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paradigms for improving reactive stepping
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Abstract

Background: Falls are a leading cause of injury among older adults and most often occur during walking. While
strength and balance training moderately improve falls risk, training reactive recovery responses following sudden
perturbations during walking may be more task-specific for falls prevention. The aim of this review was to
determine the variety, characteristics and effectiveness of gait perturbation paradigms that have been used for
improving reactive recovery responses during walking and reducing falls among healthy older adults.

Methods: A systematic search was conducted in PubMed, Web of Science, MEDLINE and CINAHL databases in
December 2015, repeated in May 2016, using sets of terms relating to gait, perturbations, adaptation and training, and
ageing. Inclusion criteria: studies were conducted with healthy participants of 60 years or older; repeated,
unpredictable, mechanical perturbations were applied during walking; and reactive recovery responses to gait
perturbations or the incidence of laboratory or daily life falls were recorded. Results were narratively synthesised. The
risk of bias for each study (PEDro Scale) and the levels of evidence for each perturbation type were determined.

Results: In the nine studies that met the inclusion criteria, moveable floor platforms, ground surface compliance
changes, or treadmill belt accelerations or decelerations were used to perturb the gait of older adults. Eight studies
used a single session of perturbations, with two studies using multiple sessions. Eight of the studies reported
improvement in the reactive recovery response to the perturbations. Four studies reported a reduction in the
percentage of laboratory falls from the pre- to post-perturbation experience measurement and two studies reported a
reduction in daily life falls. As well as the range of perturbation types, the magnitude and frequency of the
perturbations varied between the studies.

Conclusions: To date, a range of perturbation paradigms have been used successfully to perturb older adults’ gait and
stimulate reactive response adaptations. Variation also exists in the number and magnitudes of applied perturbations.
Future research should examine the effects of perturbation type, magnitude and number on the extent and retention
of the reactive recovery response adaptations, as well as on falls, over longer time periods among older adults.
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Background
Falls are a leading cause of injury among older adults,
with hip fractures [1–4] and head injuries [1, 3] among
the more severe consequences. Falls most often occur
during walking [5–9], which is also the most common
activity prior to falls that lead to injury or hospital
admission [1, 2]. Slipping and tripping during walking
are the most common causes of falls among older adults
[4, 5, 7, 9–11], which represent failures to predictively
(before the perturbation) or reactively (after the perturb-
ation) adapt to changes and challenges in the environ-
ment. Therefore, there is a need to physically prepare
older adults for situations where unexpected mechanical
disturbances to gait could occur.
Lower limb muscle strength [12–21] and tendon stiff-

ness [18] have been associated with stability recovery
performance following different balance and gait pertur-
bations, with greater muscle strength and tendon stiff-
ness generally showing modest associations with more
effective stability maintenance or recovery. General exer-
cise interventions (combinations of strength, balance
and aerobic exercises) have generally resulted in moder-
ate reductions (14–17%) in falls incidence among older
adults [22–24], which reflects the modest associations
observed between muscle-tendon properties and stability
performance. While these reductions are statistically sig-
nificant, the fact that greater reductions in falls inci-
dence are not seen may be explained by the fact that
general exercise interventions often lack specificity to
the balance recovery mechanisms that are needed fol-
lowing balance loss, such as compensatory stepping,
counter rotation or grasping actions [25, 26]. Balance
maintenance requires a complex interaction of several
mechanisms and hence, improved balance control in
one task in particular is not likely to be of benefit during
other tasks [27]. Accordingly, only negligible associations
between static posturography and dynamic stability per-
formance (forward lean-and-release and slip/trip recov-
ery tasks) have been reported [28–31]. Therefore, testing
and training tasks more specific to balance recovery
mechanisms may provide more insight and benefit for
falls reduction and prevention.
It has previously been suggested that training involun-

tary compensatory recovery responses following sudden
perturbations is more task specific than general strength
and balance exercise for preventing a fall after a loss of
balance [32–35]. Even voluntary stepping exercise, such
as multidirectional stepping to targets, is not as specific
as involuntary, reactive compensatory stepping where
faster movement speeds and an inability to make use of an-
ticipatory postural adjustments are characteristic [34–36].
Eliciting involuntary, reactive compensatory stepping by
applying unexpected perturbations during walking also
increases the task specificity, as most falls occur during
walking [5–9]. However, in order to benefit from this kind
of training, the participants must be capable of adapting
their reactive recovery responses during gait.
Reactive recovery responses are required to cope with

unexpected perturbations to gait in order to continue
safe locomotion. We define reactive recovery responses
here as feedback-driven adaptations in gait in response
to mechanical disturbances to the regular gait pattern.
The first step of such a response is recognising the onset
of the perturbation, achieved though integration of
visual, somatosensory and vestibular sensory informa-
tion. The contribution of each sensory system may vary
with perturbation type due to differences in the percep-
tion of motion [37]. Stability can then be recovered
through a number of strategies, such as compensatory
stepping, counter rotation or grasping actions [25, 26].
In situations where compensatory stepping is required
to maintain balance, the spatiotemporal characteristics
of the step (e.g. direction, timing and amplitude) need to
match the requirements for optimal control of stability
given the specific environmental constraints. Such react-
ive responses appear to involve spinal locomotor net-
works, as chronic spinal cats [38, 39], as well as human
infants prior to independent walking [40] exhibit well
organised reflex responses (increased swing limb flexion
and limb flexor activation) to paw and foot touches
during leg swing that simulate a potential trip hazard.
Critically, adaptation of these responses has been reported
following repeated paw and foot (dorsum) touches in
spinal cats [41] and human infants [42], suggesting that
spinal locomotor networks are plastic. Therefore, older
adults’ reactive recovery responses following gait perturba-
tions may, in part, be improved with repetition via these
reflexes. While there is evidence to suggest that certain
neurological patient populations may be limited in their
reactive adaptation potential during gait (patients with
vestibulopathy [43] and Parkinson’s disease [44], for
example), the ability to adapt in a reactive or predictive
manner to repeated perturbations appears to be largely
unaffected by non-pathological ageing [43, 45–50].
When applied in prevention and rehabilitation settings,

the use of sudden, unexpected mechanical perturbations
during stance or gait is often termed perturbation-based
balance training [34, 51–53]. The goal of such training is
to target the specific mechanisms of balance recovery
related to reducing falls such as compensatory stepping,
counter rotation or grasping actions [25, 26]. Aside from
these movement strategies to maintain balance, factors
such as reaction time, perception of losses of balance and
speed of sensory information processing are challenged
and may improve with perturbation training. Two recent
meta-analyses of randomised controlled trials (RCTs) have
reported significantly lower post-training falls incidence
among older adults who took part in such training (note
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that Okubo et al. [54] also included voluntary stepping
training interventions in their meta-analysis) [53, 54].
These meta-analyses focussed on RCTs that assessed falls
incidence, which may mean that non-RCT studies or stud-
ies that did not report falls data, but nonetheless included
relevant information on reactive recovery responses follow-
ing perturbations, may have been omitted. Additionally, of
the included studies in these meta-analyses, only four were
conducted with healthy older adults and applied sudden,
unexpected perturbations during walking [55–58], three of
which used very similar perturbation paradigms. As a re-
sult, it is difficult to determine, based on these studies, the
variety, characteristics (e.g. perturbation type, magnitude,
standardisation, scaling, progression etc.) and effectiveness
of gait perturbation paradigms that could be used with
older adults for improving reactive recovery responses and
preventing or reducing falls. Therefore, we systematically
searched for all studies that applied unexpected mechanical
disturbances during walking in healthy older adults and
assessed changes in reactive recovery responses or falls in-
cidence, in order to determine the variety, characteristics
and effectiveness of methods that have been used to date
for improving reactive recovery responses during walking
(using spatiotemporal or biomechanical parameters) and
reducing falls (defined using the number of daily life or
laboratory-induced falls after exposure to the perturbation
paradigms) among healthy older adults.

Methods
A systematic search of PubMed, Web of Science,
MEDLINE and CINAHL databases was conducted
with sets of terms relating to gait (gait, locomotion,
walk, walking), perturbations (agility, balance loss, dy-
namic balance, dynamic stability, perturb*, slip*, sur-
face translation, trip, tripping, waist pull), ageing (age,
ageing, aged, aging, elderly, old, older, senior), and
adaptation or training (adaptation, adaptive, adjustments,
exercise, rehabilitation, repeated, repetition, responses,
task, training). An additional file detailing the search
terms for each database is available (Additional file 1).
This broad range of terms was used due to the large vari-
ance in terminology used in the literature to describe the
tasks and underlying mechanisms of interest, as well as
the fact that reactive stability tasks are not always specific-
ally described in the titles and abstracts of larger interven-
tion studies. The initial search was conducted on
December 16th 2015, with the final check for recent lit-
erature conducted on May 18th 2016. Two of the authors
independently screened titles, abstracts and full texts for
inclusion. It was planned that disagreements regarding in-
clusion would be discussed and when an agreement could
not be reached, a third author would be consulted, but
this was not required as the two authors agreed on the ar-
ticles included and excluded. Inclusion criteria stipulated
that the studies were conducted with healthy participants
with a mean age of 60 years or older, that the studies
applied repeated mechanical perturbations of an unpre-
dictable or unannounced nature during walking, and that
reactive recovery responses to gait perturbations or the in-
cidence of laboratory or daily life falls were recorded. The
inclusion process for this review, including the number of
articles excluded at each stage can be seen in Fig. 1. Once
the articles to be included were finalised, a risk of bias
assessment using the Physiotherapy Evidence Database
(PEDro) Scale [59, 60] was carried out for each article. The
PEDro website was consulted and when scores for the in-
cluded articles were available, these were used. For the
remaining articles, two authors independently scored the
articles and then compared and discussed the scores before
finalising them. Following this, the level of evidence was
determined (as described by Teasell et al. [61]) for each
type of perturbation used in the included studies.

Results
Systematic search results
The complete search and inclusion process can be seen
in Fig. 1. The search yielded 5223 records, which was
reduced to 3332 after duplicates were removed. The title
screening excluded 3113 records, after which the
remaining 219 articles’ abstracts were assessed for inclu-
sion. 27 full texts were then assessed and nine articles
met all inclusion criteria. The reasons for exclusion at
the full text screening stage can be found in Fig. 1.

Summary of included studies
The systematic search and inclusion process yielded nine
studies that met all inclusion criteria. A summary of the
participants, the perturbation paradigms, the assessment
methods for reactive recovery responses and falls inci-
dence, and the main results of the included articles are
reported in Table 1. In these nine studies, moveable floor
platforms [55, 57, 58, 62, 63], ground surface compliance
changes [64, 65] and treadmill belt accelerations or
decelerations [56, 66] were used to perturb the gait of
older adults. Eight of the studies used a single session of
perturbations [55, 57, 58, 62–66], with two studies using
multiple sessions [55, 56]. Eight of the studies reported
improvement in some measure of the reactive recovery
response to the perturbations [55, 56, 58, 62–66]. Four
studies observed a reduction in the percentage of labora-
tory falls from the pre- to post-perturbation experience
measurements [55, 58, 62, 63] and two studies reported
a reduction of daily life falls [56, 57]. While most of the
included studies were conducted with healthy, commu-
nity dwelling older adults, it is important to note that
Lurie et al. [56] included participants referred for gait
and balance training by their primary care provider, but
no specific diagnoses or conditions were mentioned.



Fig. 1 Flowchart of systematic search and article inclusion and exclusion process
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Perturbation paradigms
In the nine included studies, moveable floor platforms
used for simulating slips were the most commonly
used perturbation type [55, 57, 58, 62, 63]. In these
five studies, participants walked at self-selected speeds
[55, 57, 58, 62, 63]. In four of these five studies, the
platforms could freely slide up to 90 cm whereas in
the other study, the velocity was controlled (limited
to a velocity of 1.2 m/s and maximum acceleration of
20 m/s2) and the maximum displacement was only
30 cm [58]. In the 90 cm sliding platform condition,
the platforms were unlocked at foot touchdown, detected
by the force plates, using a mechanical locking mechan-
ism. The papers describe the platforms as low friction and
while exact velocity of the platforms’ slides are not re-
ported (these will have varied due to different walking
velocities and limb or body configurations at touchdown),
the percentage of older adults who fell during the first slip
ranged from 42.5 to 56%, indicating the reasonably high
magnitude and impact of the perturbation [55, 57, 62, 63].
These four studies used a protocol containing 24 slips in
37 walking trials, whereas Parijat and Lockhart [58]
applied 12 slips in 24 walking trials.
Ground surface compliance changes were applied in

two of the included studies [64, 65]. This perturbation
consisted of a section of the walkway that could be re-
placed with a soft element without a visible difference to
the normal hard surface. The soft element was com-
posed of a 17 cm thick piece of foam with an average
deformation of about 10 cm for the participants [64, 65].
In both studies, the measurements began with three
baseline walking trials where the hard element was used
[64, 65]. In the first study, 19 walking trials were con-
ducted after baseline, where only the 2nd, 8th and 19th
trials used the hard surface [64]. While this paradigm
was used to assess predominantly predictive, feedforward
locomotor adaptation during repeated soft surface trials,
we may assume that reactive, feedback-driven locomotor
adaptations played a role in the first four soft surface
trials, as the participants were not aware which surface
would be used on a given trial. The second study was,
however, specifically designed to assess reactive adapta-
tion, where 28 trials in total were conducted, with only
five soft surface trials interspersed throughout the hard
surface trials [65]. Improvements in stability control
were seen during both the first four soft surface trials in
the first study [64] and by the fourth soft surface trial of
the second study [65]. However, as these studies did not
report numbers of lab or daily life falls, it is difficult to
determine the impact such a perturbation paradigm
could have, when used as training, on daily life falls inci-
dence. In these studies, walking speed was set at 60% of
walk-to-run velocity, based on walking trials conducted
before the perturbation trials [64, 65].
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Table 2 PEDro Scale scores for individual studies included in
this review

Study PEDro Scale Item

1a 2 3 4 5 6 7 8 9 10 11 Total

Bhatt et al. [55]b Yes 1 0 1 0 0 0 0 0 1 1 4

Bierbaum et al. [64] No 0 0 0 0 0 0 0 0 1 1 2

Bierbaum et al. [65] No 0 0 0 0 0 0 0 0 1 1 2

Lurie et al. [56]b Yes 1 1 1 0 0 0 1 0 1 1 6

Pai et al. [62] Yes 0 0 0 0 0 0 0 0 1 1 2

Pai et al. [57]b Yes 1 0 1 0 0 0 0 1 1 1 5

Pai et al. [63] Yes 0 0 1 0 0 0 0 0 1 1 3

Parijat and Lockhart [58] No 1 0 0 0 0 0 0 0 1 1 3

Sakai et al. [66] No 0 0 0 0 0 0 1 1 0 1 3

PEDro Scale Items: 1: Eligibility criteria were specified; 2: Subjects were
randomly allocated to groups; 3: Allocation was concealed; 4: The groups were
similar at baseline regarding the most important prognostic indicators; 5:
There was blinding of all subjects; 6: There was blinding of all therapists who
administered the therapy; 7: There was blinding of all assessors who measured
at least one key outcome; 8: Measures of at least one key outcome were
obtained from more than 85% of the subjects initially allocated to groups; 9:
All subjects for whom outcome measures were available received the
treatment or control condition as allocated or, where this was not the case,
data for at least one key outcome was analysed by “intention to treat”; 10: The
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Finally, two studies used treadmill belt accelerations or
decelerations [56, 66] to perturb the gait of their partici-
pants. Sakai et al. [66] used a deceleration perturbation
during walking at 2 km/h, resulting in a 50% reduction
in belt speed at heel strike over 0.5 s. This perturbation
was applied 20 times during 5 min of walking. Lurie et al.
[56] used a combination of treadmill belt accelerations
and decelerations during both stance and gait, but did
not report the exact number of perturbations used in
their study, as the perturbation type (stance or gait),
magnitude (scale of 1–5; no velocity/acceleration values
reported) and number was determined by a physical
therapist for each participant individually. The authors
determined the perturbation magnitude based on the
treadmill belt pulse peak velocity, elapsed time to peak
velocity, elapsed time during which the peak velocity
was maintained, and time required to decelerate the
treadmill belt to zero velocity, but these values or ranges
were not reported [56]. On average, the participants
completed approximately six sessions of 45 min and the
sessions were progressive in terms of perturbation mag-
nitude, based on the physical therapist’s judgement [56].
results of between-group statistical comparisons are reported for at least one
key outcome; 11: The study provides both point measures and measures of
variability for at least one key outcome. Ratings: No/unclear = 0, Yes = 1
a Not included in total score
b Scores obtained from PEDro website (http://www.pedro.org.au)
Reactive recovery responses and falls reduction in the
included studies
In the included studies, perturbation paradigms includ-
ing four [64], five [65], 12 [58] and 24 [55, 57, 62, 63]
perturbations led to improved reactive recovery re-
sponses to the disturbances, with one study showing
transfer to another perturbation task [58]. Lurie et al.
[56] reported that the mean perturbation magnitude of
successfully negotiated perturbations significantly in-
creased from the first to final session. Sakai et al. [66]
found that the mean peak anteroposterior acceleration
(determined using an accelerometer attached to the
sacrum) was significantly reduced in the final ten pertur-
bations, in comparison to the first ten, indicating an im-
proved reactive recovery response. Four of the included
studies reported a reduction in the percentage of partici-
pants who fell from 42.5 to 56% during the first perturb-
ation, to 0% following 12 [58] and 24 [55, 62, 63]
perturbations, with one of the 24 perturbation studies
reporting a reduction to 5% after only five perturbations
[62]. Pai et al. [57] reported a 50% reduction in daily life
falls in the 12 months following the perturbation session.
Lurie et al. [56] reported that their intervention group
participants experienced fewer falls (19% vs. 33%) and
fewer falls that led to injuries (8% vs. 18%) in compari-
son to the control group, but these were not statistically
significant as the study was not powered to detect
changes in falls incidence.
PEDro Scale scores of the included articles can be found

in Table 2. The mean score of all articles was 3.33, with
only three studies receiving a score of four or higher. The
levels of evidence for the different perturbation paradigms
of the included studies are presented in Table 3. Based on
the definitions provided by Teasell et al. [61], strong
evidence exists only for moveable platform perturbations,
as two or more RCTs have demonstrated beneficial effects
of experiencing this type of perturbation on reactive re-
covery responses and falls incidence. Moderate evi-
dence exists for treadmill-based perturbations as only
one RCT has reported beneficial effects to date. Finally,
the level of evidence for surface change perturbations
was limited, as no RCTs have been conducted using this
type of gait perturbation.

Discussion
The aim of this systematic review was to determine the
variety, characteristics and effectiveness of methods
that have been used to date for improving reactive re-
covery responses during walking and reducing falls
among healthy older adults. To achieve this, a system-
atic search for studies with healthy older adults that
applied unexpected mechanical disturbances during
walking and assessed changes in reactive recovery re-
sponses or falls incidence was conducted. After screening,
nine articles met the inclusion criteria. Moveable floor
platforms [55, 57, 58, 62, 63], ground surface compliance
changes [64, 65] and treadmill belt accelerations or

http://www.pedro.org.au/


Table 3 Level of evidence per perturbation type for improving reactive responses and/or falls risk

Perturbation Type Studies Reporting
Beneficial Effects

Negative Studies
(with sufficient power)

Level of
Evidencea

RCTs Non-RCTs RCTs Non-RCTs

Moveable floor platform 3 2 0 0 Strong

Treadmill (acceleration/deceleration) 1 1 0 0 Moderate

Surface Change 0 2 0 0 Limited
aLevel of evidence based on Teasell et al. [61]: Strong Evidence: Two or more RCTs with PEDro scores of 4 or higher; Moderate Evidence: One RCT with a PEDro
score of 4 or higher; Limited Evidence: At least one non-RCT (i.e. prospective or retrospective controlled trials, single group studies etc.)
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decelerations [56, 66] have been used to perturb the
gait of older adults with the aim of stimulating adap-
tations in the reactive response. Eight of the nine
studies reported improvement in the reactive recovery
response [55, 56, 58, 62–66], four studies reported a
reduction in laboratory falls [55, 58, 62, 63] and two stud-
ies reported a reduction in daily life falls [56, 57]. As well
as the range of perturbation types, the magnitude and
frequency of the perturbations varied between the studies.
Regarding the number and magnitude of the moveable

platform perturbations, one study [58] applied 50% fewer
perturbations with a smaller magnitude in comparison
to the other studies utilizing platforms [55, 57, 62, 63].
Despite this difference in magnitude and number of
perturbations, all studies found statistically significant
improvements in various measures, including a reduc-
tion in the number of trials where participants required
support from the safety harness (classed as falls). Com-
bined with the fact that one of the studies reported that
the majority of the improvements occurred within the
first five perturbation trials [62], it appears that healthy
older adults can benefit from experiencing only a few
moveable platform perturbations. This could be import-
ant for future research and application in clinical set-
tings, as this implies that the minimum effective dose of
such perturbations could be very low. However, more
research is needed to determine if such a low number of
perturbations would also yield long term benefits, in
addition to these acute benefits seen in the lab.
In order to fully understand and interpret the results

of gait perturbation studies, it is important to consider
how walking speed and perturbation magnitudes were
controlled or scaled based on the participants included.
Concerning the studies included in this review, the five
studies using moveable floor platforms had participants
walking at self-selected speeds [55, 57, 58, 62, 63]. Other
than walking speed, no scaling or standardisation of the
paradigm based on the participants was conducted, apart
from an increase or decrease of 20% platform slip
velocity in the study of Parijat and Lockhart [58], which
was based on participants’ performance during the
session. In the two ground surface compliance change
perturbation studies, walking speed was set at 60% of
walk-to-run velocity, based on walking trials conducted
before the main measurements and the perturbation
itself was not adjusted based on the participants [64, 65].
Concerning the two treadmill-based paradigms, Sakai
et al. [66] used a set walking speed of 2 km/h for all par-
ticipants with no changes in the perturbation, while
Lurie et al. [56] used individualised walking speeds and
perturbation intensities based on the abilities of the par-
ticipants (values or ranges of speeds and magnitudes
were not reported) [56]. Due to individual differences in
locomotor capacities, using the same walking speed for
all participants (as in: [66]) may lead to some being more
challenged than others by the perturbations applied.
This may lead to floor or ceiling effects in the adaptation
to perturbations, which may be particularly problematic
when comparing groups of different locomotor capacities
[67]. In the same manner, using the same (or similar)
perturbations for participants with different capacities (as
in: ([55, 57, 62–66]) may lead to similar issues, as one indi-
vidual or group may require relatively more substantial
adaptation than others to maintain stability. When using a
self-selected (as in: [55, 57, 62, 63]) or individually standar-
dised (as in: [64, 65]) walking speed, faster walking speeds
may make stability recovery more difficult following a
perturbation, compared to slower speeds, due to a higher
forward velocity, and therefore a reduced margin of stabil-
ity in the forward direction [68]. How the interaction of
walking speed and perturbation magnitude influences re-
active recovery responses and adaptation to perturbations
in different age and patient groups remains a question for
future studies.
As well as the type, number and magnitude of pertur-

bations, perturbation direction may be an important
feature of such paradigms with regard to daily life falls
reduction. In the studies included in this review, pertur-
bations were mostly applied in anterior or posterior di-
rections. This is noteworthy, as it is well documented
that mediolateral stability declines with age [69–73] and is
related to falls incidence in older adults [74–77].
Additionally, there is evidence to suggest that adaptations
to perturbations in one plane of motion do not necessarily
transfer and benefit stability control in other planes of
motion [48, 78, 79]. Regarding the type and direction of
perturbations used to stimulate adaptation in the reactive
recovery responses, it has been previously suggested that,
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due to the diversity of perturbations that can occur in
daily life, it may be more effective to train the mechanisms
of stability recovery, rather than focus on specific pertur-
bations [80, 81]. Such an approach (whereby multidirec-
tional stepping and counter rotating mechanisms to
maintain balance are exercised) has been shown to result
in an improvement in stability recovery following lab-
based perturbations [80–82]. However, no study has yet
looked at the effects of such an intervention on daily life
falls incidence in older adults. Furthermore, if particular
gait perturbation paradigms, like those described in this
review, would also result in an improvement in these
mechanisms, there may not be any reason to suspect a less
positive outcome on daily life falls.
The mean PEDro Scale score of the included studies

was 3.33, with only three studies receiving higher scores
of four, five and six (Table 2). However, it should be kept
in mind that blinding of the participants and staff mem-
bers conducting such experiments or training is difficult,
meaning that points five and six of the PEDro scale will
generally not be met by such studies. Regarding the
levels of evidence determined for the perturbation
paradigms of the studies included in this review, it is
important to note the relatively low number of RCTs
conducted thus far, especially with paradigms other than
moveable floor platforms. Until more RCTs are con-
ducted with varying perturbation paradigms, concrete
conclusions regarding the beneficial effects of different
perturbations are difficult to make. Despite the strong
evidence for moveable platform perturbations, based on
the definitions provided by Teasell et al. [61], a number
of advantages of treadmill setups should be highlighted.
The first relates to the predictability of the perturbations
applied in a gait lab setup with overground walking, in
comparison to treadmill walking. In overground setups,
the location of the perturbation on the walkway is usually
constant, which means that even if the perturbation is not
applied in every trial, the participant may make predictive,
feedforward adaptations in their gait after identifying the
location of the potential perturbation, facilitating better
performance and adaptation. Shapiro and Melzer [83]
have previously highlighted similar issues related to the
same perturbation direction being used for all trials. In
contrast, treadmill setups do not face this location issue,
as accelerations or decelerations can be applied at any
time during continuous walking, making it more difficult
for participants to anticipate perturbations. As well as this,
depending on the setup, perturbations in multiple direc-
tions could be used. Furthermore, treadmill perturbation
setups may be more feasible in clinical settings [56] due to
the smaller space required, in comparison to a gait lab and
walkway. However, the type and magnitude of perturba-
tions that can be applied may be limited by the size and
capabilities of the treadmill.
While this systematic review found three main types
of perturbations that have been used to examine and
stimulate the reactive adaptation of gait in older adults,
there are a number of other gait perturbation paradigms
reported in the literature. These were excluded from this
review due to the participant population used (i.e. not
older adults), or that reactive adaptation was not
analysed in the studies. Cable trip systems, in conjunc-
tion with either treadmill or overground walking have
been used effectively on multiple occasions to analyse
gait stability and adaptation in multiple participant
groups [21, 31, 43, 49, 84]. Another method for initiating
tripping responses is the use of objects popping up from
the ground, inhibiting the swing phase of gait [85, 86].
As well as tripping methods, a few different methods
have been used to trigger slipping responses in addition
to the moveable platforms from the included studies
described above. The slip perturbation used to test the
participants in the study of Parijat and Lockhart [58]
could also be used in a repetitive manner to stimulate
adaptation. Additionally, different levels of shoe/floor
friction using different materials have been used [87]. As
well as trips and slips, a number of various waist push
and pull methods have been applied during gait to
analyse mediolateral stability in particular [78, 88, 89].
Finally, perturbations involving sudden surface height
changes [90–92] or multiple changes in surface tilt,
height and position [93] have been employed. The ma-
jority of these perturbations have been used to investi-
gate some specific characteristic of gait stability or
adaptability but few have been used for the purpose of
training. Therefore, further research is needed before
recommending these perturbations for training purposes
among older adults.
One potential limitation of this review (and the studies

included) is that it is difficult to determine if the re-
sponses to the perturbations were fully reactive in na-
ture. In most movements, an interplay exists between
reactive and predictive adaptations [50]. In order to re-
duce the influence of predictive adaptations, two steps
can be taken. Firstly, the degree of predictability of the
perturbations must be kept to a minimum (e.g. using
catch trials, random timing etc.), and secondly, attempts
can be made to assess pre-perturbation movement to
assess if predictive adjustments are being made. As de-
scribed above, the setup may also affect the predictability
of the perturbations and results should be interpreted
with this in mind. One study that we know of [94] has
applied a truly unexpected perturbation, albeit with
young participants, where participants were under the
impression that they were taking part in a normal gait
analysis and were subsequently perturbed. The effects of
this perturbation were markedly greater compared to
the more common situation where the participants knew
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that they would be perturbed at some point during the
trial [94]. However, such a procedure has not been
conducted with older adults.
It is important to note that in this review, we fo-

cussed on gait, as opposed to stance perturbation para-
digms. As detailed in the introduction, perturbations
applied during gait are theoretically more task specific
to daily life falls among healthy older adults than stance
perturbations, as most falls occur during walking in this
population [5–9]. Additionally, forward velocity during
gait may make stability recovery following a perturb-
ation more difficult, as an increased walking speed, and
thereby higher forward centre of mass velocity, results
in a lower anterior margin of stability [68]. However, a
decrease in falls incidence has been shown after four
sessions of perturbations to stance in healthy older
adults [95], indicating that stance perturbations may
also be beneficial. To our knowledge, a direct compari-
son of the effectiveness of stance versus gait perturba-
tions for falls reduction among older adults has not
been made, and it is not known how repetition of either
gait or stance perturbations would benefit performance
of the other. Stance perturbations have often been
applied in patient populations (for example: [96–98]),
possibly due to practical reasons (simpler setup, easier
quantification of stability) or perhaps due to the relatively
lower demand of the tasks, in comparison to gait pertur-
bations. This suggests that a progression could be made
from stance to gait perturbations in clinical settings.

Conclusions
To date, a range of perturbation paradigms (moveable
floor platforms, ground surface compliance changes
and treadmill belt accelerations or decelerations) have
been used to perturb older adults while walking. As
well as the range of perturbation types that have been
applied, there is huge variation among studies in the
number and magnitude of the perturbations. The fact
that the majority of studies report improvements in
participants’ ability to maintain stability following
exposure to the perturbation paradigms is in one
sense promising, as benefits appear to be produced
from many different paradigms, but this restricts our
understanding of the underlying mechanisms of im-
provement and what components of the paradigms
are responsible for the improvements. The effects of
perturbation type, magnitude and number on the ex-
tent of adaptation of the reactive recovery responses
and the retention of such adaptations over longer
time periods should be investigated in future research.
This may lead to more efficient and effective perturb-
ation paradigms and to information regarding the
minimum effective dose for falls incidence reduction
among healthy older adults.
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