
On the Geometry of Some Localisation Problems

in Robotics

J.M. Selig

Abstract

In this work a couple of localisation problems for mobile robots are
revisited. Specifically the problem of finding the location of the robot
from the distances to fixed beacons and using time differences of arrivals
of signals at several stations are addressed. The aim is to study the
geometry of these problems. In particular, tetracyclic coordinates are
used to represent circles in the plane. These coordinates are an old idea
that have not been used for these types of problem before. The coordinates
help to simplify expressions and hence expose the underlying geometric
ideas involved in these problems.

Keywords: Localisation, Tetracyclic coordinates, Cyclographic coordinates,
Osculating circles.

1 Introduction

In many areas of robotics, mobile robots, robot vision and others, a fundamental
problem is to find the location of the robot given data from sensors. The sensors
may give data on the position of points, lines, planes and sometimes coordinate
frames. The problem is to find the position and orientation of the robot from
the measured data.

If the sensor data is perfect, these location problems are often fairly simple
to solve. But real data will contain errors and so the real problem here is to
produce an accurate result given noisy data. A standard way to improve the
accuracy of any measurement is to take more readings and then combining the
data using some kind of average. So we should seek methods and algorithms that
can use more measurements than are strictly necessary to solve the problem. A
probability model for the distribution of errors would help, then we could use
Bayesian techniques to find maximum likelihood estimators. But here the idea
is to concentrate of the geometry of the situation. A final complication that can
arise in these location problems is that often the sensor data must satisfy some
consistency conditions for solutions to exist, however, in reality these conditions
will rarely be met exactly.

A couple of different location problems in the plane will be examined from
the point of view outlined above. Tetracyclic or cyclographic coordinates will
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be used as an efficient way to express these problems. The focus of the work
is on the geometry of the problems not on practical algorithms for solving the
problems. The idea is to show that these problems, which are extremely impor-
tant in robotics, have a significant geometrical content. Indeed there are very
close to the original meaning of the word “geometry”.

2 Multiateration

Consider the problem of finding the location of a point given its distance to a set
of known beacons. In three dimension, with three beacons this problem and its
possible solution methods is known as trilateration, with more beacons the term
multilateration is sometimes used. The problem arises in many situations such
as mobile robotics, surveying and even the determination of molecular struc-
ture. Many different technologies are available to measure the distance to the
beacon, for example the time-of-flight of ultrasonic pulses can be used or the
signal strength of radio frequency signals. Even computer vision techniques can
be used. The technology chosen for the task clearly depends on the magnitudes
of the distances, the clutter in the environment and other similar considerations.
Here we look at the two dimensional version of the problem, though this gener-
alises easily to three dimensions. We begin by looking at representing circles in
the plane by points in a projective space RP3.

2.1 Tetracyclic Coordinates

The equation of a circle in the plane with centre ~c =

(
cx
cy

)
and radius ρ is,

(x− cx)2 + (y − cy)2 = ρ2

Expanding this equation and rearranging, it can be written as the product of a
pair of vectors,

(
−
√

2x, −
√

2y, x2 + y2, 1
)

√
2cx√
2cy
1

c2x + c2y − ρ2

 = 0. (1)

Notice that, the row vector on the left contains only quantities associated to
a point in the plane while the column vector on the right contains only the
parameters of the circle. We can identify the 4-component vectors of the form,

c̊ =


√

2cx√
2cy
1

c2x + c2y − ρ2


with circles in the plane. Clearly every circle in the plane corresponds to such a
vector. However, many vectors correspond to the same circle since multiplying
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the vector by a non-zero constant will not change the circle specified by the
equation. So we are led to consider the components of c̊ as homogeneous co-
ordinates for the projective space PR3. In this space the coordinates c̊ and λ̊c
represent the same point, so long as λ 6= 0. The projective space PR3 can be
thought of as the space of lines through the origin in the 4-dimensional vector
space R4. These coordinates for the circles are called cyclographic coordinates
or tetracyclic coordinates, see [1]. A typical point in this PR3 can be written as

k̊ = (k1, k2, k3, k4) where the kis are homogeneous coordinates. As stated, this

means that the same point is given by, k̊ = (λk1, λk2, λk3, λk4) when λ is not
zero. There are points in PR3 which don’t correspond to real circles,since if we
try to find the radius of the circle, using,

1

2k23
(k21 + k22 − 2k3k4) = ρ2,

the result may not be positive. We could get around this by working over the
complex numbers and accepting circles with complex radii as valid circles. This
approach will not be taken here.

Notice that, this representation of circles contains circles of radius ρ = 0,
these may be identified with points in the plane. The set of these zero radius
circles lie on the zero-set of the degree-2, homogeneous equation,

k21 + k22 − 2k3k4 = 0, (2)

where, as above, the kis are the homogeneous coordinates of PR3. This relation
can be written in a matrix form as,

k̊TJk̊ = 0,

where,

J =


1 0 0 0
0 1 0 0
0 0 0 −1
0 0 −1 0

 .

Suppose we look at the product, k̊TJc̊, where k̊ is a zero-radius circle and c̊ is
a circle with non-zero radius, we get,

k̊TJc̊ =

(√
2kx,

√
2ky, 1, k2x + k2y

)
1 0 0 0
0 1 0 0
0 0 0 −1
0 0 −1 0




√
2cx√
2cy
1

c2x + c2y − ρ2


= ρ2 − (kx − cx)2 − (ky − cy)2.
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~c1 ~c2

ρ2ρ1
A

Figure 1: Two Circles Meeting at an Angle.

If this quantity vanishes then the point (kx, ky) lies on the circle represented by
c̊. For a pair of circles c̊1, c̊2, with non-zero radii, we have,

c̊T1 Jc̊2 =

(√
2c1x,

√
2c1y, 1, c21x + c21y − ρ21

)
1 0 0 0
0 1 0 0
0 0 0 −1
0 0 −1 0




√
2c2x√
2c2y
1

c22x + c22y − ρ22


= ρ21 + ρ22 − (c1x − c2x)2 − (c1y − c2y)2.

If this quantity vanishes then the distance between the centres of the two circles
and the two radii of the circles satisfy Pythagoras’ theorem. This implies that
the two circles meet at two real points, at the points of intersection the tangent
lines to the circles are perpendicular. Circles satisfying c̊T1 Jc̊2 = 0 are said to
be perpendicular circles.

If the quantity, c̊T1 Jc̊2 doesn’t vanish, then we can use the cosine rule to
write,

c̊T1 Jc̊2 = 2ρ1ρ2 cosA,

where A is the angle between the tangents to the circles at their intersections,
see figure 1.

2.2 Three Beacons

Imagine a mobile robot that needs to find its location relative to three beacons.
The robot’s sensors can measure the distance to the three beacons. The beacons
are located at known points,

~c1 =

(
X1

Y1

)
, ~c2 =

(
X2

Y2

)
, ~c3 =

(
X3

Y3

)
.

Suppose the distances to the robot from the beacons are found to be d1, d2, d3
respectively. Assuming the position of the robot is given by a zero-radius circle
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k̊, the sensor data can be expressed as three equations,

k̊ TJc̊i = 0, i = 1, 2, 3. (3)

where,

c̊i =


√

2Xi√
2Yi
1

X2
1 + Y 2

i − d2i

 , i = 1, 2, 3.

A standard solution to this system of equations is found by subtracting
one of the equations from the other two, say we subtract the first equation.
This removes the terms k2x + k2y and produces a pair of equations linear in the
unknowns kx and ky,

0 = (d22 − d21 − d22 −X2
2 −X2

1 − Y 2
2 − Y 2

1 )− 2(X1 −X2)kx − 2(Y1 − Y2)ky

0 = (d23 − d21 − d23 −X2
3 −X2

1 − Y 2
3 − Y 2

1 )− 2(X1 −X3)kx − 2(Y1 − Y3)ky

These are easily solved to give the position of the robot. The set of linear
combinations of two circles in these tetracyclic coordinates give, what is called
a pencil of circles. In any such pencil of circles there is always one circle with
infinite radius, a line. Geometrically, the above approach replaces the second
two circles in the problem specification with the lines in the two pencils of circles
formed by the first circle with the second and with the third circles. When the
data is exact, this will give the exact solution to the problem. But what if
there is some error in the data? Now it will make a difference which equation
we subtract from the others. We will get different lines and hence different
intersections.

Hence, we seek a more symmetrical approach which does not involve lines.
Suppose we treat the three equations above as linear equations in RP3. Now the
solutions can be written as determinants. The three equations can be written
in the form,

X1 Y1 1 X2
1 + Y 2

1 − d21
X2 Y2 1 X2

2 + Y 2
2 − d22

X3 Y3 1 X2
3 + Y 2

3 − d23




2kx
2kx

−k2x−k2y
−1

 =

0
0
0

 (4)

The solution is,

kx =
−1

4A
det

1 Y1 X2
1 + Y 2

1 − d21
1 Y2 X2

2 + Y 2
2 − d22

1 Y3 X2
3 + Y 2

3 − d23

 and ky =
1

4A
det

1 X1 X2
1 + Y 2

1 − d21
1 X2 X2

2 + Y 2
2 − d22

1 X3 X2
3 + Y 2

3 − d23

 ,

where

A =
1

2
det

1 X1 Y1
1 X2 Y2
1 X3 Y3


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is the area of the triangle formed by the beacons, ~c1, ~c2, ~c3.
Notice that, the original problem just gives the position of the robot in

barycentric coordinates based on the three beacons. The solution above is just
the conversion between the barycentric coordinates and the Cartesian coordi-
nates in which we have chosen to express the position vectors of the beacons.
See [5] for a similar 3-dimensional version.

2.3 Errors

The above formulas produce a result even if there is some error in the measure-
ments, this is because we have chosen to ignore the consistency condition that
the solution should be a zero radius circle. When there is some error in the
measurements the solution will have a non-zero radius. If we assume that the
k̊ in the equations (3) has a non-zero radius then these equations express the

fact that the circle k̊ is perpendicular to each of the three circles c̊1, c̊2 and c̊3.
Writing,

k̊ =


√

2X√
2Y
1

X2 + Y 2 − ρ2


the equations for the circle to be perpendicular to the three circles around the
beacons become,

X1 Y1 1 X2
1 + Y 2

1 − d21
X2 Y2 1 X2

2 + Y 2
2 − d22

X3 Y3 1 X2
3 + Y 2

3 − d23




2X
2Y

ρ2 −X2 − Y 2

−1

 =

0
0
0

 .

Again this can be solved by determinants. The solutions for X and Y are the
same as for kx and ky respectively. Rearranging the solution gives the radius of
the common perpendicular circle as,

ρ2 =
1

16A2

det

1 Y1 X2
1 + Y 2

1 − d21
1 Y2 X2

2 + Y 2
2 − d22

1 Y3 X2
3 + Y 2

3 − d23

2

+ det

X1 1 X2
1 + Y 2

1 − d21
X2 1 X2

2 + Y 2
2 − d22

X3 1 X2
3 + Y 2

3 − d23

2

−8Adet

X1 Y1 X2
1 + Y 2

1 − d21
X2 Y2 X2

2 + Y 2
2 − d22

X3 Y3 X2
3 + Y 2

3 − d23


This radius might give some indication of the magnitude of the error in the

result for the position of the robot. However, it might be better to look for a
result that can cope with more measurements.
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2.4 Minimum Square of the Residuals

A method suggested in [2] is to minimise the sum of the squares of the residuals
given by the equations in (3). The residuals are the quantities ri given by,

k̊ TJc̊i = ri.

The quantity that is to be minimised is given by,

Φ =
1

n

n∑
i=1

r2i =
1

n

n∑
i=1

k̊TJc̊i̊c
T
i Jk̊ = k̊TQk̊,

where,

Q =
1

n

n∑
i=1

Jc̊i̊c
T
i J.

Notice that the sum is over n, indicating that the number of beacons that can
be used is not limited to 3. The symmetric matrix Q can be expanded to,

Q =
1

n

n∑
i=1


2c2ix 2cixciy −

√
2cixκi −

√
2cix

2cixciy 2c2iy −
√

2ciyκi −
√

2ciy
−
√

2cixκi −
√

2ciyκi κ2i κi
−
√

2cix −
√

2ciy κi 1

 ,

where κi = c2ix + c2iy − d2i . This is a constrained optimisation problem since we
want to constrain the resulting circle to have zero radius. That is, the constraint
is given by the quadratic function, k̊TJk̊ = 0. Now we can differentiate Φ with
respect to the coordinates of k̊, include the constraint and set the result to zero.
This gives the equation,

(Q+ λJ )̊k = 0,

where λ is the Lagrange multiplier. For non-trivial solutions we must have,

det(Q+ λJ) = 0.

This is now a generalised eigenvalue problem. Since Q and J are 4× 4 matrices
we can expect up to 4 generalised eigenvalues and hence up to 4 corresponding
eigenvectors. The generalised eigenvector which gives the smallest value of Φ is
the solution we seek.

If the true distance to the beacon is ρi = di+εi then the residual will be given
by, ri = εi(2di + εi). In the minimisation this means that more weight given to
the beacons which are further from the robot, that is the ones with larger values
of the distances di. This might be appropriate in some circumstances but in
general would lead to a biased result.

2.5 Least Squares

A more usual way to deal with errors would be to minimise the sum of the
squares of the absolute errors. This approach is not as simple as it might at first
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Figure 2: Errors and Osculating Circles.

seem. First we need to introduce another detail of the tetracyclic coordinates.
Suppose that k̊ is a circle whose centre is the solution to this problem. As seen
at the end of the previous section, the distance between the solution and the i-th
beacon is di + εi where di is the measured distance to the beacon and εi is the
error. This can be viewed as a pair of circles meeting with parallel tangents, see
figure 2. Circles, or more generally any curves meeting in this fashion are said
to osculate or kiss. That is, we can think of k̊ as having radius εi and kissing
the circle c̊i. The condition for two circles to kiss can be written in terms of
tetracyclic coordinates as follows.

Recall from section 2.1, that given a pair of circles k̊ and c̊ we have that,

k̊TJc̊ = 2ρ1ρ2 cosA,

but if the circles are kissing when they meet the angle between them is A = 0,
or π, hence cosA = ±1. Also the radii of the circles are d and ε so that,

k̊TJc̊ = ±2dε.

Moreover, we have k̊TJk̊ = 2ε2 and c̊TJc̊ = 2d2. Combining these results gives,

(̊kTJc̊)2 − (̊cTJc̊)(̊kTJk̊) = 0.

This quadratic relation is satisfied if and only if the circles kiss. This relation
can be rearranged to,

k̊T
(
Jc̊̊cTJ − (̊cTJc̊)J

)̊
k = k̊TWk̊ = 0,

where W is the 4 × 4 symmetric matrix, W =
(
Jc̊̊cTJ − (̊cTJc̊)J

)
, explicitly

this is,

W =


2(c2x − d2) 2cxcy −

√
2cxκ −

√
2cx

2cxcy 2c2y − d2) −
√

2cyκ −
√

2cy
−
√

2cxκ −
√

2cyκ κ2 κ+ 2d2

−
√

2cx −
√

2y κ+ 2d2 1

 ,
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Figure 3: Osculating Circles centred on a Fixed Point, (a) Centre Outside, (b)
Centre Inside a fixed Circle.

where κ = c2x + c2y − d2.
If the position of the robot is fixed then the error can be found from the

radius of the circle satisfying, k̊TWk̊ = 0. Expanding this equation actually
gives a quadratic in the square of the error,

0 = k̊TWk̊ =(
(cx − kx)2 + (cy − ky)2 − (d− ε)2

)(
(cx − kx)2 + (cy − ky)2 − (d+ ε)2

)
.

Expanding and gathering terms gives,

ε4 − 2
(
(cx − kx)2 + (cy − ky)2 + d2

)
ε2 +

(
(cx − kx)2 + (cy − ky)2 − d2

)2
= 0.

This gives two solutions,

ε2 =
(√

(cx − kx)2 + (cy − ky)2 ± d
)2
.

The smallest value of the error is always given by the negative sign, This can be
seen by contemplating the two possible cases shown in figure 3. Finally here, the
square of the error can be written using the tetracyclic coordinates as follows.
Let p̊ be the zero-radius circle centred at the solution. As we have seen above,
p̊TJc̊ = d2 − (cx − px)2 + (cy − py)2 and c̊TJc̊ = 2d2. So,

ε2 =

(√
c̊TJc̊

2
− p̊TJc̊−

√
c̊TJc̊

2

)2

.

This is the error for a single beacon. Adding the errors for all the beacons it is
possible to perform a numerical minimisation to determine the “least squares
solution”.

3 Time Difference of Arrivals (TDOA)

In this section we look at a subtly different problem. We are still trying to
find the location of a mobile robot but now the sensors are positioned in the
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δi − δ0
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Figure 4: Time Difference of Arrival Interpreted as Touching Circles.

environment. These sensors will be referred to as “stations”. Now the robot
will emit a series of signals and these will be detected by the stations. Without
a complicated synchronisation system there is no way to determine the time-of-
flight of these signals. But we may assume that the stations are synchronised so
that difference in arrival times of the signals at different stations can be found.
Suppose there is a single “base station” located at ~c0 and the other stations are
located at the points ~ci, where i = 1, 2, . . . , n. The arrival time at station i will
be denoted τi, if the speed of the signal is v then the distance from the robot
to the station will be δi = vτi. Note that the signal could be a sound wave or
an electro-magnetic wave and so v is the speed of sound in the environment or
respectively the speed of light. Moreover, the environment might be air or could
be underwater and so forth, so v would need to take account of that too.

3.1 Geometry of Time Differences

To understand the geometry of the situation, let’s concentrate on the base sta-
tion and one other station. Although we cannot know the distances from the
robot to the stations we can know the differences di = |δi − δ0| = v|τi − τ0|.
This means that a circle of radius δ0, centred on the robot’s location will meet
the point ~c0 where the base station is located. A line drawn from the robot
to ~ci, the position of station i, will have length δi = di + δ0. Hence a circle of
radius di centred on ~ci will kiss the first circle centred on the robot’s position,
see figure 4.

If the measurements are exact we can set-up this problem using tetracyclic
coordinates as follows. Suppose we have just two stations and the base station,
so we have two circles one for each station c̊1 and c̊2 with respective radii d1
and d2. This gives two quadratic equations for the circle centred on the robot
k̊,

(̊cTi Jc̊i)(̊k
TJk̊)− (̊kTJc̊i)

2 = k̊TWi̊k = 0, i = 1, 2,

where
Wi =

(
Jc̊i̊c

T
i J − (̊cTi Jc̊i)J

)
,
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as in section 2.5. Lastly, the circle centred on the robot must pass through the
base station, this can be expresses using a zero-radius circle c̊0 for the point ~c0
and then requiring the linear equation,

c̊T0 Jk̊ = 0,

in k̊ to be satisfied. This gives us three homogeneous equations in the coordi-
nates of k̊. That is, we have two quadratic and one linear equation in a RP3,
hence, by Bézout’s theorem we expect up to 2× 2× 1 = 4 solutions.

Some of these solutions will be spurious since we are only using the squares
of the time differences, not the signs of the time differences themselves. This
ambiguity could be resolved in a number of ways. We could retain the signs of
the time differences, this amounts to recording the order in which the signals
arrive at the stations. Using this information we can dismiss the spurious so-
lutions by examining which circles are inside and which outside the solutions
for k̊. An alternate approach might be to add another station to the set-up.
With a base station and three other stations we are looking for a circle that
is tangent to three other circles. This is a classical problem in geometry know
as “Apollonius’s problem”, see [6]. It is well know and can also be seen from
the arguments above, that there are up to 8 possible solutions. However, if the
measurements are exact then only one of these solutions will pass through the
base station, ~c0.

No measurements are ever exact, so we need to look at methods that can
cope with errors. A possibility that suggests itself might be to minimise the
residuals. That is with a base station and n other stations we minimise the
quantity,

Ψ = k̊TW k̊ = k̊T

(
1

n

n∑
i=1

Wi

)
k̊,

subject to the constraint c̊T0 Jk̊ = 0. Lack of space precludes further considera-
tion of this approach here.

4 Conclusion

There is a huge literature on these location problems due to their importance
in many fields. The present work is only intended to highlight the geometry
of these problems with the hope that simple solutions using these geometric
methods can be found and used.

The geometrical ideas presented here extend simply to higher dimensions.
For example, in three dimensions spheres can be represented by pentaspherical
coordinates, that is by points in an RP4. Further, circles in 3-D correspond to
lines in RP4 in a natural way, see [1]. Tetracyclic coordinates also provide an
ideal formalism to study Möbius transformation and more generally conformal
transformations in higher dimensions. Many practical algorithms in this area
use inversion in a circle to convert circles to lines (circles with infinite radius) and
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hence simplify problems. The group of rigid body displacements is a subgroup of
the conformal group, but not a normal subgroup. However, this does mean that
there is a 4-dimensional representation of SE(2) which acts on these tetracyclic
coordinates.

It might be useful to look at some of these problems using Lie circle (or
Lie sphere) geometry, see [3]. In this approach the spheres in 3-dimensions are
represented by points in a 5-dimensional projective space. The advantage of
this formalism is that the relation that determines if two spheres are touching is
bilinear in the Lie sphere coordinates. The disadvantage is that the points corre-
sponding to spheres form an open set of a projective quadric variety. Moreover,
the points in this geometry represent oriented spheres and for these applications
that might add complications.

Other location problems are also important in robotics. In many of these it
is important to find the orientation of the robot as well as its position. Perhaps
the best known of these is the so called AX = XB problem, originally the
”hand-eye calibration problem”. The variables here are elements of the rigid-
body displacement group SE(3). The task is to find the displacement X given
measured values of A and B. However, for a solution to exist A and B must be
conjugate, that is they must have the same pitch. But, as observed above, this
consistency condition will usually not be satisfied by measured values. Also,
since there is no bi-invariant metric on the group SE(3), it is difficult to see
what errors mean when comparing displacements. Yet another such problem
is to find the rigid-body displacement of an object from measurements of the
displacement of points on the body, see [4].
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