Neuroendocrine tumours in children

Kate Davies
Senior Lecturer in Children’s Nursing
London South Bank University &

Research Nurse in Paediatric Endocrinology
Centre for Endocrinology, William Harvey Research Institute
Barts and The London School of Medicine and Dentistry
Introduction

- NETs in children
- Screening
- Family trees
- MEN1
- MEN2a
- MEN2b
 - FMTC
 - Phaeochromocytomas and Paragangliomas
- VHL
- Case study
Neuroendocrine tumours in children

- Relatively rare amongst children
- Majority occur sporadically and are non-hereditary
- Despite this, carcinoid tumours may also be associated with hereditary syndromes
- Most endocrine tumours in children
 - Clinically benign
 - Low grade malignancies
- NETS
 - Known for late diagnoses
 - Liver or bone metastases
 - Multi year history of symptoms before malignancy identified
 - Few reports in children
 - At least 10% of children have metastatic disease at presentation
Distribution of NETS in children and young adults <30 years

<table>
<thead>
<tr>
<th>Tumour type</th>
<th>Percentage of NET in this age group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bronchial NET</td>
<td>28</td>
</tr>
<tr>
<td>Medullary carcinoma of the breast</td>
<td>18</td>
</tr>
<tr>
<td>Appendiceal NET</td>
<td>18</td>
</tr>
<tr>
<td>Colon and rectal NET</td>
<td>9</td>
</tr>
<tr>
<td>Jejunal and ileal NET</td>
<td>5</td>
</tr>
<tr>
<td>Small cell carcinoma (ovary)</td>
<td>5</td>
</tr>
<tr>
<td>Unknown primary NET</td>
<td>5</td>
</tr>
<tr>
<td>Pancreatic and gastric NET *</td>
<td>4</td>
</tr>
<tr>
<td>Medullary carcinoma thyroid *</td>
<td>4</td>
</tr>
<tr>
<td>Small cell carcinoma (cervix)</td>
<td>4</td>
</tr>
</tbody>
</table>
Other NETs

- **Phaeochromocytoma**
 - MEN 2A
 - MEN 2B
 - VHL disease
 - NF1
 - Peak incidence between 9-12 years of age
 - Nearly 10% occur in children
 - 10% of these are malignant

- **Paranganglioma**
 - Extra adrenal in origin
 - Parasympathetic nervous system
Screening

- MEN 1 & 2 and VHL
 - Autosomal dominant
 - Only one mutation in one pair of genes is needed to cause the condition
 - 50% chance of having a boy or a girl with the same condition
 - Most commonly present in early adulthood and onwards
 - Can now target individuals at risk
 - Genetic screening allows the children from affected families who have NOT inherited the mutation
 - Reassured
 - Avoid regular clinical monitoring
 - Issues re: Informed consent, counselling and confidentiality
<table>
<thead>
<tr>
<th>TYPE</th>
<th>SYSTEM</th>
<th>CLINICAL / BIOCHEMICAL</th>
<th>RADIOLOGY</th>
<th>AGE TO START</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEN-1</td>
<td>Parathyroid</td>
<td>Serum calcium (parathyroid hormone)</td>
<td>US pancreas</td>
<td>10-15 yrs</td>
<td>Annual</td>
</tr>
<tr>
<td></td>
<td>Pancreas</td>
<td>Pancreatic polypeptide, Gastrin</td>
<td>MRI pancreas</td>
<td>10-15 yrs</td>
<td>3 yearly</td>
</tr>
<tr>
<td></td>
<td>Pituitary</td>
<td>Prolactin, IGF-1</td>
<td>MRI pituitary</td>
<td>10-15 yrs</td>
<td>Annual</td>
</tr>
<tr>
<td>MEN-2</td>
<td>Thyroid</td>
<td>mutation known Prophylactic thyroidectomy</td>
<td>MRI pituitary</td>
<td>5 yrs</td>
<td>5 yearly</td>
</tr>
<tr>
<td></td>
<td>(mutation not yet known) Pentagastrin test for calcitonin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adrenal (pheochromocytoma)</td>
<td>Blood pressure 24-hour urine collections (x3) – catecholamines (plus corresponding serum metanephrines)</td>
<td>US adrenals</td>
<td>5 yrs</td>
<td>Annual</td>
</tr>
<tr>
<td></td>
<td>Parathyroid</td>
<td>Serum calcium</td>
<td>MRI adrenals</td>
<td>5 yrs</td>
<td>3 yearly</td>
</tr>
<tr>
<td>VHL</td>
<td>Eyes</td>
<td>Fundoscopy</td>
<td>Fluorescein angiography</td>
<td>5 yrs</td>
<td>Annual</td>
</tr>
<tr>
<td></td>
<td>CNS</td>
<td>Full examination</td>
<td>MRI brain & spinal cord</td>
<td>10 yrs</td>
<td>3 yearly</td>
</tr>
<tr>
<td></td>
<td>Renal</td>
<td>Abdominal examination</td>
<td>US kidneys</td>
<td>5 yrs</td>
<td>Annual</td>
</tr>
<tr>
<td></td>
<td>Adrenal (pheochromocytoma)</td>
<td>Blood pressure 24-hour urine collections (x3) – catecholamines (plus corresponding serum metanephrines)</td>
<td>MRI adrenals</td>
<td>5 yrs</td>
<td>3 yearly</td>
</tr>
<tr>
<td>FPS</td>
<td>Cervical chain/ carotid bodies</td>
<td>Examination</td>
<td>US head and neck</td>
<td>10-15 yrs</td>
<td>Annual</td>
</tr>
<tr>
<td></td>
<td>Adrenal</td>
<td>Blood pressure 24-hour urine collections (x3) – catecholamines (plus corresponding serum metanephrines)</td>
<td>US adrenals</td>
<td>8-10 yrs</td>
<td>Annual</td>
</tr>
<tr>
<td></td>
<td>Parasympathetic chain</td>
<td></td>
<td>MRI chest/abdo/pelvis</td>
<td>8-10 yrs</td>
<td>Annual</td>
</tr>
</tbody>
</table>
Family trees

- Biological relationships between family members

- Any medical conditions
 - Reveal patterns of inheritance
 - Assess likelihood of genetic diseases in relatives
 - Individuals can then be offered targeted surveillance

 Including children

- Builds rapport with patients
 - Develop trust, to ask questions
 - Correct any misconceptions about symptoms
MEN 1

- Parathyroid tumours
 - 90% of MEN1 patients
- Pituitary tumours
 - 30% of MEN1 patients
- Pancreatic Islet cell tumours
 - 75% of MEN1 patients
- Carcinoid tumours
 - Chest / stomach
 - Lipomas
 - Thyroid
 - Adreno-cortical tumours
MEN 1 screening in children

- Children of an identified MEN1 patient
 - Screened genetically initially
 - Screened clinically from age 10
 - Annual measurements
 - Calcium, PTH
 - Pancreatic polypeptide and gastrin
 - Imaging
 - Prolactin, IGF-1
 - Imaging

<table>
<thead>
<tr>
<th>TYPE</th>
<th>SYSTEM</th>
<th>CLINICAL / BIOCHEMICAL</th>
<th>RADIOLOGY</th>
<th>AGE TO START</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEN-1</td>
<td>Parathyroid</td>
<td>Serum calcium (parathyroid hormone)</td>
<td>US pancreas</td>
<td>10-15 yrs</td>
<td>Annual</td>
</tr>
<tr>
<td></td>
<td>Pancreas</td>
<td>Pancreatic polypeptide, Gastrin</td>
<td>MRI pancreas</td>
<td>10-15 yrs</td>
<td>3 yearly</td>
</tr>
<tr>
<td></td>
<td>Pituitary</td>
<td>Prolactin, IGF-1</td>
<td>MRI pituitary</td>
<td>10-15 yrs</td>
<td>5 yearly</td>
</tr>
</tbody>
</table>
Chromosome 11

- Beckwith-Wiedemann Syn
- Costello Syn (HRAS)
- Sickle Cell Anemia (HBB)
- Beta Thalassemia (HBB)
- WAGR (del 11p13)

- SLO Syn (DHCR7, 11q12-q13)
- MEN Type1 (MEN1)

- Ataxia Telangiectasia (ATM)
MEN 2a

- Thyroid gland
 - MTC
 - Child with a known MEN2a gene change
 - Total thyroidectomy before age of 5yrs
 - Newly diagnosed adults
 - Screen children asap

- Parathyroid glands

- Adrenal glands
 - Phaeochromcytomas
 - 24hr urine collections
MEN 2b

- Thyroid gland tumours
- Phaeochromocytomas
- Benign lumps on the lips, in the mouth and throughout the gut
 - Children
 - More likely to have feeding problems, bowel problems
 - Present with FTT
MEN 2 screening

- Screened genetically
 - MTC assoc with MEN2b
 - Can occur in first year of life
 - MEN2b – age 1 yr
 - MEN2a – age 5 yrs
 - Clinical screening
 - Thyroid
 - Adrenal

<table>
<thead>
<tr>
<th>MEN-2</th>
<th>Thyroid</th>
<th>(mutation known) Prophylactic thyroidectomy</th>
<th>(mutation not yet known) Pentagastrin test for calcitonin</th>
<th>5 yrs</th>
<th>5 yrs</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrenal (pheochromocytoma)</td>
<td>Blood pressure 24-hour urine collections (x3) – catecholamines (plus corresponding serum metanephrines)</td>
<td>US adrenals</td>
<td>5 yrs</td>
<td>Annual</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRI adrenals</td>
<td>5 yrs</td>
<td>3 yearly</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chromosome 10

- Cockayne Syn (ERCC6) *
- MEN Type 2 (RET)
- Bannayan-R-R Syn (PTEN)
- Cowden Syn (PTEN)
- Hermansky-Pudlak Syn (HPS1) *
- Dubin-Johnson Syn (ABCC2)
- Apert Syn (FGFR2)
- Crouzon Syn (FGFR2)
- Pfeiffer Syn (FGFR2) *
Patient support

- AMEND
 - UK Patient support group
 - www.amend.org.uk
Children’s area

Daniel has MEN1 and Lisa has MEN2. With the help of their pet cats and animated friends, they explain their conditions simply.
MEDIKIDZ

EXPLAIN

MULTIPLE ENDOCRINE NEOPLASIA TYPE 1

SUPERHERO ADVENTURE INSIDE THE HUMAN BODY!

MEDIKIDZ

EXPLAIN

MULTIPLE ENDOCRINE NEOPLASIA TYPE 2

SUPERHERO ADVENTURE INSIDE THE HUMAN BODY!
Phaeochromocytomas
Adrenal Gland A & P

- Adrenal cortex
 - Outer portion
- Adrenal medulla
 - Inner portion
Adrenal Cortex

- **Mineralocorticoids**
 - ALDOSTERONE
 - Helps regulate BP by controlling how much salt is retained in the body

- **Glucocorticoids**
 - CORTISOL
 - The body’s natural steroid, 3 main functions:
 - Helps control the blood sugar level
 - Helps the body deal with stress
 - Helps to control BP and blood circulation

- **Sex Steroids / Androgens**
 - DHEA
 - DHEA-S
 - Androstenedione
 - Secondary sexual characteristics
Adrenal Medulla

• Catecholamines
 o Adrenaline
 • Released in response to signals from the sympathetic nervous system
 • Increases
 o Blood sugar
 o Muscle glycogen breakdown
 o Blood flow to muscle
 o Respiration
 o Noradrenaline
 • Similar effects to adrenaline, as well as maintains BP
 o Dopamine
 • Precursor to adrenaline and noradrenaline
 o Neurotransmitter
Phaeochromocytoma

- Neuroendocrine tumour
- Usually benign, can be malignant
- Excretes excess catecholamines
- Uncommon cause of ↑ BP: can easily be missed
- We have occasional bursts of cats when we are upset or stressed
 - Those with phaeos have it all the time
Phaeochromocytoma

- Only present in 10% of VHLs
- French study in the 90s
 - Phaeos were the first manifestation of VHL disease in 51% of pts
 - Only manifestation for up to age 21 yrs, or even indefinitely
- Easy to miss the diagnosis
- Usually arise in the adrenals, may also originate in paraganglia outside the adrenals
Phaeochromocytoma

- Symptoms?
 - \uparrowBP
 - Headache
 - Perspiration / episodic sweating
 - Palpitations
 - Anxiety attacks
 - May be incorrectly attributed to anxiety or depression
- Can cause life threatening conditions
 - Hypertensive crisis
 - Mets - Stroke
 - Cardiac failure - MI
Von Hippel-Lindau disease

- Chromosome 3
- Tumour suppressor gene
- Can identify the gene
 - Pre-symptomatic screening
- Autosomal dominant
 - Each child of an affected individual has a 1 in 2 chance (50%) to inherit the gene alteration
- Children referred
 - Fellow adult endocrine teams managing in their affected parent
Von Hippel Lindau disease

- Incidence
 - 1 in 40,000
 - Average age of presentation
 - 26 yrs of age
- Haemangioblastomas
 - Brain, spinal cord, retina
- Renal cysts
- Phaeochromocytomas
Chromosome 3

- 3p26: Von-Hippel. Ds (VHL, 3p26-p25)
- 3p22: Loeys-Dietz Syn(TGFB2)*
- 3p21: Septo-Optic dysplasia (HESX1)
- 3p14: Larsen Syndrome (FLNB)
- 3q13: Myotonic. Type 2(ZNF9,3q13-q24)*
- 3q21: Alkaptonuria (HGD, 3q21-q23)
- 3q23: BPES Syndrome (FOXL2)
- 3q27: EEC Syndrome (TP63)
Screening in VHL

- Genetics
 - Analysis of the index case is key to identifying further members of the family at risk
 - Can be done from age 5yrs
 - Enable clinical screening

Reduction in morbidity compared to their parents

- Ophthalmology review
 - Fundoscopy screening

- Adrenals
 - Phaeochromocytomas

- Renal carcinomas
 - Now leading cause of death amongst VHL patients
 - Successful treatment for CNS haemangioblastomas
 - Imaging

<table>
<thead>
<tr>
<th>VHL</th>
<th>Eyes</th>
<th>Fundoscopy</th>
<th>Fluorescein angiography</th>
<th>MRI brain & spinal cord</th>
<th>US kidneys</th>
<th>MRI kidneys</th>
<th>US adrenal</th>
<th>MRI adrenals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 yrs</td>
<td>10 yrs</td>
<td>5 yrs</td>
<td>5 yrs</td>
<td>5 yrs</td>
<td>5 yrs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNS</td>
<td>Full examination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renal</td>
<td>Abdominal examination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adrenal</td>
<td>Blood pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24-hour urine collections (x3) – catecholamines (plus corresponding serum metanephrines)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

	Annual							
Case study

- Male child Tom
- DOB 10.11.01
- Family history of VHL
- Positive for the familial mutation in exon 3 of the VHL gene
- Commenced screening programme
 - 2006 age 5yrs
Family history

- **Father**
 - Retinal angiomatosis
 - Bilateral phaeochromocytomas 23yrs
 - Cervical spine haemangioblastoma 33yrs
 - Bilateral renal cell carcinomas 34-35yrs

- **Half-brother**
 - Right phaeochromocytoma age 14yrs
 - 3 year old son

- **Paternal aunt**
 - Bilateral phaeochromocytomas 7 and 21yrs
 - Cerebral haemangioblastoma 16yrs
 - Retinal haemangioblastoma 18yrs
 - Right renal carcinoma 28yrs
 - Pancreatic NET 36yrs

- **Cousin (female)**
 - Bilateral phaeochromocytomas 12yrs and 14yrs
 - Pancreatic NET 19yrs

- **Brother**
 - Age 3yrs
Clinical screening

 - All normal

- 2010
 - January
 - Urine catecholamine (noradrenaline) slightly elevated
 - 370nmol/day (N=below 194)
 - Repeat and watch as asymptomatic
 - May
 - 433nmol/day
 - June
 - MRI adrenal normal
 - October
 - 372nmol/day

- 2011
 - February
 - 477nmol/day

- 2012
 - Lesion seen on abdominal MRI
 - Repeat MRI with contrast
 - MIBG scan
• Review of imaging for endocrine VHL MDT 31.10.2012

• There is a 3cm MIBG positive paraganglioma in the upper retroperitoneum interposed between in the aorta, IVC and portal vein. No local invasion seen. Slow increase in size since 2008.

• Small areas of soft tissue in the distal aorto-caval region but these are currently indeterminate.

• Normal kidneys, adrenals and pancreas

• Excision of paraganglioma January 2013, age 11yrs
Clinical management

- April 2012
 - Paraganglioma
 - Small
 - No plans for surgery
 - Intermittent symptoms and continued raised catecholamines
 - Commence Doxazocin 0.5mg once daily
 - Increase to twice a day after a week if tolerated
 - Continue until surgery planned
 - Doxazocin
 - Alpha blockade
 - Reduces BP
MRI Abdomen 6.8.14

- New 9mm peripherally enhancing left adrenal nodule which demonstrates restricted diffusion likely to represent a small phaeochromocytoma.
Clinical management

• 2014
 o November age 13yrs
 • Now wants to be seen without his Mum
 • ? Phaeochromocytoma
 • Tom very stressed and upset
 • Psychological input offered

• 2015
 o Further imaging..
MRI Pancreas 23.2.15

- The anterior lesion in the tail of the pancreas is still present and demonstrates an arterial blush.
- This remains suggestive of an islet cell tumour.
- No other pancreatic lesion is demonstrated.
MRI adrenals 14.7.15

- The right adrenal mass in the body of the adrenal has further increased in size now measures 13 mm.

- The left adrenal nodule in the lateral limb is stable measuring 15 mm.

- Both lesions have similar properties and the appearances are in keeping with small phaeochromocytomas
Continued management

- **2015**
 - July
 - Bilateral phaeochromocytomas
 - Now proceed to surgery
 - December had surgery

- **2016**
 - April – surgical follow up
 - As you know he underwent a right laparoscopic adrenalectomy for a pheochromocytoma within the Von Hippel Lindau syndrome in December last year, from which he made a rapid and uncomplicated post-operative recovery.
 - On examination today, all incisions have healed well.
 - We knew pre-operatively that he had bilateral phaeochromocytomas however the right was the largest and we hoped to proceed with a staged adrenalectomy to preserve adrenal function for as long as possible.
 - Unfortunately, post-operative urinary nor-metadrenaline has not decreased substantially although his mother tells me he remains normotensive and asymptomatic.
 - I discussed the findings with him and his mother today and I have suggested that he seeks an early appointment with the paediatric endocrine team to discuss the potential for going back on to doxazosin. He particularly would like to avoid further surgery for at least a year. He is of course in his GSCE year currently.
Potential further management

- Bilateral adrenalectomy
 - Hydrocortisone replacement

My Cortisol
Conclusion

- Management of children with NETs very complex
- Importance of screening emphasised
 - Genetics and clinical
 - Inform families
 - Reduce need for screening
 - Reduction in morbidity compared to their parents
 - Can screen from age 5yrs
 - MEN2b genetics from age 1yr
- Potentials for further management
 - Nursery / School
 - Hydrocortisone management
References