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Abstract  12 

Most previous research adopting the regression analysis to capture the relationship 13 

between concrete properties and mixture-design-related variables was based on the 14 

linear approach with limited accuracy. This study applies non-linear and mixed regression 15 

analysis to model properties of environmentally friendly concrete based on a 16 

comprehensive set of variables containing alternative or waste materials. It was found 17 

that best-fit non-linear and mixed models achieved similar accuracies and superior R2 18 

values compared to the linear approach when using both the numerical and relative input 19 

methods. Individual materials’ effects on concrete strength were statistically quantified at 20 

different curing ages using the best-fit models.   21 
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1. Introduction 26 

As the most widely consumed construction material worldwide, concrete has recently 27 

caught a lot of attention from researchers who are interested in finding out how its sustainability 28 

could be improved by replacing conventional cementitious and aggregate materials with 29 

alternative or waste materials. In their studies [1, 2, 3], one main focus is to understand how 30 

these materials affect concrete properties. Although some understanding has been generated 31 

based on limited experimental data, it is not adequate to stimulate wider application of 32 

sustainable concrete in the construction industry. To fill this gap, the authors selected Portland 33 

limestone cement (PLC), Haydite® lightweight aggregate (LWA), and fly ash (FA) Class F as 34 

alternative materials in their sustainable concrete research based on the industry feedback 35 

collected from a market survey they conducted earlier [4].  36 

Mathematical modeling has been adopted by some researchers [1, 5, 6, 7] to capture the 37 

relationships between properties of sustainable concrete and mixture-design-based 38 

independent variables. So far limited studies such as Omran et al. [7] have included a 39 

comprehensive list of concrete-mixture-design-based inputs (especially the different 40 

replacement rates of alternative or waste materials) in the quantitative methods to predict 41 

concrete properties. Also, the independent variables from concrete mixture design can be 42 

numeric-based (e.g., Omran et al. [7] and Chithra et al. [8]) or relative-based (e.g., Topçu and 43 

Saridemir [9]; Omran et al. [10]). There is very limited research comparing the prediction 44 

performance between the two input systems.  45 

Previous research (e.g., Atici [6]; Chithra et al. [8]) found that the regression analysis was 46 

reliable in predicting concrete strength, but less accurate than Artificial Neural Network (ANN). 47 

However, the multivariate regression analysis approach has its advantages by not requiring 48 

programming or additional time for model training, being able to generate easy-to-use 49 

regression constants, and capable of estimating the significance of input variables. So far, the 50 

regression analysis has not been thoroughly explored in concrete mixture design, particularly in 51 

the use of non-linear or mixed models, which could be a better-fit [11].   52 

The contributions of this research lie in: 1) to propose and test non-linear and mixed 53 

regression models as an alternative approach to the traditionally linear method in predicting 54 

concrete strength; 2) to adopt a complete set of mixture-design-related variables for modeling 55 
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environmentally friendly concrete; 3) to compare the prediction performance by using the 56 

numerical and relative input methods in a comprehensive set of statistical models; and 4) to 57 

provide a statistical guide on studying the effects of alternative/waste materials on concrete 58 

strength at different curing ages. This research also compares the performance of non-linear 59 

and mixed methods with existing approaches including ANN and other data mining methods.   60 

The remainder of this paper is organized as follows. Section 2 provides the background 61 

information on the study area. Section 3 describes materials used in the experiment, 62 

experimental design, and the proposed statistical models. Section 4 presents the prediction 63 

performance of the tested models and other statistical analysis results. Section 5 discusses the 64 

robustness of non-linear and mixed models in predicting sustainable concrete strength, and 65 

Section 6 concludes this paper.   66 

2. Background  67 

2.1. Concrete mixture design  68 

Concrete contains four basic ingredients: cement, water, fine aggregate, and coarse 69 

aggregate. Chemical admixtures such as air-entraining admixture (AEA) could also be added 70 

into concrete to achieve varied properties. In the concrete industry, guidelines are usually used 71 

for designing concrete mixtures and the overdesign factor is statistically determined by 72 

experimental data or calculated based on some formulas when no sufficient data is available 73 

[12].  Internationally, the concrete mixture design approach can be divided into two major 74 

systems: numerical and relative systems. Examples of numerically featured mixture design 75 

include the Absolute Volume Method introduced in ACI 211 [13] and the Design of Normal 76 

Concrete Mixes described in Building Research Establishment [14]. The relative system-based 77 

mixture design includes the Equal Paste Volume method [15], which considers the mix 78 

proportion of concrete including the water to binder ratio, paste to aggregate ratio, and sand to 79 

coarse aggregate ratio.   80 

The early market survey [4] of U.S. concrete suppliers and prefabricators nationwide 81 

confirmed that most of industry practitioners (81% of totally 39 survey respondents) used 82 

industry guidelines and standards for concrete mixture design. In addition, using companies’ 83 

historical data and other methods such as trial batches were mentioned by 68% and 19% of 84 

respondents, respectively. Among various methods applied by the industry, there are limited 85 
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applications of quantitative methods (e.g., statistical tools) in modeling or predicting how the 86 

mixture design affects concrete properties. According to some existing studies [6, 16, 17], 87 

quantitative methods have great potential to be used in the concrete mixture design. This will 88 

benefit concrete companies that may have limited budgets but need to investigate mix 89 

proportions to obtain the desired concrete strength [6, 18]. In addition, the compressive strength 90 

(CS) of concrete during the early curing age is usually unknown, but this information is of great 91 

importance to the structure to be built as well as site operations [6].  92 

2.2. Sustainable concrete  93 

Producing conventional concrete utilizes huge amounts of natural resources (e.g., sand and 94 

rock) while generating significant energy and environmental impacts from manufacturing of 95 

Portland cement (PC) [4].  Environmentally friendly or sustainable concrete refers to concrete 96 

with lowered life cycle environmental impact by having conventional ingredients replaced with 97 

recycled waste materials, locally available materials, or alternative materials associated with 98 

lower greenhouse gas emissions or having concrete properties (e.g., durability) improved. In the 99 

U.S. concrete industry, the top three most commonly used supplementary cementitious 100 

materials (SCMs) had been identified as FA, silica fume, and ground-granulated blast-furnace 101 

slag (BFS) based on the market surveys of both Jin et al. [4] and Obla [19]. The applied 102 

alternative aggregates were limited to LWA and recycled concrete aggregate (RCA) [4]. 103 

Although various other waste or alternative concrete materials (e.g., Berry et al. [20], Binici [21], 104 

Topçu and Boğa [1]) had been studied, they are limited in their industry application due to 105 

various reasons such as the lack of abundance of material source or regional availability. 106 

Many researchers have performed experimental tests to study the effects of waste or 107 

alternative materials on concrete properties, such as the studies of oyster shell [22], RCA [23], 108 

and the research of FA Class C and furnace slag [24]. In concrete research, simple linear plots 109 

were commonly used (e.g., Basri et al. [25]; Berry et al. [20]; Bondar et al. [26]) to relate the 110 

concrete properties (e.g., CS) to a given independent variable (e.g., age). Although there were 111 

some limited studies attempting to link concrete properties to multiple independent variables in 112 

concrete mixture design with various substitution rates of waste or alternative materials, how the 113 

different substitution rates of such materials impact concrete properties was not sufficiently 114 

quantified. In addition, the study of concrete properties in relation to an alternative material 115 
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usually requires a large amount of experimental data, which is not only time-consuming but also 116 

cost-prohibitive. Therefore, most previous studies on environmentally friendly concrete rarely 117 

investigated more than one alternative concrete material (e.g., Bondar [26]; Topçu and Boğa [1]; 118 

Yang et al., [22]). 119 

2.3. Prediction methods linking concrete mixture design to strength  120 

It is not new to apply statistical and mathematical models in the research of 121 

cement/concrete related construction materials. Aderibigbe et al. [16] described the relationship 122 

between CS and optimum water to cement ratio (w/c) using a power curve equation for 123 

cement/clay soil mixed blocks. Similarly, some other studies, for example, Topçu and Saridemir 124 

[9], adopted statistical analysis to describe the relationships between concrete properties (i.e., 125 

strength) and aggregate proportion by using a linear regression equation. In these studies, only 126 

one variable was considered, e.g., w/c or percentage of supplementary aggregate. 127 

Nevertheless, concrete mixture design involves multiple interrelated factors (e.g., w/c and 128 

substitution rate of SCMs). It would be necessary to study how the concrete properties can be 129 

affected at the presence of these factors, i.e., joint effects from the mixture design.  130 

Table 1 provides details for a few representative studies that have adopted the linear 131 

regression approach to model the relationship between concrete strength and mixture-design-132 

related variables. It can be seen that the regression models adopted in these studies had 133 

relatively low determination coefficient (i.e., R2 value). This level of accuracy appears to be 134 

lower than that achieved by some machine learning techniques [6, 7]. As pointed out by St-135 

Pierre [11], the traditional simple regression methods are likely to generate biased statistical 136 

results and the mixed model methodologies could be applied to provide more accurate 137 

prediction. So far, the non-linear and mixed models have been tried in fields such as biological 138 

engineering [11, 27], but their application in the concrete-materials-related studies is still sparse.  139 

Table 1 140 
Existing regression models used to predict concrete strength. 141 
 142 

Reference Independent variables  Adopted model Achieved R2 

Yeh [28] Cement, FA, BFS, water, superplasticizer, 
coarse and fine aggregates, and curing age 

Linear regression 0.574 

Deepa et al. 
[29] 

Cement, BFS, FA, water, superplasticizer, 
coarse and fine aggregates, and curing age 

Linear regression 0.491 

Atici [6] Proportion of BFS, FA, curing age, rebound 
number  

Multiple linear 
regression 
analysis (MRA)  

0.899 

Chou et al. [30] Cement, FA, BFS, water, superplasticizer, MRA 0.611 
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coarse and fine aggregate, and curing age 
Chithra et al. [8] Cement, fine and coarse aggregate, silica, 

slag, superplasticizer 
MRA 0.672 

 143 

In literature review, ANN was found to be the most widely used modeling approach in 144 

predicting concrete properties [18, 28, 31, 32, 33, 34, 35, 36]. ANN can automatically build the 145 

relationships between inputs and outputs through a learning algorithm. However, it depends on 146 

software applications and requires larger and more varied training dataset(s) [6]. A few concrete 147 

property studies [37, 38, 39] used fuzzy logic (FL). This method mimics the way of human 148 

thinking to deal with problems caused by the imprecision of source(s) in consideration of 149 

linguistic uncertainties [5, 38]. The use of ANN in predicting concrete properties could be 150 

complicated by the large number of variables [31]. The same problem also applies to FL due to 151 

its characteristics of human-like manner and linguistic rules [38]. Also, statistical models can 152 

handle the inverse problem within concrete mixture design while ANN faces difficulties in 153 

solving such problems [6].  154 

3. Materials and Methods  155 

3.1. Materials used  156 

In this study, PC Type I/II with 28-day CS at 38 MPa, brown sand (fine aggregate), and pea 157 

gravel with maximum size at 9.5 mm (coarse aggregate) were selected as conventional 158 

concrete materials used in the control group of the experimental tests. While PC Type I/II (for 159 

general use) and brown sand are widely used in concrete production, pea gravel, rather than 160 

crushed stones, is more often adopted in lab-based experimental studies. These materials are 161 

locally available in many parts of the world. Unconventional concrete materials used in this 162 

study include PLC Type GUL (General Use Limestone Cement), FA Class F, and Haydite LWA 163 

(Size B, similar to the size of pea gravel). PLC, FA, and LWA were defined as alternative or 164 

waste materials that improve concrete sustainability or environmental friendliness according to 165 

Jin et al. [4] and Omran et al. [7], as they would either reduce the cement carbon footprint, save 166 

materials, or achieve other environmental benefits. In this study, Micro Air was chosen as the 167 

AEA to increase air content in concrete batches.  168 

Suppliers provided the Mill Test Reports for PC Type I/II, PLC (GUL), and FA Class F. 169 

Table 2 lists the major elements of these materials. Other minor ingredients such as K2O in FA 170 
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and C3A in PC are not listed. PLC can be produced by intergrinding or blending PC with 171 

limestone, which reduces the carbon footprint of cement manufacturing. The PLC used in this 172 

study was interground with 12% limestone as calculated based on the CO2 content. The 173 

calculation method was defined in ASTM C150 Standard Specification for Portland Cement [40].  174 

Table 2  175 
Mill Test Reports of cementitious materials in this study (percentage by weight). 176 
 177 
Cementitious 
material 

SiO2 
(%) 

Al2O3 
(%) 

Fe2O3 
(%) 

CaO 
(%) 

MgO 
(%) 

SO3 
(%) 

Alkalis 
(%) 

Loss on 
ignition (%) 

Autoclave 
expansion (%) 

PC 20.1 5.0 3.3 63.2 2.4 2.6 0.56 2.0 0.02 
PLC 18.4 4.6 3.0 59.9 2.9 3.6 0.65 5.2 0.08 
FA 43.7 21.0 23.8 5.0 1.0 1.7 1.97 1.5 0.00 
 178 

The chemical analysis of oven dry Haydite is shown in Table 3. The density information of 179 

the three aggregate materials was listed in Table 4.  While the loose bulk dry density 180 

information was provided by the suppliers, the oven dry density and specific gravity were 181 

obtained by following the standard test methods described in ASTM C127 for coarse aggregate 182 

[41] and C128 for fine aggregate [42].  183 

Table 3 184 
Chemical analysis of Haydite (provided by the supplier). 185 
 186 

Item SiO2 Al2O3 Fe2O3 CaO MgO SO3 Na2O K2O TiO2 P2O5 Mn2O3 SrO Cr2O3 ZnO 
Weight (%) 60.36 19.95 8.09 2.41 2.40 0.13 0.92 4.58 0.96 0.11 0.15 0.01 0.03 0.04 
  187 
Table 4  188 
Dry densities of aggregates used in this study.  189 
 190 

Type of aggregate 
Loose bulk dry 
densitya (kg/m3) 

Oven dry densityb 
(kg/m3) 

Specific 
gravityc 

Fineness 
modulus 

Pea gravel 1602 2643 2.64 6.01 
Haydite Size B 673 1298 1.30 5.39 
Brown sand  1602 2611 2.61 2.48 
aLoose bulk dry density is the mass of dry aggregate per unit volume of aggregate particles, including the 191 
volume of impermeable pores and water-filled voids within the particles, and the pores between the 192 
particles. 193 
bOven dry density is defined by ASTM C127 and C128 as the mass of oven dry aggregate per unit volume 194 
of aggregate, including the volume of impermeable pores and water-filled voids within the particles but 195 
excluding pores between particles. 196 
cSpecific gravity (or relative density), according to ASTM C127 and C128, is the ratio of the oven dry 197 
density of the material to the density of distilled water (assuming 1000 kg/m3). 198 
 199 

3.2. Experimental design  200 

The mixture design incorporating different proportions of waste or alternative materials is 201 

displayed in Fig. 1.   202 
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 204 
Fig. 1. Mixture design (36 batches). 205 
 206 

The 36 batches represent combinations of different cement types (i.e., PC or PLC), w/(c+p) 207 

(water to cementitious material weight) ratios, substitution rates of FA Class F (FA%) by weight 208 

of the cementitious material, and replacement rates of Haydite to pea gravel by volume. This 209 

study implemented both a lower w/(c+p) ratio (0.40) and a higher w/(c+p) ratio (0.65), which are 210 

typically used in concrete mixture design to meet different quality requirements (e.g., strength 211 

and durability). Having at least two different ratios was also necessary for the statistical analysis 212 

as w/(c+p) is one of the key independent variables in the relative system. The making, pouring, 213 

and curing of concrete followed the guideline of ASTM C31/C31M-06 [43]. Strength tests were 214 

based on 10 mm by 20 mm cylinders casted in single used plastic molds, cured at room 215 

temperature (23 °C), and tested at different ages including 3, 7, 28 and 90 days. CS and split 216 

tensile strength (TS) tests followed ASTM C39/C39–05 [44] and ASTM C 496/C496M-11 [45], 217 

respectively. The mixture design details can be found in Table 5. 218 

219 
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Table 5  220 
Design of concrete mixture proportions. 221 
 222 

Mixture batch  Ingredients per cubic meter of concrete 
Cement 
type 

w/(c+p) 
ratio 

FA 
(%) 

Haydite 
(%) 

 Water 
(kg) 

Cement 
(kg) 

FA 
(kg) 

Sand 
(kg) 

Pea gravel 
(kg) 

Haydite 
(kg) 

Micro air 
(ml) 

PC 0.4 0 0  211 528 0 742 750 0 135 
33  211 528 0 742 504 121 135 
67  211 528 0 742 247 247 135 

20 0  211 422 106 742 750 0 135 
33  211 422 106 742 504 121 135 
67  211 422 106 742 247 247 135 

40 0  211 317 211 742 750 0 135 
33  211 317 211 742 504 121 135 
67  211 317 211 742 247 247 135 

0.65 0 0  211 324 0 902 750 0 112 
33  211 324 0 902 504 121 112 
67  211 324 0 902 247 247 112 

20 0  211 259 65 742 750 0 112 
33  211 259 65 742 504 121 112 
67  211 259 65 742 247 247 112 

30 0  211 227 97 742 750 0 112 
33  211 227 97 742 504 121 112 
67  211 227 97 742 247 247 112 

PLC 0.4 0 0  211 528 0 742 750 0 135 
33  211 528 0 742 504 121 135 
67  211 528 0 742 247 247 135 

20 0  211 422 106 742 750 0 135 
33  211 422 106 742 504 121 135 
67  211 422 106 742 247 247 135 

40 0  211 317 211 742 750 0 135 
33  211 317 211 742 504 121 135 
67  211 317 211 742 247 247 135 

0.65 0 0  211 324 0 902 750 0 112 
33  211 324 0 902 504 121 112 
67  211 324 0 902 247 247 112 

20 0  211 259 65 742 750 0 112 
33  211 259 65 742 504 121 112 
67  211 259 65 742 247 247 112 

30 0  211 227 97 742 750 0 112 
33  211 227 97 742 504 121 112 
67  211 227 97 742 247 247 112 

 223 

3.3 Non-linear and mixed regression models in predicting concrete strength  224 

This research aimed to explore the potential relationship between sustainable concrete strength 225 

and input variables (i.e., concrete mixture-based variables and curing age) by applying 226 

statistical models. Besides the conventional linear regression model, introduced as Model 1 in 227 

Eq. (1), this research proposed alternative non-linear and mixed models to improve the 228 

determination coefficient when predicting concrete strength based on the mixture-design-related 229 

variables. These models range from Model 2 to Model (2k + 3) in Eqs. (2)-(5), where k denotes 230 

the number of independent predictor variables (IPVs) in the regression model (it is 9 and 8 for 231 

the numerical and relative input methods, respectively). The equations for all of these models 232 

are displayed below: 233 
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Model 1: Multi-linear regression analysis 234 

𝑌𝑌𝑖𝑖 = 𝛼𝛼 + �𝛽𝛽𝑗𝑗

𝑘𝑘

𝑗𝑗=1

𝑋𝑋𝑖𝑖𝑖𝑖 ,     𝑖𝑖 = 1, … , 𝑛𝑛 (1) 

 235 

Model 2: A non-linear model involving natural logarithms 236 

𝑙𝑙𝑙𝑙𝑌𝑌𝑖𝑖 = 𝛼𝛼 + �𝛽𝛽𝑗𝑗

𝑘𝑘

𝑗𝑗=1

𝑋𝑋𝑖𝑖𝑖𝑖,   𝑖𝑖 = 1, … , 𝑛𝑛 (2) 

 237 

Model 3: A second type of non-linear model involving natural logarithms 238 

𝑙𝑙𝑙𝑙𝑌𝑌𝑖𝑖 = 𝛼𝛼 + �𝛽𝛽𝑗𝑗

𝑘𝑘

𝑗𝑗=1

𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖,   𝑖𝑖 = 1, … , 𝑛𝑛 (3) 

 239 

Mixed models from (4) to (k+3)   240 

𝑋𝑋𝑖𝑖𝑖𝑖
𝑌𝑌𝑖𝑖

= 𝛼𝛼 + �𝛽𝛽𝑙𝑙

𝑘𝑘

𝑙𝑙=1

𝑋𝑋𝑖𝑖𝑖𝑖 , 𝑖𝑖 = 1, … , 𝑛𝑛,       𝑗𝑗 = 1, … , 𝑘𝑘 (4) 

 241 

k mixed models with natural logarithm 242 

𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖
𝑌𝑌𝑖𝑖

= 𝛼𝛼 + �𝛽𝛽𝑙𝑙

𝑘𝑘

𝑙𝑙=1

𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖, 𝑖𝑖 = 1, … , 𝑛𝑛,       𝑗𝑗 = 1, … , 𝑘𝑘 (5) 

 243 

In these models, Xij represents k IPVs such as curing age, Yi is the response random 244 

variable (RRV) referring to CS or TS, and α, β1,…,βk denote constants. Only Model 1 from the 245 

above (2k+3) models is linear, and all the remaining non-linear or mixed relationships were 246 

converted into linear formats. The statistics software, Minitab, was used to analyze these (2k+3) 247 

models. The values of R2 and residual standard deviation were generated to compare the 248 

accuracy of these models in predicting each target RRV. The F and p values generated from 249 

Analysis of Variance (ANOVA) were used to test the significance of the selected regression 250 

model (at 95% level of significance) in describing the data samples. The null hypothesis is that 251 

the target RRV cannot be predicted by using the selected model with the chosen IPVs. A p 252 

value less than 0.05 from ANOVA would reject the null hypothesis and indicate that the selected 253 

regression model fits the data. Residual analysis was also conducted in Minitab to study the 254 

distribution and values of residuals, which were the differences between predicted RRV and 255 
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experimental data. The Durbin-Watson statistical test is based on the null hypothesis that 256 

residuals from a least-square regression are not autocorrelated [46]. The Durbin-Watson value 257 

ranges from 0 to 4, and a value near 2 indicates non-autocorrelation. The ideal Durbin-Watson 258 

value would fall between 1.5 and 2.5 [6, 8]. 259 

Among the k IPVs, some may have more significant effects on the target RRV than others. 260 

The t-test of correlation analysis was used to determine the significance regarding the effect of 261 

each IPV on RRV. There is a p value corresponding to each t value for an IPV. At the 95% 262 

confidence level, a p value lower than 0.05 would indicate that this selected IPV has significant 263 

contribution to RRV. In contrast, IPVs with p values higher than 0.05 are those without 264 

significant contributions. The reason that some IPVs had higher significance than others could 265 

be due to the strong internal correlation among IPVs, which caused redundancy of IPVs. 266 

Therefore, the regression analysis could be redone by removing the insignificant IPVs so that 267 

the equation can be shortened with only significant IPVs. Target RRVs (CS and TS) and various 268 

IPVs using both numerical and relative input systems are defined in Table 6.  269 

Table 6  270 
Definitions of RRVs and IPVs in the numeric and relative systems. 271 
 272 

Variables 
Definitions 

Numeric system Relative system 
Yi Concrete CS (MPa) or TS (MPa) Concrete CS (MPa) or TS (MPa) 
Xi1 Concrete age (days) Concrete age (days) 
Xi2 W (kg): Amount of water used in the 

mixture of per m3 of concrete   
w/(c+p): Water-cementitious material ratio  

Xi3 PC (kg): Amount of PC used in the mixture 
of per m3 of concrete   

PLC%: Replacement of PLC to PC*  

Xi4 PLC (kg): Amount of PLC used in the 
mixture of per m3 of concrete   

FA%: FA substitution rate in cementitious 
material  

Xi5 FA (kg): Amount of FA used in the mixture 
of per m3 of concrete   

LWA%: Haydite LWA substitution rate in 
coarse aggregate  

Xi6 S (kg): Amount of sand used in the mixture 
of per m3 of concrete   

S/(c+p): Weight ratio of sand to cementitious 
material 

Xi7 CA (kg): Amount of coarse aggregate used 
in the mixture of per m3 of concrete   

S/CA: Volume ratio of sand to coarse 
aggregate  

Xi8 LWA (kg): Amount of Haydite used in the 
mixture of per m3 of concrete   

Unit AEA (ml): Amount of air entrainment (ml) 
per 100 kg of cement (AEA) 

Xi9 AEA (ml): Amount of air entrainment used 
in the mixture of per m3 of concrete   

N.A. 

*: Xi3 in the relative system is a binary value, with its value at 0 when using PC and 1 when PLC is used.  273 
 274 

4. Results 275 

In this study, the two major input systems within concrete mixture design (i.e., numerical and 276 

relative input systems) were compared for their accuracy in predicting concrete strength. The 277 

best-fit models were identified under each input system. By removing significantly correlated 278 
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IPVs within each input system, the regression modeling process was rerun by shortlisting. 279 

Finally, the whole data sample was divided by different curing ages to study the effects of each 280 

IPV on concrete strength at various ages.  281 

4.1. Comparison between the numerical and relative input systems  282 

The regression analysis for both CS and TS was conducted based on the trial of 21 and 19 283 

proposed models for numerical and relative input systems, respectively. The reliability of these 284 

models was compared, and the best-fit model was identified for each of the four scenarios, i.e., 285 

concrete CS and TS in these two input systems. Table 7 displays the corresponding R2 values 286 

for all CS and TS prediction using both systems.  287 

Table 7 288 
Statistical modeling results in the numerical and relative systems. 289 
 290 
  
Statistical 
approach 

Model 
no. 

Predication of CS  Predication of TS 
Numerical system Relative system  Numerical system Relative system 
RRV R2 RRV R2  RRV R2 RRV R2 

Linear  1 CS  0.907 CS  0.901  TS 0.764 TS 0.775 
Non-linear  2 ln(CS) 0.876 ln(CS) 0.878  ln(TS) 0.732 ln(TS) 0.748 

3 ln(CS) 0.953* ln(CS) 0.934*  ln(TS) 0.866 ln(TS) 0.836 
Mixed 
models 

4 Age/CS 0.932 Age/CS 0.933  Age/TS 0.952* Age/TS 0.955* 
5 W/CS 0.740 (w/(c+p))/CS 0.807  W/TS 0.626 (w/(c+p))/TS 0.774 
6 PC/CS 0.823 PLC%/CS 0.823  PC/TS 0.899 PLC%/TS 0.859 
7 PLC/CS 0.813 FA%/CS 0.832  PLC/TS 0.878 FA%/TS 0.873 
8 FA/CS 0.839 LWA%/CS 0.816  FA/TS 0.890 LWA%/TS 0.868 
9 S/CS 0.788 (S/(c+p))/CS 0.830  S/TS 0.726 (S/(c+p))/TS 0.814 
10 CA/CS 0.822 (S/CA)/CS 0.793  CA/TS 0.818 (S/CA)/TS 0.736 
11 LWA/CS 0.874 Unit AEA/CS 0.772  LWA/TS 0.874 Unit AEA/TS 0.694 
12 AEA/CS 0.698 ln(Age)/CS 0.906  AEA/TS 0.632 ln(Age)/TS 0.884 
13 ln(Age)/CS 0.914 ln(w/(c+p))/CS 0.839  ln(Age)/TS 0.900 ln(w/(c+p))/TS 0.804 
14 ln(W)/CS 0.859 ln(PLC%)/CS 0.841  ln(W)/TS 0.798 ln(PLC%)/TS 0.902 
15 ln(PC)/CS 0.838 ln(FA%)/CS 0.822  ln(PC)/TS 0.904 ln(FA%)/TS 0.898 
16 ln(PLC)/CS 0.837 ln(LWA%)/CS 0.862  ln(PLC)/TS 0.901 ln(LWA%)/TS 0.890 
17 ln(FA)/CS 0.862 ln(S/(c+p))/CS 0.879  ln(FA)/TS 0.911 ln(S/(c+p))/TS 0.878 
18 ln(S)/CS 0.861 ln(S/CA)/CS 0.884  ln(S)/TS 0.804 ln(S/CA)/TS 0.898 
19 ln(CA)/CS 0.881 ln(Unit AEA)/CS 0.846  ln(CA)/TS 0.881 ln(Unit AEA)/TS 0.771 
20 ln(LWA)/CS 0.841 N/A N/A  ln(LWA)/TS 0.895 N/A N/A 
21 ln(AEA)/CS 0.857 N/A N/A  ln(AEA)/TS 0.782 N/A N/A 

*Model that achieves the highest R2 value for the given scenario.  291 
 292 

As shown in Table 7, both numerical and relative input systems led to highly consistent R2 293 

values (similar prediction accuracy) from Models 1 to 4 for predicting CS. Model 4, the mixed 294 

model using Age/Strength as the RRV achieved the consistently high R2 values for all the four 295 

scenarios. All the corresponding Durbin-Watson values in the 16 scenarios are within the 296 

reasonable range (i.e., 1.5 to 2.5). Model 4 also achieved the highest R2 value for the 297 
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predication of TS in both systems. In the CS-related RRV regression analysis, Model 3 (the 298 

non-linear approach) represents the best-fit model by achieving even higher accuracy than 299 

Model 4, the highest based on both input systems. The remaining mixed models had relatively 300 

lower R2 values for both input systems. The R2 values resulting from the best-fit non-linear and 301 

mixed regression models in this research (ranging from 0.934 to 0.955) are significantly higher 302 

than the values generated from previous studies adopting linear methods as shown in Table 1. 303 

The accuracy level of these regression models is also comparable to that achieved by data 304 

mining techniques in Omran et al. [7] when the same dataset for CS was used.  305 

4.2. Regression analysis using the best-fit models 306 

Although both numerical and relative input systems had highly consistent R2 values for the 307 

best-fit models, the former is deemed more practical for field applications due to the wide 308 

adoption of the numerically featured ACI method of mix design [13] in North America and many 309 

parts of the world. Due to space limitations, this section only showcases the best-fit models for 310 

predicting CS and TS based on the numerical input system. However, the modeling process 311 

and outcomes of the best-fit models based on the relative input system are expected to be 312 

similar. 313 

Compared to the R2 values (0.907 and 0.763 for CS and TS, respectively) associated with the 314 

linear approach (Model 1), the best-fit non-linear (i.e., Model 3) and mixed (i.e. Model 4) models 315 

performed superiorly. Model 3 in the regression analysis for CS provided the highest correlation 316 

with R2 value at 0.953 (followed by Model 4 with R2 value at 0.932) while Model 4 achieved the 317 

highest accuracy with R2 value at 0.952 for predicting TS. The two equations generated from 318 

Models 3 and 4 are listed below: 319 

 For predicting CS 320 

𝑙𝑙𝑙𝑙𝑌𝑌𝑖𝑖 = 6.520 + 0.212𝑙𝑙𝑙𝑙𝑋𝑋𝑖𝑖1 − 0.056𝑙𝑙𝑙𝑙𝑋𝑋𝑖𝑖2 + 0.808𝑙𝑙𝑙𝑙𝑋𝑋𝑖𝑖3 + 0.817𝑙𝑙𝑙𝑙𝑋𝑋𝑖𝑖4
+ 0.006 𝑙𝑙𝑙𝑙𝑋𝑋𝑖𝑖5 −0.775𝑙𝑙𝑙𝑙𝑋𝑋𝑖𝑖6 + 0.014𝑙𝑙𝑙𝑙𝑋𝑋𝑖𝑖7 − 0.009𝑙𝑙𝑙𝑙𝑋𝑋𝑖𝑖8 + 0.177𝑙𝑙𝑙𝑙𝑋𝑋𝑖𝑖9 

 
(6) 

 321 

For predicting TS 322 

𝑋𝑋𝑖𝑖1 𝑌𝑌𝑖𝑖⁄ = −12.500 + 0.252𝑋𝑋𝑖𝑖1 + 0.012𝑋𝑋𝑖𝑖2 − 0.003𝑋𝑋𝑖𝑖3 − 0.008𝑋𝑋𝑖𝑖4 − 0.001𝑋𝑋𝑖𝑖5 + 0.010𝑋𝑋𝑖𝑖6
+ 0.007𝑋𝑋𝑖𝑖7 + 0.016𝑋𝑋𝑖𝑖8 − 0.005𝑋𝑋𝑖𝑖9 

 
(7) 

 323 

Fig. 2 shows the comparison between the predicted RRVs and experimental results. The R2 324 

values over 0.950 in Figs. 2(c) and 2(d) indicate the high accuracy of the identified best-fit 325 
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models (i.e., Model 3 for the CS-related RRV and Model 4 for the TS-related RRV) in predicting 326 

concrete strength-related RRVs. Model 4, which sets Age/TS as the RRV, tends to be non-327 

continuous as compared to Model 3 due to the large variation of curing age (i.e., Day 3, 7, 28 328 

and 90) involved in the RRV. The discontinuous nature of RRV in the mixed model would also 329 

affect the residual distribution. As a comparison, the R2 performance of Model 1, the linear 330 

regression approach, is also displayed in Figs. 2(a) and 2(b). It can be observed that compared 331 

to the linear approach, non-linear and mixed methods improved the prediction accuracy of 332 

concrete strength-based RRVs.   333 

 334 

  
(a) Model 1 to predict CS (b) Model 1 to predict TS 

  

  
(c) Model 3 to predict Ln(CS) (d) Model 4 to predict Age/TS 

 335 
 336 
Fig. 2. Comparison between predicted RRV and experimental data using linear regression 337 
analysis and best-fit models. 338 
 339 

Residual analysis for the best-fit models was conducted in Minitab. Fig. 3 illustrates the 340 

residual analysis results for ln(CS) from Model 3. The residual values of Model 3 applied in 341 
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ln(CS) analysis presented satisfactory trends of normal distribution as shown in both the normal 342 

probability plot and histogram. The residual values appeared symmetrically distributed along the 343 

neutral horizontal line (when the residual is 0) and were not affected by the increase of fitted 344 

values. The observation order in Fig. 3 is corresponding to the growth of concrete age; there 345 

were 36 observations for each of the four concrete ages (i.e., Day 3, 7, 28, and 90). Generally, 346 

the residual was not affected by curing age as well. Similar distribution of residual values in 347 

Model 3 could be found when applied in the relative system.  348 

 349 

 350 
 351 
Fig. 3. Residual analysis of Model 3 in predicting ln(CS). 352 
 353 

For Model 4 applied in TS, the residual distribution displayed in Fig. 4 shows less symmetry 354 

along the neutral line. Corresponding to the larger variation nature of Age involved in the RRV, 355 

the residual value in Model 4 tends to grow with the RRV value.  356 
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 357 

Fig. 4. Residual analysis of Model 4 in predicting Age/TS. 358 
 359 

4.3. Internal correlation analysis of IPVs based on the best-fit model 360 

This section uses Model 3 in CS to demonstrate the internal correlation analysis of IPVs 361 

and regression analysis with shortened IPVs. Pearson correlations and corresponding p values 362 

displayed in Table 8 indicate the correlations among mixture-design-related IPVs. Curing age 363 

was found independent of any other mixture-based IPVs, and sand amount had significantly 364 

negative correlation with CA amount. Therefore, only one IPV between sand and CA amounts 365 

needs to be kept for the shortened input variables. This study purposely kept IPVs related to the 366 

studied alternative or waste materials to capture their effects on concrete properties, which fits 367 

the research goals. 368 

Table 8.  369 
Pearson correlations among nine IPVs. 370 
 371 
 1 2 3 4 5 6 7 8 9 
1. ln(Age) Correlation 

p value 
1.000 
0.000 

        

2. ln(W) Correlation 
p value 

0.000 
1.000 

1.000 
0.000 

       

3. ln(PC) 
 

Correlation 
p value 

0.000 
1.000 

-0.207 
0.013* 

1.000 
0.000 

      

4. ln(PLC) Correlation 
p value 

0.000 
1.000 

0.237 
0.004* 

-0.999 
0.000* 

1.000 
0.000 

     

5. ln(FA) Correlation 
p value 

0.000 
1.000 

-0.375 
0.000* 

-0.013 
0.876 

-0.014 
0.867 

1.000 
0.000 

    

6. ln(S) Correlation 
p value 

0.000 
1.000 

-0.597 
0.000* 

0.033 
0.876 

-0.071 
0.395 

0.011 
0.894 

1.000 
0.000 
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7. ln(CA) Correlation 
p value 

0.000 
1.000 

-0.086 
0.307 

-0.010 
0.905 

0.012 
0.891 

0.321 
0.000* 

-0.177 
0.034* 

1.000 
0.000 

  

8. ln(LWA) Correlation 
p value 

0.000 
1.000 

0.081 
0.333 

0.007 
0.938 

-0.009 
0.914 

-0.008 
0.927 

-0.036 
0.666 

-0.347 
0.000* 

1.000 
0.000 

 

9. ln(AEA) Correlation 
p value 

0.000 
1.000 

0.522 
0.000* 

-0.085 
0.313 

0.120 
0.152 

-0.028 
0.742 

-0.855 
0.000* 

0.208 
0.012* 

-0.103 
0.221 

1.000 
0.000 

*Significant correlations between two IPVs with p values less than 0.05.   372 
 373 

Table 9 displays the regression analysis results of Model 3 for both nine IPVs and 374 

shortened IPVs. In the secondary run of Model 3, all the five kept IPVs showed significant 375 

influences on RRV (i.e., ln(CS)), with age having the most significant contribution according to 376 

its corresponding t value (24.28). The negative coefficient values corresponding to FA, sand, 377 

and LWA indicate that these three materials would generally reduce concrete CS. In contrast, 378 

PLC is indicated to increase concrete CS based on the positive coefficient value and low p 379 

value at 0.001. It is also worth noting that the shortlisted IPVs in the secondary run of Model 3 380 

resulted in only slightly lower R2 at 0.907 and slightly higher residual standard deviation. 381 

However, the Durbin-Watson value fell out of the ideal range between 1.5 and 2.5. In 382 

comparison, the mixed model (i.e., Model 4) turns out to have a superior Durbin-Watson value 383 

when keeping only the same five shortlisted input variables.    384 

Table 9.  385 
Non-linear regression analysis results from Model 3. 386 
 387 

Response Predictor 

Coefficient analysis Residual 
Standard 
Deviation R2 

ANOVA Durbin-
Watson 
value Coefficient t value p value F value 

p 
value 

ln(CS)  
 

Constant 6.520 3.13 0.002 0.098 0.953 304.69 0.000 1.906 
ln(Age) 0.212 33.94 0.000   
ln(W) -0.056 -0.43 0.669*   
ln(PC) 0.808 9.00 0.000   
ln(PLC) 0.817 9.07 0.000   
ln(FA) 0.006 1.68 0.096*   
ln(S) -0.775 -3.37 0.001   
ln(CA) 0.014 3.69 0.000      
ln(LWA) -0.009 -4.56 0.000      
ln(AEA) 0.177 3.11 0.002      

ln(CS)  
 

Constant 21.890 29.14 0.000 0.136 0.906 266.86 0.000 1.405 
ln(Age) 0.212 24.28 0.000   
ln(PLC) 0.007 3.27 0.001      
ln(FA) -0.016 -6.47 0.000      
ln(S) -2.819 -25.23 0.000      
ln(LWA) -0.017 -6.92 0.000      

*p value higher than 0.05 indicating less significant of the target predictor on concrete-strength-based 388 
response.  389 

 390 
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4.4. Subsamples at different curing ages  391 

Continuing the work in Jin [47] where experimental observations were obtained on the 392 

waste or alternative materials’ effects on concrete properties at different curing ages, this study 393 

provided the statistical approach to test these observations. Based on the shortened IPV list 394 

from Section 4.3, the totally 144 observations were divided into subsamples according to the 395 

curing age (i.e., Day 3, 7, 28, and 90) to analyze the effects of multiple alternative or waste 396 

materials on concrete strength as concrete ages. Table 10 displays the data analysis results by 397 

rerunning Model 3 as the example.    398 

Table 10.  399 
Non-linear regression analysis results from Model 3. 400 
 401 

Response Predictor 

Coefficient analysis Residual 
Standard 
Deviation R2 

ANOVA Durbin-
Watson 
value Coefficient t value p value 

F 
value 

p 
value 

ln(CS) in 
Day 3 
 

ln(PLC) 0.006 1.02 0.314* 0.170 0.843 41.5 0.000 1.784 
ln(FA) -0.019 -2.96 0.006      
ln(S) -3.362 -12.08 0.000      
ln(LWA) -0.019 -3.09 0.004      

ln(CS) in 
Day 7 
 

ln(PLC) 0.009 2.12 0.042 0.134 0.873 53.21 0.000 1.723 
ln(FA) -0.022 -4.27 0.000      
ln(S) -2.871 -13.06 0.000      
ln(LWA) -0.020 -4.09 0.000      

ln(CS) in 
Day 28 
 

ln(PLC) 0.009 2.61 0.014 0.110 0.895 65.8 0.000 1.625 
ln(FA) -0.020 -4.88 0.000      
ln(S) -2.640 -14.65 0.000      
ln(LWA) -0.014 -3.60 0.001      

ln(CS) in 
Day 90 
 

ln(PLC) 0.005 1.37 0.179* 0.170 0.873 53.33 0.000 2.056 
ln(FA) -0.006 -1.44 0.160*      
ln(S) -2.402 -13.89 0.000      
ln(LWA) -0.015 -3.97 0.000      

*p value higher than 0.05 indicating less significant of the target predictor on concrete-strength-based 402 
response.  403 
 404 

The coefficient analysis in Table 10 conveys the information that the three adopted 405 

alternative or waste materials (i.e., PLC, FA, and LWA) tended to have significant effects on 406 

concrete strength at different curing ages with a few exceptions. Overall PLC increased 407 

concrete CS while FA and LWA decreasing CS. Consistent R2 and ANOVA analysis results 408 

were also found in Model 3 when applied in the four different concrete ages. The Durbin-409 

Watson values all fell into the ideal range. However, compared to early ages, the effects of FA 410 

and PLC in Day 90 tended to be less significant with corresponding p values higher than 0.05. 411 

This would indicate that FA and PLC tended to more strongly affect concrete strength in earlier 412 

ages (i.e., Day 7 and Day 28), but the long-term strength of sustainable concrete would be more 413 

comparable to that of conventional concrete. This statistical finding was consistent with and 414 
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supported by earlier studies [47] when comparing the concrete strength between sustainable 415 

concrete and conventional concrete using bar chart illustration. The TS-related numerical or 416 

relative system also led to consistent findings.  417 

5. Discussion 418 

Although only Model 3’s statistical performance was demonstrated in this paper in detail, 419 

Model 4, when applied in either TS-related numerical or relative system, was also found to have 420 

consistent results following the procedures described in Sections 4.3 and 4.4. This suggests the 421 

robustness of non-linear and mixed models in predicting concrete mechanical properties based 422 

on both numerical and relative systems. Although non-linear models might not have ideal 423 

Durbin-Watson value when IPV was shortlisted, and mixed models might not have ideal 424 

distribution of residual values due to the scattering nature of the “mixed” RRV, these problems 425 

could be solved by identifying the appropriate list of IPVs and selecting the proper model from 426 

the 21 models defined in Table 7. 427 

The non-linear and mixed models adopted in this study have the potential to serve as an 428 

alternative to existing methods in predicting concrete strength based on mixture design 429 

variables with alternative or waste materials involved. Generally, the non-linear and mixed 430 

models achieved higher accuracy than the linear regression approach in predicting concrete 431 

strength as proved in this study and by the comparison with previous studies (Table 7 versus 432 

Table 1). Also, as shown in Table 11, compared with ANN and other data mining methods, the 433 

best-fit non-linear and mixed models proposed in this research achieved similar prediction 434 

performance based on both the numerical and relative input systems while having advantages 435 

of being less time-consuming in model creation and allowing the analysis of individual materials’ 436 

effects on concrete strength at different curing ages. 437 

Table 11  438 
Existing studies that used advanced or non-linear models to predict concrete strength.  439 
 440 

Study  
Independent 
variables  

Adopted 
models 

Sample 
size R2 result Findings  

Saridemir 
et al. [5] 

BFS, curing 
age, PC, water, 
and aggregate 

ANN and FL 284 As high as 
1.00 for 
ANN and 
0.991 for FL 

ANN and FL had strong 
potential in predicting the CS. 

Atici [6] Proportion of 
BFS, FA, curing 
age, rebound 
number  

MRA and 
ANN  

135 As high as 
0.98 for 
ANN and 
0.90 for 
MRA 

ANN outperformed MRA in 
predicting CS. However, MRA 
has its advantages. 
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Omran et 
al. [7] 

Amount of 
individual 
ingredients in 
concrete 
mixture design 
including PLC, 
FA, and LWA  

Nine 
different 
data mining 
methods 
including 
ANN, M5P 
model tree, 
etc. 

144 Highest R2 
value 
achieved 
(0.984) by 
the additive 
regression 
method 

Four regression tree models 
improved the prediction 
accuracy. Other three advanced 
models achieved higher 
accuracy, but the time required 
for building and training these 
models may be a restraint.   

Chithra 
et al. [8] 

Amount of 
cement, fine 
and coarse 
aggregates, 
nano silica, 
slag, and 
superplasticizer  

MRA and 
ANN 

264 Around 
0.670 for 
MRA and 
close to 1.0 
for ANN 

MRA was found with lower 
accuracy and less satisfactory in 
meeting other statistical 
requirements (Durbin-Watson 
value) compared to ANN. 

This 
study  

Concrete-
mixture-design-
based inputs in 
both numeric 
and relative 
systems 

MRA 
including 
linear, non-
linear, and 
mixed 
models  

144 Over 0.950 
achieved in 
both 
numerical 
and relative 
input 
systems  

Both non-linear and mixed 
models achieved better 
performance than the linear 
approach using both input 
systems. They can also 
statistically quantify alternative 
or waste materials’ effects on 
concrete properties at different 
curing ages.    

 441 

6. Conclusions 442 

The regression analysis in this study provided a quantitative tool to predict concrete strength 443 

purely based on mixture-design-related variables and curing age. This statistical tool has 444 

advantages of being easy-to-use and low-cost, not requiring extensive lab testing and huge 445 

datasets, and achieving high degree of reliability. The non-linear and mixed models proposed in 446 

this research enrich the existing statistical modeling approach, which was usually limited to the 447 

linear regression method. The non-linear and mixed models could also serve as an alternative 448 

approach to existing data mining methods (e.g., ANN). The major findings of this study are 449 

summarized below: 450 

 The proposed non-linear and mixed regression models achieved higher accuracy 451 

compared to the linear method in predicting concrete strength using the same concrete 452 

mixture variables and datasets. The best-fit models reached comparably high R2 values 453 

(ranging from 0.934 to 0.955) as some data mining techniques. It is recommended to 454 

apply these models to datasets in previous studies to examine their potential in improving 455 

the prediction accuracy.  456 

 Using a comprehensive set of variables from the concrete mixture design including both 457 

conventional and alternative/waste materials was found to be viable in predicting the 458 

strength of sustainable concrete. It is expected that the list of IPVs could still be expanded 459 
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when more alternative materials from the cementitious or aggregate parts are added into 460 

concrete mixture.  461 

 Using the two input systems (i.e., numerical and relative) yielded highly consistent R2 462 

values in predicting concrete strength when the same RRV was adopted in the regression 463 

models. However, for practical reasons, the more straightforward numerical input system 464 

would be preferable as it allows the direct use of variable values from concrete mixture 465 

design. Conversion would be needed for the relative input system.  466 

 Shortening IPVs based on internal correlation analysis would only cause small 467 

performance loss when using the best-fit models to predict concrete strength. The 468 

corresponding statistical values (e.g., t, p, and coefficient) would better quantify the effect 469 

of each remaining IPV on the target RRVs. This research recommends keeping IPVs 470 

related to the studied material(s) (e.g., IPVs related to PLC, FA and LWA in this study) in 471 

the shortlist. As a result, the effects of studied material(s) on concrete properties could be 472 

properly quantified. 473 

 The non-linear and mixed statistical models could simply the prediction of concrete 474 

strength at certain curing age (e.g., Day 3, 7, or 90). They could also provide the 475 

statistical guide on the effects of alternative or waste materials on concrete mechanical 476 

properties as concrete age grows.   477 
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