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Abstract: This research is to develop set-point weighting-based dynamic integral
sliding mode control with nonlinear full-order state observers to deal with nonlinear
and underactuated coupled systems, and unforeseen circumstances of quadcopter UAVs
system. A comparative assessment through numerical simulations of sliding mode-based
nonlinear observer approaches and Kalman filter is presented. These include quasi
method, interval type-2 fuzzy logic system, super-twisting algorithm, higher order sliding
mode observer, and extended Kalman filter. Chattering, noise rejection, estimation error
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overshoot, rise time, chattering, and steady-state error are evaluated in relation to the
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1 Introduction

Various controllers have been developed for performance
enhancement of quadcopter UAVs. Examples include
proportional integral derivative (PID) control (Guo
et al., 2017); linear quadratic regulator (LQR) (Jasim
and Gu, 2019); model predictive control (MPC)

(Zanelli et al., 2017); and sliding mode control (SMC)
(Zheng et al., 2014). Among these, The SMC method
outperforms others in terms of dealing with nonlinearity,
underactuation, and uncertainty. This is because the
controller is designed to be insensitive to such issues
(Firdaus and Rahman, 2012). However, the chattering
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phenomenon following the use of SMC is still an issue
to be resolved. Some methods have been proposed to
eliminate this phenomenon. These include quasi sliding
mode control (QuasiSMC) (Shtessel et al., 2010); interval
type-2 fuzzy sliding mode control (IT2FSMC) (Firdaus
and Tokhi, 2016); high order sliding mode control
(HOSMC) (Ghabi, 2018); super-twisting algorithm of
sliding mode control (STASMC) (Ibarra and Castillo,
2017); and dynamic sliding mode control (DSMC)
(Liu and Wang, 2011). Although these methods can
eliminate the problem of chattering, they have their
associated shortcomings. The QuasiSMC method will
not be effective to reduce chattering when systems
require high accuracy control signals. IT2FSMC as
model-free approach maybe a better method to deal
with non-linear systems, multivariable, and uncertainty
models caused by imprecision or unknown physical
parameters. However, this method still has an issue of
computational time in type reduction process which may
not be realistic in real-time applications. HOSMC can
reduce oscillation phenomenon in SMC adequately, but
this method still cannot address the problem in n-th
derivative states. Although, STASMC is more effective
than HOSMC in eliminating chattering, the method still
cannot compensate for uncertainty and disturbance on
state variables. Among the methods, DSMC has a better
way to deal with measurement noise as well as chattering
reduction.

In addition to selecting a proper controller to deal
with the complexity of quadcopter, the availability of
information on required states is a matter for SMC to be
implemented experimentally. Consequently, the use of an
observer can be a solution to address such issue. Previous
works have included the use of different types of observer
methods in quadcopter UAVs. These include nonlinear
observer (NO) (Bouadi and Tadjine, 2007, Elamine
et al., 2013); sliding mode observer(SMO) (Firdaus
and Tokhi, 2015, Gonzalez-Hernandez et al., 2017,
Boiko and Chehadeh, 2018); Thau observer Cen et al.
(2014) and Kalman filter(KF) Liu et al. (2013), Sebesta
and Boizot (2014). Although results show that the
methods can improve the performance of the controller,
some shortcomings still accompany such methods. The
fundamental disadvantage of NO is connected to the
expanding power of the gain parameter which led to
hard task numerical execution when the gain and the
system order are very large (Astolfi and Marconi, 2015).
Furthermore, a comparative study between SMO and
KF was conducted by Chen and Dunnigan (2002). They
pointed out that SMO is more robust than KF in
terms of parameter uncertainty and noise cancellation.
Meanwhile, Thau observer may not deal with error
model of the system (Schröder et al., 2000). However,
although SMO has shown better performance, the
observer still suffers from chattering, and this affects its
overall performance with measurement noise. The way to
address the chattering problem in SMO is much similar
with SMC.

This paper proposes performance enhancement of
DSMC by employing integral term and set-point
weighting function to the method to reduce steady-state
error and overshoot. In addition, this paper presents
investigation and analyses of several performance
assessment of SMO-based observers, including quasi
sliding mode observer (QuasiSMO), interval type-
2 fuzzy sliding mode observer (IT2FSMO), super-
twisting algorithm of sliding mode observer (STASMO),
and higher order sliding mode observer (HOSMO).
Comparative performance assessment of the observers
is carried out through numerical simulations within the
framework of quadcopter UAV control. Moreover, the
performance comparison between SMO-based observer
and EKF is presented to highlight the robustness of each
method.

The rest of the paper is structured as follows: Section
2 describes dynamic model of the quadcopter, Section
3 presents the general design of quadcopter control
and observer, Integral DSMC and SMOs are presented
in section 4 and 5 respectively. Numerical simulation
results demonstrating performance of the approaches are
presented and discussed in Section 6 and the paper is
concluded in Section 7.

2 Quadcopter system model

A quadcopter UAVs as illustrated in Figure 1, is
outlined with two clockwise pivoting rotors (2,4), and
two counter-clockwise turning rotors (1,3), so that by
accelerating the rotor at the same rate will build the
height of rotorcraft, and the other way around. Forward
movement can be accomplished by lessening the rotor
speed (1) and increasing the speed of rotor (3) at the
same time. The similar way should be possible for
reverse movement, rightward, and leftward development.
Moreover, the yaw motion can occur by increasing or
reducing the clockwise rotors speed of the quadcopter.
Nevertheless, the total thrust force of the rotors must
have the same value to keep up the height level of the
vehicle.

Figure 1. Quadcopter UAVs orientation

The framework of the vehicle can be isolated into
two sections, to be specific the ”body frame” B-(Oxyz),
and the ”earth frame” E-(Oxyz). Meanwhile m, g, and
l designate the the rotorcraft mass, gravity acceleration,
and the distance of every rotor to centre of gravity of
rotorcraft respectively.

The orientation of the rotocraft from body frame
to earth frame is represented by rotation matrices of
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R : E −→ B, where these matrices depend on the Euler
angle (φ, θ, ψ). Final rotation matrix from the earth
frame to the body frame should be transposed to get
transformation from body frame to earth frame as
(Elkholy, 2014),

R =

cθcψ sφsθcψ − cφsψ sφsψ + cφsθcψ
cθsψ cφcψ + sφsψsθ cφsψsθ − sφcψ
−sθ sφcθ cφcθ

 (1)

The angles φ, θ, and ψ denote roll, pitch, and yaw
respectively, while s, c, and t represent sine, cos, and
tangent respectively. The movement of roll (φ), pitch (θ)
and yaw (ψ) are bounded as follows: (−π/2 < φ < π/2),
(−π/2 < θ < π/2) and (−π < ψ < π) respectively.

The equations of rotational movement in the body
frame are obtained by utilizing the general equation of
Newton− Euler method as presented,

Jω̇ + ω × Jω +MG = MB (2)

where J , ω, MG, and MB denote the inertia matrix of
quadcopter, body angular velocity, gyroscopic moments
because of inertia produced by rotors motion, and
moments working on the quadcopter in the body frame
respectively. Furthermore, the gyroscopic moments are
defined as ω× [0 0 JrΩr]

T , where Jr and Ωr =
−Ω1 + Ω2 − Ω3 + Ω4 denote rotors’ inertia and residual
of angular rotors velocity respectively. Quadcopter is
designed to be symmetric so that its inertial matrix for
each component x, y and z is diagonal as J=diag[Ixx Iyy
Izz] where Ixx, Iyy and Izz are the moments of inertia
for each axis in the body frame reference.

There are two physical effects which produced
by rotors forces, namely aerodynamic force Fi and
aerodynamic moments Mi. The aerodynamic force is the
force applied on a body of rotorcraft by the air in which
the body is submerged, and is because of the relative
motion between the body and the air generated by
rotors. Meanwhile, aerodynamic moment is the reactive
torque caused by the rotor motion on the air. Those
aerodynamic effects are defined as,

Fi = KfΩ2
i (3)

Mi = KMΩ2
i (4)

where Kf and KM are the aerodynamic force and
moment constants respectively and Ωi is the angular
velocity of rotor i.

In the body frame x-axis, the rolling torque is derived
by multiplying F2 with the arm length l of rotorcraft.
This produces a negative moment in the x-axis, while in
the same way, F4 produces a positive moment. Hence,
the rolling torque is defined as,

Mφ = −F2l + F4l

= lKf (−Ω2
2 + Ω2

4)
(5)

Furthermore, in the body frame y-axis, the thrust
of rotor 1 produces a positive moment, while rotor 3
delivers a negative moment in the y-axis. Therefore, the
pitching torque is defined as,

Mθ = F1l − F3l

= lKf (Ω2
1 − Ω2

3)
(6)

For the motion in the body frame z-axis, The moment
caused by the rotors’ rotation is presented in equation
(4). Thus, the yawing torque in the body frame z-axis is
defined as,
Mψ = M1 −M2 +M3 −M4

= KM (Ω2
1 − Ω2

2 + Ω2
3 − Ω2

4)
(7)

In vector form, the moments expressed in equations
(5), (6) and (7) can be presented as,

MB =

 lKf (−Ω2
2 + Ω2

4)
lKf (Ω2

1 − Ω2
3)

KM (Ω2
1 − Ω2

2 + Ω2
3 − Ω2

4)

 (8)

where l is the distance between rotor and centre of
gravity of quadcopter.

The translation equations of quadcopter motion in
the earth frame are derived by utilizing Newton’s second
law as expressed as,

mr̈ =

 0
0
−mg

+RFB (9)

where r = [x y z]T , m, and g represent quadrotor’s
distance from the Earth frame, quadrotor’s mass, and
gravitational acceleration respectively, while R and FB
denote rotation matrix and non-gravitational forces
working on the quadrotor in the body frame.

When quadcopter is the steady-state condition, the
only non-gravitational forces working on it is the thrust
generated by propellers motions as defined in (3). Thus,
the non-gravitational forces working on the quadcopter,
FB , is presented as,

FB =

 0
0

Kf (Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4)

 (10)

A control input vector of quadcopter is defined as,

u = [u1 u2 u3 u4]T (11)

where
u1 = Kf (Ω2

1 + Ω2
2 + Ω2

3 + Ω2
4)

u2 = lKf (−Ω2
2 + Ω2

4)

u3 = lKf (Ω2
1 − Ω2

3)

u4 = KM (Ω2
1 − Ω2

2 + Ω2
3 − Ω2

4)

(12)

Furthermore, by using equations (2), (8), and (12) the
angular accelerations of the rotorcraft can be presented
as,

φ̈ = ψ̇θ̇

(
Iyy − Izz
Ixx

)
− Jr
Ixx

θ̇Ωr +
l

Ixx
u2

θ̈ = φ̇ψ̇

(
Izz−Ixx
Iyy

)
+
Jr
Iyy

φ̇Ωr +
l

Iyy
u3

ψ̈ = φ̇θ̇

(
Ixx − Iyy

Izz

)
+

1

Izz
u4

(13)

The translational equation can be obtained by using
equations (9), (10), and (12),

ẍ =
u1
m

(sinφsinψ + cosφsinθcosψ)

ÿ =
u1
m

(cosφsinψsinθ − sinφcosψ)

z̈ = −g +
u1
m

(cosφcosθ)

(14)
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3 Quadcopter control and observer design

Refers to the system dynamics defined in equations (13)
and (14), it is noted that the system is nonlinear and
comprises two subsystems, namely fully-actuated and
underactuated subsystem. Therefore, the architecture
of the controller can be designed as Figure 2, where
xd, yd and zd represent the desired positions of the
quadcopter in the x, y and z axes respectively and φd, θd
and ψd denote the reference roll, pitch and yaw angles
respectively.

Figure 2. Quadcopter controller architecture

In this work, set-point weighting-based dynamic
integral sliding mode control (SDISMC) is employed
to control the altitude and attitude of the quadcopter
system. Meanwhile for performance comparison
purposes, sliding mode-based observers including
QuasiSMO, IT2FLSMO, STASMO, and HOSMO are
used to estimate unmeasured states of the vehicle
which is required for control process. In addition, the
performance comparison between sliding mode-based
observers and EKF is undertaken also to highlight the
robustness of each method. Thus, the overall control
system is shown as in Figure 3.

Figure 3. Block diagram of overall control system

4 Set-point weighting-based dynamic
integral sliding mode control

Sliding mode control is a prominent robust control
approach which gives an efficient way to deal with
the problem of keeping up stability and consistent
performance in the face of modelling imperfection.
In order to account for the presence of disturbance
and imperfection model, the control law should be
discontinuous across σ(t). However, this will result in
chattering as seen in Figure 4 due to the imperfection
implementation of such control law. This phenomenon is
not expected in practice because it involves high control
activities.

Figure 4. Block diagram of overall control system

One of the ways to address chattering issue is
by developing dynamic sliding surface. The method
construct a new sliding function from a conventional
switching surface of SMC. The dynamic sliding surface
is with respect to the first or high-order derivative
in the control input. Additionally, it can move the
discontinuous terms into the first-order or high-order
derivative in the control law. Therefore, a continuous
DSMC rule is obtained and the chattering issue can be
lessened adequately (Liu and Wang, 2011).

4.1 Integral sliding surface design

General form of nonlinear system can be defined as

ẋ1 = x2

ẋ2 = f(x, t) + b(x, t)u(t) + d(t)

y = x1

(15)

where x = [x1 x2] is the state vector, x1 and x2 are
system states, y is output, u(t) is control input, f(x, t)
and b(x, t) represent general nonlinear functions. These
functions are not accurately known, but the degree of
inaccuracy on those function are upper bounded by
a known continuous function of x. d(t) is uncertain,
and |d(t)| 6 D0, |ḋ(t)| 6 D. The control input role is to
convey the state x to track a desired state xd despite of
model imperfection on f(x, t) and b(x, t).

A time varying integral switching surface s(t) is
defined in the state space Rn by equating the variable
s(x; t) to zero as expressed,

s(x; t) =

(
d

dt
+ c

)n−1
e(t) + λi

∫ ∞
0

e(t)dt (16)

where, c, λi > 0 must be Hurwitz, taken to be the
bandwidth of the system, and e(t) = y(t) - xd(t) is the
error in the output state, while xd(t) is the expected
state. An integral term of tracking error is introduced
into equation to reduce steady-state errors.

4.2 Set-point weighting

Employing integral term in SMC is believed to improve
the controller performance in reducing steady-state
error. However, any of the following issues can generate
an overshoot in output variable:

• |e(t)| > |ess|, where ess is steady-state error of
e(t),
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• e(t)
|e(t)| 6=

ess
|ess|

Additionally, considering typical feedback controller
design, such as PID, the issue will be how to achieve
fast reference tracking and reject disturbance at the
same time. Generally, high-gain control parameters are
required to deal with load disturbance. However at the
same time, it will lead to oscillation or high overshoot of
step response. This problem can be solved by introducing
set-point weighting to increase the frequency of Zero,
and subsequently diminish the overshoot in the output
(Visioli, 2006).

This approach is adopted in this work to handle
the problem with integral SMC to reduce overshoot
in output states while maintaining robustness of the
controller. Therefore, the new sliding mode approach by
applying set-point weighting can be designed as shown in
Figure 3. Accordingly, a new error χ(t) for proportional
action is presented as

χ = e(t) + r(1− ς) (17)

where r is reference and ς is constant between 0 and
1. Reducing ς will lead to decreasing overshoot and
rise time, and vice versa. Consequently, the new sliding
surface is defined as,

s(x; t) =

(
d

dt
+ c

)n−1
χ(t) + λi

∫ ∞
0

e(t)dt (18)

4.3 Control law

Consider the general form on nonlinear system (15), and
integral sliding surface (18). Hence,

ṡ = ë+ cė+ λie

ṡ = f(x) + b(x)u(t) + d(t)− ẍd + cė+ λie
(19)

Furthermore, a new dynamic sliding manifold is
constructed as(Liu and Wang, 2011)

σ = ṡ+ λs (20)

where λ > 0 must be Hurwitz. When σ = 0, σ̇ = 0 is
a asymptotically stable, therefore, e −→ 0 and ė −→ 0.
From equation (20), stability analysis is expressed as,

σ = ṡ+ λs

= f(x) + b(x)u(t) + d(t)− ẍd + cė+ λie+ λs
(21)

Thus,

σ̇ =ḟ(x) + ḃ(x)u(t) + b(x)u̇(t) + ḋ(t)− ...
x d

+ cë+ λiė+ λṡ

=ḟ(x)− (c+ λ)ÿd −
...
y d + ḋ(t) + (c+ λ)d(t)

+ (ḃ(x) + cb(x) + λb(x))u(t) + (c+ λ)f(x)

+ b(x)u̇(t) + λλie+ λcė+ λiė

(22)

Select the dynamic control law as,

u̇(t) =
1

b(x)
(−ḟ(x) + (c+ λ)ÿd +

...
y d − (ḃ(x)

+ cb(x) + λb(x))u(t)− (c+ λ)f(x)

− λcė− λλie− k σ
|σ| − µσ)

(23)

where k, µ > 0. Stability analysis can be expressed as

σ̇ = ḋ(t) + (c+ λ)d(t)− k σ
|σ| (24)

Let k > D + (c+ λ)D0, therefore,

σσ̇ =σ(ḋ(t) + (c+ λ)d(t)− k σ
|σ| )

=σ(ḋ(t) + (c+ λ)d(t))− k|σ| 6 (D

+ (c+ λ)D0)σ − k|σ| < 0

(25)

From (18), sliding surface for the quadcopter UAVs
are defined as

sφ = cφχφ + ėφ + λiφ

∫ ∞
0

eφdt

sθ = cθχθ + ėθ + λiθ

∫ ∞
0

eθdt

sψ = cψχψ + ėψ + λiψ

∫ ∞
0

eψdt

sz = czχz + ėz + λiz

∫ ∞
0

ezdt

sx = cxχx + ėx + λix

∫ ∞
0

exdt

sy = cyχy + ėy + λiy

∫ ∞
0

eydt

(26)

Referring to equations (19) and (26), the derivative of
sliding surface is expressed as

ṡφ = cφėφ + fφ + bφu2 − φ̈d + λiφeφ

ṡθ = cθ ėθ + fθ + bθu3 − θ̈d + λiθeθ

ṡψ = cψ ėψ + fψ + bψu4 − ψ̈d + λiψeψ

ṡz = cz ėz + fz + bzu1 − z̈d + λizez

ṡx = cxėx + fx + bxu1 − ẍd + λixex

ṡy = cy ėy + fy + byu1 − ÿd + λiyey

(27)

Furthermore, the new sliding manifold is constructed as

σφ = ṡφ + λφsφ

σθ = ṡθ + λθsθ

σψ = ṡψ + λψsψ

σz = ṡz + λzsz

σx = ṡx + λxsx

σy = ṡy + λysy

(28)
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When σ = 0, σ̇ = 0 is a asymptotically stable and
referring to (23), the control input of quadcopter UAVs
can be defined as

u1 =

∫ ∞
0

1

bz

(
− ḟz + (cz + λz)z̈d +

...
z d − (ḃz + czbz

+ λzbz)u1 − (cz + λz)fz − λzcz ėz − λiz ėz

− λzλizez − kz σz
|σz| − µzσz

)
dt

u2 =

∫ ∞
0

1

bφ

(
− ḟφ + (cφ + λφ)φ̈d +

...
φd − (ḃφ

+ cφbφ + λφbφ)u2 − (cφ + λφ)fφ − λφcφėφ

− λiφėφ − λφλiφeφ − kφ σφ
|σφ| − µφσφ

)
dt

u3 =

∫ ∞
0

1

bθ

(
− ḟθ + (cθ + λθ)θ̈d +

...
θ d − (ḃθ

+ cθbθ + λθbθ)u3 − (cθ + λθ)fθ − λθcθ ėθ

− λiθ ėθ − λθλiθeθ − kθ σθ
|σθ| − µθσθ

)
dt

u4 =

∫ ∞
0

1

bψ

(
− ḟψ + (cψ + λψ)ψ̈d +

...
ψd − (ḃψ

+ cψbψ + λψbψ)u4 − (cψ + λψ)fψ − λψcψ ėψ

− λiψ ėψ − λψλiψeψ − kψ σψ
|σψ| − µψσψ

)
dt

(29)

Furthermore, the calculation of the desired pitch (θd)
and roll (φd) angles with x and y axes errors are
presented as:

θd =

∫ ∞
0

1

u1

(
− ḟx + (cx + λx)ẍd +

...
x d − (u̇1

+ cxu1 + λxu1)θd − (cx + λx)fx − λxcxėx

− λixėx − λxλixex − kx σx
|σx| − µxσx

)
dt

φd =−
∫ ∞
0

1

u1

(
− ḟy + (cy + λy)ÿd +

...
y d − (u̇1

+ cyu1 + λyu1)φd − (cy + λy)fy − λycy ėy

− λiy ėy − λyλiyey − ky σy
|σy| − µyσy

)
dt

(30)

5 Sliding mode observer

SMO, as a nonlinear estimator, has interesting properties
in that the capacity to create a sliding motion on
the estimation error, and to generates estimated states
precisely equivalent with actual output of the plant.
Moreover, the estimator technique is considered as the
forefront of robust approach for state and parameter
estimation by demonstrating the ability to handle model
errors and nonlinear systems.

5.1 Basic observer design

Consider the general nonlinear system as expressed in
(15). If the measured state is x1, an observer structure
is expressed as(Slotine et al., 1986),

˙̂x1 = −α1e1 + x̂2 − k1 e1
|e1|

˙̂x2 = −α2e1 + f̂ + b̂u− k2 e1
|e1|

(31)

where e1 = x̂1 - x1, x̂i, and u represent estimation error,
estimated state of xi, and control law respectively, while
f̂ and b̂ denote the best estimated models of f and b
respectively, and the constants αi are selected as in a
Luenberger estimator (which relate to k1 = 0, k2 = 0) so
as to locate the poles of the linearised system at expected
places −ζi. The sliding gain k1 is selected as a bound on
estimated state error of x2 in the steady state condition,
and k2 is selected to be bigger than modelling errors.
The resulting error dynamics of the approach can be
composed as (Slotine et al., 1986),

ė1 = −α1e1 + e2 − k1 e1
|e1|

ė2 = −α2e1 + ∆f − k2 e1
|e1|

(32)

The value of ∆f = f̂ − f relies on the computational
intricacy and the modelling effort allowed in the
estimator. In this research, dynamic uncertainty ∆f
is assumed to be bounded explicitly. For simplicity,
the known nonlinear terms may likewise be treated
as bounded error (using known bounds on the actual
system state) and incorporated in ∆f . The effect of
∆f is compensated by exploiting this knowledge of its
(generally time-varying) bound.

5.2 Observer design for quadcopter UAVs

It is important to determine states vector of quadcopter
before designing states observer for the system. Hence,
the state vector of the system is defined as,

X = [x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12]T

The states vector is mapped to the degrees of freedom
of the quadcopter, as expressed,

X = [φ φ̇ θ θ̇ ψ ψ̇ z ż x ẋ y ẏ]T

The measured states of the system are roll (x1), pitch
(x3) and yaw (x5) angles, and linear movements in z(x7),
x(x9), and y(x11) axes. Basically, SMC as state feedback
control system needs the availability of full state to
control the system. Thefore, the observer plays a critical
role in estimating the velocity of the rotorcraft, such as
x2, x4, x6, x8, x10, and x12.

Considering the dynamic system of quadcopter (13)
and (14), state vectors and second order observer
structure (31), the states estimator for quadcopter UAVs
systems is presented as,
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˙̂x1 = −α1e1 + x̂2 − k1 e1
|e1|

˙̂x2 = −α2e1 + x̂4x̂6

(
Iy−Iz
Ix

)
+ l

Ix
u2 − k2 e1

|e1|

˙̂x3 = −α1e3 + x̂4 − k1 e3
|e3|

˙̂x4 = −α2e3 + x̂2x̂6

(
Iz−Ix
Iy

)
+ l

Iy
u3 − k2 e3

|e3|

˙̂x5 = −α1e5 + x̂6 − k1 e5
|e5|

˙̂x6 = −α2e5 + x̂2x̂4

(
Ix−Iy
Iz

)
+ 1

Iz
u4 − k2 e5

|e5|

˙̂x7 = −α1e7 + x̂8 − k1 e7
|e7|

˙̂x8 = −α2e7 − g + cx1cx3

m u1 − k2 e7
|e7|

˙̂x9 = −α1e9 + x̂10 − k1 e9
|e9|

˙̂x10 = −α2e9 + cx1sx3cx5+sx1sx5

m u1 − k2 e9
|e9|

˙̂x11 = −α1e11 + x̂12 − k1 e11
|e11|

˙̂x12 = −α2e11 + cx1sx3sx5−sx1cx5

m u1 − k2 e11
|e11|

(33)

where e = x̂− x is the estimated states error, x̂ represent
estimated states, and αi, ki > 0.

5.3 Chattering avoidance: elimination and
attenuation

The discontinuous term in SMO may lead to chattering
phenomenon. Despite the fact that this issue is just
connected to numerical execution instead of ”hard”
mechanical restrictions, the chattering is still harmful
for obtaining high accuracy estimated states. Therefore,
some studies have been conducted to reduce or eliminate
such phenomenon, including QuasiSMO (Shtessel et al.,
2010), IT2FSMO (Firdaus and Tokhi, 2015), HOSMO
(Gonzalez-Hernandez et al., 2017, Skender et al., 2017),
and STASMO (Salgado et al., 2011).

5.3.1 Chattering elimination: quasi-sliding mode
observer

The approach to eliminate the chattering using
QuasiSMO is to replace the discontinuous term k e

|e| with

continuous term, expressed as (Shtessel et al., 2010),

e

|e
→ e

|e|+ ε
(34)

where ε is a small positive constant. It can be seen that,

lim
ε−→0

e

|e|+ ε
=

e

|e|
(35)

for e 6= 0. The value of ε should be selected to meet
a smooth control signals while maintaining an ideal
performance of control method.

Hence, the observer can be presented as

˙̂x1 = −α1e1 + x̂2 − k1 e1
|e1|+ε

˙̂x2 = −α2e1 + x̂4x̂6

(
Iy−Iz
Ix

)
+ l

Ix
u2 − k2 e1

|e1|+ε

˙̂x3 = −α1e3 + x̂4 − k1 e3
|e3|+ε

˙̂x4 = −α2e3 + x̂2x̂6

(
Iz−Ix
Iy

)
+ l

Iy
u3 − k2 e3

|e3|+ε

˙̂x5 = −α1e5 + x̂6 − k1 e5
|e5|+ε

˙̂x6 = −α2e5 + x̂2x̂4

(
Ix−Iy
Iz

)
+ 1

Iz
u4 − k2 e5

|e5|+ε

˙̂x7 = −α1e7 + x̂8 − k1 e7
|e7|+ε

˙̂x8 = −α2e7 − g + cx1cx3

m u1 − k2 e7
|e7|+ε

˙̂x9 = −α1e9 + x̂10 − k1 e9
|e9|+ε

˙̂x10 = −α2e9 + cx1sx3cx5+sx1sx5

m u1 − k2 e9
|e9|+ε

˙̂x11 = −α1e11 + x̂12 − k1 e11
|e11|+ε

˙̂x12 = −α2e11 + cx1sx3sx5−sx1cx5

m u1 − k2 e11
|e11|+ε

(36)

5.3.2 Chattering elimination: sliding mode-based
interval type-2 fuzzy observer

Interval type-2 fuzzy logic system (IT2FLS) is
introduced to eliminate chattering due to switching
control of SMO. Generally, the architecture of IT2FLS
consists of fuzzification, fuzzy inference and rule base,
type reduction, and deffuzification as seen in Figure 5.
This configuration is similar to type-1 fuzzy logic systems
except in the output processing block. In IT2FLS,
the fuzzy output sets proceed to type reduction, then
defuzzification to produce crisp outputs.
 

Fuzzifier Rules base 

Fuzzy Inference 

Engine 

Type Reducer 

Deffuzification 

Crisp input 

x 

 

x 

u = f(x) 

T2 Fuzzy 

Input set 

T2 Fuzzy 

Output set 

Crisp output 

u 
 

x 
Type reduced 

Set (T1) 

Figure 5. Architecture of IT2FLS

IT2FLS will play a role in replacing discontinuous
term of SMO (31) to eliminate the chattering
phenomenon. The membership function of fuzzy input is
developed by the values of estimated states error (e) as
shown in Figure 6, while the fuzzy output is presented
in Figure 7. Each of these has 7 membership functions,
including: Negative Big (NB), Negative Medium (NM),
Negative Small (NS), Zero (Z), Positive Small (PS),
Positive Medium (PM), and Positive Big (PB) (Firdaus
and Tokhi, 2015).

0 1 2 3 4 5 6-1-2-3-4-5-6

Z PS PM PBNSNMNB

 

Figure 6. Estimation errors (e) MFs
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0 1 2 3 4 5 6-1-2-3-4-5-6

Z PS PM PBNSNMNB

 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 

PB PM PS Z NS NM NB 

Figure 7. Fuzzy output MFs of SMC

Furthermore, considering the fuzzy input and output,
the rules-base to generate the expected estimated states
(x̂) can be set up as in Table 1.

Table 1. Fuzzy rules

e (Error estimation)

NB NM NS Z PS PM PB

Outf2 NB NM NS Z PS PM PB

Hence, the IT2FSMO for the quadcopter model is
presented as:

˙̂x1 = −α1e1 + x̂2 − k1Outf2(e1)

˙̂x2 = −α2e1 + x̂4x̂6

(
Iy−Iz
Ix

)
+ l
Ix
u2 − k2Outf2(e1)

˙̂x3 = −α1e3 + x̂4 − k1Outf2(e3)

˙̂x4 = −α2e3 + x̂2x̂6

(
Iz−Ix
Iy

)
+ l
Iy
u3 − k2Outf2(e3)

˙̂x5 = −α1e5 + x̂6 − k1Outf2(e5)

˙̂x6 = −α2e5 + x̂2x̂4

(
Ix−Iy
Iz

)
+ 1
Iz
u4 − k2Outf2(e5)

˙̂x7 = −α1e7 + x̂8 − k1Outf2(e7)

˙̂x8 = −α2e7 − g + cx1cx3
m u1 − k2Outf2(e7)

˙̂x9 = −α1e9 + x̂10 − k1Outf2(e9)

˙̂x10 = −α2e9 + cx1sx3cx5+sx1sx5
m u1k2Outf2(e9)

˙̂x11 = −α1e11 + x̂12 − k1Outf2(e11)

(37)

˙̂x12 = −α2e11 + cx1sx3sx5−sx1cx5
m u1 − k2Outf2(e11)

where Outf2 represents type-2 fuzzy logic output.

5.3.3 Chattering attenuation: super-twisting
algorithm of sliding mode observer

Considering the system as in equation (15), the super-
twisting algorithm used for this class of systems has the
following structure (Salgado et al., 2011)

˙̂x1 = x̂2 − k1
√
|e1| e1|e1|

˙̂x2 = f(x, t) + b(x, t)u(t)− k2 e1
|e1|

(38)

In this structure, the gains ki i = 1, 2 must be selected
in such a way to ensure finite time convergence.

Hence, the STASMO for quadcopter UAVs can be
defined as

˙̂x1 = x̂2 − k1
√
|e1| e1|e1|

˙̂x2 = x̂4x̂6

(
Iy−Iz
Ix

)
+ l

Ix
u2 − k2 e1

|e1|

˙̂x3 = x̂4 − k1
√
|e3| e3|e3|

˙̂x4 = x̂2x̂6

(
Iz−Ix
Iy

)
+ l

Iy
u3 − k2 e3

|e3|

˙̂x5 = x̂6 − k1
√
|e5| e5|e5|

˙̂x6 = x̂2x̂4

(
Ix−Iy
Iz

)
+ 1

Iz
u4 − k2 e5

|e5|

˙̂x7 = x̂8 − k1
√
|e7| e7|e7|

˙̂x8 = −g + cx1cx3

m u1 − k2 e7
|e7|

˙̂x9 = x̂10 − k1
√
|e9| e9|e9|

˙̂x10 = cx1sx3cx5+sx1sx5

m u1 − k2 e9
|e9|

˙̂x11 = x̂12 − k1
√
|e11| e11|e11|

˙̂x12 = cx1sx3sx5−sx1cx5

m u1 − k2 e11
|e11|

(39)

5.3.4 Chattering attenuation: higher order sliding
mode observer

Second-order sliding modes cause the switching variables
converge to zero in finite time when the relative degree
of the variable equals two. In addition, the sliding modes
can solve the chattering issue by employing continuous
control if the relative degree is one. This may help
to cancel harmful high-energy oscillations. Higher-order
sliding modes (HOSMs) can handle the problem for
arbitrary relative degrees. The implementation of the
approach needs more information: usually it needs to
calculate a number of sequential time derivatives of the
switching variables.

General form of HOSMO is presented as (Gonzalez-
Hernandez et al., 2017, Skender et al., 2017)

˙̂x1 = x̂2 + k1|e1|
2
3 e1
|e1|

˙̂x2 = x̂3 + k2|e1|
1
3 e1
|e1| + f(x, t) + b(x, t)u(u)

˙̂x3 = k3
e1
|e1|

(40)

The dynamics of the estimated states errors are defined
as,

ė1 = e2 − k1|e1|
2
3 e1
|e1|

ė2 = −x̂3 − k2|e1|
1
3 e1
|e1| + ζ

ė3 = k3|e1|
2
3 e1
|e1|

(41)

Define a new variable of estimation error e3 = ζ − x̂3, if
the rate of the disturbance is restricted |ζ̇| < ζ+, then the
dynamics of the estimated states error can be expressed
as,

ė1 = e2 − k1|e1|
2
3 e1
|e1|

ė2 = e3 − k2|e1|
1
3 e1
|e1|

ė3 = −k3|e1|
2
3 e1
|e1| + ζ̇

(42)
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Before deriving HOSMO for quadcopter UAVs, it is
important to redefine the states vector of such vehicle.
The new states information are defined as

x1 = φ; x4 = θ; x7 = ψ; x10 = z; x13 = x; x16 = y

x2 = φ̇; x5 = θ̇; x8 = ψ̇; x11 = ż; x14 = ẋ; x17 = ẏ

Refers to the equation (40), the states estimation for
quadcopter UAVs are obtained as follows

˙̂x1 = x̂2 + k1|e1|
2
3 e1
|e1|

˙̂x2 = x̂3 + x̂5x̂8

(
Iy−Iz
Ix

)
+ l

Ix
u2 + k2|e1|

1
3 e1
|e1|

˙̂x3 = k3
e1
|e1|

˙̂x4 = x̂5 + k1|e4|
2
3 e4
|e4|

˙̂x5 = x̂6 + x̂2x̂8

(
Iz−Ix
Iy

)
+ l

Iy
u3 + k2|e4|

1
3 e4
|e4|

˙̂x6 = k3
e4
|e4|

˙̂x7 = x̂8 + k1|e7|
2
3 e7
|e7|

˙̂x8 = x̂9 + x̂2x̂5

(
Ix−Iy
Iz

)
+ 1

Iz
u4 + k2|e7|

1
3 e7
|e7|

˙̂x9 = k3
e7
|e7|

˙̂x10 = x̂11 + k1|e10|
2
3 e10
|e10|

˙̂x11 = x̂12 − g + cx1cx4

m u1 + k2|e10|
1
3 e10
|e10|

˙̂x12 = k3
e10
|e10|

˙̂x13 = x̂14 + k1|e13|
2
3 e13
|e13|

˙̂x14 = x̂15 + cx1sx4cx7+sx1sx7

m u1 + k2|e13|
1
3 e13
|e13|

˙̂x15 = k3
e13
|e13|

˙̂x16 = x̂17 + k1|e16|
2
3 e16
|e16|

˙̂x17 = x̂18 + cx1sx4sx7−sx1cx7

m u1 + k2|e16|
1
3 e16
|e16|

˙̂x18 = k3
e16
|e16|

(43)

6 Numerical simulation results

In this sections a set of numerical simulations are
exhibited to verify and demonstrate the performance
of sliding mode control and observer approaches
in controlling the quadcopter and estimating the
unmeasured states of such vehicle. Comparative
assessment of estimators is presented. Chattering
phenomenon, estimation errors and time required to
track true states are the factors will be evaluated
to facilitate comparative studies of observers, while
maximum overshoot, rise time, chattering issue, steady-
state error, and control loop time are taken into
account to evaluate controller performance relating to
the use of several different observers. Disturbances
and uncertainties such as white Gaussian noise, and
parameters mismatch have also been incorporated into
the simulation to demonstrate the robustness of the
system.

The moment of inertia (Turnigy H.A.L frame), mass,
and length of quadcopter arms are real parameters
obtained by measurement. All quadcopter UAVs
parameters used in the simulation are shown in Table
2, meanwhile the parameters of observers can be seen
in Table 3. Selected weighting factors (ς) are 0.9 for
x and y states, 0.688 for others. The simulation run
with sampling (ts) time 0.01 seconds. In addition to
those parameters, white Gaussian noise disturbance to
measured states are selected to test the performance
of the methods as well as parameters mismatch. The
parameters mismatch is restricted to moment of inertia
of the UAVs. The signal to noise ratio (SNR) introduced
to measured states are 10 dB for roll, pitch, and yaw
angle, and 37 dB for x, y, and z movement, while
parameters mismatch to be tested is 50%. In addition,
the highest parameter mismatch will be sought to
determine the robustness limits of the controller and
observers.

Table 2. Quadcopter parameters

Variables

Values

Observer model Plant Unit

m 1.79 1.79 Kg
l 0.29 0.29 m
Ix 0.02615 0.02615 Ns2/rad
Iy 0.02735 0.02735 Ns2/rad
Iz 0.04538 0.04538 Ns2/rad
ki(i = 1, 2, 3) 0.37 0.37 Ns/m
kj(j = 4, 5, 6) 0.0005 0.0005 Ns/m
g 9.81 9.81 m/s2

Table 3. Observers parameters

Observer

QuasiSMO IT2FSMO STASMO HOSMO EKF

α1 85.8 α1 85.8 k1 1.0 k1 6.0 R 0.001
α2 7.2 α2 7.2 k2 1.1 k2 11.0 Q 0.1
k1 0.1 k1 0.1 k3 6.0
k2 2.0 k2 2.0

There are two conditions to examine the performance
of the control and observer methods, including: without
noise and no parameters mismatch, and with noise and
with parameters mismatch. The purpose of this approach
is to highlight the ability of the controller and observers
in dealing with several conditions.

In this numerical validation, four sliding mode-
based observer methods and extended Kalman filter are
assessed. Suitable values for set-point weighting-based
dynamic sliding mode control (SDISMC) are selected as,

λφ = 10.0 λθ = 10.0 λψ = 15.0
λx = 4.0 λy = 4.0 λz = 30.0
cφ = 20.0 cθ = 20.0 cψ = 5.0
cx = 0.9 cy = 0.9 cz = 10.0
λiφ = 0.01 λiθ = 0.01 λiψ = 2.86
λix = 0.053 λiy = 0.053 λiz = 6.22
kφ = 1.5 kθ = 1.5 kψ = 1.0
kx = 0.1 ky = 0.1 kz = 2.0
µφ = 100.0 µθ = 100.0 µψ = 4.5
µx = 10, 0 µy = 10.0 µz = 3.0

6.1 Without noise and no parameters mismatch

For the first stage, noise-free condition and no
parameters mismatch between plant and system model
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are used to evaluate the behaviour of the controller and
observers. The simulation results obtained are presented
in Figure 8 - 23.

Figure 8. x-axis movement

Figure 9. Rate of x-axis movement

Figure 10. Pitch action

Figure 11. Rate of pitch movement

Figure 12. y-axis movement

Figure 13. Rate of y-axis movement

Figure 14. Roll action

Figure 15. Rate of roll movement

Figure 16. z-axis movement
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Figure 17. Rate of z-axis movement

Figure 18. Yaw action

Figure 19. Rate of yaw movement

As noted, all observers, in general performed well
in estimating unmeasured states of the quadcopter as
can be seen in Figure 9, 11, 13, 15, 17, and 19.
However, although the chattering issue was reduced
significantly, switching function used in STASMO and
HOSMO approaches is still the main cause of the slight
oscillation in the estimated states.

Mean squared error (MSE) of estimated states in
steady-state condition was calculated as presented in
Table 4 to measure the quality of observers. IT2FSMO
had smaller MSE in x, pitch and z rate whereas
QuasiSMO was better in estimating y and yaw rate
states. HOSMO was good in generating estimated
state of roll rate. However, the MSE values between
QuasiSMO and IT2FSMO were quite close so that both
observers are considered to have similar performance in
estimating unmeasured states.

Table 4. Mean squared states of estimated states

Observer methods

MSE steady-state error of

x rate y rate z rate

QuasiSMO 8.98791E-08 9.11871E-08 1.99643E-07
IT2FLSMO 8.75774E-08 1.08689E-07 1.97097E-07
STASMO 3.38737E-05 3.03218E-05 6.46195E-05
HOSMO 6.29399E-06 6.27793E-06 6.75966E-06
EKF 9.50554E-08 2.97137E-07 2.02128E-07

pitch rate roll rate yaw rate

QuasiSMO 1.33916E-05 1.34791E-05 8.19673E-10
IT2FLSMO 1.33371E-05 1.44075E-05 8.19678E-10
STASMO 7.40598E-05 7.25747E-05 6.28488E-05
HOSMO 1.36294E-05 9.43137E-06 6.61028E-06
EKF 1.35298E-05 1.38534E-05 8.21467E-10

In addition to estimating unmeasured states, each
observer showed different performance in tracking true
states. The ability of the observers in generating
estimation of true states is presented in Table 5. In the
case of without noise and no parameters mismatch, the
QuasiSMO and IT2FSMO outperformed other methods
by showing smaller MSE for pitch, roll, yaw, and z states,
whereas EKF was better in x and y than others.

Table 5. Mean squared errors of true states tracking

Observer method

MSE state estimation of

x y z

QuasiSMO 3.11324E-10 3.13195E-10 3.39063E-12
IT2FLSMO 3.12907E-10 3.15066E-10 3.40674E-12
STASMO 5.31837E-09 4.90389E-09 9.20483E-09
HOSMO 2.98112E-09 2.97376E-09 2.97571E-09
EKF 7.76156E-11 8.68866E-11 4.30985E-09

pitch roll yaw

QuasiSMO 2.35233E-12 2.44451E-13 6.36673E-15
IT2FLSMO 3.96453E-12 7.87942E-14 6.41306E-15
STASMO 6.70786E-09 9.19166E-09 9.21405E-09
HOSMO 2.97349E-09 2.97351E-09 2.97384E-09
EKF 1.64104E-09 1.67363E-09 1.76539E-09

The performance of observers was evaluated also by
time required to estimate unknown states and to track
true states since this parameter plays a critical role in
real-time applications. It was noted in previous section
that each observer had different numerical methods to
observe the unknown states. These differences will result
in varying amount of time required to estimate unknown
states and to track true states as presented in Table 6.

Table 6. Time required to estimate unmeasured states

QSMO IT2SMO STASMO HOSMO EKF

t(ms) 0.04125 4.02375 0.05925 0.0755 0.1425

Although IT2FSMO has good performance in
estimating unknown states, this method needs more time
to track measured states and estimate second order
states than other methods. Type reduction method in
type-2 fuzzy logic is one of the issues that cause such
delay. Type reduction is still a fascinating topic to be
researched in type-2 fuzzy logic field so that it can
be used in a wide range of real-time applications. As
noted, among the observers, QuasiSMO was the fastest
estimator followed by STASMO, HOSMO and EKF.

From a control view point, the chattering issue
of estimated states following the use STASMO and
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HOSMO are not major problem as SDISMC could
control altitude and attitude of quadcopter UAV quite
smoothly. It can be seen in Figure 8 - 19 with the good
performance of the controller in tracking references.

The SDISMC showed good performance in
controlling the quadcopter with various observers. It
can be seen in the results presented that there was
no overshoot with the controller in response to a step
input for all observers methods with similar rise time.
However, significant oscillations were seen in the control
inputs of roll and pitch movements using STASMO and
HOSMO as can be seen in Figure 21 and 22, whereas
QuasiSMO, IT2FSMO and EKF could give smoother
control signals.

Figure 20. Control signal u1

Figure 21. Control signal u2

Figure 22. Control signal u3

Figure 23. Control signal u4

Another factor of consideration to evaluate the
controller performance with the observers is steady-
state error. Table 7 shows mean squared error of output
states of the quadcopter UAV in steady-state condition.
As noted, all observers show similar performance in
improving controller to reduce steady-states error in
almost all states except in yaw state where STASMO
and HOSMO show higher MSE significantly than others.

Table 7. Mean squared errors of steady-states errors

Observer methods

MSE steady-state error of

x y z

QuasiSMO 3.32422E-07 3.5677E-07 1.87105E-08
IT2FLSMO 3.43706E-07 3.54602E-07 1.88812E-08
STASMO 2.51545E-06 5.99312E-07 2.87283E-08
HOSMO 3.76194E-07 3.53125E-07 2.15704E-08
EKF 8.713E-08 1.06684E-07 1.91677E-08

pitch roll yaw

QuasiSMO 4.04871E-07 4.07073E-07 1.88658E-13
IT2FLSMO 3.77827E-07 6.28935E-07 1.86451E-13
STASMO 3.68175E-07 3.76505E-07 9.47006E-09
HOSMO 3.64405E-07 3.69027E-07 2.87142E-09
EKF 4.45222E-07 6.52378E-07 3.55165E-13

In summary, in case of no noise and no parameters
mismatch, SDISMC shows good performance in
controlling the quadcopter UAV with no overshoot
response, small rise time, very small chattering, and
small steady-state errors. The set-point weighting term
worked well in eliminating overshoot during integral
term was being employed. In addition, the controller
has fast computational time which is feasible for real-
time application. Among the observers, QuasiSMO
method outperforms other methods by showing smooth
estimated states, smaller states estimation and true
states tracking errors, and faster in computational time.
Therefore, the observer has influenced and improved the
overall performance of the controller.

6.2 With noise and with parameters mismatch

At this stage, the performance of control system
and observers was tested by introducing noise and
uncertainty at the same time into the quadcopter system.
Robustness of the approaches will play a vital role in
dealing with such disturbances. The simulation results
obtained are shown in Figure 24 - 39.
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Figure 24. x-axis movement

Figure 25. Rate of x-axis movement

Figure 26. Pitch action

Figure 27. Rate of pitch movement

Figure 28. y-axis movement

Figure 29. Rate of y-axis movement

Figure 30. Roll action

Figure 31. Rate of roll movement

Figure 32. z-axis movement

Figure 33. Rate of z-axis movement
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Figure 34. Yaw action

Figure 35. Rate of yaw movement

The simulation results presented in Figure 25, 27,
29, 31, 33, and 35 show that despite the presence
of high power noise and high uncertainty, the effect
of such disturbances were reduced sufficiently by
QuasiSMO, IT2FSMO, and EKF so that second order
states were generated quite smoothly. In other words,
noise disturbance on the output states as well as
parameter mismatch do not affect significantly the
performance of the observers. In contrast, corrupted
output states influenced results due to STASMO and
HOSMO significantly, especially in estimating second
order state of pitch, roll, and yaw as shown in the
figures. The noise on the output states was amplified
high enough due to the effect of switching functions in
the methods. In addition, STASMO could not deal with
parameters mismatch well, and this is shown with high
amplitude oscillation in the estimation of yaw rate when
the reference changes.

To evaluate the performance of observer numerically,
MSE of estimated states in steady-state condition was
calculated as presented in Table 8. Noise disturbance
and uncertainty are inevitable conditions in quadcopter
UAVs system which might disturb the performance
of observers. However, as noted, the QuasiSMO,
IT2FSMO, and EKF always maintain its performance
in estimating unmeasured states. The estimators
especially QuasiSMO constantly showed smaller MSE
than STASMO and HOSMO despite being in a bad
condition.

Table 8. Mean squared errors of estimated states

Observer methods

MSE steady-state error of

x rate y rate z rate

QuasiSMO 4.71813E-06 5.67621E-06 8.31377E-05
IT2FLSMO 4.78787E-06 5.0615E-06 8.25333E-05
STASMO 0.001408557 0.001360913 0.000758379
HOSMO 0.002667377 0.002849846 0.001901026
EKF 1.54249E-05 8.22583E-05 8.2426E-05

pitch rate roll rate yaw rate

QuasiSMO 3.22091E-05 3.87957E-05 3.42127E-06
IT2FLSMO 3.45078E-05 3.24607E-05 4.6615E-06
STASMO 0.003987265 0.003837892 3.28468E-05
HOSMO 0.004578211 0.005344991 6.56119E-06
EKF 1.54136E-05 1.85355E-05 2.43512E-05

In the present of noise and parameter mismatch, the
true states tracking errors look similar for all observer
method. However, referring to computed MSE values as
presented in Table 9, show that each observer technique
exhibited different performance in tracking the true
states. Although not able to estimate second order states
as good as QuasiSMO, IT2FSMO and EKF; STASMO
and HOSMO showed better performance in tracking the
true states. It is noticeable in Table 9 that STAMSO
and HOSMO had smaller MSE slightly than other
approaches in tracking the measured states of x, y, yaw
and z, while QuasiSMO and IT2FSMO showed better
tracking of pitch and roll states. However, STASMO and
HOSMO did not perform as well as other approaches
in estimating second order states so the overall control
performance would be affected.

Table 9. Mean squared errors of true states tracking

Observer method

MSE state estimation of

x y z

QuasiSMO 0.000277102 0.000278138 0.000285373
IT2FLSMO 0.000276616 0.000271504 0.000286913
STASMO 0.000172541 0.000173697 0.000177637
HOSMO 0.000189739 0.000182192 0.000192498
EKF 0.000324588 0.000299838 0.000325291

pitch roll yaw

QuasiSMO 2.31257E-05 4.0883E-05 1.19431E-05
IT2FLSMO 2.86099E-05 3.22704E-05 1.18428E-05
STASMO 7.25988E-05 0.00010442 0.000445377
HOSMO 4.28961E-05 3.85983E-05 1.17318E-05
EKF 3.9194E-05 3.50203E-05 1.37551E-05

The presence of noise and parameters mismatch is
expected to affect the performance of the controller.
However, the effect of those unforeseen circumstances
on the system depend on management and selection of
control and observer types. Figure 24, 26, 28, 30, 32, and
34 show that the use of all type of observer approaches
did not have much effect on the control performance
in controlling output states except yaw. As noted, the
controller responds step input reference quite well by
tracking the references quite smoothly. However, in the
case of yaw state, oscillation occurs obviously around
±5.0◦ when STASMO was applied.

The noise effect was still noticeable clearly around
references and control inputs as seen in Figure 36 - 39.
However, the noise influenced control input considered
as quite low by showing small amplitude of oscillation
in the signals. The effects of noise still occur due to
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trade-off of choosing parameters for the observers. On
the one hand, increasing or decreasing observer gains
will speed up tracking true value, yet may potentially
increase sensitivity to noise measurement and vice versa.
In this research, the speed of tracking measured states
is more considered (without neglecting noise effect) to
make the controller more responsive.

Figure 36. Control signal u1

Figure 37. Control signal u2

Figure 38. Control signal u3

Figure 39. Control signal u4

Furthermore, steady-states error is considered also
to evaluate the robustness of SDISMC and observers in
dealing with noise disturbance and parameter mismatch.
The results in Table 10, show that, generally steady-
states errors are considered small. It means that even

though noise and parameters mismatch have put the
quadcopter system in bad condition, the observers
have influenced control system to stabilize quadcopter
and reduce steady-state error quite well. In this case,
STASMO observer method performs better than those
of four estimators by showing smaller steady-state error
in almost all states computed by MSE method.

Table 10. Mean squared errors of steady-states errors

Observer methods

MSE steady-state error of

x y z

QuasiSMO 0.000154099 0.000153519 0.000154979
IT2FLSMO 0.000164337 0.000153464 0.00015562
STASMO 7.92722E-05 7.20529E-05 3.46551E-05
HOSMO 0.000412268 0.000420688 9.26384E-05
EKF 0.000235152 0.000227582 0.000205899

pitch roll yaw

QuasiSMO 0.00014667 0.000140496 1.00158E-08
IT2FLSMO 0.00014533 0.000141111 8.50916E-09
STASMO 8.08244E-05 7.86021E-05 5.89205E-09
HOSMO 0.000275643 0.000302138 2.84122E-09
EKF 0.000143496 0.000140625 1.92223E-09

In summary, in the presence of noise and parameter
mismatch, SDISMC maintains good performance in
controlling the dynamics of quadcopter with no response
overshoot except for yaw action when employing
STASMO, considered small rise time, free from
chattering when using QuasiSMO, IT2FSMO and
EKF observer method, small steady-states errors, and
fast computational time. However, fluctuated signals
randomly on the references still appear due to noise
disturbance. From observer viewpoint, regarding true
state tracking and steady-states errors, STASMO
outperforms other methods by showing small MSE
values. However, QuasiSMO, IT2FSMO, EKF perform
better than others in reducing noise effect on state
estimation process and tracking reference. It can be
seen by smoother estimated states generated, and no
oscillation issue in tracking reference.

6.3 Summary

From the simulation results obtained can be summarized
that QuasiSMO, IT2FSMO, and EKF generated
smoother estimated states for every conditions than
STASMO and HOSMO. MSE estimated states in steady-
state conditions was evaluated also to verify observers
performance. In free of noise condition, QuasiSMO and
IT2FSMO outperformed others by exhibiting smaller
MSE in all states. Furthermore, in the presence of noise
and parameters mismatch, QuasiSMO and IT2FSMO
had smaller MSE for second order states of x, y, and yaw
than other observers; while EKF was better than those
of four estimators for roll and pitch rates.

The MSE of true states tracking and noise rejection
were considered to evaluating the performance of
observers. In the ideal condition, QuasiSMO dominated
smaller MSE for all states, while STASMO and HOSMO
had good performance by showing small MSE for most of
states in the presence of noise and uncertainty. However,
in terms of noise rejection, QuasiSMO, IT2FSMO and
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EKF had more capability in rejecting noise effect in
estimating process than STASMO and HOSMO by
exhibiting small random fluctuation in all estimated
states. Actually, reducing or rejecting noise effect and
fast tracking are trade-off for observer methods. On
the one hand, increasing or decreasing estimator gains
will speed up tracking true value, yet may potentially
increase sensitivity to noise measurement and vice versa.

Each observer demonstrated different achievement in
contributing to improving control system performance.
In the use of QuasiSMO, IT2FSMO and EKF,
the control system performed good performance
by exhibiting no overshoot for all output states.
Furthermore, in terms of steady-state errors, MSE
was calculated and compared. For noise-free condition,
no observer method dominated better performance.
Nevertheless, in the appearance of noise, STASMO was
dominating by showing smaller MSE in almost all states.

Time required to process control and observer
algorithm is playing a important role in designing
responsive control system. Hence, computational time
of observers algorithm was measured as presented in
the Table 6. From the table it is noticeable clearly that
QuasiSMO algorithm has faster time consumed than
others around 0.04125 ms, whereas IT2FSMO is the
slowest one around 4.02375 ms. Meanwhile, the time
demand to process the sequence of the controller method
is quite fast around 0.1 ms. It means that the control
method is feasible for experimental validation.

Chattering which is the main issue in SMCs, was
reduced significantly by SDISMC so that what ever
estimators were used, all estimated states were generated
quite smoothly. In addition, time responses including rise
time, overshoot, and steady-state error were evaluated.
In most states and various uses of observer, the
controller responded step inputs with similar rise time
and no overshoot occurs except only in yaw state when
STASMO and HOSMO approaches were employed in
the condition of noise disturbance. In other words that
set-point weighting term was successfully to reduce
overshoot occurrence significantly because of employing
integral function while keeping steady-state errors in
small values.

Lastly, for further robustness testing in dealing
with uncertainty, a percentage of increasing parameters
mismatch was evaluated subject to noise disturbance. In
this assessment, the robustness of the observer methods
was shown by the stability of the system in responding
step input references regarding the increase of parameter
mismatch value. Therefore, the maximum values of
parameter uncertainty percentage were obtained as
presented in the Table 11. From the table, it can be seen
clearly that the use QuasiSMO, IT2FSMO, and EKF
outperformed other estimator approaches in dealing with
such uncertainty.

Table 11. Maximum parameters mismatch subject to noise
disturbance

Maximum parameters mismatch (%)

QuasiSMO IT2FSMO STASMO HOSMO EKF

89.0 89.0 52.0 64.0 90.2

7 Conclusion

After performing a series of performance assessments for
control system and observer methods and considering
the results obtained, it can be concluded that generally,
set-point weighting-based dynamic integral sliding mode
control worked well to control attitude and altitude
of quadcopter UAVs in various conditions including
noise disturbance and high uncertainty by showing
good achievement in every predefined performance
criteria. Meanwhile, although quasi sliding mode
observer is a conventional method, the observer has
a promising performance in estimating unmeasured
states by maintaining good results in every determined
categories, and more contribution than other approaches
to improving the performance of the proposed control
system. In addition, the method has faster processing
time than other approaches which is crucial for plants
that require highly responsive dynamic control system.
Therefore, the combination of the methods is considered
to be evaluated experimentally.
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