∑
k 6=l

(1+2d1(xk,xl))−1 −
1

6
∑
k 6=l

(1+d1(xk,xl))−1 > 0

(H2 − U2)− (H1 − U1) =

=
1

6
∑
k 6=l

(1 + 2d1(xk, xl))−1
− 1

6
∑
k 6=l

(1 + d1(xk, xl))−1

=

∑
k 6=l

(1 + d1(xk, xl))
−1 − (

∑
k 6=l

(1 + 2d1(xk, xl))
−1)

6
∑
k 6=l

(1 + d1(xk, xl))−1
∑
k 6=l

(1 + 2d1(xk, xl))−1

=

1∑
k 6=l

(1+d1(xk,xl))
− 1∑

k 6=l
(1+2d1(xk,xl))

6
∑
k 6=l

(1 + d1(xk, xl))−1
∑
k 6=l

(1 + 2d1(xk, xl))−1

=

∑
k 6=l

(1+2d1(xk,xl))−
∑
k 6=l

(1+d1(xk,xl))∑
k 6=l

(1+d1(xk,xl))
∑
k 6=l

(d1(xk,xl))

6
∑
k 6=l

(1 + d1(xk, xl))−1
∑
k 6=l

(1 + 2d1(xk, xl))−1

=

∑
k 6=l

(d1(xk, xl))
1∑

k 6=l
(1+d1(xk,xl))

∑
k 6=l

(1+2d1(xk,xl))

6
∑
k 6=l

(1 + d1(xk, xl))−1
∑
k 6=l

(1 + 2d1(xk, xl))−1

=

∑
k 6=l

(d1(xk, xl))

6

As proved above, increasing the pairwise distances ranges from [0, 1] to [0, 2], the similarity

range of short distances is increased by

∑
k 6=l

(1)+4
∑
k 6=l

(d1(xk,xl))

6
and similarity range of large distances

increased by

∑
k 6=l

(d1(xk,xl))

6
. Having a wider interval of similarity means a small change in distance
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Figure 3.10: Data samples A1, A2, ..., Am whose distances is in in the range [L1, H1] and [L2, H2].

derives a bigger change in similarity. As such, data samples A1, A2, ..., Am have pairwise dis-

tances in the interval [L1 = 0, H1 = 0.5] if pairwise distances are rescaled in range [0, 1] and in

and in interval [L0 = 0, H2 = 1] if pairwise distances are rescaled in range [0, 2]. �

Based on the proof of Proposition 2, the interval of similarity between data samplesA1, A2, ..., Am

with pairwise distances rescaled in the interval [L0 = 0, H2 = 1] will be

∑
k 6=l

(1)+4
∑
k 6=l

(d1(xk,xl))

6
wider

than the interval of similarity between data samples A1, A2, ..., Am with pairwise distances

rescaled in the interval [L1 = 0, H1 = 0.5]. So, if data samples A1 and A2 are close and A1 and

A3 are far away, with pairwise distances d1(A1, A2) = 0, d1(A1, A3) = 5 and d2(A1, A2) = 0,

d2(A1, A3) = 1, then is more possible that datapoints A1, A2 and A3 will maintain their struc-

ture using pairwise distances rescaled to the interval [0, 2] rather than scaled in the interval

[0, 1], due to the huge difference provided between small distances similarities and large distance

similarities.

In other words, a wider similarity interval means a better-maintained structure. It is also visible

that increasing the pairwise distance range has an impact more on short distances than on large

distances. Overall, the increase of the rescaled range has a negative impact on capturing local

data structure, which is one of the disadvantages of using degree-distribution with deg = 1 in

the rescaled distance range [0, 1].

Additionally, based on Proposition 2, if the range of rescaled pairwise distances increases to

[0, 2], the global structure destroys. Consequently, rescaling the pairwise distances in the

interval [0, 3] or [0, 4] may improve the local structure maintenance. However, it destroys the

maintenance of the global data structure because degree-distribution converges to zero when

the pairwise distances increase. In conclusion, this research proposes rescaling original data

in the interval [0, 2] due to the sensitivity that degree-distribution with deg = 1 has in this
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interval.

Algorithm 3 Parameter-free SDD

Require: Input :
X ∈ RNxD, calculate matrix DIS of pairwise distance of X and rescale
into the range [0, 2], number of iterations H, learning rate η, momen-
tum α, initial low dimensional data Y 0 = y1, ..., yN ∈ N(0, 10−4I), ε.

Step 1 :
Compute the high dimensional space similarities (pij) using (3.22) and store them in P .

Step 2 :
Compute the low dimensional space similarities (qij) using (3.23) and store them in Q.

Step 3 :
Compute the gradient δC1

δ yi
where C1 is defined in (3.20).

Step 4 :
Minimize the objective function using the Gradient Descent optimisation algorithm:
Y h = Y h−1 + η δC2

δyi
+ α(Y h−1 − Y h−2).

The optimisation algorithm will stop either achieves the maximum number of it-
erations H or the Kullback-Leibler value is lower than the minimum threshhold ε.

Output :
Low dimensional space represenation Y .

As such, it is proposed to use SDD with degree (deg = 1) in the rescaled pairwise range in [0, 2].

Using SDD with deg = 1 in the rescaled range [0, 2] is named as parameter-free SDD as shown

in Algorithm 3, and like SDD, it uses Kullback-Leibler to approximate the degree-distribution

in the low dimensional space with the degree-distribution in the high dimensional space:

C1 =
∑
i 6=j

pij log(
pij
qij

) (3.20)

Parameter-free SDD intends to minimize the cost function C1 as :

loss1 = min (C1) (3.21)
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where

pij =
(1 + dis(xi, xj))

−1∑
k 6=l

(1 + dis(xk, xl))−1
(3.22)

qij =
(1 + dis(yi, yj))

−1∑
k 6=l

(1 + dis(yk, yl))−1
(3.23)

3.3.2 Complexity Analysis

Parameter-free SDD needs to create two matrixes with N × N to store distances in both

high and low dimensional spaces and another matrix that stores the difference P − Q with

N ×N . In total, the computational and space complexity of parameter-free SDD is O(N2) and

is significantly less than the computational and space complexity of SDD and MSDD.

3.4 Parametric SDD

Although SDD is an excellent structure capturing method, it is still not feasible for the out-

of-the sample data. Producing a parametric SDD is beneficial in terms of saving computa-

tional time and resources. Most of the dimensionality reduction techniques are non-parametric

methods, and the parametric methods are PCA and RBM. PCA is one of the most famous

parametric dimensionality reduction methods; however, it is a linear method that favours pre-

serving global data structure at the expense of neglecting local data structure. Also, RBMs, a

parametric method, favours capturing the global data structure, and it is a more complicated

method due to the number of parameters required to tune. RBMs were proposed [95] to make

t-SNE a parametric method. Parametric t-SNE is intended to maintain the local data struc-

ture, whereas RBMs maximises the data covariance, and that it means it captures the global

data structure. And as a result, parametric t-SNE is ineffective in preserving well-separated

clusters. It contrasts with RBM’s objective function that maximises the variance. To deal
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Figure 3.11: Framework of Learning Projection.

with this problem, using supervised learning with neural networks was proposed [96] to make

t-SNE a parametric method. A neural network was trained to learn the two-dimensional data

generated by a given dimensionality reduction method (t-SNE). This approach has been very

effective in using high dimensional data in data structure capturing, scalability, and simplicity

of genericity [95]. It minimises the distance between the two-dimensional data generated by

the standard method and the two-dimensional data generated by the trained neural network.

Motivated by the effectiveness of using neural networks (ANN) to learn how to transform the

original high-dimensional data to its corresponding low-dimensional data, parametric SDD is

designed to use ANN to mimic the low-dimensional data generated from SDD in out of sample

data. Note that SDD is an excellent method for capturing the structure of complex, heavily

folded data, and the parametric method will mimic the results generated by the SDD. As a

result, the low dimensional data generated by parametric SDD will have captured better the

data structure than any other parametric method. The logical flowchart of the project for

training an NN to learn an embedding is shown in Fig. 3.11. A successfully trained NN can be

used to embed any new data, and therefore, this makes SDD a parametric method. In other

words, the trained NN provides an explicit model to estimate the implicant embedded formed

by SDD.

To testify the neural network, the dataset X will be split into training set Xe and testing set Xt,

where Xe will be used to train the neural network, whereas Xt to test the neural network. The
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Figure 3.12: Network architecture employed.

neural network uses Xe and the two-dimensional data generated by dimensionality reduction

techniques DR(Xe). Each datasets used is randomly split into 80% training the network and

20% to validate the network. After the ANN has achieved satisfactory results in terms of

classification accuracy, the network be used to embedd will predict Xt.

The architecture of the ANN employed is shown in Fig. 3.12, and it has three fully connected

hidden layers with 256, 512 and 256 units, respectively, using the ReLU activation function.

The last layer has two elements and uses a sigmoid function to encode the two-dimensional

projection, scaled to the interval [0,1]. The optimisation method used for the training is the

ADAM optimiser, a derivate of the stochastic gradient descent. The training will last up to 80

epochs and stop when there is no significant change to the loss in three successive epochs. The

cost function used is the Mean Squared Error (MSE), can be expressed as following:

MSE =
1

N

N∑
i=1

‖DR(Xe)i −NN(Xe)i‖2 (3.24)

where DR(Xe)i, NN(Xe)i are the ground truth of two dimensional data generated by the

dimensionality reduction method (DR) and the network (NN), respectively.
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3.5 Chapter Summary

This Chapter has been proposed three nonlinear dimensionality reduction techniques, SDD,

MSDD and parameter-free SDD. SDD employs the same degree-distribution in high and low

dimensional spaces and tunes degree-distributions to generate the highes Kendall’s Tau (the

representation of structure capturing). It can unfold heavily curved manifold data very well, im-

proves the global data structures compared with other methods such as t-SNE, Umap, Trimap,

DD-HDS. Also, SDD saves computational time since it does not require tuning the number of

neighbours, perplexity, but instead, it requires tuning the degree, which makes SDD a signifi-

cantly less costly process than other methods. MSDD is s SDD based method, such that it has

all benefits of SDD. However, it changes from SDD in two aspects: 1) it captures better the

local and global data structure, and 2) it is more expensive than SDD as it employs more than

one distribution. However, in the previous section of MSDD, an implementation guide clarifies

how many distributions and which distribution to add on top of the distribution employed

by SDD. However, there is no sure if adding distribution improves the structure maintenance.

In the worse example, MSDD will generate the same low dimensioanl data as SDD in high

computational time. The third approach is parameter-free SDD, which is similar to SDD, but

it does not require tuning the degree, and consequently, it saves computational time. Also,

parameter-free SDD changes from SDD in the way it rescales the similarity of high dimensional

data in the range [0, 2] instead of the range [0, 1] that SDD does. Also, here is the proposed

parametric SDD, which can generalise the low dimensional data produced by SDD for out of

sample data.

All the proposed approaches performances will be demonstrated and compared with other

methods in the next Chapter.



Chapter 4

Experiments and Discussions on

Developed Approaches

This Chapter is organised into five Sections, experimental results of SDD, experimental results

of MSDD, experimental results of parameter-free SDD, experimental results parametric SDD,

and Chapter Summary. The four first Sections show the experimental results of each of the

proposed approaches, evaluated by the scale of the maintained data structure and computa-

tional time. The maintained data structure has been measured considering Kendall’s Tau,

Co-ranking matrix, Trustworthiness, Continuity, and LCMC. The last Section summarises the

main findings of experimental results.

4.1 Experimental Results of SDD

In this Section, the proposed method SDD is tested and compared with several benchmark

dimensionality reduction techniques: PCA, MDS, Isomap, LLE, t-SNE, UMAP, and Trimap,

using several typical benchmark datasets including Iris, Breast Cancer, Swiss roll, and MNIST.

The fourth considered datasets represent different fractions of pairwise distances, such as Breast

Cancer and Iris datasets have a large fraction with small distances. In contrast, Swiss Roll

and MNIST datasets have the most significant fraction of medium to large distances. Thus, by

89
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considering these fourth datasets, we demonstrate the strengths and weaknesses of the proposed

algorithms since their performances closely depend on the data distance distribution. Also,

the considered datasets are small (with a small number of data samples) because considering

large datasets is very time-consuming for methods such as t-SNE, UMAP, Isomap due to the

requirenment of parameter tuning.

All algorithms were implemented in Python with the same number of iterations of 2000. PCA,

MDS, Isomap, LLE, LE, and t-SNE, were implemented using their Sklearn versions, and for

UMAP1, Trimap2, SDD (MSDD and parameter-free SDD) 3, their GitHub versions were ap-

plied. For Isomap, LE, UMAP, and t-SNE, the parameter k (pr for t-SNE) was tuned in the

range (1, N − 1), to find an appropriate number of neighbours which could produce the best

low dimensional representation in relation to the structure capturing as shown in Figs. 4.2,

4.7, 4.12, and 4.17, where has been demonstrated that tuning those parameters has a huge

impact of the scale of the maintained data structure for each considered dataset, respectively.

For LLE, in the MNIST dataset, the number of neighbours k was tuned up to 1000 due to the

memory problem. TriMap also failed to obtain a number of neighbours of more than 199, so

the number of neighbours was tuned up to 198.

The effectiveness of each of the methods was evaluated using the Co-ranking matrix and τ

(Kendall’s Tau). The Co-ranking matrix indicates a perfect mapping if the matrix is diagonal,

and the off-diagonal entries are the errors. τ takes values between -1 and 1, and when τ is

1, there exists a perfect correlation between ranks corresponding to an ideal mapping. The

performance of each method in terms of Kendall’s Tau τ along with the computational time t

(in seconds) and the number of neighbours k (perplexity pr for t-SNE) presented in Tables 4.1,

4.2, 4.3 and 4.4, respectively for four considered datasets Iris, Breast Cancer, Swiss Roll and

MNIST. Visualizations of the four considered datasets have been presented in Figs. 4.3, 4.8,

4.13, and 4.18, respectively.

1https://github.com/lmcinnes/umap
2https://github.com/eamid/trimap
3thttps://github.com/hajderal/SDD



4.1. Experimental Results of SDD 91

4.1.1 Iris data

The first dataset considered is the Iris dataset, which contains 150 flowers and 4 attributes

for each (length and width of petal and sepal). There are three different types of flowers and

fifty samples per each. The distribution of pairwise distances for Iris dataset are presented

in Fig. 4.1, where is presented by a balance on short, medium and large distances. PCA,

Figure 4.1: Euclidean distance distribution of Iris dataset.

MDS, Isomap, LLE, LE, t-SNE, UMAP, Trimap and SDD have been implemented to the Iris

dataset. The parameters (k : 1, N − 1, pr : 1, N − 1 and deg : 1, 15) have tunned for Isomap,

LLE, LE, t-SNE, UMAP, Trimap and SDD, to reveal the best low dimensional representation

in terms of structure capturing, evaluated by Kendall’s Tau coefficient as shown in Fig. 4.2.

As shown in Fig. 4.2, tuning parameters such as k, pr or deg is crucial in the performance

of each method, demonstrated by fluctuations in the τ values per each method. The best

performances of considered methods in terms of τ are presented in Table 4.1, also described by

the computational time.

From the simulation results, the best method with the highest τ of 0.9673 (Table 4.1) was SDD

(deg: 8) with two-dimensional visualisation in Fig 4.3 (a). The highest performance of SDD is

also confirmed by the Co-ranking matrix, shown in Fig 4.4(a), with fewer off-diagonal entries
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in the top-centre Sections, which indicates good short and medium distance preservations.

However, the Co-ranking matrix of SDD (deg: 8) has more off-diagonal entries than the Co-

ranking matrixes of Isomap shown in Fig. 4.4 (p) and PCA shown in Fig. 4.4 (k), in the

bottom right Sections. Thus, for the Iris dataset, SDD (deg: 8) performed better than the

other methods of local structure capturing, and it performed similarly with Isomap and PCA

for global structure-preserving.

Figure 4.2: Kendall’s Tau values based on the number of neighbours k (perplexity (pr) or degree of
freedom (deg)).

To better investigate the local and global data structure, three other metrics, Trustworthiness,

Continuity, and LCMC have been used as shown in Fig. 4.5. Trustworthiness has been used to

measures the far away data samples that become close in the low dimensional space, Continuity

measures close data samples that embed far away in the low dimensional space, and LCMC

measures the degree of overlap between neighbours sets ain the original and embedding data.

Based on Fig. 4.5, it can be seen that the best method that performs the best in terms of

Trustworthiness, Continuity, and LCMC is SDD, in both local and global data structures.
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Table 4.1: THE KENDALL’S TAU COEFFICIENTS FOR IRIS DATA

Parameters
Method (Parameter) τ Time (Seconds)

SDD (deg : 8) 0.9673 14.23
MDS 0.9569 1.26
PCA 0.9626 0.35
Isomap (k : 146) 0.9627 2.38
LLE (k : 32) 0.6819 7
LE (k : 65) 0.6460 6.72
t-SNE (pr : 135) 0.9252 263
Umap (k : 65) 0.5772 554
Trimap (k : 146) 0.8238 992

Although, considering the computational time, SDD was more expensive than PCA, MDS,

Isomap, LLE and LE; however, it outperformed t-SNE, UMAP, and TriMap.

(a) Iris-SDD (deg: 8) (b) Iris-MDS (c) Iris-PCA

(d) Iris-Isomap (k: 146) (e) Iris-LLE (k: 32) (f) Iris-LE (k: 65)

(g) Iris-t-SNE (pr: 135) (h) Iris-UMAP (k:65) (i) Iris-TriMap (k: 146)

Figure 4.3: The visualisation of the then random samples of two-dimensional representation of the
Iris (4 attributes) generated by SDD, MDS, PCA, Isomap, LLE, LE,t-SNE, UMAP and Trimap.
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(a) Iris-SDD (deg: 8) (b) Iris-MDS (c) Iris-PCA

(d) Iris-Isomap (k: 146) (e) Iris with LLE (k: 32) (f) Iris-LE (k: 65)

(g) Iris-t-SNE (pr: 135) (h) Iris-UMAP (k: 65) (i) Iris-TriMap (k: 146)

Figure 4.4: The Co-ranking matrixes of the Iris (4 attributes) by SDD, MDS, PCA, Isomap, LLE,
LE, t-SNE, UMAP, and TriMap.
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(a) Trustworthiness

(b) Continuity

(c) LCMC

Figure 4.5: Trustworthiness (a), Continuilty (b), and LCMC (c) for Iris data.
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4.1.2 Breast cancer

The Breast Cancer dataset4 with 30 attributes is the second dataset considered. The distance

distribution of breast cancer data is shown in Fig. 4.6, where most samples have relatively

short distances, in which SDD is expected to maintain the data structure better.

Figure 4.6: Euclidean distance distribution of Breast Cancer dataset.

Performances of nonlinear methods are related to tuning parameters such as k, pr or deg, as

shown in Fig 4.7. The best two-dimensional representation in terms of structure maintenance

is the one generated by SDD shown in Fig 4.8 (a) because it has the highest Kendall’s Tau with

0.9981, as shown in Table 4.2. Analyzing the Co-ranking matrixes of the Breast Cancer dataset

in Fig. 4.9, there is visible that SDD (deg: 10) with the Co-ranking matrix presented in Fig 4.9

(a) performed better than other methods in maintaining the short, medium and considerable

distance. Also, the best performance of SDD in Breast Cancer data has been confirmed by the

highest performance of three other metrics such as Trustworthiness, Continuity, and LCMC, as

in Fig. 4.10. SDD is more expensive than PCA, MDS, LE; however, it was more helpful than

t-SNE, LLE, and UMAP, TriMap, with higher structure maintenance and less computational

time.
4Load breast cancer from sklearn, Python.
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Figure 4.7: Kendall’s Tau values based on the number of neighbours k (perplexity (pr) or degree of
freedom (deg)).

Table 4.2: THE KENDALL’S TAU COEFFICIENTS FOR BREAST CANCER DATA

Parameters
Method (Parameter) τ Time (Seconds)

SDD (deg : 10) 0.9981 278.41
MDS 0.9970 87
PCA 0.9972 0.21
Isomap (k : 515) 0.9976 243
LLE (k : 556) 0.9728 1524
LE (k : 426) 0.7267 190
t-SNE (pr : 501) 0.8150 5952
Umap (k : 5) 0.709309 6105
Trimap (k : 1) 0.693643 3888
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(a) Breast Cancer-SDD (deg: 10) (b) Breast Cancer-MDS (c) Breast Cancer-PCA

(d) Breast Cancer-Isomap (k:
515) (e) Breast Cancer-LLE (k: 556) (f) Breast Cancer-LE (k: 426)

(g) Breast Cancer-t-SNE (pr:
501) (h) Breast Cancer-UMAP (k: 5) (i) Breast Cancer-TriMap (k: 1)

Figure 4.8: The visualisation of two-dimensional representation of the Breast Cancer (30 attributes)
generated by SDD, MDS, PCA, Isomap, LLE, LE, t-SNE, UMAP, and TriMap.
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(a) Breast Cancer-SDD (deg: 10) (b) Breast Cancer-MDS (c) Breast Cancer-PCA

(d) Breast Cancer-Isomap (k:
515) (e) Breast Cancer-LLE (k: 556) (f) Breast Cancer-LE (k: 426)

(g) Breast Cancer-t-SNE (pr:
501) (h) Breast Cancer-UMAP (k: 5) (i) Breast Cancer-TriMap (k: 1)

Figure 4.9: The Co-ranking matrixes of the Breast Cancer (30 attributes) generated by SDD, MDS,
PCA, Isomap, LLE, LE, t-SNE, UMAP, and TriMap.
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(a) Trustworthiness

(b) Continuity

(c) LCMC

Figure 4.10: Trustworthiness (a), Continuilty (b), and LCMC (c) for Breast Cancer data.
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4.1.3 Swiss Roll

Swiss Roll data with 1600 samples and three attributes is shown in Fig. 4.11(a), and its distance

distribution is shown in Fig. 4.11(b), which is the third dataset considered.

(a) (b)

Figure 4.11: Swiss Roll data (a) and its Euclidean distance distribution (b).

SDD has achieved the highest Kendall’s Tau in deg=1 as shown in Fig 4.12, whereas other

methods such as Isomap, LLE, LE, t-SNE, UMAP and Trimap requires tuning up to the

maximum number of data samples (1600). Also, the two-dimensional representations of SDD,

PCA and Isomap (Fig 4.13) seems visually closer to the original Swiss Roll data shape than

other methods. By examining the Co-ranking matrixes in Fig. 4.14, it can be seen that SDD

(deg: 1), PCA and Isomap performed better than the other methods in preserving the data

structure. SDD (deg: 1) produced the highest τ SDD (deg: 1) of 0.91461, followed by Isomap

and PCA with τ of 0.9121 and 0.9115, respectively, as shown in Table 4.3. Although SDD

was more expensive than two linear dimensionality reduction methods, PCA and MDS, it

performed better than t-SNE, Isomap, LE, LLE, TriMap, and UMAP in structure maintaining

and computational time, as shown in Table 4.3.
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Figure 4.12: Kendall’s Tau values based on the number of neighbours k (perplexity (pr) or degree
of freedom (deg)).

Table 4.3: THE KENDALL’S TAU COEFFICIENTS FOR SWISS ROLL DATA

Parameters
Method (Parameter) τ Time (Seconds)

SDD (deg : 1) 0.9146 1361.60
MDS 0.9041 194
PCA 0.9115 0.67
Isomap (k : 1447) 0.9121 15855
LLE (k : 975) 0.8571 118088
LE (k : 1000) 0.8122 4698
t-SNE (pr : 1507) 0.8683 75437
Umap (k : 3) 0.042234 58097
Trimap (k : 12) 0.6936 10385

SDD has shown an excellent performance of structure capturing evaluated by the other metrics

such as Trustworthiness, Continuity, and LCMC, as in Fig. 4.15.
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(a) Swiss Roll-SDD (deg: 1) (b) Swiss Roll-MDS (c) Swiss Roll-PCA

(d) Swiss Roll-Isomap (k: 1447) (e) Swiss Roll-LLE (k: 975) (f) Swiss Roll-LE (k: 1000)

(g) Swiss Roll-t-SNE (pr: 1507) (h) Swiss Roll-UMAP (k: 3) (i) Swiss Roll-TriMap (k: 12)

Figure 4.13: The visualisation of two-dimensional representation of the Swiss Roll (3 attributes)
generated by SDD, MDS, PCA, Isomap, LLE, LE, t-SNE, UMAP, and TriMap.
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(a) Swiss Rol-SDD (deg: 1) (b) Swiss Roll-MDS (c) Swiss Roll-PCA

(d) Swiss Roll-Isomap (k: 1447) (e) Swiss Roll-LLE (k: 975) (f) Swiss Roll-LE (k: 1000)

(g) Swiss Roll-t-SNE (pr: 1507) (h) Swiss Roll-UMAP (k: 3) (i) Swiss Roll-TriMap (k: 12)

Figure 4.14: The Co-ranking matrixes of the Swiss Roll (3 attributes) generated by SDD, MDS,
PCA, Isomap, LLE, LE, t-SNE, UMAP, and TriMap.
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(a) Trustworthiness

(b) Continuity

(c) LCMC

Figure 4.15: Trustworthiness (a), Continuilty (b), and LCMC (c) for Swiss Roll data.
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4.1.4 MNIST

MNIST with 2500 samples and 784 attributes is the fourth dataset considered, with distance

distribution shown in Fig. 4.16, dominated by entries with medium, large distances. The best

Figure 4.16: Euclidean distance distribution of MNIST data.

method in terms of structure maintenance is SDD (deg: 1) achieved the highest τ of 0.6065,

followed by t-SNE (0.5495) and LE (0.5231), as shown in Table 4.4. As we can see, SDD hugely

provided better structure preservation over the other considered methods using only deg = 1

as shown Fig 4.17. Furthermore, SDD was less expensive in computational time than Isomap,

t-SNE, UMAP, Trimap LE, and LLE. Although PCA and MDS were faster than SDD, their

performances in terms of τ were significantly low than the performance of SDD shown in Table

4.4. The two-dimensional visualisations shown in Fig 4.18 are quite similar and confirmed by

the Co-ranking matrix in ig 4.19. To identify which of the methods has better captured local or

global data structure are used other metrics such as Trustworthiness, Continuity, and LCMC

are as in Fig. 4.20. The usage of SDD has been beneficial with the MNIST dataset in terms of

both structure maintenance and computational time.
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Figure 4.17: Kendall’s Tau values based on the number of neighbours k (perplexity (pr) or degree
of freedom (deg)).

(a) MNIST-SDD (deg: 1) (b) MNIST-MDS (c) MNIST-PCA

(d) MNIST-Isomap (k: 2222) (e) MNIST-LLE (k: 5) (f) MNIST-LE (k: 1972)

(g) MNIST-t-SNE (pr: 2216) (h) MNIST-UMAP (k: 1384) (i) MNIST-TriMap (k: 194)

Figure 4.18: The visualisation of two-dimensional representation of the MNIST (784 attributes)
generated by SDD, MDS, PCA, Isomap, LLE, LE, t-SNE, UMAP, and TriMap.
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Table 4.4: THE KENDALL’S TAU COEFFICIENTS FOR MNIST DATA

Parameters
Method (Parameter) τ Time (Seconds)

SDD (deg : 1) 0.6065 2454
MDS 0.5052 5387
PCA 0.3690 4
Isomap (k : 2222) 0.4690 77957
LLE (k : 5) 0.2433 114478
LE (k : 1972) 0.5230 42696
t-SNE (pr : 2216) 0.5495 295591
Umap (k : 1384) 0.3070 236665
Trimap (k : 194) 0.4643 17508

(a) MNIST-SDD (deg:1) (b) MNIST-MDS (c) MNIST-PCA

(d) MNIST-Isomap (k: 2222) (e) MNIST LLE (k: 5) (f) MNIST-LE (k: 1972)

(g) MNIST-t-SNE (pr: 2216) (h) MNIST-UMAP (k: 1384) (i) MNIST-TriMap (k: 194)

Figure 4.19: The Co-ranking matrixes of the MNIST (784 attributes) generated by SDD, MDS,
PCA, Isomap, LLE, LE, t-SNE, UMAP, and TriMap.
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(a) Trustworthiness

(b) Continuity

(c) LCMC

Figure 4.20: Trustworthiness (a), Continuilty (b), and LCMC (c) for MNIST data.
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4.2 Experimental Results of MSDD

Multi SDD (MSDD) adds more distributions on top of the bestdeg that SDD employs. It is

suggested that MSDD should employ degrees that are one more or less than {bestdeg} such as:

{bestdeg, bestdeg + 1}, {bestdeg, bestdeg − 1}, and {bestdeg, bestdeg − 1, bestdeg + 1}. MSDD will

be implemented with the same datasets to SDD, to compare their performances in terms of

structure capturing are evaluated by Kendall’s Tau, Trustworthiness, Continuity and LCMC.

Also, the computational time has been assessed as well.

Based on Table 4.5, for Breast Cancer data, the best degree results to be degree=10, with

Kendall’s Tau (τ = 0.998121), and adding degree-distribution with deg = 9, rises the main-

tained data structure to Kendall’s Tau (τ = 0.998122).

Table 4.5: THE PERFORMANCE OF METHODS (ROWS) IN DATASETS (COLUMNS) IN
TERMS OF KENDALL’S TAU COEFFICIENT AND COMPUTATIONAL TIME

Datasets
(the number of attributes (dimensions) in the original space)

Iris
(4)

Breast Cancer
(30)

Swiss Roll
(3)

MNIST
(784)

M
S

D
D

degbest 8 10 1 1
τ 0.9673284 0.998121 0.914619 0.606540
t 9.49 278.41 562.57 8194.18

deg 8 and 9 10 and 11 1 and 2 1 and 2
τ 0.967309 0.998120 0.914707
t 4.06 34.22 118.93 4177.75

deg 7 and 8 9 and 10 0 and 1 0 and 1
τ 0.967316 0.998122 0.914707 0.600533
t 3.04 25.82 90 3080.225

deg 7,8 and 9 9,10 and 11 0, 1 and 2 0, 1 and 2
τ 0.967334 0.998121 0.914709 0.598738
t 7.61 44 90 8086
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(a) Trustworthiness

(b) Continuity

(c) LCMC

Figure 4.21: Trustworthiness (a), Continuilty (b), and LCMC (c) for Iris data.



112 Chapter 4. Experiments and Discussions on Developed Approaches

(a) Trustworthiness

(b) Continuity

(c) LCMC

Figure 4.22: Trustworthiness (a), Continuilty (b), and LCMC (c) for Breast Cancer data.
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(a) Trustworthiness

(b) Continuity

(c) LCMC

Figure 4.23: Trustworthiness (a), Continuilty (b), and LCMC (c) for Swiss Roll data.
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(a) Trustworthiness

(b) Continuity

(c) LCMC

Figure 4.24: Trustworthiness (a), Continuilty (b), and LCMC (c) for MNIST data.
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Adding more distribution on top of the best degree-distribution in tthe most of datasets does

not improve the maintained data structure, as demonstrated from evaluated parameters such

as Kendall’s Tau in Table 4.5 and Trustworthiness, Continuity and LCMC, shown in Figs. 4.21,

4.22, 4.23, and 4.24.

In summary, adding more distributions destroys the maintained data structure, as shown in

Table 4.5. In addition, employing more than one degree-distributions is more expensive than

using one-degree distribution. As a result, MSDD is more costly than SDD, and in addition,

the computational time increases if the number of degree-distributions employed increases. In

conclusion, based on our experimental results, MSDD does not improve the structure-capturing

in a significant amount; on the other hand, it needs more computational resources.

4.3 Experimental Results of Parameter-Free SDD

Parameter-free SDD is an innovative method that takes the highes performance of SDD but

saves computational time significantly. As it is mentioned in Section 3.3, parameter-free SDD

does not require tuning any parameter, and it uses only deg = 1, which results to be the bestdeg

due to rescaling the pairwise distances in the range [0, 2].

The performance of parameter-free SDD has been evaluated using Kendall’s Tau, Trustwor-

thiness and Continuity and is compared with three different degrees of SDD such as 1, 15

and bestdeg. The experiments are all done on Python with the same number of iterations and

optimisation parameters. The dataset considered are Iris, Breast Cancer, Swiss and MNIST.

Based on experimental results, parametric-free SDD appears provenly appropriate to capture

local and global data structures due to the high sensitivity of degree-distribution with deg = 1

has in the short and large distances into the intervals 0 and 2. As shown in Fig. 3.8, parameter-

free SDD (SDD with deg = 1 in [0, 2]) captures slightly the same the local data structure (short

distances) compared with SDD (deg = best) in [0, 1]. However, parameter-free SDD can capture

global data structure better than SDD (deg = best), as demonstrated in Figs. 4.25 and 4.26.
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In addition, the performance of parameter-free SDD has been evaluated using Kendall’s Tau,

which, as is demonstrated in Table 4.6, is very similar to SDD (deg = best). However, in terms

of computational time, parameter-free SDD is significantly less expensive than SDD, as shown

in Table 4.6. Parameter-free SDD takes 0.41, 7.79, 36.93, 183.94 seconds to generates low

dimensional data of Iris, Breast Cancer, Swiss Rolls and MNIST data instead of 9.49, 111.33,

552.96 and 2452.12 seconds that SDD takes.

Table 4.6: THE PERFORMANCE OF SDD AND PARAMETER-FREE SDD IN TERMS OF
KENDALL’S TAU COEFFICIENT AND COMPUTATIONAL TIME

Datasets

Iris Breast Cancer Swiss Rolls MNIST

deg 8 10 1 1

τ 0.967328 0.998118 0.914711 0.606525SDD
time(seconds) 9.49 111.33 552.96 2454.12

τ 0.967339 0.998086 0.914578 0.607947
Parameter-free SDD

time(seconds) 0.41 7.79 36.93 183.94

In summary, parameter-free SDD can capture the structure of the data very well due to 1)

the long tail of Student-t distribution in capturing the global data structure and 2) to the

advantages of rescaling the pairwise distances in the interval [0, 2], which improves capturing

the local data structure. It might happen that because the sensitivity for large distances is

small when distance is increased into [0, 2], they may be negligible from the cost function,

making the global structure not as good as Student-t (deg = 1). However, the global structure

captured by parameter-free SDD is better than the global data structure captured the best

degree SDD in pairwise distance ranges in [0, 1].
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(a) Trustworthiness (Iris) (b) Continuity (Iris)

(c) Trustworthiness (Breast Cancer) (d) Continuity (Breast Cancer)

(e) Trustworthiness (Swiss Roll) (f) Continuity (Swiss Roll)

(g) Trustworthiness (MNIST) (h) Continuity (MNIST)

Figure 4.25: Trustworthiness and Continuity for SDD with degrees 1, degree (best) and 15 for
rescaled distances in range [0, 1], and parameter-free SDD.
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(a) Trustworthiness (Iris) (b) Continuity (Iris)

(c) Trustworthiness (Breast Cancer) (d) Continuity (Breast Cancer)

(e) Trustworthiness (Swiss Roll) (f) Continuity (Swiss Roll)

(g) Trustworthiness (MNIST) (h) Continuity (MNIST)

Figure 4.26: Trustworthiness and Continuity for SDD with best degrees, and parameter-free SDD.
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4.4 Experimental Results of Parametric SDD

Despite the outstanding performance of parameter-free SDD in structure maintaining and com-

putational time, it still remains an implicit method, which cannot reduce the data dimensional-

ity of new considered data samples. In such as case, proposing an explicit SDD or (parametric

SDD) is crucial in terms of saving computational time and resources. Also, to compare the

performance of parametric SDD and other methods, are considered PCA, MDS, Isomap, LE,

t-SNE, UMAP are implemented in Python with the same number of iterations. For all of the

methods, the procedure is as follows:

1. Reduce data dimensionality of Xe,

2. Train ANN based on Xe and its reduced data from each method, and

3. Reduces the dimensionality of the test data based on each trained ANN.

The performance of Isomap, t-SNE and UMAP depend on some parameters that have been

tunned to check their performance estimated by Kendall’s Tau correlation coefficient (τ).

Dataset considered in this section are non-temporal data such as Synthetic data (MNIST),

Medical data (SEER Breast Cancer), Customer data (Churn data), Image processing data

(AVletters (LIPS)). PCA is a parametric method, and there exists a parametric t-SNE; how-

ever, for comparison reasons, the same Neural Network architecture has been applied to all

methods.

The MNIST data with 60,000 gray images from 0 to 9 with 28×28 pixels will be flattened into

784 dimensional record.5

The SEER Breast Cancer data contains a totally of 291,760 incidences registered in the US

from 1974 to 2017. The original data sets need to be pre-processed and transformed to a target

data set for analysis. The most crucial task in the data pre-processing process is identifying

any data quality issues and adopting appropriate strategies to address them accordingly. The

5MNIST data from Keras.
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data pre-processing process was very time-consuming, and it has eventually led to a resultant

target data set with 260,000 incidences and 961 variables. The variable survival that represents

if a patient survived has been considered the target variable since this analysis aims to identify

crucial factors that potentially affect the survival of a breast cancer patient.

The Churn data contains 9786 customers that are described by 2 variables, a customer is churn

or no.

The AVletters database (LIPS Reading data) consists of three repetitions by each of 10 talkers,

five male (two with moustaches) and five female, of the isolated letters A-Z, a total of 780

utterances. Each talker was requested to begin and end each letter utterance with their mouth

in the closed position. No head restraint was used, but talkers were provided with a close-up

view of their mouths and asked not to move out of the frame. The full face images were further

cropped to a region of 80 × 60 pixels after manually locating the centre of the mouth in the

middle frame of each utterance.

Table 4.7: THE PERFORMANCE OF METHODS (ROWS) IN DATASETS (COLUMNS) IN
TERMS OF KENDALL’S TAU COEFFICIENT

DR algorithm Churn SEER LIPS MNIST

PCA 0.9691 0.5154 0.7391 0.3533
PCA (predict train) 0.9688 0.5152 0.7401 0.3489
PCA (predict test) 0.9693 0.5194 0.7417 0.3401

t-SNE 0.7466 0.2729 0.3824 0.2395
t-SNE (predict train) 0.8509 0.2764 0.3825 0.2413
t-SNE (predict test) 0.8562 0.2796 0.3799 0.2432

Isomap 0.9043 0.4778 0.7399 0.4021
Isomap (predict train) 0.9062 0.4783 0.7399 0.4018
Isomap (predict test) 0.91081 0.4845 0.7416 0.3984

SDD 0.9723 0.7279 0.7948 0.6199
SDD (predict train) 0.9711 0.7258 0.7838 0.6130
SDD (predict test) 0.9715 0.7247 0.7849 0.6059

Note that the ratio of training/testing samples in % is different in different datasets as in Table

4. Training/testing samples (%) is 70%/30%, 50%/50%, 50%/50%, 25%/75% in Churn, SEER
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Breast Cancer, LIPS and MNIST datasets, respectively.

Table 4.8: DATASETS (ROWS) AND TRAINING, TESTING SAMPLES AND DIMENSIONAL-
ITY

Datasets Training Samples (%) Testing Samples (%) Dimensionality

Churn 6850 (70 %) 2936 (30%) 23
SEER Breast Cancer 15000 (50 %) 15000 (50 %) 960
LIPS 9280 (50 %) 9280 (50 %) 4800
MNIST 15000 (25 %) 45000 (75 %) 784

(a) Churn-PCA (b) SEER-PCA (c) LIPS-PCA (d) MNIST-PCA

(e) Predict-train Churn-
PCA

(f) Predict-train SEER-
PCA

(g) Predict-train LIPS-
PCA

(h) Predict-train
MNIST-PCA

(i) Predict-test Churn-
PCA

(j) Predict-test SEER-
PCA

(k) Predict-test LIPS-
PCA

(l) Predict-test MNIST-
PCA

Figure 4.27: The visualisation of the two-dimensional representation of the Churn (23 attributes),
SEER Breast Cancer (960 attributes), Lips (4800 attributes), MNIST (784 attributes) generated by
PCA.
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(a) Churn-t-SNE (b) SEER-t-SNE (c) LIPS-t-SNE (d) MNIST-t-SNE

(e) Predict-train Churn-
t-SNE

(f) Predict-train SEER-
t-SNE

(g) Predict-train LIPS-
t-SNE

(h) Predict-train
MNIST-t-SNE

(i) Predict-test Churn-
t-SNE

(j) Predict-test SEER-t-
SNE

(k) Predict-test LIPS-t-
SNE

(l) Predict-test MNIST-
t-SNE

Figure 4.28: The visualisation of the two-dimensional representation of the Churn (23 attributes),
SEER Breast Cancer (960 attributes), Lips (4800 attributes), MNIST (784 attributes) generated by
t-SNE.

(a) Churn-Isomap (b) SEER-Isomap (c) LIPS-Isomap (d) MNIST-Isomap

(e) Churn-Isomap (f) SEER-Isomap (g) LIPS-Isomap (h) MNIST-Isomap

(i) Churn-Isomap (j) SEER-Isomap (k) LIPS-Isomap (l) MNIST-Isomap

Figure 4.29: The visualisation of the two-dimensional representation of the Churn (23 attributes),
SEER Breast Cancer (960 attributes), Lips (4800 attributes), MNIST (784 attributes) generated by
Isomap.
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(a) Churn-SDD (b) SEER-SDD (c) LIPS-SDD (d) MNIST-SDD

(e) Predict-train Churn-
SDD

(f) Predict-train SEER-
SDD

(g) Predict-train LIPS-
SDD

(h) Predict-train
MNIST-SDD

(i) Predict-test Churn-
SDD

(j) Predict-test SEER-
SDD

(k) Predict-test LIPS-
SDD

(l) Predict-test MNIST-
SDD

Figure 4.30: The visualisation of the two-dimensional representation of the Churn (23 attributes),
SEER Breast Cancer (960 attributes), Lips (4800 attributes), MNIST (784 attributes) generated by
SDD.

Although the ratio of training/testing samples varies for different datasets, as shown in Table

4.8, it can be said that the employed ANN has been trained very good to embed the training

samples and testing samples. Based on the experimental results shown in Table 4.7., it can be

seen that the method that has been captured the best data structure is SDD to all datasets.

As a result, the best structure of testing data has been captured by parametric SDD. Low

dimensional visualisations generated by PCA, t-SNE, Isomap and SDD, and their prediction

have been presented in Figs. 4.27, 4.28, 4.29, and 4.30, respectively.

In summary, parametric methods employ ANN to capture the same data structure as their

corresponding versions. The better the training data structure has been captured, the better

the data structure of testing data will be captured.
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4.5 Chapter Summary

SDD demonstrated significantly higher performance than other dimensionality reduction meth-

ods (i.e., PCA, MDS, LLE, LE, Isomap, t-SNE, TriMap, and UMAP) from the conducted

experiments in terms of the maintained data structure and computational time.

A summary of the simulations results of the three developed approaches, SDD, MSDD and

parameter-free SDD, are presented in Table 4.9. From Table 4.9 can be seen that MSDD

couldn’t improve the scale of maintained data structure by SDD, and it significantly increased

the computational time. As such, employing MSDD can be helpful in cases when the scale

of maintained data structure is essential. On the other hand, parameter-free SDD has pro-

vided excellent performance in both the maintained data structure and computational time.

Parameter-free SDD has demonstrated that it can capture a similar structure of data to SDD

(which requires parameter-tunning) but in less computational time, shown in Table 4.9.

Overall, parameter-free SDD seems to be the best method between SDD and MSDD since it

manages to capture the performance of SDD (considering that the improvement in performance

that MSDD provides is negligible), and it is much faster than SDD and MSDD.

Also, the proposed parametric SDD performs similar to SDD. It mimics SDD using CNN in

unseen data; even when the fraction of training samples is insufficient compared with the

fraction of testing samples, parametric SDD captures the data structure very well. Parametric

SDD compared to SDD, MSDD, and parameter-free SDD can be used in bigger datasets.
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Table 4.9: THE PERFORMANCES OF SDD, MSDD AND PARAMETER-FREE SDD IN TERMS
OF KENDALL’S TAU COEFFICIENT AND COMPUTATIONAL TIME

Datasets

Iris Breast Cancer Swiss Rolls MNIST

deg 8 10 1 1

τ 0.967328 0.998118 0.914711 0.606525SDD
time(seconds) 9.49 111.33 552.96 2454.12

deg 8 and 9 10 and 11 1 and 2 1 and 2

τ 0.967309 0.998120 0.914707 0.598577MSDD
time(seconds) 4.06 34.22 118.93 4177.75

deg 7 and 8 9 and 10 0 and 1 0 and 1

τ 0.967316 0.998122 0.914707 0.600533MSDD
time(seconds) 3.04 25.82 90 3080.225

deg 7, 8 and 9 9, 10 and 11 0, 1 and 2 0, 1 and 2

τ 0.967334 0.998121 0.914709 0.598738MSDD
time(seconds) 7.61 44 90 8086

τ 0.967339 0.998086 0.914578 0.607947
Parameter-free SDD

time(seconds) 0.41 7.79 36.93 183.94



Chapter 5

The Impact of Dissimilarity Measures

on Visualization and Classification

Error

Supervised dimensionality reduction techniques are extensions of dimensionality reduction tech-

niques, which employ dissimilarity measures instead of Euclidean distance to calculate the

similarity between high dimensional space data samples. Although supervised dimensionality

reduction techniques are not as widely used as their standard versions, they have been widely

used to decrease the classification error and improve the maintained data structure. However,

based on the literature gap, there are no theoretical analyses of the impact that dissimilarity

measures on both classification error and maintained data structure. This Chapter is organised

into three Sections: the impact of dissimilarity measure on structure maintaining: theoretical

and practical analyses, the impact of dissimilarity measure is classification error: theoretical

analyses, and Chapter summary.

126
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5.1 The Impact of Dissimilarity Measures on Structure

Maintaining

This Section investigates the impact that metrics used in a dimensionality reduction method

have on high dimensional data structure maintenance. The dimensionality reduction methods

considered are the manifold learning methods, which are the subcategory of dimensionality

reduction methods but focus on learning the manifold that contains the low dimensional rep-

resentation of the high dimensional data.

Standard manifold learning techniques use the Euclidean or Geodesic distance to calculate each

data samples nearest neighbours in a manifold. On the other hand, supervised manifold learn-

ing techniques employ dissimilarity measures to calculate the nearest neighbours of each data

sample. Dissimilarity measures dis1 Eq. (2.107), dis2 Eq. (2.108), and dis3 Eq. (2.109) search

the nearest neighbours by forcing the same class data samples to be close and/or forcing the

different class data samples to be far away. As a consequence, for a given data sample, differ-

ent neighbours set may be produced when using various measures such as Euclidean distances

(dis), dis1, dis2, and dis3. Each manifold learning technique seeks to keep the neighbourhood

structure (neighbours set) defined in the high dimensional space data. Thus, four different

low dimensional representations will be generated if four different neighbours sets have been

defined in the high dimensional space data. However, the local neighbourhood structure of a

manifold is determined using the Euclidean distance because a manifold is conceived to be a

locally Euclidean space.

5.1.1 Theoretical Analysis

The theoretical analysis [97] of the impact of dissimilarity measures on structure maintenance is

based on keeping the neighbourhood structure between two spaces. The neighbourhood struc-

ture has been considered as an order set. Maintaining the neighbourhood structure between

high and low dimensional spaces is like having the same order set in high and low dimensional
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spaces. To prove that two order sets are the same, then are used definitions about bijective

functions, order preservation, and order isomorphism.

Let RO be the order set which contains the Euclidean distance of each data sample and its

k-nearest neighbours of the high dimensional space data. Based on the manifold definition,

Euclidean distance is the metric that calculates the local1 neighbours for each data sample.

Alternatively, it is defined with RO1, RO2, and RO3 order sets that contain the distances of

data samples and their k-nearest neighbours in the high dimensional using the dis1, dis2, and

dis3, respectively. It is also defined with ro1, ro2, and ro3 order sets that contain distances

of the low dimensional data samples and their k-nearest neighbours using the dis1, dis2, and

dis3, respectively. To simplify the analysis, it has been considered that every manifold learning

approach has perfectly embedded data2, and as a result, ro = RO, ro1 = RO1, ro2 = RO2, and

ro3 = RO3.

A manifold learning technique maintains the manifold structure (the one that is locally Eu-

clidean space) if the order set RO is the same with ro. To determine whether the neighbourhood

structure has been captured, it must be proved whether dis0(a) = a, dis1, dis2, and dis3 are or-

der isomorphism functions. In accordance with that, are used Proposition 3, Definition 1, and

Definition 2 that defines a function as order-isomorphism, bijective, and order-preservation,

respectively.

Proposition 3 Let I and J be two order sets, then the function f : I− > J is called an

order-isomorphism function iff f is:

1. bijective, and

2. order-preservation (for all a, b ∈ I so

a ≤ b⇔ f(a) ≤ f(b)).

Definition 1 A bijective function should be: 1) injective and 2) surjective. Let be I and J two

sets, then the function f : I− > J is injective if and only if whenever f(a) = f(b) then a = b

1Define with local k-nearest neighbours.
2The manifold learning loss function has achieved its optimal value (zero).
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for a, b ∈ I, and is surjective if and only if for every d ∈ J , there is at least one c ∈ I such that

f(c) = d.

Definition 2 Let I and J be two order sets, then the function f : I− > J is called an order-

preservation function iff for all elements a, b ∈ I, and f(a), f(b) ∈ J , a ≤ b ⇐⇒ f(a) ≤ f(b).

Consider dis0 : RO− > RO, dis1 : RO− > RO1, dis2 : RO− > RO2, and dis3 : RO− > RO3.

The functions dis0, dis1, dis2, and dis3 can be re-written as: dis0 : dis(xi, xj)− > dis(xi, xj),

dis1 : dis(xi, xj)− >

{√
1− e

−dis(xi,xj)2)
β li = lj√

e
dis(xi,xj)

2)

β − α li 6= lj

,

dis2 : dis(xi, xj)− >
{ 1
ψ
dis(xi, xj) li = lj

dis(xi, xj) li 6= lj

,

dis3 :

dis(xi, xj)− >
{ dis(xi, xj) li = lj

dis(xi, xj) + max(dis(xi, xj))µ li 6= lj

.

Proposition 4 dis0 is an order-isomorphism function whereas, dis1, dis2, and dis3 are not

order-isomorphism functions.

Proof. Based on Proposition 3, a function is order-isomorphism if it is: 1) bijective and 2)

order-preservation. To check if dis0, dis1, dis2, and dis3 are order-isomorphism functions, firstly

have to checked if they are bijective and order-preservation functions.

The first condition checks whether dis0, dis1, dis2, and dis3 are bijective functions.

1. dis0 is a bijective, because it is injective and surjective. Suppose a = dis(x1, x2), l(x1) =

l(x2), b = dis(x1, x3), l(x1) 6= l(x3), and a = b = 2. Since dis0 : dis(xi, xj)− > dis(xi, xj),

then dis0(dis(x1, x2)) = dis(x1, x2) = 2, and dis0(dis(x1, x3)) = dis(x1, x3) = 2 ⇔

dis0(dis(x1, x2)) = dis0(dis(x1, x3)) ⇒ dis0 is an injective function. dis0 is also sur-

jective, because dis0(dis(xi, xj)) = dis(xi, xj)⇔ for every dis(xi, xj), there exist at least
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one dis(xi, xj) that dis0(dis(xi, xj)) = dis(xi, xj).

2. The function dis0 : RO− > RO is an order-preservation function because the identity

map is an order-preservation function.

In conclusion, dis0 is a bijective and an order-preservation function; thus, it is an order-

isomorphism function.

Let’s check if dis1 is bijective and order-preservation function.

1. Let a = dis(x1, x2), l(x1) = l(x2), b = dis(x1, x3), l(x1) 6= l(x3), where a = b = 2. We

can prove that dis1(a) 6= dis1(b). Let consider β = 1 and α = 0.5, then dis1(dis(x1, x2)) =√
1− e−22

1 = 0.9908 and dis1(dis(x1, x3)) =
√
e

22

1 −0.5 = 6.8890. As a result dis1(dis(x1, x2)) 6=

dis1(dis(x1, x3)).

2. To check if dis1 is an order-preservation function, the order-preservation condition be-

tween each two order setsRO andRO1 must be satisfied. SupposeRO = {dis(x1, x2), dis(x1, x3)}

and RO1 = {dis1(x1, x2), dis1(x1, x3)}, where dis(x1, x2) = 4, and dis(x1, x3) = 4.1, thus,

RO = {4, 4.1}. Conversely, x1 and x2 have different classes, and as a result, data samples

x1 and x2 have been enforced to be far away with dis1(x1, x2) = 13.8919. By contrast,

data samples x1 and x3, which have the same class, have been enforced to be closer with

dis1(x1, x3) = 0.9975 for α = 0.5, and as a conclusion, dis1 is not an order-preservation

function.

Since dis1 is not injective function, it is not bijective function. Furthermore, dis1 is not order-

preservation function; as a conclusion it is not order-isomorphism function. Like dis1, dis2 and

dis3 are not bijective and order-preservation functions. Note that dis2 favours the same class

neighbours by decreasing their Euclidean distance with a positive value ψ. On the other hand,

dis3 favours the same class data samples by increasing the distance between data samples from

different classes. As a result, the local manifold structures defined by dis2 and dis3 are not

the same as the manifold structure defined by Euclidean distance, which is the distance that a

manifold is assumed to use.
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Overall, dis0 is a bijective and an order-preservation function, such that it is an order-isomorphism

function. On the other hand, dis1, dis2, and dis3 are neither bijective functions or order-

preservation functions, and subsequently they are not order-isomorphism functions. Thus, the

low dimensional visualization produced by a manifold learning using dissimilarity measure is

not the best representation of the high dimensional data structure. �

To better understand the impact of dissimilarity measure on manifold learning techniques in

terms of structure capturing, we apply Breast Cancer data in Isomap (uses Euclidean distance)

and Supervised Isomap (uses dis1), illustrated in the next subsection.

5.1.2 Practical Analysis

Visualisation helps explore and understand high dimensional space data. Providing a visu-

alisation that does not maintain the neighbourhood structure of the high dimensional space

data samples can lead to wrong decision-making. This Section provides a practical example

of the impact of using a dissimilarity measure instead of Euclidean distance in dimensionality

reduction methods on visualisation and decision-making in real-world Breast cancer data.

Breast Cancer data has been selected to demonstrate practically the impact of dissimilarity

measure on structure capturing. To simplify the demonstration, have considered two variables

worse perimeter and worse smoothness of the Breast Cancer data3 and then have been consid-

ered ten randomly-selected data samples. Each data sample corresponds to a patient, and then

the neighbours rank indexes4 for each selected patient have been constructed, as shown in Fig.

5,1. Considering Patient 1; the nearest neighbour of Patient 1 is Patient 4 (rank 2), followed by

Patient 3 (rank 3), Patient 6 (rank 4), Patient 9 (rank 5), Patient 2 (rank 6), Patient 5 (rank

7), Patient 8 (rank 8), Patient 7 (rank 9), and Patient 10 (rank 10).

To evaluate which of the methods has retained the data structure better, is constructed a differ-

ence matrix named Retained-Structure that contains the difference between the neighbourhood

3Breast Cancer with 569 samples and 30 variables from Sklearn, Python.
4The neighbourhood ranking index demonstrates the neighbourhood ranking index among patients.
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(a)

(b)

Figure 5.1: The visualisation of worse perimeter and worse smoothness variables from Breast Cancer
dataset (a), and the neighbourhood rank indexes between ten randomly selected patients (b).
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rank matrix of the high and the low dimensional space data. In an ideal case, the Retained-

Structure matrix contains only element 0 (zero). Nonzero elements, which indicate a failure in

retaining the neighbourhood structure, are positive or negative numbers. A positive number

Pij = +in indicates that the method has jumped +in positions closer the jth data sample to the

ith data sample. By contrast, a negative number Pij = −in indicates that the method has been

forced the ith data sample to be in positions further away from the jth data sample. In terms of

medical interpretation, it can be said that worse perimeter and worse smoothness variables of

Patient 1 are the most similar to Patient 4 and the least similar to Patient 10. Thus, if apply-

ing any manifold learning technique to the above-considered data, the best manifold learning

(dimensionality reduction) method is the one that maintains the neighbourhood structure. In

other words, Patient 1 should maintain the neighbours rank in the following order: Patient 4,

Patient 3, Patient 6, Patient 9, Patient 2, Patient 5, Patient 8, Patient 7, and Patient 10 from

the closest to the most distant patient.

To demonstrate the impact of a dissimilarity measure on structure capturing, it has been applied

dis1 to Isomap and have compared with the standard Isomap. Visually, supervised Isomap with

dis1 seems better, as samples of the same class are closer, and samples of different classes have

become more separated. However, the visualization of standard Isomap seems more similar to

the visualization of the original data, which is discussed below.

The visulizations of low dimensional represenations generated by Isomap and Supervised Isomap

are showed in Fig. 452(a) and Fig. 5.2(b), respectively. Fig. 5.3 shows that the method that has

captured the neighbourhood structure entirely is Isomap, as its Retained-Structure matrix Fig.

5.4(a) contains only elements 0. Contrastingly, the supervised Isomap has failed to maintain the

neighbourhood structure, demonstrated by nonzero elements in the Retained-Structure matrix

Fig. 5.4(b). Patients are organized into two classes where Patient 1, Patient 2, Patient 3,

Patient 5, and Patient 10 are patients diagnosed with malignant, whereas Patient 4, Patient 6,

Patient 7, Patient 8, and Patient 9 are patients diagnosed with benign. There can be spoted

from the Retained-Structure matrix Fig. 5.4(b) that the same class samples have been forced

to be closer, demonstrated by negative values in the Retained-Structure matrix, shown in Fig.

5.4(b). Different class patients have been forced to be further away, illustrated by positive values
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(a)

(b)

Figure 5.2: The visualization of low dimensional representation of Isomap (a) and the visualization
of low dimensional representation of Supervised Isomap.
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(a)

(b)

Figure 5.3: The neighbourhood rank indexes of the low dimensional space data generated by Isomap
(a), and Supervised Isomap (b).



136Chapter 5. The Impact of Dissimilarity Measures on Visualization and Classification Error

(a)

(b)

Figure 5.4: Retained-Structure matrix of Isomap (a), and Supervised Isomap (b).
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in the Retained-Structure, matrix shown in Fig. 5.4(b). There can be concluded that forcing

data samples to be closer or further away impacts the scale of maintaining the neighbourhood

structure. As shown in Fig. 5.2(b), Patient 1 was more similar to Patient 4 in terms of worse

perimeter and worse smoothness variables. However, using supervised Isomap, the nearest

patient to patient 1 is Patient 3, shown in Fig. 5.3(b). Consequently, there can be assumed

that Patient 1 and Patient 3, which are very close in the visualization of low dimensional

representation, may need the same treatment. However, Patient 1 and Patient 3 have different

corresponding values of worse perimeter and worse smoothness in the original data. As a result,

the aforementioned decision for the same treatment may be wrong.

5.2 The Impact of Dissimilarity Measures on Clasiffica-

tion Error

A manifold learning technique can be employed as a pre-processing step for classification. How-

ever, the priority of a manifold learning technique is to capture data structure instead of separate

data samples of different classes. Consequently, researchers have proposed class information in

calculating the similarity between data samples (dissimilarity measures), i.e., dis1, dis2, and

dis3, in manifold learning to achieve a lower classification error. This section discusses how the

dissimilarity measure affects a classification model to achieve a lower classification error. The

theoretical analysis is based on the work of Balcan et al. [98] who proposed the (ε, γ) good

similarity function based on intuitive and sufficient conditions that allow a similarity function

to learn well, supported by Definition 3, Definition 4, Theorem 1, and Theorem 2.

Consider a manifold learning M that generates low dimensional data Y , Y1, Y2, and Y3 using

metrices dis (Euclidean distance), dis1, dis2, and dis3, respectively. To simplify our analysis,

we consider that the manifold learning method M has performed perfectly (the loss function

employed in the manifold learning has reached i.e., its minimal value (zero)), such that the

neighbourhood structures defined in the high dimensional space using Euclidean distance (dis),

dis1, dis2, and dis3 are preserved completely. Note that the neighbourhood structures defined
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using dis, dis1, dis2, and dis3 are the same with the neighbourhood structure defined using dis

in the low dimensional data Y , Y1, Y2, and Y3, respectively.

Definition 3 (Balcan et al. [98]) A similarity function over Y is any pairwise function K :

Y × Y− > [−1, 1].

Definition 4 (Balcan et al. [98]) K is a strongly (ε, γ) good similarity function, if at least a- (1−

ε) probability mass of examples y satisfy: Ey−Y [dis(y, y′)|l(y′) 6= l(y)] > Ey−Y [dis(y, y′)|l(y′) =

l(y)] + γ.

Theorem 1 (Balcan et al. [98]) If K is a valid kernel function, and is (ε, γ)-good similarity

for some learning problem, then it is also (ε, γ)-kernel-good for the learning problem.

Theorem 2 (Balcan et al. [98]) If dis is a strongly (ε, γ) - good similarity function, then

4
γ2

ln(2
δ
) positive S+ examples, and S− negative examples are sufficient, so with probability

p ≥ 1− δ, the above algorithm produces a classifier with a maximum error of ε+ δ
2
.

In the work of Balcan et al. [98], a learning problem was specified by a labelled example

(x, y) drawn from a distribution of P over X × {−1, 1}, where X is an abstract space. In this

study, the learning problem is defined by providing the low dimensional space data (y, l), (y1, l),

(y2, l), and (y3, l) generated by a manifold learning method M over data X ×{−1, 1} using the

dis, dis1, dis2, and dis3, respectively. The objective of a learning algorithm is to produce a

classification function gi : Yi → {−1, 1}, i = 0 : 3 to produce a low classification error.

The purpose of this analyse is to discover the goodness of a similarity function in a particular

learning problem. In other words, using the same similarity function K, but in different data

distribution (the low dimensional data Y , Y1, Y2, and Y3 generated by the manifold learning

M employing dis, dis1, dis2, and dis3) having the same label l. Note that for a given i,

l(xi) = l(yi) = l(y1i) = l(y2i) = l(y3i). Consider that K is the radial basis function (RBF)

kernel with formula, K(x, x′) = exp(−dis(x,x′)2

2σ2 ), Theorem 1 states that a kernel function is a

good similarity function; as such the theorems and definitions applied for similarity functions

can also be applied for kernel functions. Standard algorithms such as Support Vector Machine

(SVM) and Perceptron have used kernel functions to learn linear separations via computing dot
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products on pairs of examples. The main idea of applying kernel function is to map nonlinear

data in a very high dimensional space to find a hyperplane to separate data. This study

employed the RBF kernel, which is usefully used in an SVM-based classifier.

The neighbourhood structure of Y , Y1, Y2, and Y3 is the same as the neighbourhood structure

of X using dis, dis1, dis2, and dis3, since the manifold learning M has assumed to perfectly

maintain the neighbourhood structure. Thus, the K function that is assumed to be applied to

the low dimensional space Y , Y1, Y2, and Y3 using the squared Euclidean distance dis, can be

equally applied to the high dimensional data X, but using dis, dis1, dis2, and dis3, respectively.

As a result, four RBF kernel functions K(y, y′), K(y1, y
′
1), K(y2, y

′
2), and K(y3, y

′
3) can be

reformulated as follows:

1. K(y, y′) = exp(−dis(x,x′)2

2σ2 )

2. K(y1, y
′
1) = exp(−dis1(x,x′)2

2σ2 )

3. K(y2, y
′
2) = exp(−dis2(x,x′)2

2σ2 )

4. K(y3, y
′
3) = exp(−dis3(x,x′)2

2σ2 )

The aim is to prove that the RBF kernel can produce a lower classification error using low

dimensional data Y1, Y2, and Y3 than using low dimensional data Y . Let U represents the set of

y that satisfy Ey′∼Y [K(y, y′)|l(y) = l(y′)] ≥ Ey′∼Y [K(y, y′)|l(y) 6= l(y′)] + γ, and P (U) = 1− ε.

Proposition 5 RBF kernel K achieves a lower classification error using the low dimensional

data Y1 than using the low dimensional data Y .

Proof.

Let U1 denotes the set of y1 that satisfy:

Ey′1∼Y1 [K(y1, y
′
1)|l(y1) = l(y′1)] ≥ Ey′1∼Y1 [K(y1, y

′
1)|l(y1) 6= l(y′1)] + γ.

Since K(y1, y
′
1) = exp(−dis1(x,x′)2

2σ2 ), then

Ex′∼Xe
− 1−e

−dis(x,x′)
β

2σ2 |l(y) = l(y′) ≥ Ex′∼Xe
−( e

dis(x,x′)2
β

2σ2
−α)|l(y) 6= l(y′) + γ.
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For α ≥ 0.5, e
dis(x,x′)2

β − α ≥ 1, and 1− e−
dis(x,x′)2

β ∈ [0, 1[, as such

Ex′∼X [e−
1−e
−dis(x,x′)

β

2σ2 |l(y) = l(y′)] ≥ Ex′∼X [e−
dis(x,x′)2

2σ2 |l(y) = l(y′)] ≥ Ex′∼X [e−
dis(x,x′)2

2σ2 |l(y)] 6=

l(y′) ≥ Ex′∼X [e−
e

−dis(x,x′)2
β

2σ2
−α

|l(y) 6= l(y′)] + γ.

Finally, U1 = U ∪R1, where R1 contains data samples x that satisfy:

Ex′∼Xe
− 1−e

−dis(x,x′)
β

2σ2 |l(y) = l(y′) ≥ Ex′∼Xe
− dis(x,x

′)2

2σ2 |l(y) = l(y′)

and data samples x that satisfy:

Ex′∼Xe
− dis(x,x

′)2

2σ2 |l(y) 6= l(y′) ≥ Ex′∼Xe
− e
−dis(x,x′)2

β −α
2σ2 |l(y) 6= l(y′) + γ.

Therefore, P (U1) = P (U ∪R1) = P (U) + P (R1) as U ∩R1 = ∅.

Let’s define P (R1) = ρ1, as such P (U1) = 1− ε+ ρ1.

Based on Definition 4, RBF kernel in the low dimensional data Y1 is a strongly (ε− ρ1, γ)-good

similarity function, whereas RBF kernel in the low dimensional data Y is strongly (ε, γ)-good

similarity function. Under the conditions of Theorem 2, the classification error of RBF kernel

using the low dimensional data Y1 is ε − ρ1 + δ
2

which is lower than ε + δ
2

produced by RBF

kernel low dimensional data Y .�

Proposition 6 RBF kernel K achieves a lower classification error using the low dimensional

data Y2 than using the low dimensional data Y .

Proof.

Let’s define U2 as the set of y2 that satisfy:

Ey′2∼Y2 [K(y2, y
′
2)|l(y2) = l(y′2)] ≥ Ey′2∼Y2 [K(y2, y

′
2)|l(y2) 6= l(y′2)] + γ.

Since K(y2, y
′
2) = exp(−dis2(x,x′)2

2σ2 ), then

Ex′∼Xe
− dis(x,x

′)2

ψ22σ2 |l(y) = l(y′) ≥ Ex′∼Xe
− dis(x,x

′)2

2σ2 |l(y) 6= l(y′) + γ.

e
− (dis(x,x′))2

2ψ2σ2 = (e−
dis(x,x′)2

2σ2 )1/ψ
2
, (e−

dis(x,x′)2

2σ2 )1/ψ
2 ≥ e−

dis(x,x′)2

2σ2 , ψ ≥ 1.

As a result,

Ex‘∼X [(e−
dis(x,x′)2

2σ2 )1/ψ
2|l(y) = l(y′)] ≥ Ex‘∼X [e−

dis(x,x′)2

2σ2 |l(y) = l(y′)] ≥ Ex‘∼X [ e
− dis(x,x

′)2

2σ2

c
|l(y) 6=

l(y′)] + γ.
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On the other hand, U2 = U ∪R2, where R2 contains data samples x that satisy:

Ex‘∼X [(e−
dis(x,x′)2

2σ2 )1/ψ
2|l(y) = l(y′)] ≥ Ex‘∼X [e−

dis(x,x′)2

2σ2 |l(y) = l(y′)].

Thus, P (U2) = P (U ∪ R2) = P (U) + P (R2)) as U ∩ R2 = ∅. Let’s define P (R2) = ρ2, such

that P (U2) = 1− ε+ ρ2.

Based on Definition 4, it can be said that RBF kernel in the low dimensional data Y2 is a

strongly (ε− ρ2, γ)-good similarity function, and RBF kernel in the low dimensional data Y is

a strongly (ε, γ)-good similarity function. Under the conditions of Theorem 2, the classification

error of RBF kernel using the low dimensional data Y2 is ε− ρ2 + δ
2
, which is lower than ε+ δ

2

produced by RBF kernel using Y . �

Proposition 7 RBF kernel K achieves a lower classification error using the low dimensional

data Y3 than using the low dimensional data Y .

Proof.

Suppose that U3 is the set of all y3 that satisfy:

Ey′3∼Y3 [K(y3, y
′
3)|l(y3) = l(y′3)] ≥ Ey′3∼Y3 [K(y3, y

′
3)|l(y3) 6= l(y′3)] + γ.

Because K(y3, y
′
3) = exp(−dis3(x,x′)2

2σ2 ), then

Ex′∼Xe
− dis(x,x

′)2

2σ2 |l(y) = l(y′) ≥ Ex′∼Xe
− (dis(x,x′)+dis(x,x′)µ)2

2σ2 |l(y) 6= l(y′) + γ.

On the other hand, e−
(dis(x,x′)+maxdis(x,x′)µ)2

2σ2 = e−
dis(x,x′)2

2σ2 e−
(maxdis(x,x′)µ)2

2σ2 .

Let be c = e
(maxdis(x,x′)µ)2

2σ2 , and c ≥ 1, then

Ex‘∼X [e−
dis(x,x′)2

2σ2 |l(y) = l(y′)] ≥ Ex‘∼X [ e
− dis(x,x

′)2

2σ2

c
|l(y) 6= l(y′)] + γ.

On the other hand, U3 = U ∪R3, where R3 contains the x data samples that satisy:

Ex′∼X [
e−dis(x,x

′)2

2σ2

c
|l(y) 6= l(y′)] + γ ≤ Ex′∼X [e−

dis(x,x′)2

2σ2 |l(y) = l(y′)] ≤ Ex′∼X [e−
dis(x,x′)2

2σ2 |l(y) 6=

l(y′)] + γ.

As a result, P (U3) = P (U ∪ R3) = P (U) + P (R3)) as U ∩ R3 = ∅. Let’s define P (R3) = ρ3,

such that P (U3) = 1− ε+ ρ3.

Based on Definition 4, it has been proved that RBF kernel in the low dimensional data Y3 is

strongly (ε− ρ3, γ)-good similarity function, whereas RBF kernel applied in the low dimensional

data Y is strongly (ε, γ)-good similarity function. Under the conditions of Theorem 2, the
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classification error of RBF kernel using the low dimensional data Y3 is ε−ρ1 + δ
2
, which is lower

than ε+ δ
2

produced by RBF kernel using the low dimensional data Y .�

Overall, RBF kernel applied in the low dimensional data generated by a manifold learning M5

using dissimilarity measures dis1, dis2, and dis3 can help a learning problem to achieving lower

classification errors than RBF kernel applied in the low dimensional data generated by the

manifold learning M using the Euclidean distance dis.

5.3 Chapter Summary

This Chapter has provided theoretical and practical analysis of the impact of dissimilarity mea-

sure is structure maintaining, followed by a theoretical analysis on the impact of dissimilarity

measure in the classification accuracy.

It has been demonstrated that dissimilarity measures theoretically does not improve the struc-

ture maintained but instead destroy it. Also, it has been practically demonstrated that em-

ploying dissimilarity measures in a dimensionality reduction method (Isomap in that case) does

not generate the real structure of the high dimensional data. Generating low dimensional data

that does not represent the real structure of high dimensional data leads end-users to make the

wrong decisions. On the other hand, there is theoretically proven that dissimilarity measures

can improve classification accuracy.

5Note that manifold learning M perfectly preserves the neighborhood structure using dis, dis1, dis2, and
dis3.



Chapter 6

Experiments of the Impact of

Dissimilarity measures on Structure

Capturing

This Chapter is organised into two main Sections, experimental results of supervised methods

and Chapter Summary. Three different dissimilarity measures and Euclidean distance have

been used to calculate the similarity between high dimensional data samples in three dimen-

sionality reduction methods Isomap, t-SNE and LE. Their performance has been evaluated

using Kendall’s Tau and Co-ranging matrix in two datasets, Breast cancer and Swiss roll data.

The Chapter Summary summarises the main findings of experimental results.

6.1 Experiments and Discussions

Isomap, t-SNE, and LE are three manifold learning (dimensionality reduction) techniques con-

sidered to demonstrate the impact of dissimilarity measures in maintaining the data structure

in the dimensionality reduction process. Three considered methods have been tested with

two datasets, Breast Cancer and Swiss Roll, using Euclidean distance and three dissimilarity

measures dis1 Eq. (2.107), dis2 Eq. (2.108), and dis3 Eq. (2.109). This study will discard

143
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considering dis4 Eq. (2.110) as it includes temporal information, and the datasets considered

in this study do not include any temporal information. They were implemented in Python

using the corresponding Sklearn versions and the same number of iterations (2000). Supervised

manifold learning methods were also implemented using their Sklearn versions, but by selecting

the pre-computed metric, we pre-computed the dissimilarity measures separately. Their perfor-

mance in maintaining the neighbourhood structure of data in a manifold has been evaluated

by Kendall’s Tau coefficients [41] and Co-ranking matrices [46]. Furthermore, the number of

neighbours for each method has been tuned from 1 to N − 1 because it substantially impacts

the scale of preserving the neighbourhood structure of a manifold.

6.1.1 Breast Cancer

Breast Cancer data with 569 data samples (patients), thirty variables and two classes is the

first dataset considered. The thirty-dimensional data will be transformed into two-dimensional

space data (visualization in Fig. 6.1) by employing four different metrics: Euclidean distance,

dis1, dis2, and dis3 to Isomap, t-SNE, and LE. Their performances have been evaluated by

Kendall’s Tau coefficients presented in Table 6.1, and Co-ranking matrices demonstrated in

Fig. 6.2.

Table 6.1: KENDALL’S TAU FOR METHODS (COLUMNS) USING METRICS (ROWS) IN
BREAST CANCER DATA

Methods

M
e
tr

ic

Isomap t-SNE LE

Euclidean 0.9977 0.8150 0.7267
dis1 0.8288 0.7291 0.3878
dis2 0.8528 0.7025 0.0941
dis3 0.3192 0.8137 0.0988

The experiments conducted on Breast Cancer data show that Euclidean distance helps Isomap

(k: 515) to capture the best data structure as demonstrated by a nearly diagonal Co-ranking

matrix demonstrated in Fig.6.2(a), and Kendall’s Tau coefficient with 0.9977, as shown in Table

4.9. The dis1, dis2, and dis3 used in Isomap are less useful in capturing the neighbourhood

structure, estimated by Kendall’s Tau coefficients (Table 6.1), and the Co-ranking matrices
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(Fig. 6.1). The Euclidean distance has resulted in the best metric for t-SNE, regarding the

maintenance of the data structure, with a Kendall’s Tau coefficient of 0.8150. However, dis3

demonstrated excellent performance by competing with Euclidean distance for t-SNE. Note that

the Gaussian distribution becomes broader because if σ increases and the broader the Gaussian

distribution is, the more sensitive it becomes to more distant neighbours. This conclusion

is supported by the result of the Co-ranking matrix of t-SNE using dis3, which has fewer off-

diagonal entries. Contrastingly, dissimilarity measure dis2 enforces the data samples of the same

class to have a smaller distance; and as such, the number of data samples with small distances

becomes higher. As a result, the Gaussian distribution(s), which relates to the density of data

σ, becomes sharp when the density is small.

LE using the Euclidean distance preserves the data structure better than using other metrics,

supported by their Co-ranking matrices and Kendall’s Tau coefficients. The dissimilarity mea-

sure dis1 employed to LE reduces Kendall’s Tau coefficient by 0.3878, as demonstrated in Table

6.1. The deterioration of the structure preservation can be seen in the respective Co-ranking

matrices, as shown in Figs. 6.2 (j), in which the supervised LE has more off-diagonal entries.

6.1.2 Swiss Roll

The second dataset considered is the three-dimensional Swiss Roll data with 1600 data samples,

which will be transformed into two-dimensional space data (shown in Fig. 6.3), by using four

different metrics including dis, dis1, dis2, and dis3 in Isomap, t-SNE, and LE.

Performances of Isomap, t-SNE, and LE using dis (Euclidean distance), dis1, dis2, and dis3

with Swiss Roll data, were estimated using Kendall’s Tau coefficients as shown in Table 6.2,

and Co-ranking matrices illustrated in Fig. 6.4. The two-dimensional data visualizations are

demonstrated in Fig. 6.3. Based on Kendall’s Tau coefficient values and Co-ranking matri-

ces, manifold learning techniques that employ Euclidean distance, have preserved better Swiss

Roll data than three other metrics (dis1, dis2, and dis3). Among unsupervised manifold learn-

ing methods, Isomap (Euclidean distance) captures the best Swiss Roll data structure, with
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Kendall’s tau 0.9121. The LE with dis1 captures the best data structure across supervised

methods, with Kendall’s tau 0.8508.

Unlike with Breast Cancer data, in Swiss Roll data t-SNE managed to capture the highest

data structure by using Euclidean distance and not a dissimilarity measure. However, among

dissimilarity measures, dis3 resulted in capturing global data structure the best (t-SNE shown

in Fig. 6.3(h)). As previously noted, the broader the distance range of data, the broader the

Gaussian distribution and the more sensitive to large distances it is, the more it improves the

data structure capturing.

Table 6.2: KENDALL’S TAU FOR METHODS (COLUMNS) USING METRICS (ROWS) IN
SWISS ROLL DATA

Methods

M
e
tr

ic

Isomap t-SNE LE

Euclidean 0.9121 0.8700 0.9043
dis1 0.8269 0.8268 0.8508
dis2 0.2473 0.7686 0.7120
dis3 0.3192 0.8460 0.8515

Overall, employing a dissimilarity measure in a manifold learning technique does not improve

data structure preservation. However, in some scenarios, dis3 helps t-SNE to capture a more

global data structure, but it may lose some local information.
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(a) Isomap dis (k: 515) (b) Isomap dis1 (k: 385) (c) Isomap dis2 (k: 4) (d) Isomap dis3 (k:4)

(e) t-SNE dis (k: 501) (f) t-SNE dis1 (k: 530) (g) t-SNE dis2 (k: 518) (h) t-SNE dis3 (k:511)

(i) LE dis (k: 426) (j) LE dis1 (k: 169) (k) LE dis2 (k:189) (l) LE dis3 (k: 285)

Figure 6.1: Visualization of two-dimensional Breast Cancer data generated by Isomap, t-SNE and
LE using Euclidean Distance, dis1, dis2, and dis3.

(a) Isomap dis (k: 515) (b) Isomap dis1 (k: 385) (c) Isomap dis2 (k: 4) (d) Isomap dis3 (k:4)

(e) t-SNE dis (k: 501) (f) t-SNE dis1 (k: 530) (g) t-SNE dis2 (k: 518) (h) t-SNE dis3 (k:511)

(i) LE dis (k: 426) (j) LE dis1 (k: 169) (k) LE dis2 (k:189) (l) LE dis3 (k: 285)

Figure 6.2: Co-ranking matrixes of two-dimensional Breast Cancer data generated by Isomap, t-SNE
and LE using Euclidean Distance, dis1, dis2, and dis3.
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(a) Isomap dis (k: 1447) (b) Isomap dis1 (k: 400) (c) Isomap dis2 (k: 6) (d) Isomap dis3 (k:4)

(e) t-SNE dis (k: 1507) (f) t-SNE dis1 (k: 1588) (g) t-SNE dis3 (k: 1593) (h) t-SNE dis3 (k:1502)

(i) LE dis (k: 1000) (j) LE dis1 (k: 952) (k) LE dis2 (k: 795) (l) LE dis3 (k: 415)

Figure 6.3: Visualization of two-dimensional Swiss Roll data generated by Isomap, t-SNE and LE
using Euclidean Distance, dis1, dis2, and dis3.

(a) Isomap dis (k: 1447) (b) Isomap dis1 (k: 400) (c) Isomap dis3 (k: 6 ) (d) Isomap dis3 (k: 4)

(e) t-SNE dis (k: 1507) (f) t-SNE dis1 (k: 1588) (g) t-SNE dis3 (k: 1593) (h) t-SNEdis3 (k: 1502)

(i) LE dis (k: 1000) (j) LE dis1 (k: 952) (k) LE dis2 (k: 795) (l) LE dis3 (k: 415)

Figure 6.4: Co-ranking matrixes of two-dimensional Swiss Roll data generated by Isomap, t-SNE,
and LE using Euclidean Distance, dis1, dis2, and dis3.
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6.2 Chapter Summary

The simulation results have confirmed the theoretical analyses: the dissimilarity measure does

not improve the maintaining structure but destroys it. Both quality measures, Kendall’s

Tau and Co-ranking matrix, demonstrated that the three dimensionality reduction techniques,

Isomap, t-SNE and LE that use Euclidean distances instead of dissimilarity measures produced

more trustworthy visualisations, which is far from what many researchers have claimed in their

study.
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Conclusion

7.1 Summary of Thesis Achievements

Several achievements towards trustworthiness and computational time of visualising high di-

mensional data have been made in this study. The main contributions of this research are

demonstrated in the following.

An in-depth literature review has been made from where two research questions get answers as

follows:

1. The similarity measure employed in a dimensionality reduction technique has a massive

impact on the scale of maintained data structure.

2. Employing different similarity measures in high and low dimensional spaces data to pro-

duce tear and false neighbours problems.

Also, this research has made significant contributions and has filled the knowledge gaps by devel-

oping four dimensionality reduction techniques intending to improve the scale of the maintained

data structure and reduce computational time, as mentioned below:

1. Developed a nonlinear dimensionality reduction technique named Same Degree Distribu-

tion (SDD) that captures the data structures better than other current dimensionality

150
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reduction methods in less computational time. SDD employs degree-distribution, which

is the same as Student-t with degree 1, and for higher degrees, it has longer tails than

Student-t. By using the degree-distribution, which has longer tails than the Gaussian

distribution, SDD ensures that it captures the global data structure better than other

Gaussian-based methods. Also, SDD ensures that tears and false neighbours problems

are prevented by using the same degree-distribution in high low dimensional spaces. Also,

degree-distribution does not require tuning the number of neighbours, perplexity or other

expensive parameters but instead, it requires tuning the degree, which usually ranges

from 1 to 15.

SDD outperformed benchmarks methods such as t-SNE, UMAP, Isomap, PCA, MDS,

Trimap, LLE, and LE in structure capturing in data that is dominated by small and

medium distances.

2. Developed an extension of SDD named Multi Same Degree Distribution (MSDD) method

to capture better the high dimensional space data structure than SDD. MSDD ensures

that both the local and global structure of the data has been preserved by employing

more than one degree-distribution and correspondingly more than one objective function

that is optimised by a multi-objective optimisation method. However, from simulation

results conducted, MSDD didn’t show significant improvements in structure maintenance;

on the other hand, the time complexity increases significantly.

3. Developed a parameter-free same degree-distribution (parameter-free SDD) dimension-

ality reduction method that captures the same scale of data structure with SDD but

does not require tuning the degree of distribution or any other parameter that makes

parameter-free SDD a significantly low costly method.

The benefits of parameter-free SDD are by using degree-distribution (deg = 1) in high

and low dimensional space but re-scaling the pairwise distances of original data in the

interval [0, 2] instead of [0, 1]. The performance of parameter-free SDD has been demon-

strated that it achieves the same performance in terms of structure maintenance but in

significantly less time than SDD. In terms of structure maintenance, parameter-free SDD
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outperforms all considered methods. And in terms of computational time, it outperforms

t-SNE, UMAP, Trimap, Isomap, LE, LLE, and MDS. A theoretical proof also supports

the excellent performance of parameter-free SDD.

4. Developed parametric SDD, which also addresses the problem of out-of-sample data sam-

ples. Parametric SDD proposes using Neural Networks to mimic the two-dimensional

data produced by SDD. It has been demonstrated experimentally that parametric SDD

maintains the training data structure (where the networks have been trained) and testing

data (for unseen data for network).

Theoretical and practical analyses have been made to demonstrate the impact of dissimilarity

measures on structure capturing and classification accuracy, which then generates two useful

findings:

1. Supervised manifold learning can be used for classification purposes with the advantage

of classification error reduction.

2. Supervised manifold learning/dimensionality reduction techniques can not be used for

visualising high dimensional space data, as the class information involved in dissimilarity

measures can destroy data structure capturing.

Dissimilarity measure forces relocating data samples using class information, but it does not

improve data structure capturing. Following the theoretical analysis and supported by exper-

imental results, we can conclude that the dissimilarity measure in Isomap, t-SNE, and LE

worsens data structure capturing. Therefore, using Euclidean distance would be more bene-

ficial than dissimilarity measures. However, dissimilarity measure dis3 has a positive impact

on t-SNE, which can help preserve global data information better. In addition, a dissimilar-

ity measure can be usefully incorporated in manifold learning techniques to achieve a better

RBF-based classifier, and the class-separation achieved by supervised dimensionality reduction

methods can reduce the classification error.
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7.2 Future Work

Further work can be done to improve the performances of SDD, MSDD, and parameter-free

SDD in both capturing a better data structure and spending lower computational time and

sources. SDD, MSDD, and parameter-free SDD have been demonstrated to outperform current

dimensionality reduction methods in structure maintenance and computational time with data

having a large fraction of short distances. However, in cases where the fraction of large distances

are significantly higher than the fraction of short distances, the developed methods can not

outperform other global methods like Isomap. The problems mentioned above of SDD, MSDD,

and parameter-free SDD can be further addressed as follows:

1. Weighting differently the cost functions in the multi-objective optimisation technique,

where the cost functions with huge sensitivity in large distances have a large influence

than the cost functions with huge sensitivity in short distances, or

2. Employing another distribution on top of degree-distribution(s) that has a high sensitivity

to large distances.

In addition, like t-SNE, in a very big dataset (with a large number of data samples), the three

developed approaches, SDD, MSDD, and parameter-free SDD, consume high computational

sources and time to calculate the pairwise distance matrix. Implementing these methods in a

big dataset (with millions of data samples) faces memory issues for the capacity that a computer

has, and as such, it requires additional memory sources. How to address this issue remains a

further research question.
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[58] Lee, J.A., Peluffo-Ordóñez, D.H. and Verleysen, M., 2015. Multi-scale similarities in

stochastic neighbour embedding: Reducing dimensionality while preserving both local and

global structure. Neurocomputing, 169, pp.246-261.

[59] Crecchi, F., de Bodt, C., Verleysen, M., Lee, J.A. and Bacciu, D., 2020. Perplexity-free

Parametric t-SNE. arXiv preprint arXiv:2010.01359.



160 BIBLIOGRAPHY

[60] De Bodt, C., Mulders, D., Verleysen, M. and Lee, J.A., 2018. Perplexity-free t-SNE and

twice Student tt-SNE. In ESANN.

[61] Hinton, G.E., Osindero, S. and Teh, Y.W., 2006. A fast learning algorithm for deep belief

nets. Neural computation, 18(7), pp.1527-1554.

[62] Bengio, Y., Lamblin, P., Popovici, D. and Larochelle, H., 2006. Greedy layer-wise training

of deep networks. Advances in neural information processing systems, 19.

[63] R. Salakhutdinov and G. E. Hinton, Deep Boltzmann machines, 2009. in Proc. Int. Conf.

Ar-tif. Intell. Statist, pp. 448–455.

[64] Salakhutdinov, R. and Larochelle, H., 2010, March. Efficient learning of deep Boltzmann

machines. In Proceedings of the thirteenth international conference on artificial intelligence

and statistics (pp. 693-700). JMLR Workshop and Conference Proceedings.
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