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Abstract

In this work the problem of designing systems of springs to achieve a desired stiffness matrix is
considered. Only planar configurations are studied. After a brief section outlining the theory of the
stiffness of planar systems the planar stiffness matrix of three typical design elements are found, simple
springs, beams and pairs of stretched springs. A final section shows how arbitrary stiffness matrices can
be achieved using three simple springs or two stretched spring pairs.
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1 Introduction
The synthesis of stiff or compliant systems is an important area of mechanism theory and robotics. There
are many previous works in this area, see for example, [3, 4, 5]. Most of these concentrate on the problem
of synthesising spatial stiffness matrices using so-called simple springs. These simple springs have zero
natural length and are un-stretched. In this work the simpler problem of synthesising planar stiffnesses is
considered. Using simple springs gives a mathematically interesting problem related to the secant varieties
of a certain Veronese variety. More practical are simple beams and pairs of stretched springs, these are also
considered.

2 Planar Rigid-Body Geometry
Here the basic geometric entities of points and lines are introduced and the action of the group of rigid-body
displacement on these elements is described. As usual, given a coordinate frame, points can be represented
as vectors,

~p =

(
px
py

)
,

where px and py are the coordinates of the points in the fixed coordinate frame. It is often be more conve-
nient to represent points using extended vectors,

p̃ =

(
~p
1

)
=

pxpy
1

 .
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An advantage of this representation is that it extends easily to projective space P2. This space has homo-
geneous coordinates, (x : y : w) and two sets of these homogeneous coordinates represent the same point
in P2 if they are of the form (x : y : w) and (λx : λy : λw) for some non-zero number λ. Thinking of
points in the plane as points in the projective plane does however, introduce some extra points. The points
with third homogeneous coordinate w = 0 do not correspond to any points in the plane. They are usually
referred to as points at infinity. In the projective plane these ideal points constitute a line.

The group SE(2) acts by the familiar homogeneous representation on the extended points,(
~p
1

)
7−→

(
R ~t
0 1

)(
~p
1

)
where, as usual,

R =

(
cos θ − sin θ
sin θ cos θ

)
and ~t =

(
tx
ty

)
are respectively the rotation matrix and translation vector of the displacement.

In 2 dimensions lines are dual elements to points. The equation for a point to lie on a line is given by,

nxpx + nypy = d

where d is the perpendicular distance from the line to the origin of coordinates and ~n = (nx, ny)T is the
unit normal vector to the line. If lines are represented by 3-vectors of the form,

` =

(
~n
−d

)
=

nxny
−d

 ,

then the relation above can be represented by the pairing,

`T p̃ = 0.

That is, the point p̃ lies on the line ` if and only if `T p̃ = 0.
Again, it is often useful to think of these as homogeneous coordinates of a P2. Notice that ` and λ` give

the same line if λ is non-zero, although now λ~n is no longer a unit vector and λd is not the perpendicular
distance from the origin to the line. Thinking of lines as elements of a P2 means that the “line at infinity”
must be included. This is the line with homogeneous coordinates `∞ = (0, 0, 1)T , on which the points at
infinity p̃ = (x, y, 0)T , lie.

Thinking of lines as dual to points means that it is easy to see that lines transform under the inverse-
transpose representation of the group. That is the dual representation of the group,(

~n
−d

)
7−→

(
R 0

−~tTR 1

)(
~n
−d

)
Since, (

R ~t
0 1

)−T
=

(
R 0

−~tTR 1

)
.

Twists are elements of the Lie algebra of the group, SE(2) here. They can be thought of as infinitesimal
rigid displacements. The Lie algebra of SE(2) can be found from first princples or simply by abridging the
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results for the spatial case SE(3), see [8]. So a general twist in the plane can be written as a 3-component
vector,

s =

(
ω
~v

)
=

ωz

vx
vy


where ~v is the linear velocity of a point instantaneously coincident with the origin and ωz is the angular
velocity of the body or lamina in this case. Under a rigid displacement these transform according to yet
another representation of the group,(

ω
~v

)
7−→

(
1 0

J~t R

)(
ω
~v

)
, where J =

(
0 1
−1 0

)
Again, this can be found by computing the adjoint representation for SE(2) or by looking at the adjoint
representation of SE(3) which is more widely known.

In the plane almost all twists are infinitesimal rotations about some point in the plane. So it is possible
to associate points and twists. The mapping from twists to points is given by,

s 7−→ L̃s =

(
J~v
ω

)
= p̃, where L̃ =

(
0 J
1 0

)
=

0 0 1
0 −1 0
1 0 0

 .

These matrices satisfy JT = J−1 = −J and L̃−1 = L̃.
Notice that, here points in the plane are represented by points in the projective space P2. Hence the

centre of rotation of the twist s is given by the point ~c = (cx, cy)T where,

cx = vy/ω, and cy = −vx/ω.

This shows that, when ω = 0 and the motion is an instantaneous translation, there is no finite centre of
rotation. The extension of the map to the projective space P2 maps infinitesimal translations to points at
infinity.

In 3 dimensions the combination of the torque and force acting on a rigid body is called a wrench.
Wrenches are dual to twists, in 2-dimensions the abridged version of the wrench will be another 3-
component vector this time with the form,

w =

(
τ
~f

)
=

τzfx
fy

 ,

where τz is the torque, and fx and fy the components of the force acting on the lamina. The duality is given
by the pairing,

wT s = τzωz + fxvx + fyvy

which gives the power, a scalar.
The effect of a rigid displacement on a wrench can be found from the duality. The dual representation

is the inverse transpose of the representation for the twists, so given by,(
1 0

J~t R

)−T
=

(
1 0

−RTJ~t RT

)T

=

(
1 ~tTJR
0 R

)
.

3



The action of a rigid displacement on a wrench is thus,(
τ
~f

)
7−→

(
1 ~tTJR
0 R

)(
τ
~f

)
The line of action of the force gives a natural association between wrenches and lines. The line of action

of a wrench w is given by the map,

w 7−→ L̃Tw =

(
J ~f
τ

)
= `.

Again this map is defined on projective space, non-zero constants multiplying every coordinate are irrele-
vant. The line associated with a pure torque is the line at infinity.

Notice that if a screw and a wrench are dual, that is if wT s = 0, then the point associated with the twist
lies on the line associated to the wrench,

`T p̃ = wT L̃L̃s = wT s = 0,

since, L̃2 = I . This means that if the lamina is instantaneously rotating about a point on the axis of the
applied force then no work is being done on the lamina.

3 Stiffness Matrices
Consider a lamina attached to a number of springs in the plane. Alternatively the lamina could be subject
to some conservative force field. Stationary points of the potential energy correspond to equilibria of the
lamina. At such an equilibrium configuration the Hessian matrix of the potential is the stiffness matrix of
the configuration, see [6]. The Hessian is the matrix of second derivatives at the configuration and this gives
an extended form of Hooke’s law,

w = Ks

where w is the wrench applied to the lamina, s is the resulting infinitesimal twist andK the stiffness matrix.
The stiffness matrix is a symmetric matrix and from physical considerations is also positive definite.

In the plane, all non-singular stiffness matrices are diagonaliseable. This is not the same as saying that
any 3×3 symmetric matrix is diagonaliseable because we want the stiffness matrix to be diagonaliseable by
rigid-body displacements, not by arbitrary non-singular matrices or even orthogonal matrices. So we need
to know how the group SE(2) acts on stiffness matrices. Since a stiffness matrix K, transforms a twist into
a wrench the expression, sT1Ks2 is a scalar, so if the compliant element and the screws all undergo a rigid
displacement or we just change the coordinates we are working in, this quantity must remain constant. This
implies that under a rigid displacement the stiffness matrix K will transform according to,

K 7−→
(

1 0

J~t R

)−T
K

(
1 0

J~t R

)−1
=

(
1 ~tTJR
0 R

)
K

(
1 0

−RTJ~t RT

)
Writing the stiffness matrix in partitioned form,

K =

(
q ~kT

~k Υ

)
,
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a pure translation of ~t will give,

K ′ =

(
1 ~tTJ
0 I

)(
q ~kT

~k Υ

)(
1 0

−J~t I

)
=

(
q′ ~kT + ~tTJΥ

~k −ΥJ~t Υ

)
,

where q′ = q − ~kTJ~t+ ~tTJ~k − ~tTJΥJ~t. Choosing ~t = −JΥ−1~k, the stiffness matrix becomes,

K ′ =

(
q′ ~0T

~0 Υ

)
.

Notice that, with this choice for ~t we get q′ = q−~kT Υ−1~k. Now we can use standard theory to diagonalize
this symmetric 2× 2 matrix Υ, with a rotation. This result is well known, but seems to be difficult to find in
the literature. When the stiffness matrix is in diagonal form we will assume the diagonal entries are k21, k

2
2

and k23 .
Next we turn to the invariants of the stiffness matrix K. That is we seek functions of the entries of

K which are invariant with respect to a rigid change in coordinates or rigid displacement. We can expect
these to be symmetric polynomials in the diagonal elements of diagonalisation of K. The determinant of
K is clearly an invariant since it is an invariant under the group SL(3) it must also be an invariant under
the subgroup SE(2). The determinant of the diagonal stiffness matrix is just the product of the stiffnesses,
det(K) = k21k

2
2k

2
3 . Notice that after a translation the bottom right 2 × 2 block of K is unchanged. A

rotation will change this block to,
Υ 7−→ RΥRT

So rotational invariants of this block will be invariant under all of SE(2). The invariants in question are
det(Υ) = k22k

2
3 and Tr(Υ) = k22 + k23 .

Next, a few examples will be considered, the first of these is a simple spring. This is an idealised
component but the following two examples are a little more practical.

The simple spring is an idealisation of real springs, simple springs can be thought of as un-stretched
springs with zero natural length. These elements are determined by lines in the plane. Given a line ` =
(nx, ny, −d)T , the spring will only generate a wrench in the direction of the line, w = kL̃`, where k is a
constant The wrench produced by the simple spring is only in response to a small motion in the direction of
the line, that is wT s 6= 0 when s is a translation in the direction of ` but is zero for the orthogonal direction
and infinitesimal rotations. This means that we can write the stiffness matrix as,

K = wwT = k2L̃``T L̃k2

 d2 −dny −dnx
dnyd n2y −nxny
−dnx −nxny n2x

 ,

where k2 is known and the stiffness constant of the spring. Usually this is stated the other way around —
the wrench produces a small motion of the spring.

If we think of lines ` as points in a projective plane P2 and stiffness matrices as points in a projective
space P5 then the above is clearly a Veronese embedding. Hence the space of all possible simple springs is
the degree 4, Veronese surface, see [2].

Next we consider simple beams. Again, here we can just restrict the stiffness matrix of the 3D beam,
see [7]. The stiffness matrix of the slender planar beam aligned with the x-axis is thus,

K =

EIy
l 0 0
0 EA

l 0

0 0
12EIy

l3

 ,
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where l is the length of the beam, E is its Young’s modulus, A its cross-sectional area and Iy the second
moment of area. Note that, the stiffness matrix shown here is expressed in a coordinate frame whose origin
is located at the centre of the beam and with the x-axis directed along the beam.

The space of these simple beams is a little more complicated than the simple springs. First we need
to decide what to hold constant. For example, we could imagine that the beams that we have available are
all made of the same material and have the same cross-section and length l. If this is the case then the
space of all beams or rather the stiffness matrices of these beams is just the stiffness matrices which can
be generated by rigid displacements of the diagonal stiffness matrix above. From the previous section it is
clear that the diagonalisation of an arbitrary stiffness matrix is unique. Hence, the space of simple beams
must be an embedding of the group manifold of SE(2). This is well known to be isomorphic to the real
projective space P3 with a single line deleted, see [1].

We can find several homogeneous equations satisfied by the stiffness matrices of simple beams. All that
is needed is to find relations between the invariants of the matrices. These can be evaluated on the diagonal
matrix given above,

det(K) =
12AE3I2y

l5
,

det(Υ) =
12AE2Iy

l4
,

Tr(Υ) =

(
EA

l
+

12EIy
l3

)
=
E

l3
(Al2 + 12Iy).

These invariants are of degree 3, 2 and 1 respectively, in the elements of the stiffness matrix. So we can
write a quadratic equation,

12AIyl
2Tr(Υ)2 − (Al2 + 12Iy)2 det(Υ) = 0,

and a couple of cubic equations,

12AIyl
4Tr(Υ)3 − (Al2 + 12Iy)3 det(K) = 0

and
Iyl

2Tr(Υ) det(Υ)− (Al2 + 12Iy) det(K) = 0

and finally a degree 6 equation,

12Adet(K)2 − l2Iy det(Υ)3 = 0.

Presumably these four equations do not give a complete intersection in P5 but rather define a 3-dimensional
rational variety.

If we assume that the simple beams can have different lengths then the space of all simple beams will
be 4-dimensional. The equations defining this variety can be found by eliminating l from the equations.
Notice that the final degree 6 equation can be rearranged to isolate l2 and the other three equations only
contain l2 or powers of l2.

The final example here are stretched spring pairs. Consider the system of springs shown in Figure 1.
The springs have natural length l but in the equilibrium position illustrated are extended by an amount e.
The springs are attached to the body at points a distance 2d apart. The stiffness matrix of this arrangement
can be found from the results in [6],
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y

xd−d

l + el + e

Figure 1: A Pair of Stretched Springs.

K = 2λe

d(1 + d
l+e ) 0 0

0 1
e 0

0 0 1
l+e

 ,

where λ is the stiffness constant of the springs. It is, of course, possible to find homogeneous equations for
the space of all stretched spring pairs using the same method we saw for the space of beams above.

4 Synthesis
Given a stiffness matrix, perhaps the specification of how one part of a machine needs to move with respect
to another part, how can we select springs or beams to realise the given stiffness matrix? Unfortunately
standard decomposition theorems of symmetric matrices don’t apply here. The standard theory is based on
eigenvalues and eigenvectors, these only make sense if the matrix represents a linear map from a space to
itself or a map between Euclidean spaces. The matrix K here is a map from twist space to wrench space,
neither of these spaces is Euclidean.

It is important to note that if these systems of springs are combined in parallel the stiffness matrix of the
result is simply the sum of the stiffness matrices of the component systems. Care must be taken however,
to ensure that the stiffness matrices are expressed in the same coordinate system before they are added.

At the end of section 3 it was observed that the space of simple springs determine a Veronese surface in
the P5 of all stiffness matrices. This is a two dimensional variety with degree 22 = 4, [2]. By varying the
modulus of stiffness of the springs we can produce all possible stiffness matrices lying on the line joining
the stiffness matrices of the two simple springs. This is a chord or secant line to the surface. The closure
of all such secant lines forms the secant variety to the surface. It is well known that the secant variety
to the Veronese surface is a cubic hypersurface in P5 given by vanishing of a 3 × 3 determinant. Simple
counting of dimensions would suggest that the secant variety to a surface should be 5-dimensional, however
for the Veronese surface it is only 4-dimensional. This means that three simple springs will be needed to
synthesise a general 2-D stiffness matrix. For singular stiffness matrices only one or two simple springs
will be required.

LetK be an arbitrary stiffness matrix, as we saw in section 3, there will be a rigid change of coordinates

M =

(
1 0

J~t R

)
, which diagonalises K

MTKM =

k21 0 0
0 k22 0
0 0 k23

 .
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In section 3 diagonalisation was effected using a displacement, a coordinate transformation just uses the
inverse transformation.

Now consider the following three lines,

`1 =

 1
0

−1/
√

2

 , `2 =

 −1/2√
3/2

−1/
√

2

 , `3 =

 −1/2

−
√

3/2

−1/
√

2

 .

These are the edges of an equilateral triangle with the origin as centre. The corresponding wrenches are,

w1 =
k1
√

3√
2

−1/
√

2
0
1

 , w2 =
k1
√

3√
2

−1/
√

2

−
√

3/2
−1/2

 , w3 =
k1
√

3√
2

−1/
√

2√
3/2
−1/2

 .

Notice that all these springs have stiffness constant k1
√

3/
√

2. A straightforward computation confirms
that,

w1w
T
1 + w2w

T
2 + w3w

T
3 = k21

1 0 0
0 1 0
0 0 1

 .

So we can write
MTKM = ΛU(w1w

T
1 + w2w

T
2 + w3w

T
3 )UT Λ

where Λ =

1 0 0
0 k2/k1 0
0 0 k3/k1

 and U is an arbitrary 3× 3 orthogonal matrix, an element of O(3). Now

writing,
vi = M−T ΛUwi, i = 1, 2, 3

we get the decomposition,
K = v1v

T
1 + v2v

T
2 + v3v

T
3 .

Moreover, this gives all possible such decompositions for a non-singular stiffness matrix K, different
choices are given by different orthogonal matrices U .

In terms of simple springs this means that we can decompose a stiffness matrix K into a system of three
simple springs placed along the lines,

`′i = L̃vi, i = 1, 2, 3,

Next we consider stretched spring pairs. For a general stiffness matrix in 2D we need at least two
stretched string pairs. As above, we can assume that the stiffness matrix has been diagonalised by some
rigid-body displacement M , so that we can write,

K =

k21 0 0
0 k22 0
0 0 k23

 .

Assuming that we cannot change the stiffness of the material that the springs are made from means that
we cannot use the secant variety to the space of spring pairs to synthesise the stiffness matrix. A possible
strategy is to combine pairs with diagonal stiffness matrices. For example, suppose we rotate the pair by a
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quarter turn, such a pair can have a different extension e2 and separation d2 to the original pair e1 and d1.
The stiffness matrix of such a perpendicular arrangement of pairs will give a stiffness matrix,

K = 2λe1

d1(1 + d1

l+e1
) 0 0

0 1
e1

0

0 0 1
l+e1

+ 2λe2

d2(1 + d2

l+e2
) 0 0

0 1
l+e2

0

0 0 1
e2

 .

Comparing this with the target stiffness gives 3 equations,

k21 = 2λ

(
e1d1 + e2d2 +

e1d
2
1

l + e1
+

e2d
2
2

l + e2

)
,

k22 = 2λ

(
1 +

e2
l + e2

)
,

k23 = 2λ

(
1 +

e1
l + e1

)
.

The last two of these equations are easily solved,

e1 =

(
k23 − 2λ

4λ− k23

)
l and e2 =

(
k22 − 2λ

4λ− k22

)
l.

These result give limits on the stiffnesses that can be synthesised with such springs, if the extension is to be
positive then we must have, 2λ < k22 < 4λ and the same for k23 .

The first of the equations above would give many solutions for d1 and d2, so it seems reasonable to set
d1 = d2 = d. This gives a quadratic equation for d,(

e1
l + e1

+
e2

l + e2

)
d2 + (e1 + e2)d− k21

2λ
= 0.

From the pattern of sign changes in the coefficients, this has one positive real solution for d, and this will
give a stable equilibrium for the system.

An alternative solution might be to use a couple of identical spring pairs but move them relative to each
other. Suppose we have two identical diagonal stiffness matrices and we subject them to either equal but
opposite translations or equal but opposite rotations. The composite will be a diagonal stiffness matrix. For
example, if we rotate the stiffness matrices of two stretched string pairs by θ and compare the combined
system with the desired diagonal stiffness we get the following three equations,

k21 = 4λ

(
ed+

ed2

l + e

)
,

k22 = 4λ

(
cos2 θ +

e

l + e
sin2 θ

)
,

k23 = 4λ

(
sin2 θ +

e

l + e
cos2 θ

)
.

Adding the last two equations eliminates the angle so that we can solve for the extension,

e =

(
k22 + k23 − 4λ

8λ− k22 − k23

)
l.
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Again, this gives limits on the stiffnesses which can be synthesised using this method with positive exten-
sions e. Subtracting the last two equations gives a linear equation for cos(2θ),

cos(2θ) =
k22 − k23

8λ− k22 − k23
,

since l + e = (4λl)/(8λ − k22 − k23). Finally d can be found as the unique positive real solution to the
quadratic equation in d given by the first equation above.

5 Conclusions
Similar techniques to those outlined above could be used to synthesis a desired stiffness from simple beams.
We could also consider other compliant design elements. It was possible to find all possible designs using
three simple springs, it would be useful to find all possible solutions for pairs of stretched springs and other
stiffness elements.

It would also be useful to extend these ideas to 3 dimensional stiffness. However, in 3D a general
stiffness matrix cannot necessarily be diagonalised with a rigid-body displacement. This makes the general
problem of the synthesis of stiffness in 3D much more difficult.
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