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Abstract— Hand grip force and motion pattern classification
using bio signal such as Electromyogram (EMG) has been very
important in current studies. EMG based pattern classification
has gain the utmost consideration especially in the commercial
prostheses. Developing an intuitive hand control with fast
response both in time and space are the major challenges. These
challenges are due to the lack of information gathered from
adjacent muscles. The study of adjacent muscles is crucially
needed as it will allow to provide optimised hand grip and
motion pattern classification without redundancy in the use
of muscle information. The main aim of this paper is to
investigate the effect of two adjacent flexor muscles; flexor
digitorum superficial (FDS) and flexor carpi radialis (FCR),
two adjacent extensor muscles: extensor carpi radialis longus
(ECRL) and extensor digitorum communis (EDC) providing the
perspective view of individual muscle performance compared
to their adjacent muscle with respect to finger pinch and hand
grip force. Practical classification results prove the significance
of the study, both adjacent muscles perform almost similar with
approximately 95% of similarities across different subjects. The
results achieved lead to the conclusion, that the use of adjacent
muscles can be reduced to only single muscle channel providing
an optimised data for pattern recognition or classification.

I. INTRODUCTION
Electromyography (EMG) is one of the major compo-

nents in the nerve conduction studies. EMG is one of the
techniques for detecting, recording and evaluating the action
potential produced by the muscles of the body. It is also
known as the diagnostic procedure for the muscle health
assessment and the motor neurons control. The origin of
EMG action potential or pulse comes from the central ner-
vous system (CNS) [1]. The brain signal is transferred along
the nerves through the motor neurons carrying information in
pulse repetition or known as frequency. The action potentials
generated from this occasion is known as Motor Unit Action
Potentials (MUAPs) [2], [3].

Hand prosthetic control is one of the technologies bene-
fitting from the use of EMG such as people with amputated
arm or hand. It can be used to help people with disability to
use their own hand, or perhaps amputated people for daily
activities. However, the main current challenge is to built a
good and sophisticated prosthetic control, which could offer
better hand movements and fast response.

EMG pattern classification has attracted significant interest
in current research activities due to its consolidation with
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the human machine controls. Noticeable research has been
conducted in this area and some have reported improvements
in the human machine controls such as prosthetic hand [4],
[5], [6], [7]. Lots of studies have reported that the real
time accuracy is generally within 90% to 97%. However,
despite the promising performance gained from simulated
works, real clinical implementations are limited. This is
the major drawback faced by many researchers, as as the
process involves many channels or data from neighbouring
muscles. This will create overlapping or redundancy pattern
activity as adjacent muscles generate almost similar signal
in response to hand grip or movement. This will lead to
an impaired pattern classification performance. There are
several other factors that may affect the performance of
pattern classification and these have been studied by many
researchers. For example, the effect of electrode location [8].
Khushaba in his work [9], analyzed two EMG channels to
recognise ten hand movements, but using various muscle
positions, which implicate their results especially in time.

This work is introduced to propose a new approach,
which is believed to resolve some of the issues mentioned
previously. Accuracy and time processing will be improved
as the muscle usage is reduced. Most of the studies on EMG
nowadays are liberally focused on the quality of the features
extraction. These include time domain [10], [11], frequency
domain [12], [13], and time-frequency domain [14], [15]. It
is proved that the features are the main factors contributing
towards real time application. However, the use of adjacent
muscles is merely important as this will improve the clinical
practicability, as well as reduce the number of channels to
be used in the data collection.

In this study, the users’ hand grip force and arm move-
ments from flexor (FDS and FCR) and extensor (ECRL and
EDC) muscles were recorded. These two muscle in their
specific functionality was acknowledged as the neighbouring
muscles.The general view of human upper forearm and
their muscles are divided into four layers as shown in
Figure 1, from first to fourth layers, and two compartments
(anterior and posterior). Anterior compartment is separated
by posterior compartment by two bones (ulna and radius),
interosseous membrane, and lateral intermuscular septum
[16]. FDS and FCR muscles lies between each other without
any disturbance at the supreme position of the forearm, while
ECRL and EDC at the bottom region. The interest is to study
and explore the impracticability of using of adjacent muscles
such as FDS and FCR for flexing, while ECRL and EDC
for extension. The findings will be concluded in the result
section.
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Fig. 1: (a)Human upper forearm; (b)the layers of decomposition of
human upper forearm muscles

II. METHODOLOGY

Nine subjects, seven males and two females, aged be-
tween 20-40 years were chosen to perform several finger
pinches and hand grasping movements. The subjects were
clearly indicated as normally limbed with no muscle disorder
within two years back. This study has been rewarded an
ethical approval by the Ethical Committee of the University
of Sheffield, United Kingdom (Department of Automatic
Control and Systems Engineering). All participants observed
and acknowledged the university research ethics committee
approvals and gave informed consent to participate in the
study.

The data has been recorded using five EMG channels from
Vernier sensor with 12 bit resolution and 5V input. It was
sampled at 2000 Hz frequency sampling. The electrodes was
placed at the centre area of each muscle, and electrodes
were equally space within 20mm distance accordance to
SENIAM protocols [17]. No filter were implemented in this
EMG data as the acquisition procedures was done with
minimal effects of power line interference. Two types of
arm movement (finger pinches and hand grip force), with a
total of seven hand movements were considered in this study.
These prescribed as FP1, FP2, FP3, FP4, HG Neutral, HG
Flex and HG Extension. Each subject maximum voluntary
contraction (MVC) for each class was recorded. They were
asked to performed different percentage of MVC (20%, 40%,
60%, 80%, 100%) as shown in Figure 2.

Subject sat in front of battery powered computer with
vernier Labquest Mini software. We therefore displayed
the raw signals and force power on the portable monitor
to help the subject to perform the hand movement with
the necessary MVC contraction. Three trials of each hand
movement were recorded while each motion was sustained
for a period of 5 sec only with a resting period of 5 sec given
between motions. The subject movements recorded signal
were conducted at different days for the different muscle.

In this study, we only used the first part of MVC data
that is 20% MVC. This is because, we would like to have
an analysis which will give us the best understanding on

Fig. 2: (a)Seven types of hand movements used in this study:
Thumb-Index finger pinch (FP1), Thumb-Middle finger pinch (FP2),
Thumb-Ring finger pinch (FP3), Thumb-Little finger pinch (FP4),
neutral hand grip (HGN), flexion hand grip (HGF) and extension
hand grip (HGE); (b) percentages of MVC applied in the data
collection, 20%, 40%, 60%, 80% and 100%

muscle performance. The 20% MVC is consider as the EMG
signal gain from the fresh muscle, and would be highly useful
in our current case study. We investigated the variation of
two muscles with respond to the feature performances. Both
muscle were tested using the same technique and approach.
This will acknowledge each individual muscle performance
for the specific task for flexor and extensor muscles.

III. EMG SIGNAL ANALYSIS

A. Feature Extraction

In digital domain, EMG signal were preprocessed before
the feature extraction procedure. We employed a technique
which will minimise the complexity of the processing by us-
ing 5s epoch window for each movements. We had selected
the 5s signal for each hand movement, and combined all the
movement in specific order so that they are correctly labeled.
All of the other subject EMG signal will be the same. This
kind of preprocessing scheme is employed as the continuous
control of prosthesis requires the feature extraction to be
done in a sliding window manner [18]. We used 5s epoch
window to make sure that no data are neglected since our
acquisition protocols require the subject to perform hand
movement task in 5s time frame. 100ms overlapped window
increment was used for the whole signal in the feature
extraction.

Feature extraction is considered as the main part of this
study. It will gives the most compact and informative set of
indicators, especially when dealing with the most condensed
signal such as EMG. The features selected to be used in
this study is the feature that able to involve with EMG
based control, attained maximum class separability, showed
robustness in noisy environment, and must be associated with
computationally low complexity [9]. This is crucially needed
as the features will have to work in real time environment,
as introduce by [19], yielded better pattern classification
performance in EMG.

Therefore, we employed several feature techniques as a
significant method to extract useful information and to avoid
redundancy. Six (6) time domain (TD) features; root mean



square (RMS), integrated absolute value (IAV ), zero cross-
ing (ZC), waveform length (WL), slope sign change (SSC),
auto regression 6th order (AR6), and six (6) frequency
domain (FD) features; root square zero order moment (m0),
root square second (m2) and fourth order moments (m4),
sparseness (S), irregularity factor (IF ), and lastly waveform
length ratio (WLR), were used in this study. This features
was deliberately discussed and used by many researchers
such as [20], [21], [22].

B. Dimensional Reduction

Principal component analysis (PCA) is a technique that
compressing the high dimensional dataset into something
that captures the essence of the original data. It is a gen-
eralization of Fisher’s linear discriminant, a method used in
statistics [23]. PCA solve the eigen problem in the dataset
of sample distributions or known as features. PCA calculates
the eigenvalues and eigenvectors of the covariance matrix
of the features. The direction should maximise the variance
and orthogonal to the features. PCA has been used widely
in many pattern classification, especially in bio-engineering
field and robotic controls [24], [25].

If we have an X dataset with n samples × m measure-
ments. The dimensional mean vector (µ) and covariance ma-
trix of X (ΣX) will be computed for the full data set. PCA
will calculates the eigen decomposition of the covariance
matrix of (ΣX=XTX), producing the eigenvectors (W ),
and eigenvalues (λ), which will be sorted as the highest
magnitude will be at first. Eigenvalues are important for
future analysis as it will help in the deciding the number
of orthogonal components, while eigenvectors will establish
the connection between the new components and the original
variables.

Another type of dimensional reduction technique em-
ployed in this study is one of a variant of linear discriminant
analysis (LDA) known as uncorrelated linear discriminant
analysis (ULDA). LDA as widely discussed in [26], [27],
[28], is a linear combination of variables that best separate
classes or targets. The idea of proposing ULDA by [29] in
2001, because of the limitation problems in classical LDA
requires the scatter matrices to be non singular, and lack
of supervision of the dataset decorrelation. This will give
poor results when dealing with high sets of redundancy in-
formation of datasets. Then Ye et al. in 2004 continued with
this new approach of dimensional reduction, namely ULDA,
which employs the Generalized Singular Value decomposi-
tion technique to deal with undersampled data by producing
the features in the transformed space are uncorrelated. The
details of ULDA theories is rigorously explained in [30].

In this study, the features extracted from the TD and FD
sets were computed. The content of the features were then
was subjected to the dimensional reduction using PCA and
ULDA. The features number was dimensionally reduced to
10 as to not overload the classifier in pattern classification.
Two types of dimensional reduction was used in this study
to compared the performance of stated reduction technique.
These was discussed in the result section.

The reason why dimensional reduction crucially needed
from this study is twofold. At first, we involved with nine
subjects, producing relatively good data for training and test-
ing. Seconds, various number of features has been used, these
affect the high dimensionality problems and implicating the
suitable data processing to be acceptable in ranges. This is
important in any classification study.

C. EMG Muscle Pattern Classification

The approaches for EMG pattern classification in this
study were inspired by [31], [32]. However, this study
discovers the variability of two adjacent muscles at flexor and
extensor region. The objectives are to determine the proper-
ties of individual adjacent muscle while performing the same
task, and to identified a good feature vector with the classifier
performance. Findings from this study, could improves the
use of EMG applications such as hand prosthesis and control.
This could lead towards minimising the numbers of channel
used or redundancy issues in EMG data collection. LDA as a
classifier, is famous when dealing with pattern classification
as it helps to reduce the dimensional projection problem of
features. LDA preserves as much of information or class
determination while performing the reduction.

Since we acquired the EMG signal from nine subjects,
the dataset from first 5 subjects was used as training, and
the testing dataset will be from the last 5 subjects. This will
includes the overlapping dataset for the training and testing
for fifth subject. This type of dataset arrangement will be
used in our pattern classification analysis to evaluate the
muscle performance.

IV. RESULTS

At first section of our analysis began by inspecting the
separability of the chosen features used in this study. The
EMG features extracted from the different hand movements
was plotted using scatter plot by Matlab. We showed the
example observation of the FCR,FDS, ECRL and EDC
muscles of first subject, their features distribution across
seven types of hand movements as in Figure 3 to Figure 10.
The scatter plot figures was displayed to show that different
types of muscle features especially in time and frequency
domains were exhibiting distinctive classes of separability
performance with respect to feature reduction technique
applied. These figures represent TD and FD and scatter plots
were constructed upon the most three discriminant feature
components after the dimensionality reduction method using
PCA and ULDA respectively.

In comparison as in Figures 5,6,9,and 10, the figures show
an example of analysed FD features when projected with
PCA and ULDA. It is very obvious that both features have
larger variance when ULDA reduction is used as compared
to the PCA. PCA gave poor class separability where the
features look compact in the same region especially for flexor
muscle. Fortunately, all muscles performing well when using
ULDA, where the distribution seem to form clear class of
hand movement.



 

Fig. 3: FCR;TD features with PCA

 

Fig. 4: FCR;TD features with ULDA

 

Fig. 5: ECRL;FD features with PCA

 

Fig. 6: ECRL;FD features with ULDA

 

Fig. 7: FDS;FD features with PCA

 

Fig. 8: FDS;FD features with ULDA

 

Fig. 9: EDC;TD features with PCA

 

Fig. 10: EDC;TD features with ULDA



A. Pattern Classification
PCA performances in distributing the feature components

are inconsistences and ULDA in both features performed
very well. The scatter plot of FD feature components show
a good consistency and look promising in the class separa-
bility. Each muscles showing their own characteristic within
class variance in each hand movement. We examined the
performances of all subjects, with training and testing, the
results is concluded as tabulated in Table I.

LDA classifier architectures is proven to perform the
equivalent performance as k-nearest neighbour (kNN) or
multilayer perceptron neural network (MLPNN) [33]. We
performed an analysis of training and testing data for the
LDA classifier based on the features extracted from time and
frequency domain components. There is high accuracies has
been generated by both reduction methods. ULDA has shown
the utmost classification performances by giving >98%
average for both TD and FD training features. While for
PCA, less than 92% average achieved for both TD and FD
training features. The trend appeared almost the same on
testing data with ULDA performing much better than PCA.

TABLE I: Training and testing data classification accuracies using
PCA and ULDA for both time and frequency domain features.
Training data has an excellent performance for both domain and
reduction technique. However, performances of testing data are
slightly low.

Analysis
Muscles

Training Data (%) Testing Data (%)

Domain PCA ULDA PCA ULDA

Time FCR 86.9432 99.5392 85.3403 90.8377
Domain FDS 85.4071 98.9247 87.8272 92.0157

ECRL 98.6175 99.6928 93.7173 94.2408
EDC 97.0814 99.3856 94.3717 99.8691

Frequency FCR 91.5515 97.3886 81.4136 87.9581
Domain FDS 88.0184 98.1567 91.0995 93.9791

ECRL 97.3886 99.232 80.6283 84.8168
EDC 94.7773 98.4639 81.6754 76.8325
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Fig. 11: Similarity performances between adjacent muscles of flexor
(FDS and FCR) and extensor (ECRL and EDC) using PCA and
ULDA for both time and frequency domain features. Both type of
muscles has shown significant results for TD and FD.

V. CONCLUSION

There are reciprocal trends appeared in the performance
of adjacent muscles where different reduction technique
gaves unlikely performances. FCR and FDS muscles tends
to perform well when ULDA are applied. Meanwhile, ECRL
and EDC muscles responded very well on the PCA compared
to ULDA. This has been illustrated as in Figure 11. These
phenomenon however, does not affect the objective of the
study, where the overall performance between muscles could
be the ultimate justification. These could be seen in the
bar graph, the similarity performance between both adjacent
muscles are high, less than 5% gap for both flexor (FCR and
FDS) and extensor (ECRL and EDC) muscles in average.
These are applicable for both domains of feature analysis.

Based on these findings, this study concluded that the
adjacent muscles performing almost similar at all subject
(in this study contexts). It is suggested that, the number of
muscles used in the data collection could be reduce as it
would make the analysis better. This also would help the
researchers to be efficient in the time and money spending
in the data collection. However, the deservedness of reducing
the number of channels or muscles used should reflect the
study objectives. An early study in assessing the forearm
muscles has been done and published in 2017 [34]. The study
explored and evaluated the new approaches of data collection
and assessing the human upper forearm muscles with force
variations, as well as muscle fatigue. It is suggested that the
most applicable use of muscle is to establish the inter-relation
between two regions of human upper forearm. The protocol
strategy set up for the study has given a good compatibility
for the current research interest.

VI. FUTURE WORK

Future works are suggested to includes time-frequency
domain in the classification with fatigue consideration. Fa-
tigue study is important as it is the major contribution
of the destruction of muscle capability. This is believe to
be beneficial for the development of control strategy of
prosthetic arm.
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