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Abstract
This paper proposes a clustering approach for multivariate time series with time-
varying parameters in a multiway framework. Although clustering techniques based 
on time series distribution characteristics have been extensively studied, methods 
based on time-varying parameters have only recently been explored and are miss-
ing for multivariate time series. This paper fills the gap by proposing a multiway 
approach for distribution-based clustering of multivariate time series. To show the 
validity of the proposed clustering procedure, we provide both a simulation study 
and an application to real air quality time series data.

Keywords  Generalized Autoregressive Score · Dynamic Conditional Score · time-
varying parameters · Time series clustering · Multiway data · Air quality

1  Introduction

Clustering time series is an important tool for the analysis of real data in several 
contexts like biology, medicine, environmental sciences, engineering and finance. 
When clustering time series data, it is important to define a proper distance (Liao 
2005). Distances based on the distributional characteristics of the time series are 
commonly considered (e.g. Nanopoulos et al. 2001; Wang et al. 2006; Fulcher and 
Jones 2014; D’Urso et al. 2017; Bastos and Caiado 2021). The idea of considering 

 *	 Raffaele Mattera 
	 raffaele.mattera@uniroma1.it

	 Roy Cerqueti 
	 roy.cerqueti@uniroma1.it

	 Germana Scepi 
	 scepi@unina.it

1	 Department of Social and Economic Sciences, Sapienza University of Rome, Rome, Italy
2	 School of Business, London South Bank University, London, UK
3	 GRANEM, University of Angers, Angers, France
4	 Department of Economics and Statistics, University of Naples “Federico II”, Naples, Italy

http://orcid.org/0000-0001-8770-7049
http://crossmark.crossref.org/dialog/?doi=10.1007/s00180-022-01294-5&domain=pdf


	 R. Cerqueti et al.

1 3

distribution characteristics is originally from Nanopoulos et  al. (2001), that intro-
duced the use of skewness and kurtosis in the clustering process. Later, Wang et al. 
(2006) and Fulcher and Jones (2014) proposed approaches of clustering based on 
multiple features, including the static first four moments. In particular, by using 
a partitioning clustering algorithm, D’Urso et  al. (2017) proposed an approach 
based on time series’ extremes, using static parameters estimated from a General-
ized Extreme Value (GEV) distribution. Similarly, Mattera et al. (2021) considered 
parameters estimated from a Skewed Generalized Error Distribution (SGED) to 
account for skewness and heavy tails. Recently, Bastos and Caiado (2021) consid-
ered a set of features for clustering financial time series where distribution charac-
teristics were included. However, the use of distribution parameters is not limited 
to clustering time series data of economic and financial type. For example, Wang 
et al. (2011) proposed the use of parameters estimated from a Weibull distribution 
for clustering gene expression data.

The use of distribution parameters for clustering is well motivated by the high 
performances, in terms of clustering quality, that are witnessed by the previous 
studies.

According to previous studies (for an overview of time series clustering 
approaches see Maharaj et al. 2019), it is possible to classify time series with similar 
distribution parameters through a dissimilarity matrix computed on the difference of 
the estimated parameters in the clustering algorithm.

As highlighted by time series analysis studies, the use of static distribution 
parameters may not work with real time series data. The statistical models for time 
series with time-varying parameters have been categorized by Cox (1981) into two 
main classes, namely the observation-driven and the parameter-driven models. We 
focus our attention on the first type of models. In the observation-driven models, 
the time variation of the parameters is modeled through autoregressive approaches, 
where the parameters at a given time t are function of lagged values. This approach, 
that simplifies the likelihood evaluation, is very popular in the applied statistics and 
econometrics studies (e.g. see Creal et al. 2013; Harvey 2013; Harvey and Sucarrat 
2014; Caivano and Harvey 2014; Koopman et al. 2016). Examples of observation-
driven models are the ARCH (Engle 1982) and GARCH of Bollerslev (1986) for 
the variance, the Autoreressive Conditional Skewness (ARCS) of Harvey and Sid-
dique (1999) for the skewness, the ARCSK of León et al. (2005) for modeling time 
variation in both skewness and kurtosis. More recently, Creal et al. (2013) proposed 
a very general approach to model time variation of the parameters for any kind of 
probability distribution. They developed a new statistical model, called Generalized 
Autoregressive Score (GAS), using the score function of the specified density as the 
source of time variation in the model’s parameters.

Despite clustering techniques, based on time series’ distribution characteristics, 
have been extensively studied, approaches based on time-varying parameters have 
only recently been explored in Cerqueti et al. (2021, 2022).

However, these two contributions have some weaknesses. The approach proposed in 
Cerqueti et al. (2021) is based on the selection of a target parameter. Although in some 
cases it can be of interesting to study clusters obtained according to a single distribu-
tional feature (e.g. the variance or the skewness), this approach can be less accurate 
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when alternative features have their relevance in grouping the time series. Cerqueti 
et al. (2022) overcome the problem related to the selection of the target parameter by 
using more parameters jointly, focusing on the use of unconditional and conditional 
quantities in the clustering process. We have to acknowledge that the proposed uncon-
ditional distribution-based clustering provides results that are very close to the static 
parameters’ ones, even if the clustering interpretation is much more interesting. Most 
importantly, none of the two approaches can handle the case of multivariate time series.

In this paper, we propose a multiway clustering approach considering multiple time-
varying parameters jointly in the definition of the clusters. We note that, with univariate 
time series with time-varying parameters the structure of the data is a 3D tensor, while 
with multivariate ones, it is a 4D tensor. According to the previous studies, we estimate 
the time-varying parameters with the GAS model.

To show the validity of the proposed multiway clustering procedure, we provide a 
simulation study with both univariate and multivariate time series. Moreover, we also 
show an application to real multivariate air pollution time series data. In particular, we 
aim identifying cities characterized by the same temporal evolution of air pollution, 
considering the Particular Matter (PM) time series variables as air quality indicators.

Studying air pollution clusters is important for policy makers. Indeed, there is a 
clear evidence that the presence of poor air quality leads to adverse effects on human 
health (e.g. see Dominici et al. 2003; Anderson et al. 2012). In particular, there is 
a strong association between PM and respiratory and cardiovascular diseases (see 
Rajagopalan et al. 2018). Moreover, there is a significant association between high 
levels of air pollution and the number of COVID-19 cases (Copat et al. 2020). Since 
the exposure to PM is dangerous to human health, policy makers of local govern-
ments take particularly into account monitoring of air quality (e.g. see Gao et  al. 
2011). In this framework, cluster analysis in an important tool for detecting groups 
of regions and/or cities with the same levels of air pollution (for a review see Goven-
der and Sivakumar 2020).

Our analysis suggests the relevance of the proposed clustering approach in the 
development of public policies aimed at reducing the environmental impact in spe-
cific cities and/or geographical areas.

The paper is structured as follows. In Sect. 2, we describe the multiway cluster-
ing procedure in detail. In particular, in Sect.  2.1 we introduce preliminaries and 
notation and in Sect. 2.2 we show the proposed clustering procedure. Sections 2.3 
and 2.4 discuss two particular cases with time-varying parameters estimated from 
a Gaussian and Generalized-t distributions. Section 3 provides experimental results 
with simulated data, while in Sect. 4 we show the empirical relevance of the pro-
posed approach in the context of environmental quality monitoring. Final remarks 
with possible future research directions are discussed in the last section.

2 � Multiway clustering with time‑varying parameters

Although many studies discussed the time-varying parameters’ evidence and there 
are a lot of statistical tools developed for modeling time variation in the parame-
ters (e.g. see León et al. 2005; Harvey 2013; Creal et al. 2013; Harvey and Sucarrat 
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2014; Caivano and Harvey 2014), a clustering approach based on time-varying 
parameters has only recently been explored.

In what follows we propose a clustering approach for multivariate time series 
based on a multi steps algorithm (see e.g. Košmelj 1986; Košmelj and Batagelj 
1990). We put our-self in the Relationship Matrices Analysis framework (for a clear 
illustration of such an approach, see e.g. D’Urso 2004), where the dissimilarity 
between units is determined by considering a relationship matrix (e.g. correlation, 
distance, etc.) between pairs of elements.

2.1 � Preliminaries and notation

Let N be the number of statistical units and K the number of time series variables of 
length T. The distribution-based clustering approaches have mainly been developed 
for clustering univariate time-series, i.e. in presence of N statistical units and K = 1 
variable. By denoting the single K = 1 variable as yt , we have that yn,t represents the 
values of the time series variable yt for the n-th statistical unit.

To assist the reader, we firstly present the notation used with uni-
variate time series characterized by static distribution parameters. Let 
� = {yn,t ∶ n = 1,… ,N; t = 1,… , T} be the dataset matrix containing the 
N univariate time series—i.e., the statistical units—whose n-th element is 
{yn,t ∶ t = 1,… , T} . Therefore:

Let us suppose that each column of the (1) is generated by a probability density 
function p(⋅) characterized by the presence of J parameters, so that we call fn,j the 
j-th static distribution parameter associated to the n-th statistical units. For exam-
ple, in the case p(⋅) follows a Gaussian distribution, we have J = 2 parameters, so 
that fn,1 = �n and fn,2 = �2

n
 are, respectively, the mean and the variance of the n-th 

statistical unit. Therefore, the number of J parameters depends on the underlying 
distributional assumption. In presence of a general p(⋅) density, a distribution-based 
clustering considers the following (N × J) matrix � as the input of the algorithm:

where the distribution parameters fn,j can be estimated with maximum likelihood.
In the case of K ≥ 2 multivariate time series, we define yn,k,t 

(n = 1,… ,N;k = 1 … , K, t = 1,… ;T) the value of the k-th variable at time t 

(1)� =

⎡
⎢⎢⎢⎢⎣

y1,1 … yn,1 … yN,1
⋮ … ⋮ … ⋮

y1,t … yn,t … yN,t
⋮ … ⋮ ⋮ ⋮

y1,T … yn,T … yN,T

⎤⎥⎥⎥⎥⎦

(2)� =

⎡
⎢⎢⎢⎢⎢⎣

f1,1 … f1,j … f1,J
⋮ … ⋮ ⋮ ⋮

fn,1 … fn,j … fn,J
⋮ … ⋮ ⋮ ⋮

fN,1 … fN,j … fN,J

⎤⎥⎥⎥⎥⎥⎦
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for the n-th statistical unit. Therefore, in the case of multivariate time series, the 
matrix (1) becomes a 3D tensor:

By considering static distribution parameters with K ≥ 2 , we have that the matrix 
(2) has a 3D tensorial representation with the elements fn,k,j representing the j-th 
static distribution parameter associated to the k-th variable of the n-th unit.

We are now in the position to introduce our contribution to the methodological 
setting of the time-varying parameters in the mumtivariate time-series context. 
Specifically, we introduce time variation in the parameters of multivariate time 
series. In this case the fn,k,j s in the 3D tensorial representation are time series 
themselves. Therefore, by considering time-varying parameters for multivariate 
time series (3), we have that the matrix (2) is the following 4D tensor called �̃:

where fn,k,j,t denotes the j-th distribution parameter for the k-th variable of the n-th 
statistical unit at time t. Clearly, the general formulation in (4) includes also the uni-
variate time-dependent case ( K = 1 ) and the static univariate case ( K = 1 and T = 1

).
In this paper, starting from the multivariate time series data (3), we first 

estimate the terms appearing in equation (4). Then, we consider the multivari-
ate time-varying parameters as the input of the clustering procedure. In order to 
model and estimate the time-varying parameters in (4), following previous stud-
ies, we use the Generalized Autoregressive Score (GAS) model of Creal et  al. 
(2013). For details about the GAS model see the “Appendix 2”. Therefore, the 
estimated time-varying parameters f̂n,k,j,t are used as the input of the clustering 
procedure. The similarity between statistical units is defined by the degree to 
which the distribution parameters, for each variable, vary over time.

2.2 � The clustering procedure

The proposed clustering procedure, inspired from the double-step approaches for 
clustering longitudinal data (Košmelj 1986; Košmelj and Batagelj 1990), can be 
outlined as follows.

Let fn,k,j,t be the realization of the j-th time-varying parameter associated to 
the k-th variable for the n-th statistical unit at time t (4); we define �n,k,j,l as the 
estimated auto-correlation at lag l(l = 1,… , L) of the j-th time-varying parameter 
associated to the k-th variable of the n-th unit.

In the first step of the clustering procedure we compute N × K distance matri-
ces �n,k =

{
dn,k,j,j� ∶ j, j� = 1,… , J;j ≠ j�

}
 , for each n = 1,… ,N; k = 1,… ,K . In 

line with previous studies (see e.g. Cerqueti et  al. 2021), we consider an ACF-
based distance between two pairs of time-varying parameters j and j′:

(3)�̃ =
{
yn,k,t ∶ n = 1,… ,N; k = 1,… , K;t = 1,… , T

}

(4)�̃ =
{
fn,k,j,t ∶ n = 1,… ,N;k = 1,… ,K;j = 1,… , J;t = 1,… , T

}
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Therefore, each matrix �n,k can be written as follows:

Note that each �n,k is a squared matrix of order J and it is symmetric with a null 
diagonal. In the second step of the procedure we aim to cluster the N statistical units 
on the basis of a dissimilarity measure among the matrices �n,k . Let �n,k be the 
lower triangular of �n,k:

Since each �n,k is squared and symmetric with a null diagonal, we can vectorize its 
lower triangular �n,k without losing information. The vectorized lower triangular, 
called vec(�n,k) , can be written as follows:

Note that vec
(
�n,k

)
 has a length equal to [J(J − 1)]∕2.

In the second step, we define, for each k-th variable, the matrix �k whose rows 
are given by the N vectors vec(�n,k):

Therefore, each �k is of dimension N × [J(J − 1)]∕2 . The generic element of �n 
is denoted by xk,n,r (r = 1,… , [J(J − 1)]∕2) . Then, we can define the k-th �k dis-
tance matrix with dimension N × N , whose generic element dk,n,n′ can be written as 
follows:

Each k-th distance �k contains the information about dissimilarity of the N statistical 
units computed considering the k-th variable.

(5)dn,k,j,j� =

√√√√ L∑
�=1

(
�n,k,j,l − �n,k,j�,l

)2

(6)�n,k =

⎡
⎢⎢⎢⎣

0 dn,k,1,2 … dn,k,1,J
dn,k,2,1 0 … dn,k,2,J
⋮ ⋮ ⋱ ⋮

dn,k,J,1 dn,k,J,2 … 0

⎤
⎥⎥⎥⎦

(7)�n,k =

⎡
⎢⎢⎢⎣

0 0 … 0

dn,k,2,1 0 … 0

⋮ ⋮ ⋱ ⋮

dn,k,J,1 dn,k,J,2 … 0

⎤
⎥⎥⎥⎦

(8)vec
(
�n,k

)
=
[
dn,k,2,1 … dn,k,J,J−1

]

(9)�k =

⎡
⎢⎢⎢⎢⎣

d1,k,2,1 … d1,k,J,J−1
⋮ ⋮ ⋮

dn,k,2,1 … dn,k,J,J−1
⋮ ⋮ ⋮

dN,k,2,1 … dN,k,J,J−1

⎤⎥⎥⎥⎥⎦

(10)dk,n,n� =

√√√√[J(J−1)]∕2∑
r=1

(
xk,n,r − xk,n�,r

)2
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In order to consider the information included in each of the K variables jointly, in the 
third phase we compute a synthesis of the K distance matrices �k through the DISTA-
TIS algorithm (for details see “Appendix 3”). The resulting consensus squared Euclid-
ean distance matrix D̃ (37) has as generic element d̃n,n′ and represents the synthesis of 
the K distances in (10).

In the last step, we use the resulting consensus distance matrix in the Partition 
Around Medoid (PAM) (Kaufman and Rousseeuw 1990) algorithm to obtain the 
clusters. The PAM algorithm is based on the minimization of the squared elements of 
matrix D̃ , being one of the unit the centroid. In formulas, we have the following mini-
mization problem:

Clearly, the univariate time series clustering is a special case where K = 1 . In a this 
particular framework, we deal where a 3D tensor with the three dimensions are rep-
resented by N statistical units, J parameters and T time. Essentially, the clustering 
procedure in the univariate framework is very similar to the one explained so far, the 
difference is that we do not need to compute a consensus matrix.

(11)min ∶

N∑
n=1

C∑
c=1

d̃2
n,c
.
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2.3 � Example with Gaussian density

Let us consider the data structure shown in (3) where each yn,k,t time series follows a 
Gaussian distribution with time-varying parameters. In this case, the predictive den-
sity can be written as follows:

where �n,k,t is the time-varying mean, �2
n,k,t

 the time-varying variance, Fn,k,t is the 

information set and �n,k =
[
�n,k, diag

(
�n,k

)
, diag

(
�n,k

)]
 contains the parameters esti-

mated by the following Gaussian-GAS(1,1) process:

given fn,k,t the vector containing time-varying parameters 

fn,k,j,t =
[
fn,k,1,t, fn,k,2,t

]
=
[
�n,k,t, �

2
n,k,t

]
 and sn,k,t the scaled score with conditional 

scores equal to:

where ∇n,k,1,t is the score related to the time-varying mean (i.e. j = 1 ) and ∇n,k,2,t is 
the score related to the time-varying variance (i.e. j = 2 ). In summary, the model’s 
variables and parameters are:

In the univariate case (i.e. K = 1 ), we compute the matrices �n
1 according to for-

mula (5). The matrices �n in the case of Gaussian distribution can be written as 
follows:

(12)p(yn,k,t��n,k,t, �
2
n,k,t

,Fn,k,t;�n,k) =
1

�n,k,t

√
2�

e
−(yn,k,t−�n,k,t)

2
∕2�2

n,k,t

fn,k,t = �n,k + �n,ksn,k,t−1 + �n,kfn,k,t−1

(13)∇n,k,1,t =
(yn,k,t − �n,k,t)

�2
n,k,t

(14)∇n,k,2,t =
(yn,k,t − �n,k,t)

2

2�4
n,k,t

−
T

2�2
n,k,t

fn,k,t =

(
�n,k,t

�2
n,k,t

)
, � =

(
�n,k,1

�n,k,2

)
,

� =

(
an,k,1 0

0 an,k,2

)
and � =

(
bn,k,1 0

0 bn,k,2

)

�n =

[
d�n,�n

d�n,�
2
n

d�n,�
2
n
d�2

n
,�2

n

]
=

[
0 d�n,�

2
n

d�n,�
2
n

0

]

1  Note that, following (5) it should be �
n,1 . However, to not abuse with notation, we write �

n,1 = �
n
.
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The value d�n,�
2
n
 summarises the difference among the J = 2 parameters. Two units n 

and n′ can be considered similar if d�n,�
2
n
 is close to d�n′,�

2
n′
 . According to the proce-

dure highlighted so far, we vectorize the lower triangular of each �n . In the peculiar 
case of Gaussian density, however, the vectorization results into a single point, i.e. 
d�n,�

2
n
 . Therefore, we concatenate the values of vec

(
�n

)
 as follows:

obtaining a vector of dimension N × 1 . An Euclidean distance among the values of 
the vector � is the distance matrix used for the implementation of the PAM algo-
rithm. Note that these arguments apply when any probability distribution with J = 2 
parameters is specified2.

Let us now analyse the case in which K multivariate time series are studied with 
their time-varying parameters jointly. For each N units, we consider the generic k-th 
distance matrix:

Then, we vectorize the lower triangular of each k-th matrix. By concatenating these 
values we obtain the following vector:

Each �k is used to define a dissimilarity matrix �k . To obtain a synthesis, we apply 
the DISTATIS algorithm of Abdi et al. (2005). Hence, we find a consensus matrix D̃ 
that is then employed as the distance in the PAM algorithm (11).

(15)� =

⎡
⎢⎢⎢⎢⎢⎢⎣

d�1,�
2
1

d�2,�
2
2

⋮

d�n,�
2
n

⋮

d�N ,�
2
N

⎤
⎥⎥⎥⎥⎥⎥⎦

�n,k =

[
0 d�n,k ,�

2
n,k

d�n,k ,�
2
n,k

0

]
.

(16)�k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d�1,k ,�
2
1,k

d�2,k ,�
2
2,k

⋮

d�n,k ,�
2
n,k

⋮

d�N,k ,�
2
N,k

⎤⎥⎥⎥⎥⎥⎥⎥⎦

2  In the case in which J ≥ 3 , instead, we have that by concatenating the vec
(
�
n

)
 we obtain a matrix � of 

dimension [J(J − 1)]∕2 × N , thus turning into a 2D clustering problem.
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2.4 � Example with Generalized‑t density

Let us consider the data structure shown in (3) where each yn,k,t time series follows 
a Generalized-t distribution with J = 3 time-varying parameters. The density of a 
Generalized-t distribution with time-varying parameters can be written as follows:

with location �n,k,t , scale �n,k,t and shape 𝜈n,k,t > 2 , Fn,k,t is the information set and 
�n,k =

[
�n,k, diag

(
�n,k

)
, diag

(
�n,k

)]
 contains the parameters estimated by the follow-

ing t-GAS(1,1) process:

where differently from the Gaussian example, 
fn,k,j,t =

[
fn,k,1,t, fn,k,2,t, fn,k,3,t

]
=
[
�n,k,t,�n,k,t, �n,k,t

]
 . The scaled scores, sn,k,t , are equal 

to:

with �(⋅) being the Digamma function. Hence, ∇n,k,1,t is the score related to the time-
varying location (i.e. j = 1 ), ∇n,k,2,t is the score related to the time-varying scale (i.e. 
j = 2 ) and ∇n,k,3,t is the score related to the time-varying shape (i.e. j = 3 ). Finally, 
the model’s variables and parameters are:

(17)

p(yn,k,t ∣ �n,k,t,�n,k,t, �n,k,t,Fn,k,t;�n,k)

=
Γ
�

�n,k,t+1

2

�

Γ
�

�n,k,t

2

�
�n,k,t

√
��n,k,t

�
1 +

(yn,k,t − �t)
2

�n,k,t�n,k,t

� �n,k,t+1

2

fn,k,t = �n,k + �n,ksn,k,t−1 + �n,kfn,k,t−1

(18)
∇n,k,1,t =

(
�n,k,t + 1

)(
yn,k,t − �n,k,t

)

�n,k,t�n,k,t

(
1 +

(yn,k,t−�n,k,t)
2

�n,k,t�n,k,t

)

(19)∇n,k,2,t =

(
�n,k,t + 1

)(
yn,k,t − �n,k,t

)2

2�n,k,t�
2
n,k,t

(
1 +

(yn,k,t−�n,k,t)
2

�n,k,t�n,k,t

) −
1

�n,k,t

(20)

∇n,k,3,t =
1

2
�

(
�n,k,t + 1

2

)
−

1

2
�

(�n,k,t
2

)
−

1

2�n,k,t

−
1

2
log

(
1 +

(
yn,k,t − �n,k,t

)2
�n,k,t�n,k,t

)
+

(
�n,k,t + 1

)(
yn,k,t − �n,k,t

)2

2�2
n,k,t

�n,k,t

(
1 +

(yn,k,t−�n,k,t)
2

�n,k,t�n,k,t

)



1 3

Multiway clustering with time‑varying parameters﻿	

Let us discuss, first, the univariate case. We estimate the time-varying parameters by 
means of the t-GAS(1,1) process (29). Then, we compute the matrices �n according 
to formula (5). The matrices �n in the case of Generalized-t distribution can be writ-
ten as follows:

According to the procedure highlighted so far, we vectorize the lower triangular of 
each �n . The vectorization results into the following vector:

Then, by concatenating the vectors vec
(
�n

)
 we have:

where each column of � represents the n-th statistical unit to be clustered and the 
rows are the dissimilarities among the time-varying parameters. An Euclidean dis-
tance among the columns of the matrix � is the distance matrix among the N units. 
Note that when the probability distribution has J > 2 time-varying parameters, the 
vector � (15) becomes a matrix.

Let analyse the case in which K multivariate time series are jointly studied 
with their time-varying parameters. For each n-th unit, let us consider the k-th 
ACF-based distance matrices:

For each k-th variable, we vectorize the lower triangular. By concatenating these 
values we define the following matrix:

fn,k,t =

⎛
⎜⎜⎝

�n,k,t

�n,k,t

�n,k,t

⎞
⎟⎟⎠
, � =

⎛
⎜⎜⎝

�n,k,1

�n,k,2

�n,k,3

⎞
⎟⎟⎠
,

� =

⎛
⎜⎜⎝

an,k,1 0 0

0 an,k,2 0

0 0 an,k,3

⎞
⎟⎟⎠

and � =

⎛
⎜⎜⎝

bn,k,1 0 0

0 bn,k,2 0

0 0 bn,k,3

⎞
⎟⎟⎠

�n =

⎡
⎢⎢⎣

d�n,�n
d�n,�n

d�n,�n

d�n,�n
d�n,�n

d�n,�n

d�n,�n
d�n,�n

d�n,�n

⎤
⎥⎥⎦
=

⎡
⎢⎢⎣

0 d�n,�n
d�n,�n

d�n,�n
0 d�n,�n

d�n,�n
d�n,�n

0

⎤
⎥⎥⎦

(21)vec
�
�n

�
=

⎡⎢⎢⎣

d�n,�n

d�n,�n

d�n,�n

⎤⎥⎥⎦

(22)� =

⎡⎢⎢⎣

d�1,�1
… d�n,�n

… d�N ,�N

d�1,�1
… d�n,�n

… d�N ,�N

d�1,�1
… d�n,�n

… d�N ,�N

⎤⎥⎥⎦

�n,k =

⎡⎢⎢⎣

0 d�n,k ,�n,k
d�n,k ,�n,k

d�n,k ,�n,k
0 d�n,k ,�n,k

d�n,k ,�n,k
d�n,k ,�n,k

0

⎤⎥⎥⎦
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As in the example with Gaussian density, each �k is used to define a dissimilar-
ity matrix �k , whose general element is defined in (10). To obtain a synthesis of 
the K dissimilarity matrices, we apply the DISTATIS algorithm (see “Appendix 3”). 
Hence, we find a consensus matrix D̃ that is then employed as the distance in the 
PAM algorithm (11).

3 � Experimental results with simulated data

To show the validity of the proposed clustering procedure, we provide an applica-
tion to simulated data. We generate several alternative simulation schemes. The 
simulation schemes are based on time series simulated from the following Gaussian-
GAS processess:

with parameters calibrated on the basis of real time series data. In the case of uni-
variate time series, i.e. with K = 1 , we provide 90 alternative simulation schemes, 
comparing the clustering accuracy assuming the following DGPs:

•	 DGPs I: N/2 time series of length T from (24) and N/2 time series of length T 
from (25);

•	 DGPs II: N/2 time series of length T from (24) and N/2 time series of length T 
from (26);

•	 DGPs III: N/2 time series of length T from (24) and N/2 time series of length T 
from (27);

•	 DGPs IV: N/2 time series of length T from (25) and N/2 time series of length T 
from (26);

•	 DGPs V: N/2 time series of length T from (25) and N/2 time series of length T 
from (27);

(23)�k =

⎡⎢⎢⎣

d�1,k ,�1,k
… d�n,k ,�n,k

… d�N,k ,�N,k

d�1,k ,�1,k
… d�n,k ,�n,k

… d�N,k ,�N,k

d�1,k ,�1,k
… d�n,k ,�n,k

… d�N,k ,�N,k

⎤⎥⎥⎦

(24)

�1 = (0.0490, 0.0154); �1 =

(
0.0001 0

0 0.0534

)
; �1 =

(
0.0485 0

0 0.9891

)

(25)

�2 = (0.0840, 0.0456); �2 =

(
0.00001 0

0 0.0139

)
; �2 =

(
0.0660 0

0 0.0968

)

(26)

�3 = (0.0759, 0.0095); �3 =

(
0.0001 0

0 0.0471

)
; �3 =

(
0.001 0

0 0.9920

)

(27)

�4 = (0.0686, 0.0230); �4 =

(
0.0001 0

0 0.0755

)
; �4 =

(
0.0018 0

0 0.9791

)
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•	 DGPs VI: N/2 time series of length T from (26) and N/2 time series of length T 
from (27);

under three different sample sizes N = {10, 30, 60} and with four time series’ 
lengths, namely T = {150, 250, 500, 1000, 2000} . Therefore, we also evaluate how 
the performance of the clustering algorithm is affected by the number of statistical 
units N and the time series’ length T, considering six combinations of the alternative 
DGPs. For all the simulations we assume C = 2 clusters.

The proposed clustering approach is compared with two clustering algorithms. 
The first benchmark is represented by a standard PAM approach, where cluster 
analysis is conducted considering the original time series rather than their time-
varying parameters. Then, a second benchmark is represented by Cerqueti et al. 
(2021), that considers the auto-correlation of a target time-varying parameter for 
clustering. In the case of Gaussian density, we consider the Cerqueti et al. (2021) 
algorithm with both mean and variance targeting. Differently, the approach pro-
posed in this paper jointly considers all the time-varying parameters in the clus-
tering process.

The performances of the algorithms are compared in terms of adjusted Rand 
Index (ARI, Hubert and Arabie 1985), averaged over 100 trials as in Park and Jun 
(2009).

The results in the case of N = 10 time series are shown in Table 1.
We notice that the proposed approach provides the best classification for all the 

considered simulated scenarios. Moreover, the clustering accuracy improves with 
increasing time series length. For example, looking at the results in the scenario I, 
we have that with short time series T = 500 the ARI is equal to 0.38, while with 
T = 2000 it takes value of 0.88. This pattern is consistent across all the considered 
scenario. The validity of time-varying parameters based clustering is highlighted 
also by the good performances of the targeting approaches with respect to the clus-
tering on the original time series. Furthermore, clustering based on variance leads 
to much more accurate results than the mean-based clustering, hence confirming the 
results of Cerqueti et al. (2021).

Nevertheless, the values associated to the average Rand Indices vary across the 
simulation. The maximum value is reached in the simulated scenario II, where the 
proposed clustering approach provides an ARI value equal to 0.98 with T = 2000 . 
Similarly, in the scenario IV we obtain an ARI equal to 0.95 with very long time 
series. We find the lowest ARI in the scenario V, with a value equal to 0.4. How-
ever, also in this case the proposed approach outperforms all the considered alterna-
tives. Particularly, the second best for the scenario V is represented by the clustering 
approach with variance targeting—which shows an ARI equal to 0.3—character-
ized by a much lower performance than our proposal. To explore the distribution 
variability of the estimated ARI, it is possible to analyze the boxplots. For example, 
Fig. 1 shows the ARI’s boxplots for the simulations obtained with the six alternative 
DGP considering a time series length of T = 2000 and N = 10.3

3  The boxplots of all the considered time series lengths are available upon request.
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According to Fig. 1 we observe that the ARI obtained with the proposed approach 
is often characterized by lower variability and higher median value than the alterna-
tives. Although the variability associated to the conditional mean targeting approach 
is generally lower that the other clustering approaches, from Fig. 1 we observe that 

Table 1   Clustering results: average Adjusted Rand Index (N = 10; K = 1)

Clustering approach Proposal Target �
t Target �2

t
Benchmark

DGPs scenario I: models (24) and (25)
 T = 150 0.0660 − 0.0103 0.0590 − 0.0261
 T = 250 0.1366 − 0.0175 0.1167 − 0.0120
 T = 500 0.3166 0.0018 0.2475 − 0.0119
 T = 1000 0.6561 − 0.0036 0.5872 0.0047
 T = 2000 0.8731 − 0.0021 0.8588 0.0053

DGPs scenario II: models (24) and (26)
 T = 150 − 0.00347 − 0.0137 − 0.0113 0.0002
 T = 250 − 0.0105 0.0981 − 0.0103 0.02046
 T = 500 0.1615 0.3771 0.0921 0.2342
 T = 1000 0.6075 − 0.0195 0.1934 − 0.0754
 T = 2000 0.9854 0.4268 0.9622 − 0.0570

DGPs scenario III: models (24) and (27)
 T = 150 0.0124 − 0.0080 0.0069 0.0052
 T = 250 0.0189 − 0.0070 0.0126 − 0.0087
 T = 500 0.0579 0.0059 0.0706 − 0.0057
 T = 1000 0.2542 0.0108 0.2141 − 0.0197
 T = 2000 0.4360 0.0793 0.4083 0.0017

DGPs scenario IV: models (25) and (26)
 T = 150 0.0515 0.0289 0.0413 − 0.0046
 T = 250 0.1788 0.0111 0.1502 0.0028
 T = 500 0.4191 0.0173 0.3481 0.0008
 T = 1000 0.7048 0.0944 0.6568 0.0080
 T = 2000 0.9526 0.1787 0.9332 − 0.0034

DGPs scenario V: models (25) and (27)
 T = 150 0.0289 0.0072 0.0255 − 0.0086
 T = 250 0.0505 0.0144 0.0284 − 0.0010
 T = 500 0.1444 − 0.0074 0.0742 0.0038
 T = 1000 0.2387 0.0444 0.1640 0.0014
 T = 2000 0.4071 0.1593 0.3025 − 0.0096

DGPs scenario VI: models (26) and (27)
 T = 150 0.0045 − 0.0180 − 0.0356 − 0.0024
 T = 250 0.0848 − 0.0105 0.0618 − 0.0046
 T = 500 0.1194 − 0.0082 0.1102 0.0157
 T = 1000 0.4447 − 0.0076 0.3922 0.0165
 T = 2000 0.5993 0.0258 0.5719 − 0.0004
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its ARI values are often below those obtained with the proposed clustering proce-
dure. As showed in Table 1, Fig. 1 confirms that the clustering approach with condi-
tional variance targeting is the most competitive among the considered alternatives. 
The boxplots referring to the other time series length T are not reported here because 
the results are very similar to those showed in Fig. 1. Indeed, the distribution vari-
ability of the estimated ARI associated to the proposed approach is always lower 
than the one obtained with the conditional variance clustering approach, which is 
the second best. Then, although the conditional mean clustering and the benchmark 
based on raw data show similar or lower variability than the proposed approach, 
their median and average values are much lower.

The results in the case of N = 30 and N = 60 time series are shown in the 
“Appendix 1” in Tables 7 and 8, respectively. Substantially, the performance of the 
proposed clustering procedure is not affected by the number of statistical units in 
the sample. Indeed, the overperformance in terms of adjusted Rand Index achieved 
with the use of the proposed clustering procedure is confirmed. Furthermore, also 
in these cases we observe higher clustering performances with increasing time 
series’ length T. The boxplots with T = 2000 and N = 30 and N = 60 are reported 
in Figs. 17 and 18, “Appendix 1”, showing similar results of Fig. 1. The unreported 
boxplots with lower time series length T and higher number of statistical units—i.e. 
N = 30 and N = 60—share the same patterns of those showed in the “Appendix 1”.

Then, we consider an alternative simulation scenario where multivariate 
time series are jointly studied. Particularly, we compare the proposed clustering 

Fig. 1   ARI of the clustering results for N = 10 simulated univariate time series of length T = 2000 . 
The labels "Mean" and "Variance" indicate the clustering approaches with mean and variance targeting, 
respectively
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algorithm based on time-varying parameters with the multi-step algorithm discussed 
in Košmelj (1986), Košmelj and Batagelj (1990), based on the raw time series rather 
than their distribution parameters.

Also in this case we consider six combination of the DGPs discussed above (24)-
(27), where the K time series variables for a given n-th unit are simulated from the 
same DGP. For example, in the multivariate version of the scenario I, we simulate 
a first set of N/2 time series with K variables trough the (24) and another set of N/2 
time series with K variables trough the (25). In other words, the K variables assume 
different values but are generated by the same DGP. As in the simulations with 
univariate time series, we consider, for each DGPs scenario, different time series’ 
length T = 150, 250, 500, 1000, 2000 and different sample sizes N = 10, 30, 60 . 
Therefore, we end up with additional 90 alternative simulated schemes.

The results for N = 10 are shown in Table 2.
The results in terms of average ARI are, compared to the benchmark approach, 

outstanding especially with long time series’ length T. For example, in the scenario 
I of Table 2 the average ARI is equal to 0.96 for the proposed approach, while the 
benchmark provides a random partition with an ARI close to 0. Similarly good 
results are achieved with the scenario IV, where the ARI associated to the proposed 
clustering approach is equal to 0.98. Moreover, for these simulations we have that 
the lowest average ARIs associated to the developed clustering procedure are always 
close to 0.6 for long time series. For example, in the simulated scenario V it is equal 
to 0.6 versus the value of 0 of the benchmark.

With shorter time series the results are still good. For example, in the scenario I, 
we obtain an ARI equal to 0.8 with T = 1000 and 0.4 with T = 500 . Unfortunately, 
not all the simulated scenario show high performances with very short time series 
T = 250 and T = 150 . The results obtained with T = 150 are very close to those 
with T = 250 . The best result is achieved with the scenario IV, where the average 
ARI is equal to 0.3. However, in many cases the average ARI is similar to the bench-
mark. Therefore, these results confirm that the proposed clustering approach works 
particularly well in presence of longer time series. This can be explained by the 
very good performances of the ACF-based distance with long time series data. Con-
versely, it is known that the performances of the ACF-based tend to be less accurate 
with short time series.

From these simulations it is evident that the benchmark model is associated to 
an always very low adjusted Rand Index. The so high performances of the proposed 
approach can be justified by the DGP, characterized by time variation in the distribu-
tion parameters. With the right specification of the DGP, the results in terms of clus-
tering quality resulting by the use of time-varying parameters are very satisfactory.

As in the univariate case, for exploring the distribution variability of the esti-
mated ARI, it is possible to analyze the boxplots. For example, Fig.  2 shows the 
ARI’s boxplots for the simulations obtained with the six alternative DGP consider-
ing K = 2 time series length of T = 2000.4

4  Also in this case, the entire set of the boxplots of all the considered time series lengths is available 
upon request.
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The proposed clustering procedure performs particularly well in the simu-
lated scenarios with DGP I, DPG II and DPG IV. Indeed, in these cases we have 
that the variability of the estimated ARI is very low also compared with the 
conditional variance targeting approach, which represents the second best. The 
median ARI for the proposed procedure equals to the maximum value of 1 in 

Table 2   Clustering results: 
average Adjusted Rand Index 
(N = 10;K = 2)

Clustering approach Proposal Target �
t Target �2

t
Benchmark

DGPs scenario I: models (24) and (25)
T = 150 0.1013 − 0.0055 0.0286 0.0158
T = 250 0.1811 0.0188 0.0040 0.0084
T = 500 0.3959 − 0.0125 0.0389 0.0049
T = 1000 0.8044 0.0303 0.1030 − 0.0034
T = 2000 0.9696 0.0227 0.2177 0.0198
DGPs scenario II: models (24) and (26)
T = 150 0.0403 − 0.0015 0.0398 − 0.0192
T = 250 0.0751 − 0.0101 0.0354 0.0024
T = 500 0.1917 0.0038 0.0582 − 0.0121
T = 1000 0.5149 0.0169 0.1457 − 0.0082
T = 2000 0.8890 − 0.0200 0.2424 0.0004
DGPs scenario III: models (24) and (27)
T = 150 0.0416 − 0.0043 0.0383 0.0109
T = 250 0.0318 0.0125 0.0343 − 0.0106
T = 500 0.1225 0.0135 0.1135 0.0009
T = 1000 0.3108 0.0317 0.2772 0.0037
T = 2000 0.6456 − 0.0137 0.6189 − 0.0177
DGPs scenario IV: models (25) and (26)
T = 150 0.1511 0.0049 0.1385 0.0032
T = 250 0.3157 0.0016 0.2336 − 0.0017
T = 500 0.5516 − 0.0052 0.3833 0.0213
T = 1000 0.8852 0.0073 0.5784 − 0.0082
T = 2000 0.9879 − 0.0123 0.8073 0.0062
DGPs scenario V: models (25) and (27)
T = 150 0.0109 − 0.0030 0.0090 − 0.0059
T = 250 0.0358 − 0.0066 0.0122 − 0.0068
T = 500 0.1972 − 0.0082 0.1459 0.0078
T = 1000 0.3433 − 0.0112 0.2503 0.0273
T = 2000 0.5914 0.0174 0.4955 − 0.0070
DGPs scenario VI: models (26) and (27)
T = 150 0.0516 0.0094 0.0127 0.0111
T = 250 0.0776 0.0091 0.0222 0.0348
T = 500 0.2048 0.0014 0.1407 0.0023
T = 1000 0.3734 − 0.0020 0.2422 − 0.0255
T = 2000 0.5842 − 0.0102 0.3888 0.0121
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such simulated scenarios. Quite similar conclusions can be derived from the other 
scenarios. Furthermore, we observe that the proposed clustering procedure is 
characterized by lower variability and higher median values than the alternatives, 
although the variability of the results under the DGPs III, V and VI is higher than 
in the DGPs I, II and IV. These results confirm those of univariate time series. As 
in the univariate case, the boxplots referring to simulated scenarion with other 
time series length T are not reported. Indeed, the obtained results in these unre-
ported cases are close to those showed in Fig.  2. Indeed, considering the ARI 
obtained with the proposed clustering approach, we find a variability that is 
always lower (in some simulated scenarios it is very similar) to the one associated 
with the ARI of the conditional variance clustering approach, which is also in the 
multivariate case the best among the considered alternatives. The ARI associated 
to the other two alternative clustering approaches—i.e. conditional mean and raw 
data-based—in general show the same variabilty of our procedure, but with much 
lower median and average values. Although in some simulated scenarios the con-
ditional mean clustering shows lower variability (e.g. with DGP IV and T = 150 
or with DGP V and T = 250 ), such lower variability comes at a cost: lower clus-
tering performances. Therefore, also the analysis of the boxplots shows that the 
proposed procedure outperforms the considered alternatives.

In the end, we evaluate how the performances change with increasing sample size 
N. The results of simulations with N = 30 and N = 60 are shown in Tables 9 and 10, 
in the “Appendix 1”.

As in the univariate setting, also for multivariate time series the number of sta-
tistical units to be clustered does not affect the clustering quality. Tables 9 and 10 

Fig. 2   ARI of the clustering results for N = 10 simulated multivariate time series K = 2 each of length 
T = 2000 . The labels "Mean" and "Variance" indicate the clustering approach with mean and variance 
targeting, respectively
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confirm the very good performances of the proposed clustering approach with very 
long time series’ length. Scenario I and IV provide the best results, with average 
ARI equal to 0.97 and 0.99, respectively. The benchmark model is characterized by 
very poor performances, confirming that when the distribution parameters change 
over time a clustering approach that considers the raw time series should not be 
used. Finally, also with increasing N, we observe very high clustering performances 
with medium and long time series, whereas the good performances for short time 
series are not robust across all the simulations.

The boxplots with T = 2000 and N = 30 and N = 60 are reported in Figs. 19 and 20 
in the “Appendix 1”. The results are similar to those showed in Fig. 2. The unreported 
boxplots, associated to simulated scenarios with lower time series length T and N = 30 
and N = 60 , share the same patterns of those showed in the “Appendix 1”. Overall, the 
boxplots with different number of statistical units, i.e. N = 30 and N = 60 , do not dif-
fer from the case N = 10.

4 � Application to air quality time series data

In what follows we show an application of the proposed clustering procedure to envi-
ronmental time series with the aim of identifying groups of cities characterized by the 
same levels of air quality.

4.1 � Data

Air quality monitoring is conducted by means of stations that measure the content of 
atmospheric pollutants and weather conditions. By aggregating data, it is possible to 
obtain the air quality patterns for a given region or city. Air quality is also related to 
many of the United Nations Sustainable Development Goals. For example, the devel-
opment of policies aimed at reducing the emission of pollutants in the air are directly 
related with climate mitigation targets, access to clean energy services, waste manage-
ment, and other aspects of socio-economic development (Lu et al. 2015; Rafaj et al. 
2018).

The application with real data is conducted on the most important cities in India5. 
In particular, we considered daily air quality time series about Particulate Matter 
(PM) with values expressed in micron, PM2.5 and PM10, in the period 1 th January 
2020– 1 th June 2020. The data at city level are aggregated considering many stations 
placed within each city6. The final sample is characterized by N = 15 units (i.e. the cit-
ies) observed for T = 182 time periods.

The air pollution time series are shown in Figs. 3 (PM2.5) and Fig. 4 (PM10).

5  The considered cities are the following: Ahmedabad, Amaravati, Bengaluru, Chandigarh Coimbatore, 
Delhi, Gurugram, Guwahati, Hyderabad, Jaipur, Kolkata, Mumbai, Patna, Thiruvananthapuram and 
Visakhapatnam. Other cities have been removed because of missing values
6  Data about monitoring station can be retrieved at the following link https://​cpcb.​nic.​in/. The final data-
set at city level is available on request.

https://cpcb.nic.in/
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The PM2.5 and PM10 time series present some similarities in their patterns for all 
the cities. For example, we observe that most of the cities show a reduction in air pol-
lution during the period 03/2020–06/2020 according to both the variables. However, 
there are also significant differences among the cities: some cities are characterized by 
negative trends (e.g. Kolkata and Mumbai) whereas some others show more stable pat-
terns (e.g. Gurugram and Jaipur).

The presence of deterministic trends in the air pollution time series indicates that the 
underling processes are not stationary. As discussed in Blasques et al. (2022), stationar-
ity of the observed time series is needed to ensure consistency of maximum likelihood 
estimator in the case of model misspecification for the GAS processes. For this reason, 
we prefer to analyze the air pollution’s rate of changes which have the same information 
for the problem at hand, i.e. clustering cities with same levels of air quality.

4.2 � Results with Gaussian density

Figures  5 and 6 show the pattern of the estimated time-varying mean under the 
hypothesis of Gaussian distribution, while Figs.  7 and 8 show the time-varying 
variance.

The time-varying parameters provide some useful information about the pat-
tern of air pollution. For example, considering the PM2.5 variable, Coimbatore 
and Jaipur show a lower level of variability in the conditional mean that fluctuates 
around a constant value with some spikes associated to days with very low air qual-
ity levels. In contrast, Gurugram and Kolkata are characterized by high variability in 
the conditional mean. These results are confirmed by the analysis of conditional var-
iances shown in Fig. 7, with cities like Coimbatore and Jaipur characterized by quite 
flat conditional variances and others, like Gurugram and Kolkata, that show the 
typical pattern of conditionally heteroskedastic processes. The city of Hyderabad, 

Fig. 3   PM2.5 indicator—time series
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instead, presents a very peculiar pattern for the conditional variance, which differs 
from the variances observed in the other cities. Considering the PM10 time series 
(Fig.  8) we also observe clear differences in the time-varying parameters. Coim-
batore and Visakhapatnam are characterized by conditional means with low vari-
ability, reflecting the quite flat structure of conditional variances. Also in the case of 
PM10, we recognize that Hyderabad has a very peculiar pattern of the conditional 
variance. Therefore, we suspect that this city can be an outlier.

Fig. 4   PM10 indicator—time series

Fig. 5   PM2.5 indicator—time-varying mean
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We compared the partition obtained by the use of the proposed cluster-
ing approach with the one based on the raw time series and the two clustering 
approaches involving parameter targeting by means of the Average Silhouette Width 
(ASW) criterion. The results are shown in Fig. 9.

In Fig. 9, the solid line represents the ASW of the proposed clustering proce-
dure based on time-varying parameters, whereas the dashed line shows the ASW 
values associated to the benchmark for different number of clusters. We note that 
both the procedures define as optimal number of clusters C = 3 , but our procedure 

Fig. 6   PM10 indicator—time-varying mean

Fig. 7   PM2.5 indicator—time-varying variance
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provides a better partition (the line associated with our procedure is always above 
those of the benchmarks).

The resulting partitions are shown in Table 3.
Although the groups’ composition differs according to the two considered clus-

tering procedures, some similarities can be highlighted. For example, some cities 
are clustered together according to the considered approaches. Examples are the 
cities of Ahmedabad, Amaravati and Coimbatore but also Delhi and Gurugram. 
This means that the same levels of air quality characterize these cities. However, 
despite these similarities, the clustering results are different. First of all, our pro-
cedure highlights the presence of an outlier, identified as the Hyderabad city, 
which is the only unit belonging to cluster 3. On the contrary, no outliers are 

Fig. 8   PM10 indicator—time-varying variance

Fig. 9   Average Silhouette Width: proposed approach (solid line) comparison with benchmark (dashed 
line), mean targeting (dotted line) and variance targeting (long dash line)
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identified by the benchmark clustering approach based on raw data and with vari-
ance targeting, while the conditional mean targeting approach considers the city 
of Ahmedabad as outlier.

As a consequence, also the groups’ size is different. Indeed, the benchmark 
clustering algorithm based on raw data assigns the cities in the similarly sized 
clusters, with six cities placed in cluster 1, four cities in cluster 2 and five cities 
to cluster 3. The mean targeting approach assigns most cities in cluster 2 and four 
cities in cluster 3. The variance targeting does not highlight any outlier, placing 
most cities in cluster 2 and two cities in cluster 1 and cluster 3. Differently, our 
procedure highlights that most Indian cities are placed in cluster 1 (ten units), 
and a residual part of them is placed in cluster 2 (four units). By looking at the 
average values of air quality within the clusters (see Table 4), we suppose that the 
resulting classification could imply some differences in environmental policies.

The proposed clustering procedure allows us to identify the cities characterized 
by low air quality, i.e. high levels of the PM2.5 and PM10 indicators. More pre-
cisely, the cities belonging to cluster 2 show the highest levels of particular mat-
ter (PM) in the air. Conversely, the cities in cluster 1 show lower average values. 
Therefore, cluster 1 includes cities with better air quality. Hyderabad is considered 
an outlier because of the conditional variance patterns in the air pollution indica-
tors, as shown in Figs. 7 and 8. These results suggest improving air quality in cities 
belonging to cluster 2, which should be more closely monitored.

Table 3   Clustering results under Gaussian distribution

City Clustering approach

Benchmark Proposed 
approach

Mean target Variance 
target

Ahmedabad 1 1 1 1
Amaravati 1 1 2 2
Bengaluru 1 2 3 1
Chandigarh 2 1 2 2
Coimbatore 1 1 3 2
Delhi 3 2 2 2
Gurugram 3 2 2 2
Guwahati 1 1 3 2
Hyderabad 2 3 2 3
Jaipur 3 1 2 2
Kolkata 3 1 2 2
Mumbai 3 1 2 2
Patna 1 2 3 3
Thiruvananthapuram 2 1 2 2
Visakhapatnam 2 1 2 2
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4.3 � Results with Generalized‑t density

To evaluate the impact of the modelling hypothesis on the final results, we also 
assessed the clusters’ change under an alternative distributional assumption. In the 
case of environmental time series, which are heavy-tailed (e.g. see Muller 2016; 
Williams et al. 2020), it can be more appropriate to use a conditional non-Gaussian 
model. Thanks to the flexibility of the GAS model, the proposed clustering proce-
dure can be extended to the case of non-Gaussian distributions. In Sect. 2.4 we have 
introduced the case of Generalized-t distribution-based clustering procedure. Start-
ing from the same dataset discussed in Sect. 4.1, in what follows we apply the pro-
posed clustering procedure under the Generalized-t distributional assumption.

Figures 10 and 11 show the time series of the estimated time-varying location 
under the hypothesis of Generalized-t distribution, Figs. 12 and 13 show the esti-
mated time-varying scale and Figs. 14 and 15 show the time-varying shape for both 
PM2.5 and PM10 time series.

Table 4   Average values within clusters—proposed clustering procedure with Guassian density

Panel A: PM2.5

Cluster 1:
Ahmedabad Amaravati Chandigarh Coimbatore Guwahati
107.66552 50.08341 66.86610 37.27478 126.52324
Jaipur Kolkata Mumbai Thiruvananthapuram Visakhapatnam
97.12846 93.44082 94.24385 51.39780 82.46033
Cluster 2:
Bengaluru Delhi Gurugram Patna
67.01093 155.23841 133.20791 122.85110
Cluster 3:
Hyderabad
78.01857

Panel B: PM10

Cluster 1:
Ahmedabad Amaravati Chandigarh Coimbatore Guwahati
43.33951 25.81865 27.50143 28.40712 74.17467
Jaipur Kolkata Mumbai Thiruvananthapuram Visakhapatnam
40.15648 46.60440 36.22363 26.79978 31.57588
Cluster 2:
Bengaluru Delhi Gurugram Patna
30.46412 78.71456 65.75945 60.48154
Cluster 3:
Hyderabad
 35.06434
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The time-varying location parameters, shown in Figs. 10 and 11, are character-
ized by fluctuations around a constant long-run value. Two exceptions are the time-
varying location of the variable PM2.5 and PM10 related to the city of Patna and 
Bengalauru, which show a positive trend in the first case and a negative one in the 
second case. The time-varying scale parameters are shown in Figs. 12 and 13.More-
over, the Hyderabad and Bengalauru cities show time-varying scale parameters of 
the PM2.5 and PM10 which are very different from those of the other cities. There-
fore, the Bengalauru city could be considered as a possible outlier in terms of both 
location and scale. In the end, the time-varying shape parameters are showed in 
Figs. 14 and 15. Time-varying shape parameters are interestingly characterized by 
stationary patterns followed by a large peak. The city of Gurugam is characterized 
by two large peaks in the variable PM10.

We compared the partition obtained by the use of the proposed clustering 
approach with the selected benchmarks by means of the Average Silhouette Width 
(ASW) criterion. The results are shown in Fig. 16.

In terms of ASW, the proposed approach achieves the highest value, about 0.9 
with C = 3 clusters, among the alternatives. We note that the ASW curve associ-
ated with the proposed clustering procedure is always above those of the alternative 
approaches. This suggests that it provides a better partition.

Some differences and similarities with the results obtained under a Gaussian 
distribution assumption can be highlighted. For example, as in the Gaussian case, 
the proposed clustering procedure maximizes the ASW with C = 3 . This suggests 
that a partition with three clusters is probably the most appropriate for the analyzed 
dataset. However, the benchmark approaches, under the Generalized-t distributional 
assumption, indicate the presence of C = 2 clusters, in the case of location and scale 

Fig. 10   PM2.5 indicator—time-varying location
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targeting approaches, C = 5 for the shape targeting approach. The raw data-based 
approach also suggests the presence of C = 3 clusters.

It is important to highlight that, under the Generalized-t assumption, all the clus-
tering algorithms improve their performances compared to those with the Gaussian 

Fig. 11   PM10 indicator—time-varying location

Fig. 12   PM2.5 indicator—time-varying scale
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distribution. This suggests that the Generalized-t distribution better describes the 
considered environmental time series.

The resulting partitions are shown in Table 5.
We note that, in the case of conditional scale targeting, most cities are grouped 

together with the exception of Hyderabad and Bengaluru. This can be due to the 

Fig. 13   PM10 indicator—time-varying scale

Fig. 14   PM2.5 indicator—time-varying shape
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time patterns of their conditional scale parameters for PM2.5 (Hyderabad) and 
PM10 (Bengaluru). Looking at the partition obtained with the conditional loca-
tion targeting, Bengaluru and Patna are placed in the cluster 2 because of peculiar 
patterns of PM10 (Bengaluru) and PM2.5 (Patna). The conditional shape target-
ing provides a partition with two outliers, Bengalauru and Hyderabad. The pro-
posed clustering procedure provides a partition taking jointly into account all the 
time-varying parameters. Therefore, it shows a unique outlier in the sample: the 

Fig. 15   PM10 indicator—time-varying shape

Fig. 16   Average Silhouette Width: proposed approach (solid line) comparison with benchmark (dashed 
line), location targeting (dotted line) and scale targeting (long dash line)
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city of Bengaluru, with location (PM10) and scale (PM10) very different from the 
other cities.

Then, we consider the average values of air quality variables PM2.5 and PM10 
within the clusters. Table 6 highlights interesting differences among the groups 
obtained with the proposed approach.

According to PM2.5, we observe that cluster 3 includes cities with very high aver-
age values, whereas cluster 1 is more heterogeneous in its composition. The city of 
Bengalauru has a relatively low value of PM2.5, which is close to the first quartile of 
the distribution. In the cluster 3 we have two cities with high PM2.5 average values. 
Delhi is the city with the maximum PM2.5 average value, while Kolkata has a value 
close to the third quartile of the distribution. Similar patterns can be find looking at the 
average values of PM10 variable.

5 � Final remarks

Clustering time series according to their distribution parameters is a widely explored 
topic. In this framework, some recent contributions consider time variation in the 
distribution parameters, but only in the case of univariate time series. This paper 
provides a clustering procedure based on time-varying parameters for multivariate 
time series.

Clustering multivariate time series with time-varying parameters is not straight-
forward because the data structure is a 4D tensor. The four dimensions are: (1) the 
statistical units, (2) the time, (3) the variables, and (4) the distribution parameters. In 

Table 5   Clustering results under Generalized-t distribution

City Clustering approach

Benchmark Proposed 
approach

Location 
target

Scale target Shape target

Ahmedabad 1 1 1 1 1
Amaravati 1 1 1 1 1
Bengaluru 1 2 2 2 2
Chandigarh 2 1 1 1 3
Coimbatore 1 1 1 1 4
Delhi 3 3 1 1 3
Gurugram 3 1 1 1 4
Guwahati 1 1 1 1 4
Hyderabad 2 1 1 2 5
Jaipur 3 1 1 1 4
Kolkata 3 3 1 1 3
Mumbai 3 1 1 1 4
Patna 1 1 2 1 3
Thiruvananthapuram 2 1 1 1 1
Visakhapatnam 2 1 1 1 1
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the proposed multiway clustering procedure, we adopt a multi-step approach where, 
firstly, a dissimilarity matrix, for each 3D tensor included in the 4D tensor, is com-
puted. Then, starting from each distance matrix, the consensus matrix is computed 
by the DISTATIS algorithm Abdi et  al. (2005). The final partition is obtained by 
using this distance matrix as input of the PAM algorithm.

An extensive simulation study, conducted considering both different time series 
lengths, sample sizes and number of variables, compares the performance of the 
proposed clustering procedure with the one of a standard multi-step clustering pro-
cedure for 3D tensors applied to the raw time series. For all the considered sce-
narios, the proposed approach outperforms the alternatives. The usefulness of the 
proposed clustering is discussed through an application to environmental time series 
about air quality. As a further support to the validity of our procedure, we notice that 

Table 6   Average values within clusters—proposed clustering procedure with Generalized-t density

Panel A: PM2.5

Cluster 1:
Ahmedabad Amaravati Chandigarh Coimbatore
107.66552 50.08341 66.86610 37.27478
Gurugram Guwahati Hyderabad Jaipur
133.20791 126.52324 78.01857 97.12846
Mumbai Patna Thiruvananthapuram Visakhapatnam
94.24385 122.85110 51.39780 82.46033
Cluster 2:
Bengaluru
67.01093
Cluster 3:
Delhi Kolkata
155.23841 93.44082

Panel B: PM10

Cluster 1:
Ahmedabad Amaravati Chandigarh Coimbatore
43.33951 25.81865 27.50143 28.40712
Gurugram Guwahati Hyderabad Jaipur
65.75945 74.17467 35.06434 40.15648
Mumbai Patna Thiruvananthapuram Visakhapatnam
36.22363 60.48154 26.79978 31.57588
Cluster 2:
Bengaluru
30.46412
Cluster 3:
Delhi Kolkata
78.71456 46.60440
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the proposed procedure performs in partitioning the considered dataset, although the 
time series considered in the application are not very long. For this aim, we compare 
the clusters obtained using the proposed approach with those obtained considering a 
standard multi-step clustering approach for multiway data.

Some future research developments can be highlighted. Firstly, we notice that the 
procedure developed in the paper can be used for clustering any 4D tensor. There-
fore, it can also be adopted for clustering 4D tensors that do not include time-var-
ying parameters. Secondly, we also highlight that the proposed approach could be 
extended to account for co-moments, such as covariance, coskewenss and cokur-
tosis. This aspect is relevant when the time series show a cross-dependence struc-
ture in higher moments of the distribution. A third line of future research lies on 
the parameters’ distribution weighting. Indeed, in the present paper we implicitly 
assign equal weights to the different time-varying parameters. However, as shown in 
Cerqueti et al. (2022), it could be interesting to assign different weights to the dis-
tribution parameters and search for the optimal weights. This aspect should be taken 
into account in future studies. In the end, the proposed clustering approach can be 
extended to include spatial dependence in the data. Spatial dependence arise when 
dealing with statistical units that are observed over both time and space, such prov-
inces, cities or countries. Therefore, the extension of the proposed clustering proce-
dure to spatio-temporal setting represents another interesting future research line.

Appendix 1: Simulation study: more results

See Figs. 17, 18, 19, 20 and Tables 7, 8, 9, 10.

Fig. 17   ARI of the clustering results for N = 30 simulated univariate time series of length T = 2000
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Fig. 18   ARI of the clustering results for N = 60 simulated univariate time series of length T = 2000

Fig. 19   ARI of the clustering results for N = 30 simulated multivariate time series K = 2 each of length 
T = 2000
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Fig. 20   ARI of the clustering results for N = 60 simulated multivariate time series K = 2 each of length 
T = 2000

Table 7   Clustering results: 
average Adjusted Rand Index 
(N = 30;K = 1)

Clustering approach Proposal Target �
t Target �2

t
Benchmark

DGPs scenario I: models (24) and (25)
 T = 150 0.0606 0.0057 0.0406 0.0009
 T = 250 0.1350 − 0.0008 0.0975 − 0.0058
 T = 500 0.3412 0.0088 0.2895 0.0117
 T = 1000 0.6336 − 0.0066 0.5551 0.0016
 T = 2000 0.8738 0.0053 0.8380 − 0.0025

DGPs scenario II: models (24) and (26)
 T = 150 0.0161 0.0092 0.0142 0.0003
 T = 250 0.0202 0.0161 0.0401 0.0271
 T = 500 0.05208 0.01920 0.04736 − 0.01288
 T = 1000 0.20224 0.05344 0.16360 0.05384
 T = 2000 0.80688 0.43688 0.74232 0.02304

DGPs scenario III: models (24) and (27)
 T = 150 0.0123 − 0.0012 0.0092 0.0008
 T = 250 0.0317 0.0123 0.0329 − 0.0028
 T = 500 0.0887 0.0070 0.0715 − 0.0016
 T = 1000 0.1990 0.0236 0.1864 0.0039
 T = 2000 0.4789 0.0589 0.4482 − 0.0032

DGPs scenario IV: models (25) and (26)
 T = 150 0.0936 0.0017 0.0641 − 0.0026
 T = 250 0.1952 0.0064 0.1193 − 0.0009
 T = 500 0.3942 0.0213 0.3437 − 0.0043
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Clustering approach Proposal Target �
t Target �2

t
Benchmark

 T = 1000 0.7189 0.0344 0.6739 − 0.0016
 T = 2000 0.9523 0.1117 0.9266 0.0002

DGPs scenario V: models (25) and (27)
 T = 150 0.0223 0.0024 0.0084 0.0034
 T = 250 0.0702 − 0.0025 0.0463 − 0.0046
 T = 500 0.1153 0.0295 0.0772 0.0039
 T = 1000 0.2593 0.0364 0.1843 − 0.0071
 T = 2000 0.4034 0.0934 0.3228 0.0075

DGPs scenario VI: models (26) and (27)
 T = 150 0.0079 0.0047 0.0038 − 0.0068
 T = 250 0.0474 0.0005 0.0395 0.0036
 T = 500 0.1500 − 0.0043 0.1190 0.0005
 T = 1000 0.3960 0.0032 0.3667 0.0035
 T = 2000 0.6601 − 0.0053 0.6498 − 0.0042

Table 7  (continued)

Table 8   Clustering results: 
average Adjusted Rand Index 
(N = 60;K = 1)

Clustering approach Proposal Target �
t Target �2

t
Benchmark

DGPs scenario I: models (24) and (25)
 T = 150 0.0620 0.0011 0.0340 0.0021
 T = 250 0.1368 − 0.0021 0.0953 − 0.0002
 T = 500 0.3513 0.0008 0.3000 − 0.0004
 T = 1000 0.6473 − 0.0005 0.5914 − 0.0013
 T = 2000 0.8920 0.0079 0.8601 0.0015

DGPs scenario II: models (24) and (26)
 T = 150 0.0231 − 0.0003 0.0151 0.0012
 T = 250 0.0039 0.0386 − 0.0005 − 0.0413
 T = 500 0.0406 − 0.0057 − 0.0088 0.0153
 T = 1000 0.3365 0.1925 0.2763 0.0362
 T = 2000 0.8941 0.3474 0.8292 0.0231

DGPs scenario III: models (24) and (27)
 T = 150 0.0105 0.0013 0.0075 − 0.0001
 T = 250 0.0280 − 0.0008 0.0198 0.0039
 T = 500 0.0859 0.0075 0.0747 0.0004
 T = 1000 0.2385 0.0222 0.2084 − 0.0012
 T = 2000 0.4781 0.0305 0.4547 − 0.0007

DGPs scenario IV: models (25) and (26)
 T = 150 0.0869 − 0.0001 0.0519 0.0086
 T = 250 0.1991 0.0102 0.1240 0.0009
 T = 500 0.4148 0.0110 0.3554 0.0017
 T = 1000 0.5509 0.0212 0.5008 0.0007
 T = 2000 0.9500 0.1172 0.9358 − 0.0004
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Table 9   Clustering results: 
average Adjusted Rand Index 
(N = 30;K = 2)

Clustering approach Proposal Target �
t Target �2

t
ACF-based

DGPs scenario I: models (24) and (25)
 T = 150 0.1043 0.0054 0.0120 0.0113
 T = 250 0.1782 − 0.0092 0.0318 0.0024
 T = 500 0.4623 − 0.0081 0.0523 0.0031
 T = 1000 0.8185 − 0.0043 0.0905 0.0049
 T = 2000 0.9748 − 0.0012 0.2041 0.0025

DGPs scenario II: models (24) and (26)
 T = 150 0.0244 0.0028 0.0164 0.0022
 T = 250 0.0547 − 0.0018 0.0538 − 0.0029
 T = 500 0.1650 0.0055 0.0736 − 0.0013
 T = 1000 0.5626 − 0.0026 0.1161 0.0051
 T = 2000 0.9030 − 0.0015 0.2340 0.0137

DGPs scenario III: models (24) and (27)
 T = 150 0.0119 0.0017 0.0076 0.0012
 T = 250 0.0272 0.0039 0.0141 0.0044
 T = 500 0.1190 0.0018 0.0727 0.0053
 T = 1000 0.3091 − 0.0057 0.2192 0.0067
 T = 2000 0.6318 0.0068 0.5015 − 0.0029

DGPs scenario IV: models (25) and (26)
 T = 150 0.1097 0.0065 0.1116 0.0025
 T = 250 0.2231 − 0.0016 0.2827 0.0101
 T = 500 0.5996 0.0050 0.4034 − 0.0033
 T = 1000 0.8955 0.0026 0.6007 0.0048
 T = 2000 0.9933 0.0031 0.8047 0.0009

Clustering approach Proposal Target �
t Target �2

t
Benchmark

DGPs scenario V: models (25) and (27)
 T = 150 0.0241 0.0016 0.0102 0.0003
 T = 250 0.0555 0.0016 0.0254 0.0019
 T = 500 0.1242 0.0203 0.0791 − 0.0003
T = 1000 0.1304 0.0188 0.0846 − 0.0005
T = 2000 0.4522 0.1061 0.3717 0.0003
DGPs scenario VI: models (26) and (27)
 T = 150 0.0038 − 0.0014 0.0005 − 0.0088
 T = 250 0.0503 − 0.0026 0.0360 − 0.0008
 T = 500 0.1557 − 0.0037 0.1327 − 0.0006
 T = 1000 0.3929 0.0037 0.3569 − 0.0004
 T = 2000 0.6860 0.0007 0.6579 − 0.0027

Table 8  (continued)
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Clustering approach Proposal Target �
t Target �2

t
ACF-based

DGPs scenario V: models (25) and (27)
 T = 150 0.0377 0.0007 0.0164 − 0.0063
 T = 250 0.0570 0.0078 0.0288 − 0.0015
 T = 500 0.1321 − 0.0009 0.0846 − 0.0005
 T = 1000 0.3366 − 0.0012 0.2530 0.0020
 T = 2000 0.6259 − 0.0010 0.5317 − 0.0016

DGPs scenario VI: models (26) and (27)
 T = 150 0.0220 − 0.0099 0.0059 − 0.0058
 T = 250 0.0760 0.0010 0.0475 0.0017
 T = 500 0.1911 − 0.0055 0.1378 0.0055
 T = 1000 0.3408 0.0071 0.2686 0.0040
T = 2000 0.6299 − 0.0001 0.5704 0.0022

Table 9  (continued)

Table 10   Clustering results: 
average Adjusted Rand Index 
(N = 60;K = 2)

Clustering approach Proposal Target �
t Target �2

t
ACF-based

DGPs scenario I: models (24) and (25)
T = 150 0.0716 − 0.0013 0.0165 0.0037
 T = 250 0.2077 − 0.0030 0.0248 0.0038
 T = 500 0.5100 0.0030 0.0532 0.0087
 T = 1000 0.8544 − 0.0007 0.1030 0.0010
 T = 2000 0.9808 0.0041 0.1851 − 0.0024

DGPs scenario II: models (24) and (26)
 T = 150 0.0219 0.0022 0.0153 − 0.0011
 T = 250 0.0599 0.0019 0.0387 0.0012
 T = 500 0.2238 0.0024 0.0637 0.0007
 T = 1000 0.5889 0.0032 0.1355 0.0002
 T = 2000 0.8988 0.0002 0.2322 0.0028

DGPs scenario III: models (24) and (27)
 T = 150 0.0122 − 0.0011 0.0019 0.0024
 T = 250 0.0277 0.0021 0.0225 − 0.0024
 T = 500 0.1123 − 0.0019 0.0565 0.0009
 T = 1000 0.3552 0.0009 0.1881 0.0055
 T = 2000 0.6581 − 0.0006 0.4946 0.0011

DGPs scenario IV: models (25) and (26)
 T = 150 0.1106 − 0.0023 0.0778 0.0047
 T = 250 0.2809 0.0026 0.1988 0.0044
 T = 500 0.6136 − 0.0003 0.4090 0.0010
 T = 1000 0.9259 − 0.0011 0.5869 0.0039
 T = 2000 0.9947 0.0060 0.8224 0.0012

DGPs scenario V: models (25) and (27)
 T = 150 0.0286 − 0.0001 0.0125 − 0.0024
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Appendix 2: The GAS model

The GAS model is based on the assumption that, for each n-th unit, the time series 
variable yn,t is generated by the following observation density p(⋅):

where �n is a vector of static parameters, Fn,t is the information set at time t, fn,j,t are 
the J (j = 1,… , J) time–varying parameters depending on the probability distribu-
tion. The model’s information set at time t, called Fn,t , is obtained by the previous 
realizations of the time series yn,t and its time-varying parameters fn,j,t . The General-
ized Autoregressive Score of order one, the GAS(1, 1), can be written as:

where �n,j is a real vector and �n,j and �n,j are diagonal matrices. All the scalar 
parameters �n,j,�n,j,�n,j are collected in the vector �n . Moreover, sn,j,t is the scaled 
score of the conditional density (28) in a time t in relation to a j-th parameter of the 
n-th time series:

with ∇n,j,t being the conditional score:

and Sn,t a scaling matrix that depends on the probability distribution, since it is usu-
ally set equal to the Fisher information matrix or to the Identity matrix in the case of 
no scaling.

In other words, in the GAS model we suppose that the evolution of the time-vary-
ing parameter vector fn,j,t depends both on a vector sn,j,t , proportional to the score of 
the density, and on autoregressive component.

(28)yn,t ∼ p(yn,t|fn,j,t,Fn,t;�n)

(29)fn,j,t = �n,j + �n,jsn,j,t−1 + �n,jfn,j,t−1

(30)sn,j,t = Sn,t ⋅ ∇n,j,t

(31)∇n,j,t =
� log p(yn,t|fn,j,t,Fn,t;�)

�fn,j,t

Clustering approach Proposal Target �
t Target �2

t
ACF-based

 T = 250 0.0610 0.0001 0.0529 0.0064
 T = 500 0.1661 0.0015 0.1297 0.0044
 T = 1000 0.3835 0.0050 0.3066 0.0022
 T = 2000 0.6447 0.0063 0.5687 0.0013

DGPs scenario VI: models (26) and (27)
 T = 150 0.0010 − 0.0022 0.0044 0.0030
 T = 250 0.0031 0.0003 0.0049 − 0.0013
 T = 500 0.0170 0.0012 0.0066 − 0.0002
 T = 1000 0.0262 − 0.0021 0.0184 0.0009
 T = 2000 0.1192 0.0005 0.0723 − 0.0005

Table 10  (continued)
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A useful feature of the GAS model is that the vector �n is obtained by a maximum 
likelihood estimator (Creal et al. 2013).

Appendix 3: Compromise computation with DISTATIS

The Distance STATIS (DISTATIS, see Abdi et al. 2005) approach is used with 
the aim of synthesizing many distance matrices computed on the same set of 
statistical units. The main idea behind DISTATIS is to transform each of these 
distance matrices into a cross-product matrix and, then, synthesise the several 
obtained matrices with a STATIS algorithm (Escoufier 1980; Thiébaut et  al. 
1977). Therefore, the final result of DISTATIS approach is the definition of a so-
called compromise matrix as the best synthesis of the original distance matrices.

Thus, starting from K(k = 1,… ,K) distance matrices �k , the first step of DISTA-
TIS is to transform each distance matrix �k into a cross-product matrix S̃k:

where Ξ = IN − 1N�
� , IN is the identity matrix of dimension N (where N is the num-

ber of the observed statistical units), 1N is a vector of ones and � is a vector of N 
equal elements mn = 1∕N (for n = 1,… ,N).

The initial transformation (32) is necessary because the original distance 
matrices cannot be directly analyzed with STATIS since they are not positive 
semi-definite. This transformation is particularly relevant when we start from 
Euclidean distance matrices because, in this case, it is completely reversible, 
i.e. each Euclidean distance matrix can be perfectly reconstituted from its cor-
responding cross-product matrix and vice-versa (Abdi et al. 2012). The matrices 
S̃1,… , S̃K are often normalized prior to the analysis such that, for example, the 
sum of their squared elements is equal to one or that they have a first eigenvalue 
equal to one.

In the second step, we search a compromise matrix. The compromise matrix is 
a cross-product matrix that gives the best compromise of the cross-product matri-
ces. It is obtained as a weighted average of these matrices. Therefore, it is neces-
sary to derive an optimal set of weights, by considering the degree of similarity 
among the K cross-product matrices S̃1,… , S̃K.

The degree of similarity between two generic cross-product matrices S̃k and S̃k′ 
is computed by means of the RV coefficient, defined as:

RV (k, k
�) coefficients for each couple k and k′ are the generic elements of a so-called 

cosine matrix � . By construction the RV coefficients fall in the interval [−1, 1] . This 
means that, considering two distances matrices k and k′ , we have that they perfectly 

(32)S̃k = −
1

2
Ξ�k�

(33)RV (k, k
�) =

[
ck,k�

]
=

trace
(
S̃
�

k
S̃k�

)
√

trace
(
S̃
�

k
S̃k

)
trace

(
S̃
�

k�
S̃k�

)
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agree on the position of the units if ck,k� = 1 , provide opposite results in the case 
ck,k� = −1 and are orthogonal if ck,k� = 0.

To find the optimal weights to use for calculating the compromise matrix, DIS-
TATIS computes the eigen-decomposition of the cosine matrix �:

where � is the matrix of eigenvectors �1,… , �K and Λ is the diagonal matrix of the 
eigenvalues of � . Let us define the optimal weights vector � , with generic element 
�k (k = 1,… ,K) , computed as:

where �1 is the first eigenvector of � . Therefore, the compromise is computed as:

Starting from the cross-product matrix S̃ it is possible to obtain the following 
Euclidean squared distance matrix D̃ (see Salkind 2006):

with s̃ being a vector containing the diagonal element of S̃ , i.e. s̃ = diag
(
S̃

)
 . There-

fore, the (37) represents the consensus matrix between two or more distance 
matrices.

Funding  Open access funding provided by Università degli Studi di Roma La Sapienza within the CRUI-
CARE Agreement.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

Abdi H, O’Toole AJ, Valentin D et  al (2005) Distatis: the analysis of multiple distance matrices. In: 
2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05)-
workshops. IEEE, p 42

Abdi H, Williams LJ, Valentin D et al (2012) Statis and distatis: optimum multitable principal compo-
nent analysis and three way metric multidimensional scaling. Wiley Interdiscip Rev Comput Stat 
4(2):124–167

Anderson JO, Thundiyil JG, Stolbach A (2012) Clearing the air: a review of the effects of particulate mat-
ter air pollution on human health. J Med Toxicol 8(2):166–175

(34)� = �Λ�� given ��� = �

(35)� =
(
���1

)−1
�1,

(36)S̃ =

K∑
k=1

�kS̃k

(37)D̃ = s̃1�
N
+ 1N s̃

� − 2S̃

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1 3

Multiway clustering with time‑varying parameters﻿	

Bastos JA, Caiado J (2021) On the classification of financial data with domain agnostic features. Int J 
Approx Reason 138:1–11

Blasques F, van Brummelen J, Koopman SJ et al (2022) Maximum likelihood estimation for score-driven 
models. J Econom 227(2):325–346

Bollerslev T (1986) Generalized autoregressive conditional heteroskedasticity. J Econom 31(3):307–327
Caivano M, Harvey A (2014) Time-series models with an EGB2 conditional distribution. J Time Ser 

Anal 35(6):558–571
Cerqueti R, Giacalone M, Mattera R (2021) Model-based fuzzy time series clustering of conditional 

higher moments. Int J Approx Reason 134:34–52
Cerqueti R, D’Urso P, De Giovanni L et al (2022) Weighted score-driven fuzzy clustering of time series 

with a financial application. Expert Syst Appl 198:116752
Copat C, Cristaldi A, Fiore M et al (2020) The role of air pollution (pm and no2) in covid-19 spread and 

lethality: a systematic review. Environ Res 191(110):129
Cox DR (1981) Statistical analysis of time series: some recent developments. Scand J Stat 8:93–115
Creal D, Koopman SJ, Lucas A (2013) Generalized autoregressive score models with applications. J Appl 

Econom 28(5):777–795
Dominici F, Sheppard L, Clyde M (2003) Health effects of air pollution: a statistical review. Int Stat Rev 

71(2):243–276
D’Urso P (2004) Fuzzy c-means clustering models for multivariate time-varying data: different 

approaches. Int J Uncertain Fuzziness Knowl-Based Syst 12(03):287–326
D’Urso P, Maharaj EA, Alonso AM (2017) Fuzzy clustering of time series using extremes. Fuzzy Sets 

Syst 318:56–79
Engle RF (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of United 

Kingdom inflation. Econom J Econom Soc 50:987–1007
Escoufier Y (1980) L’analyse conjointe de plusieurs matrices de données. Biométrie et temps 58:59–76
Fulcher BD, Jones NS (2014) Highly comparative feature-based time-series classification. IEEE Trans 

Knowl Data Eng 26(12):3026–3037
Gao H, Chen J, Wang B et  al (2011) A study of air pollution of city clusters. Atmos Environ 

45(18):3069–3077
Govender P, Sivakumar V (2020) Application of k-means and hierarchical clustering techniques for anal-

ysis of air pollution: a review (1980–2019). Atmos Pollut Res 11(1):40–56
Harvey AC (2013) Dynamic models for volatility and heavy tails: with applications to financial and eco-

nomic time series, vol 52. Cambridge University Press, Cambridge
Harvey CR, Siddique A (1999) Autoregressive conditional skewness. J Financ Quant Anal 34:465–487
Harvey A, Sucarrat G (2014) Egarch models with fat tails, skewness and leverage. Comput Stat Data 

Anal 76:320–338
Hubert L, Arabie P (1985) Comparing partitions. J Classif 2(1):193–218
Kaufman L, Rousseeuw PJ (1990) Finding groups in data. An introduction to cluster analysis. Wiley 

Series in Probability and Mathematical Statistics Applied Probability and Statistics
Koopman SJ, Lucas A, Scharth M (2016) Predicting time-varying parameters with parameter-driven and 

observation-driven models. Rev Econ Stat 98(1):97–110
Košmelj K (1986) A two-step procedure for clustering time varying data. J Math Sociol 12(3):315–326
Košmelj K, Batagelj V (1990) Cross-sectional approach for clustering time varying data. J Classif 

7(1):99–109
León Á, Rubio G, Serna G (2005) Autoregresive conditional volatility, skewness and kurtosis. Q Rev 

Econ Finance 45(4–5):599–618
Liao TW (2005) Clustering of time series data-a survey. Pattern Recogn 38(11):1857–1874
Lu Y, Nakicenovic N, Visbeck M et al (2015) Policy: five priorities for the un sustainable development 

goals. Nature 520(7548):432–433
Maharaj EA, D’Urso P, Caiado J (2019) Time series clustering and classification. CRC Press, Cambridge
Mattera R, Giacalone M, Gibert K (2021) Distribution-based entropy weighting clustering of skewed and 

heavy tailed time series. Symmetry 13(6):959
Muller NZ (2016) Power laws and air pollution. Environ Model Assess 21(1):31–52
Nanopoulos A, Alcock R, Manolopoulos Y (2001) Feature-based classification of time-series data. Int J 

Comput Res 10(3):49–61
Park HS, Jun CH (2009) A simple and fast algorithm for k-medoids clustering. Expert Syst Appl 

36(2):3336–3341



	 R. Cerqueti et al.

1 3

Rafaj P, Kiesewetter G, Gül T et al (2018) Outlook for clean air in the context of sustainable development 
goals. Glob Environ Change 53:1–11

Rajagopalan S, Al-Kindi SG, Brook RD (2018) Air pollution and cardiovascular disease: Jacc state-of-
the-art review. J Am Coll Cardiol 72(17):2054–2070

Salkind NJ (2006) Encyclopedia of measurement and statistics. SAGE Publications, London
Thiébaut B et al (1977) Etude de la pluviosité au moyen de la méthode statis. Revue de statistique appli-

quée 25(2):57–81
Wang X, Smith K, Hyndman R (2006) Characteristic-based clustering for time series data. Data Min 

Knowl Disc 13(3):335–364
Wang H, Wang Z, Li X et al (2011) A robust approach based on Weibull distribution for clustering gene 

expression data. Algorithms Mol Biol 6(1):1–9
Williams G, Schäfer B, Beck C (2020) Superstatistical approach to air pollution statistics. Phys Rev Res 

2(1):013,019

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.


	Multiway clustering with time-varying parameters
	Abstract
	1 Introduction
	2 Multiway clustering with time-varying parameters
	2.1 Preliminaries and notation
	2.2 The clustering procedure
	2.3 Example with Gaussian density
	2.4 Example with Generalized-t density

	3 Experimental results with simulated data
	4 Application to air quality time series data
	4.1 Data
	4.2 Results with Gaussian density
	4.3 Results with Generalized-t density

	5 Final remarks
	References




