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Abstract: This paper faces a central theme in applied statistics and in-
formation science, which is the assessment of the stochastic structure of
rank-size laws in text analysis. We consider the words in a corpus by rank-
ing them on the basis of their frequencies in descending order. The starting
point is that the ranked data generated in linguistic contexts can be viewed
as the realisations of a discrete states Markov chain, whose stationary dis-
tribution behaves according to a discretisation of the best fitted rank-size
law. The employed methodological toolkit is Markov Chain Monte Carlo,
specifically referring to the Metropolis-Hastings algorithm. The theoretical
framework is applied to the rank-size analysis of the hapax legomena oc-
curring in the speeches of the US Presidents. We offer a large number of
statistical tests leading to the consistency of our methodological proposal.
To pursue our scopes, we also offer arguments supporting that hapaxes are
rare (“extreme”) events resulting from memory-less-like processes. More-
over, we show that the considered sample has the stochastic structure of
a Markov chain of order one. Importantly, we discuss the versatility of
the method, which is considered suitable for deducing similar outcomes for
other applied science contexts.

Keywords and phrases: Markov Chain Monte Carlo, Zipf-Mandelbrot
Law, Ranked data, Text analysis, Hapax Legomena.

1. Introduction

The rank-size analysis has a well-established theoretical framework in the broad
context of applied science, whose grounding researches are often identified in the
landmark contributions of Zipf and Mandelbrot, Zipf (1935, 1949); Mandelbrot
(1966).
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Such a theory’ quantitative ranked data behaviour through best-fit proce-
dures. If the best fit procedures lead to statistically sounding results – i.e.,
the goodness-of-fit indicators associated with the best fit curve have satisfac-
tory values – then one can reasonably infer that the best fit curve represents
a macroscopic global unified system. Such a framework effectively summarises
the considered microscopic local disaggregated data.

Getting hints from disaggregated data about a unified system can be crucial.
Indeed, interpreting the best fit calibrated parameters might give several insights
into the phenomenon under investigation. In this respect, the role of the family
of parametric curves to be fitted is of particular relevance.

For all these reasons, the rank-size theory is still fresh and constantly at the
centre of the interest of scientists from different fields, ranging from economics
(see, e.g. Cerqueti and Ausloos, 2015; Dimitrova and Ausloos, 2015; Giesen and
Südekum, 2011) to the measurement of science like bibliometric studies (see, e.g.
Ausloos, 2013, 2015) and seismology (see, e.g. Ficcadenti and Cerqueti, 2017).
Recent examples are also Cerqueti and Ficcadenti (2022) – where the new death
per million due to COVID-19 are ranked for several countries and fitted in a
rank-size relationship to feed a clustering algorithm. Similarly, in Ficcadenti,
Cerqueti and Varde’i (2022), the rank-size relationship is used to compare the
team’s final score in the Italian “Serie A” football league.

Usually, the rank-size theory is grounded on the exploration of empirical sam-
ples. However, the probabilistic structure of the rank-size analysis represents a
challenging task to be discussed. Indeed, the probabilistic structure of a rank-
size analysis is the stochastic process taking values in the set of the ranks and
such that the rank-size distribution is the long-run distribution of the process
outcomes. Such a structure provides relevant information. It allows us to as-
sess how the ranked terms (in our context, the ranked hapaxes) occur; for the
specific case of hapaxes, we observe that the stochastic process related to their
occurrence is a Markov chain of order one. The knowledge of the stochastic
structure leads then to the possibility of explaining the patterns of the rank-size
distribution creation and the possibility of deriving future outcomes.

Our paper aims to contribute to this direction in the paradigmatic context
of linguistics and textual data. We aim to detect the stochastic structure of
text-based rank-size laws. Specifically, we build a stochastic process whose evo-
lution leads to reproducing the considered ranked data distribution. We seek a
stochastic process whose asymptotic distribution reproduces a discretisation of
the best fit curve.

Even if the scientific problem is rather general, the nature of the involved
stochastic processes must be tailored to the linguistic nature of the given rank-
size problem. In fact, the a priori selection of a particular family of stochas-
tic processes should follow and be in agreement with the features of the phe-
nomenon under scrutiny. Despite its relevance, the general connection between
the stochastic structure of a group of ranked data and the phenomenon mea-
sured through them seems, to us, not clearly debated in the literature (studies
like Dodds et al., 2017, certify the interesting ongoing debate about it). The
approach to constructing a probabilistic model related to a rank-size law is
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grounded on interpreting the resulting rank-size distribution as an outcome of
a stochastic process. In this respect, it is worth mentioning the preferential
attachment context, where the idea is to define a step-wise procedure in the
framework of the urn problem, as in Polya’s process (see Mahmoud, 2008) and
in the presence of rules stating the addition of balls in the urn at every step.
An example is in Ausloos and Cerqueti (2016), where a rank-size law was also
discovered. Also, in the presented context, a preferential attachment approach
might be meaningful and valid – under the obvious requirement that the asymp-
totic distribution of the stochastic process represents a statistically significant
approximation of the rank-size law. Thus, to explore the proposed problem, we
here present the specific rank-size setting coming from the text analysis envi-
ronment by analysing a collection of rare words whose frequencies in a corpus
correspond to the sizes in a rank-size analysis (see Corral and Font-Clos, 2017,
for a discussion on the text-length dependence of word-frequency distributions).
The considered framework offers room for discussions and scientific explorations
(see, e.g. Ausloos, 2010; Rovenchak and Buk, 2018).

In this special context, as we will see below, we work with Markov chains
with discrete states, representing a good choice for data-generating processes.

In particular, we move from the step done in Ficcadenti et al. (2020); Fic-
cadenti, Cerqueti and Ausloos (2019) and consider the rank-size analysis of the
hapax legomena or, simply, hapaxes – which are the words occurring only once
in a given text; they can be viewed as rare events, in a text time series – of an
extensive collection of the speeches of the US Presidents. In Ficcadenti, Cerqueti
and Ausloos (2019), words from each speech are ranked in decreasing order, and
their frequencies give the sizes to the rank-size relationship there used. In Ficca-
denti et al. (2020), only the hapaxes legomena are considered in each speech, so
the hapaxes’ size is the number of speeches in which they have been pronounced
only once. The authors selected the Zipf-Mandelbrot law as the rank-size curve,
and their best fit procedure leads to statistically satisfactory results (see Fic-
cadenti et al., 2020, for further details on the rank-size analysis). Importantly,
in using the hapaxes of the corpus presented in Ficcadenti et al. (2020); Ficca-
denti, Cerqueti and Ausloos (2019), we provide and model a feature of a set of
speeches produced by different writers over a long period. The corpus related
to the US Presidents’ speeches is of high quality for its inner characteristics of
being composed of carefully written texts. Moreover, it is much more informa-
tive at a global level than the disaggregation of the individual speeches. These
arguments let the considered example be of particular interest.

In such a rank-size context of text mining type, we propose the construction
of a stochastic model that captures the process of leading to hapaxes inclusion in
the speeches. With this aim, hapaxes are evaluated through their ranks and are
assumed to be the result of sampling from a stochastic process producing rare
events. We here discuss how Markov chains can be viewed as hapaxes generators
(see Norris, 1998, for a broad description of the Markov chains). In particular, we
assume that the calibrated Zipf-Mandelbrot law found in Ficcadenti et al. (2020)
drives the construction of the stationary distribution of such Markov chains.
Detailed reasons to consider the Markov chain assumption as a suitable choice
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in our context are also provided. Moreover, we present statistical evidence that a
Markov chain of order one fits the considered sample. The problem is discussed
from a theoretical point of view, and later it is also assessed in the numerical
framework of the Markov Chain Monte Carlo (MCMC) through a Metropolis-
Hastings algorithm (see, e.g. Metropolis et al., 1953; Hastings, 1970).

The versatility of the MCMC approach is witnessed by several scientific pa-
pers in a large set of areas and scientific domains. In Liu and Li (2016), the
authors discuss merging Bayesian analysis and MCMC to overcome the com-
putational complexity of the estimation procedures. In a more applied context,
Kwon (2020) proposes an MCMC approach for building a robust visual tracker
by empirically showing that the introduced device outperforms several visual
tracking methods. In Cerqueti, Giacalone and Mattera (2020), there is a spe-
cific reference to MCMC for implementing forecasting of the volatility in the
environment of financial markets. A list of relevant contributions in the liter-
ature highlighting the worthiness of MCMC for applications and for method-
ological advancements should include e.g., Yang, Guo and Kong (2019); Zanella
(2020); Austad (2007); Luengo et al. (2020); Mira (2001); Martino (2018). The
interested reader is also addressed to the high-level scientific contributions of
Diaconis, whose reflections are synthesised in Diaconis (2009, 2013).

However, to the best of our knowledge, this is the first paper dealing with the
derivation of the stochastic structure of the text-based rank-size laws through
an MCMC approach.

The obtained findings are particularly interesting. They confirm that hapaxes
occurrences in the individual texts collected in a corpus can be viewed as real-
isations of Markov chains on a sequential basis. Furthermore, the algorithmic
construction of such a stochastic process is provided. We notice that the Markov
chain presented in this paper falls in the category of the stochastic processes,
which have strong motivations for being used, and it generates pretty perfectly
the rank-size law (see Section 3 for a discussion on this point). In this respect,
we pay particular attention to the statistical aspect of the convergence of the
MCMC algorithm – see Section 5.1. Furthermore, we provide several tests for
stating the worthiness of identifying the Markov chain as a generator of the
rank-size law related to hapaxes. For these reasons, we point out that the pro-
posed Markovian process identifies the stochastic structure of the considered
rank-size law in a very general sense. The proposed method implies that several
linguistic-based rank-size laws can benefit from our considerations of the role
of underlying Markov processes. The case of the hapaxes of the US Presidents’
speeches represents a pertinent illustration with a high degree of complexity.

The rest of the paper is organised as follows. Section 2 is devoted to the sum-
mary of the rank-size analysis presented in Ficcadenti et al. (2020). It outlines
the data, the methodology and the results of the rank-size analysis implemented
in the quoted paper. Section 3 proposes a discussion of the motivations for con-
sidering that a Markov chain generates hapaxes by giving statistical evidence on
the Markovianity of the ranked data. Section 4 contains a statistically rigorous
analysis of the nature of the Markov chain of order one of the stochastic process
generating the considered ranked data. Section 5 is devoted to the formal con-
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struction of the Markov chain generating the ranked hapaxes; it also presents
the convergence of the procedure – hence further validating the proposed frame-
work – and a discussion of the obtained results. The last Section offers some
conclusive remarks.

2. Outline of the text-based rank-size context: the case of the
hapaxes of the US Presidents’ speeches

This section presents a summary of the rank-size analysis proposed in Ficcadenti
et al. (2020). Please refer to the quoted paper for all the technical details on
finding hapaxes.

The considered hapaxes list is taken from a corpus of 951 official speeches
delivered by the US Presidents, ranging from 1789 (George Washington) to
2017 (Donald Trump). The transcripts of such speeches have been retrieved
from the Miller Center website. The links to the talks1 can be found in https:

//millercenter.org/the-presidency/presidential-speeches.
After some data treatment phases (see Ficcadenti et al., 2020; Ficcadenti,

Cerqueti and Ausloos, 2019), 951 double columns are obtained – one for each
speech – they contain the words and their frequencies in the considered speech.
The words with unitary frequency are the hapax legomena used in each speech.
The resulting list of words said once (with repetitions) contains 509138 elements.
The distinct hapaxes have been collected in a unique set so that the hapaxes’
occurrences in the corpus correspond to the number of speeches in which they
have been employed as hapaxes. Such numbers are intuitively labelled as fre-
quencies of the hapaxes. The frequency of an hapax represents its size in our
rank-size context.
Frequencies range from 1 to 250, so the number of distinct hapaxes is 31074. To
be self-contained and to assist the reader in grasping the quantitative features
of the hapaxes frequencies, we reproduce here the statistical summary of the
hapaxes frequencies as reported in Ficcadenti et al. (2020) (see Table 1).

Hapaxes are ranked in decreasing order; the hapax legomenon with frequency
250 has rank 1. We denote the size of an hapax by s and its rank by r.

The best fit procedure is implemented by using a Zipf-Mandelbrot law, whose
parametric functional shape is the following:

s = f(r) =
α

(β + r)γ
, (1)

where α, β, γ are real parameters; they have to be calibrated according to the
considered dataset.

Table 2 contains the results of the best-fit analysis, with the calibrated pa-
rameters and the goodness-of-fit indicators. As already observed in Ficcadenti
et al. (2020), there is excellent compliance of the ranked hapaxes with the curve
presented in Eq. (1) (see also Figure 1).

1Notice that tweets and speeches before the pandemic are excluded
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Fig 1. Graphical representation of the best-fit curve according to formula (1), with parameters
given in Table 2. The scatter plot of the considered dataset is also juxtaposed.
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Statistical indicator Value
N. OF DATA POINTS (HAPAXES) 31074

MEAN (µ) 16.3850
VARIANCE (σ2) 1034.2965

STANDARD DEVIATION (σ) 32.1605
SKEWNESS 3.2451
KURTOSIS 11.5989

MEDIAN (m) 3
MAX 250
MIN 1
RMS 36.0934

STANDARD ERROR 0.1824
µ/σ 0.5095

3(µ−m)/σ 1.2486

Table 1
Main statistical indicators related to the frequencies of the hapaxes found in the considered

speeches of the US Presidents.

α̂ β̂ γ̂
6.029 × 108 2540 1.896

(5.676 × 108, 6.381 × 108) (2525, 2554) (1.890, 1.902)

Table 2
Values of the calibrated parameters in the best-fit procedure, by using the Zipf-Mandelbrot

law in Eq. (1). In the brackets, the ranges of the confidence intervals at the level 95%.

3. Motivations behind the Markovian hypothesis on hapaxes
generation

We provide here detailed arguments leading to interesting connections between
the proposed first-order Markov chains and the hapaxes pronounced by the US
Presidents. In doing so, we justify and support the selection of Markov chains
as stochastic processes to be used as a generator of the ranked data. In the next
section, we validate the selection of the Markov chain of order one as the data
generating process of ranked data, considering the case of the US Presidents’
speeches hapaxes.

• Under the thematic point of view, there is a remarkable heterogeneity
among the speeches of the US Presidents. Indeed, socio-historical con-
texts vary rapidly, and the US President has to timely intervene precisely,
including in his discourses the most recent and relevant aspects of sociopo-
litical issues. Under the viewpoint of speeches’ structures and the use of
words, which we explore here, heterogeneity disappears, and the discourses
exhibit a high degree of homogeneity. As the nature of the US Presidents’
speeches suggests, the hapaxes meet some communication targets. There-
fore, one can argue that the speeches cannot be viewed as disaggregated
but rather compounded in a unified flow.
In analysing the sequences of speeches, a “time unit” is the “distance”
between the appearance of two consecutive hapaxes, so that the first ha-
pax occurs at time t = 0 (initial value), the second hapax appears at time
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t = 1, the third one is at time t = 2 and so on. Two consecutive hapaxes
may belong to the same speech; alternatively, one is the last of one speech,
and the other is the first hapax of the following speech containing at least
one hapax. We can conclude that the stochastic process that generates the
hapaxes has a discrete-time underlying structure; this is perfectly in line
with the considered Markov chain concept.

• In general, Markov chains represent a useful device to model the stochastic
structure of a data sample (see, e.g. Shayeganfar et al., 2009). Importantly,
by taking Markov chains as hapaxes generators, we align with a relevant
and well-established strand of literature. In fact, the generation of words
through Markov processes has been widely explored in many contributions
(see, e.g. Brainerd, 1976; Robin and Daudin, 1999).
In this respect, we here mention with special attention Nicolis, Nicolis
and Nicolis (1989), where the authors discuss how deterministic chaos
may induce the construction of a Markovian stochastic process with finite
states and whose stationary distribution provides a prefixed distribution
of ranked words. The difference between our approach and the quoted pa-
per lies in the elements of the state space of the Markov chains. Nicolis,
Nicolis and Nicolis (1989) rank the words through their length and iden-
tify states as single characters; terms of length L+ 1 may then be viewed
as ordered combinations of L + 1 states of the chain so that the related
Markov process is assumed to have order L. The separator between two
words is considered to be a special character, the blank space. The quoted
paper takes Zip’s law as the prefixed distribution of the ranked words.
In our paper, we are close to Nicolis, Nicolis and Nicolis (1989). Indeed,
the states are the ranks of the hapaxes in our context. We are implic-
itly assuming that each hapax is one single symbol of a new “alphabet”,
and hapaxes with the same rank – frequency, for us – are identified as a
unique “character”. The separator between two hapaxes is the entire text
between them. Briefly, under the perspective advanced by Nicolis, Nicolis
and Nicolis (1989), we are constructing a novel alphabet, with several sym-
bols given by the maximum considered rank r̄ and words of length L+ 1
given by ordered sequences of hapaxes. We denote it by hapax language.
In the flow of the US Presidents’ speeches, it results that one should search
for a stochastic process generating words of length L+1 in the framework
of the hapax language. With this aim, we adopt an approach based on
Markov chains of order L. We consider a Zipf-Mandelbrot’s law as target
distribution of the ranked words.

• The selection of the order L of the Markov chain in this linguistic context
is a relevant problem (see, e.g. Brainerd, 1976; Robin and Daudin, 1999).
In Begleiter, El-Yaniv and Yona (2004), one can find a thoughtful discus-
sion on the varying order of a Markov chain for words generation in the
light of the varying lengths of the objected words.
In our context, we check L = 1 (see the next section). This outcome is
expected in that it is grounded on an important reason.
Specifically, we recall that a first-order Markov process is a memory-less
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process. Thus, in the context of probability, the Markovianity of order one
is associated with the memorylessness property of a stochastic process.
Indeed, the probability of becoming one of the states of the chain in the
next step depends only on the present state, and it is independent of the
stochastic process’ past states (see, e.g., Gudivada, Rao and Raghavan
2015). Thus, such a property represents the stochasticity of some phe-
nomenon evolution. We argue that hapaxes in a President’s speech are
to be stochastically selected by the speaker (or his/her speechwriter). In-
deed the hapaxes occur once in a speech; they are very specific to one
speech and for some presidents. Of course, these words can be reproduced
in other speeches by the same President or another. However, the words
cannot appear twice in the same speech. Thus, one hapax can be consid-
ered to come from some dictionary black box not containing others more
often used words in the specific speech (a similar idea can be found in
the mental lexicon described in Allahverdyan, Deng and Wang, 2013). An
hapax in a given speech has no apparent relation to the other words in
the speech (except for the grammatical obligations). In this respect, the
dictionary black box has an “infinite memory” of the speeches (even of
the words to come). However, this does not contradict the picking up of a
to-be-hapax word. Thus, an infinite number of steps has been taken into
account in constructing the dictionary black box; but the chosen word is
entirely stochastic and so-called memory-less.
It is worth noting that, beyond what is presented here for hapaxes, we are
aware that several memory steps can occur between two identical words.
Indeed, there is clear evidence of the positive appeal of introducing a
large variety of words in writing (see, e.g., Kadhim, 2022). Thus, looking
at correlations between hapaxes in different speeches might be interesting.
Surely, such a research theme has practical meaning and allows advancing
the methodology of stochastic processes and operational research. Indeed,
such a memory inclusion might lead to a fractional calculus approach, as
one of the authors of the present paper did, for example, Ebadi et al.
(2016). However, this is outside the current logistics approach and quite
outside the present investigation. Of interest, no doubt.

4. Statistical evidence of the Markovianity of the stochastic process
for hapaxes generation

We here statistically discuss the nature of the stochastic processes that serve as
hapaxes generators according to the considered dataset.

All the random quantities will be contained in a probability space (Ω,F ,P).
We start from an empirical sample made by 509138 consecutive observations;

the elements of such a sequence are intuitively labelled by successive integers,
representing the discrete time of the stochastic process. The observations are
the ranks of the hapaxes, as they appear at the end of the observation phase.
According to this perspective and in line with the ranks of hapaxes in the
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considered corpus, the 509138 observations are integer numbers taken from the
set Rank = {1, . . . , 227}. For example, in the “First Inaugural Address”, April
30, 1789, one finds the following:

Fellow Citizens of the Senate and
the House of Representatives:
Among the vicissitudes
incident to life, no event could
have filled me with greater
anxieties than that of which the
notification was transmitted by
your order, and received on the
fourteenth day of the present
month.

George Washington

Those hapaxes highlighted in bold are substituted by their corresponding
rank in the ranked list of hapaxes so that it can be seen as:

Fellow Citizens of the 43 and the
House of Representatives:
12 the 206 150 to 54, no event
could have 143 me with 41 215
than that of which the 207 was
154 by your order, and 64 on the
214 day of the present 98.

George Washington

The problem of hapaxes generation can be synthesised as follows.

Problem P If a President has pronounced a hapax – whose rank in the whole set of
Presidents’ speeches is i ∈ Rank – which is the probability that the con-
secutive hapax has rank j ∈ Rank?

Problem P relies on the data generating process of the ranked data. Accord-
ing to the arguments reported in Section 3, we here provide statistical evidence
that such a process is a Markov chain of order one, with Rank as states space.
To check the Markovianity of the ranked data, Problem P is here faced only
when restricting to the real occurrences in the observed sample. In doing so, we
avoid that the mentioned consecutive rank of an hapax is outside the set Rank.
Such a restriction will be removed in the next section, where we will deal with
future occurrences and construct the data generating process.

Let us consider a discrete-time stochastic process X = (X(t) : t ∈ N) taking
values in a set called Rank and P the related probability law. X is a Markov
chain of order one if we have

P (X(t+1) = it+1|X(t) = it) = P (X(t+1) = it+1|X(t) = it, . . . , X(1) = i1, X(0) = i0),
(2)
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for each t ∈ N and i0, i1, . . . , it, it+1 ∈ Rank.
In the context of empirical studies, the transition probabilities can be es-

timated based on the observed transition frequencies. However, the empirical
estimation of Eq. (2)’s second term offers a high level of computational com-
plexity – as also acknowledged by Renner, Peinke and Friedrich (2001); Friedrich
et al. (2011). Therefore – and in line with the quoted papers – we can write a
less heavy relationship and say that X is of order one when the following sim-
plification of Eq. (2) is true:

P (X(t+ 1) = it+1|X(t) = it) = P (X(t+ 1) = it+1|X(t) = it, X(t− 1) = it−1),
(3)

for each t ∈ N and it−1, it, it+1 ∈ Rank.
So, the transition probabilities of orders one and two appearing in Eq. (3) have

been empirically estimated by looking at the consecutive empirical observations.
Two steps are now carried out. In the First step, we check the validity of Eq.

(3); in doing so, we test that the empirical transition probabilities estimated
by the original sample are associated with a Markov chain of order one. In
the Second step, we show that the obtained Markov chain of order one is a
statistically sounding representation of the original sample, hence leading to
the final statement of the Markovianity of the data.

It is important to notice that the First step could be enough to state the
Markovianity of X. Indeed, by quoting Friedrich et al. (2011), condition (3) is a
strong indication that the data set possesses Markovian properties. However, we
also present the additional analysis performed in the Second step for providing
more robust support to the Markovian probabilistic structure of the historical
evolution of the ranks, having our empirical sample as an outcome.

• First step.

We have run 1000 simulations for both order one and two transition matrices.
This step originates 2000 samples from Markov chains. The lengths of the series
calculated from the first- and second-order transition matrices are different.
The series simulated with the former matrix have 509138 elements – which is
precisely the empirical sample’s length, so we can also use such simulations for
the Second step (see below) – while the ones simulated with the latter matrix
have 100000 values.

Then, the first- and second-order simulated series have been pairwise com-
pared via the Kolmogorov-Smirnov (KS) test (see, e.g., Virkar and Clauset,
2014, where the test has been employed to test if power laws fit binned empiri-
cal data). Namely, the empirical distributions of each simulated series from the
first-order transition matrix have been compared with those of the simulated
series coming from the second-order transition matrix. The KS statistics are
reported in Figure 2 where we also report the thresholds of the statistics at
different significance levels to make the reading more accessible. Almost all the
series can be considered as coming from the same distribution; therefore, there
is no statistical difference between the first-order transition probabilities and
the second-order ones. This outcome supports the validity of Eq. (3) so that the
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Fig 2. The graph contains the Kolmogorov-Smirnov tests statistics generated by comparing
the simulated series obtained using the empirical first-order and second-order transition prob-
abilities. The coloured lines represent the thresholds calculated at various significance levels
(95%, 99%, 99.9%).

Markov chain obtained by using the empirical transition probabilities estimated
from the original sample is of order one.

To additionally verify the validity of Eq. (3), we have compared the simulated
series – with the first- and second-order transition matrices – with each other
employing the Wilcoxon-Mann-Whitney test (see Zipunnikov et al., 2014; Barry,
Nobel and Wright, 2008, where the test has been applied in different fields but
for similar purposes). Such a test is explicitly identified by Friedrich et al. (2011)
as one of the methods to be used for checking Eq. (3). The resulting p-values
reported in Figure 3 confirm the KS tests’ results. Indeed, by visually inspecting
Figure 3, one can notice that most of the p-values – about 90% of them – are
larger than the 5%. Therefore, we have no compelling evidence to conclude that
the series data differ and, rather than this, we can conclude that the series are
obtained by the same data generating process. This finding strongly supports
that the observed data are realisations of a first-order Markov chain.

• Second step.
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Fig 3. The histogram contains the frequencies of Wilcoxon-Mann-Whitney tests’ p-values
generated by comparing the series simulated with the first and second-order transition matrix
calibrated on the observed data. The coloured lines represent the thresholds (5%, 1%, 0.01%).
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We now check that the Markov chain of order one with states space Rank and
whose transition probabilities are estimated from the available observations can
be seen as the data generating process of the original sample. In so doing, we
provide additional evidence that the evolutive process related to the formation
of the target distribution for our MCMC procedure has a Markovian structure.

We consider the 1000 sampling from the first-order Markov chain already
created in the First step. We recall that the length of each simulated series is
the one of the observed empirical sample, i.e. it is 509138.

We have compared the simulated series to the original one from several per-
spectives.

First, the distribution of the values of each simulated series has been com-
pared to the one obtained from the empirical ranked hapaxes through the Chi-
square tests. For the majority of the cases, we accepted the null hypothesis at
the 95% significance level (see Figure 4).

As a second device for comparing the distributions of the simulated series to
the original one, we have implemented a Kolmogorov-Smirnov test. The obtained
results are in line with the ones obtained for the Chi-square test. Furthermore,
they seem to provide more convincing evidence of the validity of the tested
condition (see Figure 5).

To additionally verify that the hapaxes series is a realization of the considered
first-order Markov chains, we have calculated some relevant statistical indica-
tors for the 1000 simulated series. We have compared them to those coming
from the observed hapax series. We considered Mean (µ), Standard Deviation
(σ), Kurtosis, Skewness, and Shannon entropy. Figure 6 contains the results of
such an analysis. By visually inspecting the outcomes, one can notice that the
indicators’ distributions from the simulated series are centred on the associated
statistical indicators computed for the empirical sample.

To conclude, we have found broad statistical evidence that the considered
sample of the ranks of the observed hapaxes can be viewed as a realization of a
Markov chain of order one.

5. Construction of the Markov chain generating the ranked data

This section provides an algorithmic construction of a Markov chain with the
observed ranked data as stationary distribution. As we will see, we follow a
Markov Chain Monte Carlo (MCMC) approach.

We employ and adapt the same notation used in the previous sections with
a reasonable abuse of notation.

The rank-size analysis performed in Ficcadenti et al. (2020) and recalled in
Section 2 assumes that the size of an hapax is given by its absolute frequency,
namely by the number of times in which such a word has been pronounced once
in a US President speech. Differently, we consider in this section the relative
frequencies of the hapaxes. In particular, we construct the random variable R
whose realisations are the ranks and accordingly to the Zipf-Mandelbrot law in
Eq. (1) with calibrated parameters as in Table 2. To this aim, we first set
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Fig 4. The graph contains the Chi-square tests statistics generated by comparing the empirical
distribution of the ranks from the observed hapax series and the empirical distributions coming
from the simulated series. The degrees of freedom are 226, which is the cardinality of Rank
minus one. The coloured lines represent the thresholds calculated at various significance levels
(95%, 99%, 99.9%).
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Fig 5. The graph contains the Kolmogorov-Smirnov tests statistics generated by comparing the
empirical distribution of the ranks from the observed hapax series and the empirical distribu-
tions coming from the simulated series. The coloured lines represent the thresholds calculated
at various significance levels (95%, 99%, 99.9%).
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Fig 6. Each sub-graph contains the distribution of the respective statistical indicator calculated
for each simulated time series. The coloured lines represent the values of the same indicators
coming from the observed time series of hapaxes’ ranks.
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P(R = r) = Fr, ∀r = 1, . . . , r̄, (4)

where r̄ is a prefixed threshold larger enough than the empirically observed
highest value for the rank and Fr is given by

Fr =
f(r)∑r̄
h=1 f(h)

, r = 1, . . . , r̄ (5)

being f(r) defined as in Eq. (1) with calibrated parameters as in Table 2.
Equations (1) and (5) assure that Fr decreases with respect to r. The criteria

to select the value of r̄ – and the meaning of the term larger enough mentioned
above – will be discussed later.

Evidently, the vector F = (F1, . . . , Fr̄) represents a discrete probability dis-
tribution over the set Rank = {1, . . . , r̄} collecting the ranks. As we will see in
detail below, F is the stationary (target) distribution of the MCMC procedure.

We here construct a Markov chain in the light of the Problem P introduced
in Section 4.

The formulation of Problem P gives the intuition of the meaning of large
enough associated to r̄. Indeed, we here project the analysis in the future and
do not restrict here only to the set of observations. Thus, the ranks of future
hapaxes should also include the possibility of going beyond the maximum rank
of the original sample, and a large value of r̄ guarantees a consistent procedure
in this sense.

The temporal evolution of the hapaxes has to be intended in the sense of the
proposed overall analysis of the speeches, which means that two hapaxes are
consecutive when they are sequentially pronounced in the same speech, or one
is the last of a speech and its consecutive is the first of the following speech with
at least one hapax.

We introduce a homogeneous Markov chain X = (X(t) : t ∈ N) with finite
states space Rank. We assume that hapaxes are not evaluated in the light of
their semantic values but through their ranks, and they have been pronounced
accordingly to the Markov chain X. In so doing, we propose a response to
Problem P by dealing with the conditioned probability

P(X(t+ 1) = j|X(t) = i) ∀ i, j ∈ Rank. (6)

Since the Markov chain X is taken homogeneous, then Problem P reduces
to the identification of the r̄ × r̄ transition probability matrix Π = (πij : i, j ∈
Rank), where πij = P(X(1) = j|X(0) = i) is the element at row i and column
j (again, where i and j also represent ranks). Namely, we are considering the
probability of getting an hapax of rank j after that a hapax of rank i has been
employed by the speaker.

To identify Π, we assume that the probability distribution in F represents
the stationary distribution of the Markov chain. Such an assumption lies in the
evidence that the original sample of the entire set of the Presidents’ speeches
is so large that F may be effectively viewed as the limiting distribution of the
Markov chain when time goes to infinity.



/Markov Chain Monte Carlo for generating ranked textual data 19

This said the Problem P can be mathematically translated to the following
stochastic calculus problem.

Problem P’ Identify a squared stochastic probability matrix Π of order r̄ such that the
homogeneous Markov chain X = (X(t) : t ∈ N) with Π as transition
matrix has stationary distribution F .

Standard Markov chain theory gives conditions for the existence and the
uniqueness of the stationary distribution of a given Markov chain. We are dealing
here with the inverse problem of assessing the transition probabilities from the
knowledge of the limiting distribution. We cannot expect the existence of a
unique Markov chain with state-space Rank and stationary distribution F .

The relationship between the stationary distribution F and the transition
probability matrix Π, along with the explicit reference to the stochasticity con-
dition of Π, can be written in matrix form as follows:{

F ·Π = F
Π · 1(r̄, 1) = 1(r̄, 1)

(7)

where 1(r̄, 1) is the r̄-dimensional column vector filled by ones.
Eq. (7) corresponds to a linear system with 2r̄ equations in r̄ × r̄ variables,

so that it cannot have a unique solution in the general case of r̄ ≥ 3 – which is
exactly the cases we are dealing with.

More specifically, the classical Rouché-Capelli Theorem states that one of
the following alternatives is true: the system does not admit solutions, or it can
have an infinite number of solutions dependently at least on r̄2−2r̄ parameters.
In both cases, the assessment of the transition probability matrix through the
closed-form expression in Eq. (7) does not represent an efficient way to solve
Problem P’.

Thus, one can reasonably deal with a numerical rewriting of Problem P’,
whose algorithmic version can be rewritten as it follows:

Problem P” Identify a homogeneous Markov chain X = (X(t) : t ∈ N) with state
space Rank and whose empirical distribution converges to F as t goes to
infinity.

In formula, Problem P” means that we are looking for a Markov chain X such
that

P

(
lim
t→∞

1

t

t−1∑
s=0

1{X(s)=r} = Fr

)
= 1, ∀ r ∈ Rank, (8)

where 1• is the indicator function of set •.
The assessment of the Markov chain X which satisfies the condition (8) is pur-

sued by adopting an MCMC procedure, with a specific focus on the Metropolis-
Hastings algorithm (for the details of this numerical strategy, refer to the orig-
inal contributions Metropolis et al. 1953; Hastings 1970). The implementation
details are reported in the next subsection.

Indeed, the scope of an MCMC procedure is to construct a reversible regular
Markov chain with an a priori given stationary distribution. Among the wide set
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of the proposed algorithms in the literature, Metropolis-Hastings is particularly
appropriate. The only drawback of the Metropolis-Hastings algorithm appears
when the state space of the Markov chain is huge. In our specific case, we do
not have a critically large cardinality for the state space of the Markov chain,
in that the most frequent hapax occurs 250 times (and the maximum rank is
227 as also stated in Ficcadenti et al., 2020). Therefore, a reasonable value of r̄
should be greater than 227 but not too far from such a value.

The Metropolis-Hastings procedure is based on an iterative generation of a
sampled value j at a time t+1 conditioned to the value i at time t. The generation
is based on a transition probability qij which can be prefixed according to a
specified conditional probability distribution over the set Rank – specifically,
a uniform distribution over the set Rank in our experiments. Then, a function
a : Rank2 → [0, 1] is introduced, so that (i, j) 7→ a(i, j), which is the probability
of accepting j at time t+1 once i has been observed at time t. Such a probability
does not depend on t, and it is given by

a(i, j) = min

{
1,
Fjqji
Fiqij

}
∀ i, j ∈ Rank. (9)

If the value j is rejected, then the process remains in i. In so doing, we construct
iteratively the Markov chain X.

5.1. Experimental test and convergence

To test the validity of the stochastic process class proposed in the previous
section, we implement the Metropolis-Hastings algorithm and here we describe
the experimental setup employed.

In our simulation procedure, we assume uniform transition probabilities, so
that qij = 1/r̄ for each i, j ∈ Rank. In so doing, Eq. (9) becomes:

a(i, j) = min

{
1,
Fj
Fi

}
∀ i, j ∈ Rank. (10)

We set r̄ = 300. Furthermore, Eq. (5) with the parameter setting presented
in Table 2 is used to generate the probability of extracting a certain rank.
Given this framework, we need to test the algorithm’s convergence to the target
distribution. Indeed, convergence is a relevant issue to be explored since it is
not true that the MCMC algorithm creates a Markov chain that inevitably
converges to the target asymptotic distribution. We briefly elaborate on this
point.

As already said, some critical aspects related to convergence can be found in
the existence of tiny transition probabilities – a typical feature of state spaces
with large cardinality – or in identifying the state space structure in the mul-
tivariate setting. The former criticism appears when the Metropolis-Hastings
algorithm is used – which is exactly the adopted procedure; the latter one is
associated with the case of the Gibbs sampler (see, e.g. Geman and Geman,
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1984). Interestingly, Diaconis proposed his own reading of how the convergence
of the MCMC algorithms is a central theme in applied probability. In Diaconis
(2009, 2013), this outstanding scientist traces the route for future developments
of MCMC in both theoretical and application advancements. A relevant dis-
cussion on the convergence of the MCMC procedures can be found in Sinharay
(2003). The author presents a survey on the matter and acknowledges that ”A
number of other diagnostics compare the sampled distributions obtained from
the MCMC for different runs [...]; convergence is concluded when the difference
between some aspects of the empirical distributions [...] over the different runs
is negligible in some sense”. The quoted paper states also that [...] ”one should
measure the distance between the sample distribution and the target posterior
distribution” [...]. In this paper, we take for us these pieces of advice by measur-
ing the distance – KS, as we will see below – between the sampled distributions
for different runs and the posterior target distribution.

At this aim, we simulate the generation of N = 100000 consecutive hapaxes’
ranks, and the results are saved in a vector X. The algorithm is implemented
in R; here is a summary of it:

/* for cycle to generate the N step of the MCMC */

for t← 1 to N − 1 do
j ∼ Uniform(Rank) ; /* extr. of a number from a

distribution which is uniform in Rank */

a ← min

{
1,
F r(j)

Fr(xt)

}
;

u ∼ Uniform(0, 1) ; /* extr. of a number from a uniform in

(0, 1) distribution */

if u ≤ a then /* if to decide which is the step xt+1 */

xt+1 ← j;
else

xt+1 ← xt;
end

end

Algorithm 1: MCMC algorithm to generate the chain of hapaxes ranks

The distribution of the N simulated realisations of the Markov chain is then
derived. We then perform the KS test to obtain the statistical similarity between
F and the distribution obtained through the MCMC procedure. The KS test
is implemented by computing the differences between the empirical cumulative
distribution and the simulated ones. The biggest absolute differences are taken
as KS test statistics and compared to the threshold values calculated as in Knuth
(1997) (Eq. (15) in Section 3.3.1), namely with the following formula:

Tn,m =

√
−0.5 ln (α)

N +M

NM
α = 0.05, 0.01, 0.001, (11)

where N and M are the sample sizes – respectively 100000 and 31074 in our
case. The resulting limit values are reported in Table 3. The MCMC procedure
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Fig 7. Empirical distribution of the KS test statistics coming form 1000 applications of the
MCMC simulation procedure. The colored lines represent the thresholds calculated at various
significance levels (95%, 99%, 99.9%).

and the KS test are implemented 1000 times. The KS test statistics distribution
over the 1000 MCMC procedures is summarised in Figure 7. As it is possible
to see from Figure 7, the null hypothesis can be accepted in almost all cases.
Therefore, the empirical rank distributions generated from the MCMC proposed
here are statistically similar to the original distribution of the hapaxes ranks.
This represents scientific proof of the goodness of the theoretical model proposal.

C.I. 95% 99% 99.9%
Thresholds 0.004697 0.005629 0.006743

Table 3
Above the thresholds here reported the null hypothesis of the KS test has to be rejected. They

are computed by using Eq.(11).



/Markov Chain Monte Carlo for generating ranked textual data 23

6. Conclusions

This paper faces the challenging theme of identifying the stochastic structure
for the text-based rank-size laws. We tailor the scientific proposal to a real-life
rank-size context from the text analysis of the hapaxes in the US Presidents’
speeches. In so doing, we are able to justify the selection of a stochastic process –
a Markov chain, in this context. In particular, we provide supporting arguments
on the Markovian nature of the hapaxes generation. More than this, we give
statistical evidence that the considered ranked data are generated from a first-
order Markov chain.

The Markov chain generating the hapaxes is discussed from a purely theoret-
ical perspective; it is explicitly constructed by applying an MCMC procedure
based on the Metropolis-Hastings algorithm. Importantly, we show that the pro-
posed algorithm converges, so the MCMC procedure leads to a Markov chain
with the observed sample as stationary distribution.

The present study moves a step toward the study of the stochastic structure
of the rank-size analysis coming from the linguistic field – and of the rank-size
analysis, in a more general context – which is a relevant theme in informa-
tion sciences and applied statistics literature. The specific context we deal with
also contributes to the comprehension of the evolutive patterns of the messages
delivered by the US Presidents.

The proposed methodological procedure is versatile at two different levels.
On one side, one can apply the proposed MCMC algorithm to other rank-size
contexts related to textual analysis, with particular attention to the hapaxes in
carefully written texts collected in a corpus. On the other side, one can take a
very different context and replicate the methodological flow in the considered
case. First, one provides evidence of the type of stochastic process underlying
the generation of the ranked data; second, one applies a calibration procedure
for detecting the specific stochastic process by taking values in the observed
ranks and having the rank-size distribution as long-run distribution.
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