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Abstract 

 

Lime is commonly used as a stabiliser to improve the engineering properties of soils in 

particular for roads and pavement foundation. Despite the popularity of the technique, only 

a limited amount of existing experimental data for lime treated soils from advanced testing 

is available, in part due to the length of the tests. As lime stabilisation is increasingly used 

for other engineering applications (e.g. embankments, railway layers, canal linings, earth 

dams, buildings...etc), advanced testing to describe the mechanical behaviour of the treated 

soils is required.  

 

In this research a comprehensive experimental program was carried out to investigate the 

engineering properties and behaviour of a lime treated high plasticity clay (London Clay). 

A number of Unconsolidated Undrained (UU), Consolidated Drained (CD) and 

Consolidated Undrained (CU) triaxial tests were performed to identify the effect of lime 

dosage, compaction water content and curing time on the shear strength parameters, stress-

strain behaviour, volumetric response and dilation of the treated soil. Moreover the study 

focused on understanding the mineralogical and physicochemical transformations 

occurring during the curing stage. Based on a number of additional tests (XRD analysis, 

pH measurement and other chemical testing) they provided a useful reference for the 

interpretation of the triaxial test results; in order to support hypotheses made on the 

evolution of the chemical reactions and the development of cementation bonds.  

 

Results from CD tests showed that yield, peak, and ultimate strength were greatly 

improved by an increase in lime content. London Clay samples treated with lime showed a 

considerable increase in peak stress ratio ( )
peak

pq '/ , particularly at lime addition beyond 

the initial consumption of lime (ICL). An increase in the angle of shearing resistance and 

cohesion intercept with increasing lime content was observed consistently. The stress–

strain behaviour of treated London Clay was observed to be nonlinear with a contractive–

dilative response. This response is found to be strongly influenced by lime content and the 

curing period. An increase in dilation with lime amount as well as a progressive 

suppression in the dilation by the effective stress increase was also observed. A Critical 

State Soil Mechanics (CSSM) framework was used to interpret the results. Lime addition, 

curing time and compaction water content were observed to have an impact on the critical 
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state parameters in the compression plane ( )'pv − . However, the overall critical state line 

(CSL) in the stress space ( )'pq −  of lime treated London Clay appears to be almost 

parallel to untreated London Clay CSL at the same M value, but lying above the untreated 

CSL with a cohesion intercept. Moreover, the domain where the untreated soil subsists was 

observed to expand with lime addition and further enlarge with an increase in the lime 

content. These features can be further explored by deriving a suitable constitutive model 

for predicting the mechanical behaviour of lime treated soils. 
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Chapter 1 / General Introduction 
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Chapter 1 

 

1. General Introduction 

 
1.1. Background 

 

During the construction of large infrastructure projects, it is usual to encounter soils with 

inadequate engineering properties. These may include soft soils (clays or organic soils) that 

are meant to be used as foundation soils for infrastructure projects, highly plastic 

shrinking/swelling clays, collapsible, liquefiable or contaminated soils. Such soils would 

have been excavated and disposed of into landfills and historically replaced by more 

suitable imported aggregates. An increase in environmental awareness has however 

resulted in the growing demand for alternative techniques, aiming at the improvement of 

the originally unsuitable in-situ soil instead of its disposal and replacement. In addition, 

modern sustainability concerns also encourage the possibility of using dredged and waste 

soils or other materials in infrastructure projects. To achieve this, several ground 

improvement methods have emerged in recent years and are increasingly used in 

infrastructure development (Cecconi & Russo, 2012).  

 

Improvement of unsuitable soils for construction is a broad field which may involve 

different chemical agents and techniques. These include conventional binders (Portland 

cement, hydrated lime, pulverised fuel ash and blast furnace slug) or novel binders (zeolite, 

cement kiln dust, compost and silica fume / microsilica and MgO cement). Other non-

traditional stabilisers include – e.g. sulfonated oils, potassium compounds, ammonium 

compounds and polymers (Petry and Little, 2002). Depending on the needs of the project, 

the process may include the mixing (shallow or deep) or injection of commercially 

available additives aiming at altering the nature of the soil (gradation, texture and/or 

plasticity) and/or act as cementing agents to improve the mechanical properties (stiffness, 

shear strength) and hydraulic characteristics (hydraulic conductivity and water retention) of 

the soil. For the case of contaminated soils, solidification / stabilisation of the contaminants 

is also necessary (e.g. Locat et al., 1996; Singh et al., 2008; Cecconi & Russo, 2012; Al-

kiki et al., 2012). Among the various stabilising agents investigated by numerous 
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researchers, the most prominent is lime, followed by Portland cement (Bhattacharja et al., 

2003). 

 

Soil-cement or soil-lime was initially developed mostly as a technique for the improvement 

of the mechanical behaviour of base materials in road or airfield pavements, leading to a 

reduction in the total thickness of sub-base layers (Noble & Plaster, 1970; Mitchell, 1986). 

Better knowledge and control of ground improvement techniques resulted in the 

development of further methods of implementing lime in a wider range of applications 

including slope protection for embankment dams, canals, river banks, spillways, and 

highway and railway embankments (e.g. Cardoso & Maranha das Neves, 2012;  Dahale et 

al, 2012). Lime treatment can be used in these engineering applications to enhance the 

strength of the soil and increase its capability to resist deformation. Scientific studies of the 

mechanical properties of lime treated soil only started in the 1950’s; this has since become 

an important topic for both researchers and practical engineers (e.g. Bell, 1996; Locat et 

al., 1996; Narasimha Rao & Rajasekaran, 1996; Porbaha et al., 2000). A large amount of 

laboratory and site investigation of the behaviour of soils treated with lime is available in 

the literature, however, there are few systematic and theoretical studies of the mechanical 

properties of lime treated soils that can be applied to practical problems (e.g. Locat et al., 

1996; Bordman et al., 2001; Bhattacharja et al., 2003; Consoli et al., 2008; Liu et al., 

2010). 

 

Many investigations have previously focused on the hydro-mechanical behaviour of 

natural soils under both, saturated and unsaturated state conditions. A number of these 

studies investigated the significant contribution of cementation bonds in controlling the 

behaviour of soils (e.g. Sangrey, 1972 and Burland, 1990). A lot of research was devoted 

in understanding the behaviour of naturally cemented soils by broadly using artificial 

cementation in laboratory testing. However, much of the research on artificially cemented 

soils has focused on studying the behaviour in which aspects such as grading, initial void 

ratio and degree of bonding could be controlled (e.g. Clough et al., 1981; Coop & 

Atkinson, 1993 and Huang & Airey, 1998). However, for lime treatment, additional 

complications are linked to the behaviour of the treated soils. This is because in a lime-

treated soil continuous chemical reactions occur up to potentially very long times after 

treatment (e.g. some researchers as Brandl, 1981 observe changes in the lime treated soil 

up to seven years after treatment). These reactions linked to the slow diffusion of lime 
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within clay particles, can affect both the mineralogy and fabric of the soil, in addition to 

creating bonding effects. These chemical reactions are affected by percentage of lime and 

available water. The behaviour of lime treated soil in time as a function of these factors has 

rarely been investigated through triaxial testing.  This is true even for most state of the art 

work, e.g. Zhang (2011) at LSBU, carrying out EPSRC funded research which investigated 

the behaviour of partially saturated lime-treated clays. Due to the length of the suction 

controlled testing, Zhang’s (2011) research on the mechanical behaviour of lime treated 

clays was based on one type of specimen only, i.e. treated with one specific lime 

percentage compacted at one  specific dry density and water content and cured for seven 

days. The effect of these important factors (lime percentage, compaction characteristics 

and curing time) on the mechanical behaviour of the lime-treated soil was not studied and 

was recommended as the focus of further work. The investigation described in this thesis is 

presented as a continuation of this work investigating the effect of a number of factors such 

as the variation of lime amount, curing time and compaction water content. 

 

1.2.  Aims and objectives 

 

The research is aimed at determining the mechanisms of the cemented soil behaviour 

resulting from lime addition, by investigating the effects of lime treatment on the 

engineering properties of the material and comparing these with those of compacted 

untreated London Clay. The particular objectives of this study were to: 

 

• Assess the influence of lime amount, curing time and the compaction water content 

on strength gain and clarify the role of newly formed cementation bonds (bonding).  

 

• Study the yielding response at shear (gradual bond degradation) of the lime treated 

London Clay.  

 

•  Investigate the state of the material at failure (complete bond destruction) and its 

dilatancy behaviour.  
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• Determine volumetric and shear strength parameters, as these are fundamental to 

develop practical constitutive models for geotechnical analysis and design related 

to lime treated soils.  

 

• Analyse the results within the critical state soil mechanics framework (CSSM). 

Results are intended to supply new reliable data, and establish the mechanisms and 

effects of lime addition to the behaviour of London Clay. Thus the potential impact 

of this research will be significant to the construction industry in terms of the 

economy and safety of many major projects.  

 

 

1.3. Layout of the thesis 

 

The thesis is composed of seven chapters. A review of research findings relevant to the 

present investigation is presented in chapter 2. This focuses on the available literature 

concerning soil stabilisation, particularly lime treated soil properties and behaviour from a 

mechanical point of view. A review of constitutive models for cemented soils is also 

presented.  

 

The description of sample preparation and experimental procedures adopted in laboratory 

testing are reported in Chapter 3. The same chapter provides a detailed description of the 

triaxial systems used in this study, including instrumentation calibrations and performance. 

The physicochemical tests performed on lime treated and untreated London Clay along 

with the obtained results are presented in Chapter 4. 

 

The triaxial testing experimental results are presented in Chapter 5 (isotropic triaxial 

compression tests). First a series of UU testing results are presented investigating the 

effects of lime percentage, curing time and compaction water content. These are followed 

by CD testing results which are interpreted and discussed using plots such as ( )aq ε, , 

( )av εε ,  and ( )', pvε  curves, particularly the effective stress plane ( )', pq  and the 

compressive plane ( )', pv . The comparative shear behaviour of all specimens is discussed. 

The analysis outcome is clarified in terms of the newly formed cementation bonds and the 

different characteristics of the tested materials. The compression behaviour of lime treated 
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London Clay specimens is compared to that of the original soil. The effect of bonding due 

to the addition of lime to London Clay is interpreted on the graphs ( )
yy pq ',  in which a 

yield curve at shear has an increased size. The influence of cementation bonds on the 

strength and failure pattern behaviour is also discussed.  

 

Chapter 6 is dedicated to the analysis and interpretation of the obtained data based on the 

critical state concepts. Stress paths and stable state boundary surfaces (SSBS) are 

discussed. 

 

The final Chapter 7 contains a summary of the main findings and draws the main 

conclusions from this study. The chapter finishes with a number of recommendations and 

suggestions for future work.  
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Chapter 2 

 

2. Literature review 

 
2.1.  Introduction 

 

This chapter presents previous studies related to the use of lime for geotechnical 

engineering purposes with particular reference to lime-clay interactions and their effects on 

the soil properties. The effect of cementation bonds resulting from the lime treatment of 

the clay soils are explored adopting a structured soil approach. The review of previous 

research consists of four sections. The first section presents the concepts of structure, 

fabric and bonding used to describe naturally or artificially cemented soils. The following 

section presents basics of clay mineralogy which help understand the mechanisms involved 

in the clay improvement by lime. These are presented later in the same section (lime-clay 

interaction reactions). The third section reviews previous work on lime-treated clays and 

the effects of lime on salient geotechnical properties. The fourth section presents a brief 

review of recent developments in the constitutive modelling of cemented soils, and 

discussion on the proposed models to simulate artificially cemented soil behaviour, 

particularly the yielding and pre-failure behaviour.  

 

2.2. Soils 

 
 
Soils are described as multi-phase materials consisting of a solid, a liquid and a gaseous 

phase. The solid phase consists of a mineral fraction (usually silicates but also carbonates 

and metal oxides or hydroxides) and possibly some organic fraction. The resulting solid 

particles constitute the soil skeleton. Voids around the particles can be filled with water 

and / or air. 

 

During their geological history, natural soils acquire a certain structure, a term 

encompassing the arrangement of the particles and other features at both macroscopic and 

microscopic levels, as well as any bonding agents between particles. Cotecchia & Chandler 

(2000) proposed a simple classification of structure for natural soils, whereby 

‘sedimentation structure’ refers to the elements of structure developed during 
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sedimentation and consolidation, whereas ‘post-sedimentation structure’ refers to the 

elements of structure developed after sedimentation and burial. The geological processes 

that lead to the development of natural structure can be mechanical unloading (over-

consolidation), a change in physical or chemical composition (diagenesis), and 

cementation. Several investigations on clay soils have highlighted the differences between 

the behaviour of natural and reconstituted clays as a consequence of the effects of structure 

[e.g. Vallericca Clay, (Rampello & Silvestri, 1993); Pappadai Clay, (Cotecchia & 

Chandler, 1997); London Clay, (Gasparre et al., 2007)]. Structure is thus recognised as one 

of the most important features of a natural soil from the engineering behaviour point of 

view (Mitchell, 1976). At a microscopic scale, ‘structure’ refers to the combination of both 

inter-particle forces (Bonding) and the soil particle arrangements (Fabric) (Mitchell and 

Soga, 2005).  

 

Fabric is generally defined as the geometric or spatial arrangement of individual soil 

particles or particle groups and voids / pore spaces in soil. Figure 2.1 shows different types 

of fabrics of natural soils. 

 

 
 

Figure 2.1: Classification of types of fabric (Gasparre, 2005). 

 

A number of factors can be responsible for creating some form of bonding between 

particles to one degree or another. These include inter-particle attractive forces between 

clayey soils, suction effects, cold-welding at inter-particle contacts under high pressures or 
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the presence of various ‘cementing’ agents, such as deposition of carbonates or silica 

between particles, hydroxides and organic matter from solution etc. (Leroueil and 

Vaughan, 1990). A review of the literature illustrates that cementation bonding created in 

the process of diagenesis and subsequent geological history, is more common than 

previously anticipated and can occur in a large range of materials such as clays, sand, 

residual soils and soft rocks. Cementation can build up onto particle surfaces by material 

precipitation at inter-particle connections (e.g. carbonates or silica as explained earlier), but 

also inside the pores, affecting the fabric of the soil. The strength of the bonds holding the 

solid particles together determines the stability of soil structure and its potential to 

withstand the effects of external forces. It has thus been recognised to have important 

effects on the geotechnical properties (strength and stiffness) and the stability of 

geomaterials (Sorensen et al., 2007)  

 

Chemical treatment can affect clay structure in terms of both fabric changes and bonding 

(by the creation of artificially caused ‘cementation’ bonds between particles). Cementation 

is the main aim of the process referred to as ‘soil stabilisation’ (see later, section 2.4.2), 

used in practical geotechnical applications to improve the properties of the soil in terms of 

strength, stiffness and hydraulic behaviour. The following sections discuss in detail why 

lime can cause these effects in clay soils.  

 
 

2.3. Clay minerals 

 
Clay soils result from the chemical weathering of rocks due to  the  action  of water 

(especially  if  this is slightly  acidic  or alkaline),  oxygen  and carbon dioxide. This leads 

to the  formation of  crystalline  particles  of  colloidal  size (<0.002  mm). The  basic 

structural  units  of clay minerals are the silica  tetrahedron  and alumina  octahedron (see 

Fig. 2.2) although isomorphous substitution  may take place and silicon  and aluminium 

may be then replaced by other  elements (for instance Si4+ can be replaced by Al3+ or Al3+ 

can be replaced by Mg3+ or Fe3+ or Fe2+). Such substitutions can result in positive charge 

deficits which are compensated by interlayer cations (hydrated or otherwise) which are 

exchangeable. 
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                              (a)                                                       (b)  

               

 

Figure 2.2: Representative drawing of (a) Silica tetrahedron and (b) Alumina octahedron 

(Lasledj, 2009) 

 

These  basic  tetrahedral  and  octahedral  structures  are then joined together in sheets. The 

different clay minerals result from the different arrangements of the above units in sheets 

of 1:1 or 2:1 lattice and the different types of bonding between these. For instance, the 

mineral kaolinite has a  1: 1 structure,  i.e. it consists of one tetrahedral  and one octahedral  

layer  held  tightly  by  hydrogen bonding, preventing interlayer hydration (Fig 2.3a).  This 

results in very low shrinkage / swelling characteristics and little isomorphic substitution 

inside the lattice; only cations on the external surfaces can be exchanged. Accordingly, the 

Cation Exchange Capacity (CEC) of this clay is very low 5-10 Meq/100g (Cabane, 2004). 
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        2.3 (a) Group 1:1 structure sheet:                   2.3 (b) Group 2:1 structure sheet: two Tetrahedron  

        Tetrahedron layer 4OSi (T) overlayed            4OSi  (T) layers surrounding an Octahedron 62OAl  

        by Octahedron layer 62OAl (O)                     (O) layer, two consecutive layers held by potassium cation 

 

Figure 2.3: Clay minerals structure: T-O & T-O-T (Lasledj, 2009) 

 

Minerals of the  2: 1 group contain one octahedral  unit  surrounded by  two  tetrahedral  

units; atoms from  the oxygen  and hydroxide layers bond and the atoms common  to  both  

become oxygen  rather  than  hydroxide  ions. This arrangement is less stable and subject 

to ionic substitution  in both  the tetrahedral and octahedral units. This leads to different 

minerals of the 2:1 group depending on the nature  of  the  atoms involved  in  the  

substitution.  In addition the weaker bonding between sheets and the presence of interlayer 

cations susbtantially increases their CEC as well as their propensity to attract water 

molecules. For instance in the mineral montmorillonite (a 2:1 mineral),  there  is partial  

substitution  of  aluminium by magnesium in the octahedral unit,  but no substitution  in the 

tetrahedral  unit. The bonding between sheets is weak and this allows water molecules to 

enter between the layers and separate them, making montmorillonite very susceptible to 

swelling.  Montmorillonite has a very high CEC, typically in the order of 100 Meq/100g. 

On the other hand, illite minerals are of a  similar 2:1 structure, but here  there  is partial  

substitution  of  aluminium  by magnesium  and iron  in  the octahedral  unit  and  partial 

substitution  of  silicon by aluminium in  the  tetrahedral  unit (Fig 2.3b). In addition, the 
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layers are held  together  by relatively  weak  potassium bonds; however, the potassium 

cations fit in the hexagonal holes formed when the tetraherda are combined into sheets. 

This hinders the mobility of these cations, and hence their replacement by other cations. 

Illites thus show a CEC of 20-50 Meq/100g. (Cabane, 2004) 

 

As mentioned earlier, the substitution of different cations in the octahedral sheet (which 

leads to different clay minerals) results in charge imbalance and a surface charge of the 

clay particles. This leads to several interactions between the components of clay. The most 

important interaction is the formation of adsorbed ion layers on the clay surfaces. The 

negatively charged clay surface attracts the cations present in the pore water to the particle 

surfaces, while the like charged anions are repelled. At the same time, the cations tend to 

move away from each other because of their same charges and physical size when 

hydrated. The net effect is that the cations form a dispersed layer adjacent to the clay 

particle, known as “diffuse double layer” or simply “double layer” (see Fig. 2.4). The 

thickness of the double layer determines the plasticity of the clay (Bhattacharje et al., 

2003). In a smectite, this layer can be several times thicker than the clay particle. The 

cation concentration decreases with distance from the clay surface until the concentration 

becomes equal to that of the free water in the void space (Schmitz, 2006). 

 

 

 

Figure 2.4: Distribution of ions adjacent to a clay surface according to the concept of the  

                   diffuse double layer (Advanced Geotechnical soil stabilisation [AGSS], 2014) 
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The above brief background on clays can explain why chemical, and in particular lime-

treatment has been succesful in atlering the clay properties, as detailed in the following 

sections. 

 

2.4. Lime-clay interactions 

 

Lime is a common name used  for CaCO3,  Ca(OH)2 and CaO.  These are commonly 

known as limestone, hydrated/slaked lime, and quicklime respectively.  The former type of 

lime is of interest in agricultural applications and is not used in this form for civil 

engineering ground improvement applications. For these, the latter two lime types are used 

instead, and in particular CaO; carbonation of the CaO or Ca(OH)2 while used in-situ can 

of course occur in the presence of CO2, which is actually believed to be undesirable in the 

context of engineering ground improvement, as explained later.  

 

When  lime  is added to a soil, the following  processes occur:  (a) cation exchange and 

flocculation  of  the clay (these are short-term reactions commonly called ‘modification’ 

reactions); (b) depending on the lime content used, pozzolanic  reactions may develop 

(these are long-term reactions commonly called ‘stabilisation’ reactions); (c) finally, 

carbonation can also occur in the presence of carbon dioxide. 

 

(a) Modification reactions 

 

 If hydrated lime is used, first, dissolution of Ca(OH)2 will release calcium ions and 

hydroxyles in solution (the latter are responsible for the rise in pH noted when treating the 

soil with lime): 

 

( ) −+
+→ OHCOHC aa 22

2                                                                        Eqn 1 

 

Cation exhange occurs when the divalent calcium (Ca2+) cations saturate the solution and 

become  adsorbed  at the  clay  surface or in-between sheets in preference  to  cations  

originally  present, according to their position in the Lyotropic series but also due to ion 

concentation differences. An agglomeration of the clay particles is observed at this stage 

(flocculation). This is a result of the reduction in the thickness of the double-layer (due to 
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cation exchanges and the increased quantity of calcium ions adsorbed on the clay surface), 

causing the particles to become closer and hence attract each other. This short-term 

reaction takes place within hours after the addition of lime (Locat et al., 1990). In practical 

terms this is manifested as a change in the nature of the soil (texture/grain size and an 

immediate modification in the plasticity characteristics of the soil) and consequently a 

change in the swelling potential of the soil (if this was of a swelling nature) as well as its 

compaction characteristics (Bell, 1996, Osula, 1996). Note that other authors (Eades and 

Grim, 1960 or Diamond and Kinter, 1965) argued that this flocculation could also be due 

to the early formation of small quantities of calcium silicate or calcium aluminate hydrates, 

which could create some bridging between particles and consequently flocculation. A 

small short-term increase in the strength of the soil often reported may also be due to these 

mechanisms. 

 

Note that if CaO is used instead (on a wet soil), first an exothermic hydration reaction is 

produced according to which Ca(OH)2 is formed as: 

 

CaO+H2O => Ca(OH)2 + 15.5 KJ/mol                                                     

 

The practical implication of this reaction is an immediate reduction in the water content of 

the soil. Note that Boynton (1980) reported a certain volume expansion of the soil upon 

CaO hydration. As in natural soils, a decrease in water content is followed by a certain 

increase in strength and bearing capacity of the soil. However the improvement of these 

properties upon lime treatment is mostly the result of the other phenomena (ionic 

exchanges and pozzolanic reactions) described in this section. 

 

After this reaction, the dissolution of Ca(OH)2 occurs as described in Eqn 1 and the 

ensuing phenomena disscussed above follow. 

 

(b) Stabilisation reactions 

 

Depending on the amount of lime used, long-term ‘pozzolanic’ reactions may follow. A 

pozzolana is a material that is capable of reacting with calcium in the presence of water to 

produce cementitious compounds. In this case, the clay is a natural pozzolana as it contains 

silica and alumina. Due to the high alkaline environment induced by the lime,  silica  and 
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alumina from  the clay are dissolved (especially at plate edges). This leads to the formation 

of calcium-silicate-hydrate  (CSH) and  calcium-aluminate-hydrate (CAH) gels. These gels 

have the ability to bind the clay together, and possibly also block off the soil pores.  Over 

time, the gel gradually crystallises into compounds also found in ordinary Portland cement 

(see e.g. Fig. 2.5). This leads to artificial cementation of the lime treated soil. For this 

reason in this thesis these reactions will be preferentially called ‘cementation’ rather than 

‘stabilisation’ reactions. Note that it was recently shown that lime-treated soils have high 

concentrations of calcium throughout the lime stabilised clay aggregates, chemically 

altering the clay, as opposed to cement stabilised clay where the cement forms a protective 

coating around the clay aggregates and very little calcium actually diffuses into the clay 

(Harris and Scullion, 2009).  

 

For pozzolanic reactions to occur, lime in excess of the complete saturation in calcium of 

the treated clayey soil must have been supplied. After complete saturation in calcium of the 

clay, with full completion of cationic exchange reactions, any excess calcium will then be 

available for pozzolanic reactions and the creation of cementitious products (e.g. 

Sivapullaiah, 2000; de Brito Galvao et al., 2004; Al-Mukhtar et al., 2010 and Okyay and 

Dias, 2010). A practical test performed to determine the lime percentage threshold beyond 

which such reactions can occur (variable for each soil) was suggested by Eades and Grim 

(1966). This is a pH monitoring test called the Initial Consumption of Lime (ICL) test, 

specifying that cationic exchange has been completed when the pH of the soil at 25 °C has 

been raised to 12.4 which correspond to that of a calcium-saturated solution. Lime beyond 

the percentage which achieved this pH, would then be available for pozzolanic reactions as 

stated earlier. Note that the validity of the test was questioned by Rogers and Glendinning, 

(2000) who suggested that it should be used as an indicator of the necessary amount of 

lime accompanied by evidence of change in their mechanical properties. An alternative 

method to identify the minimum necessary lime percentage is the identification of the lime 

fixation point (LFP) through plasticity testing. LFP is the lime percentage giving a 

maximum increase in the plastic limit value. Additional lime would then result in soil 

stabilisation reactions. 

 

The pozzolanic reactions are lengthy as the available lime has to diffuse through both the 

soil structure and initial cementitious products to the reaction site, and since clays are 

materials of a very low permeability, the lime movement is identified to be very slow.  
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This slow diffusion and the gel crystallisation process is commonly presented as the reason 

why reaction between lime and clay is time-dependent (referred to as ‘curing’ in the same 

fashion as when referring to the increase in the strength of concrete with time). The 

pozzolanic reactions will  thus continue over time as long as there is sufficient calcium in 

the lime-water system to react with  the silica  and alumina, the pH is high enough to 

maintain  solubility  of the silica  and alumina, and also provided that sufficient water and 

silica are available (e.g. Asghari et al., 2003; Al-Mukhtar et al., 2010). Note that 

temperature during curing was reported as having a beneficial effect on chemical soil 

improvement (i.e. the effects are enhanced upon elevated temperatures and anihilated 

below 4ºC). Temperature dependence was attributed to the fact that when clay minerals are 

subjected to significantly elevated temperatures at about 500 °C they may collapse while 

others transform into other minerals (Rao & Shivananda, 2005b; Al-Rawas et al., 2005), 

consequently the soil nature changes. Note that for in-situ lime treatment, usually carried 

out with quick lime, heat is generated during the hydration process, which in turn affects 

the rate of the chemical reactions taking place. 

 

 

 

 

Figure 2.5:  Mechanism of lime stabilisation (Ingles & Metcalf 1972) 

 

In practical geotechnical applications one can see the manifestation of the complex 

pozzolanic reactions as a considerable increase in the strength of the soil, associated to the 
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different cementitious products developed and the resulting cementation bonds. These are 

of diverse nature for different soils; different products also take different times to form.  

For instance, in lime treated kaolinite, Goldberg and Klein (1952) reported the formation 

of 63 AHC , Glenn and Handy (1963) identified CSH and CAH, Bell (1996) also recognized 

CSH (tobermorite) and 134 AHC , 11CAH , 10CAH . In lime treated montmorillonite, Hilt and 

Davidson (1960) identified 134 AHC  and Bell (1996) reported the formation of CAH and 

CSH gels. Rajasekaran and Narasimha Rao (1997) noted the formation of CAH , CSH and 

CSAH in marine clays treated with lime.  

 

Ahnberg (1996) claimed that it was possible to calculate the approximate amount of 

reaction products that would potentially form cementitious bonds in the soil upon the 

addition of different binders including lime, assuming complete hydration and that 

sufficient alumina and silica are present in the soil during the stabilisation process. These 

products are reported in Figure 2.6, where the blue, or pale shaded, bars represent the more 

rapid cement reactions (modification) and the yellow or non-shaded bars represent the 

more long-term pozzolanic reactions (stabilisation / cementation) with the soil. The red, or 

darker shaded, bars, for a mixture of cement and fly ash, characterise the pozzolanic 

reactions that may take place with the fly ash itself, since silica and alumina are normally 

more readily available in the fly ash than in the soil. 
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Figure 2.6: Rough outline of the principal chemical reactions and reaction products  

     formed by different types of binders in a soil. (Ahnberg, 1996). 

 

(c) carbonation reactions 

 

These occur as a result of lime reacting with CO2 in the air. When the CO2 is dissolved in 

the pore water soil, it reacts with the hydroxyl ions, forming carbonate ions, which 

subsequently reacts with the calcium ions. This results in the formation of calcium 

carbonate CaCO3, a weak cement whose formation is undesirable (unless a relatively high 

amount of lime is used), as this reaction consumes lime which would have otherwise been 

used in pozzolanic reactions for the formation of strong cementitious bonds. Another 

undesirable effect of carbonation is the fact that it delays penetration of ions on the surface 

of the clay and increases the time for these to reach the reaction sites (Barker, 2002). 

The carbonation reactions can be described as follows: 

 

OHCOHOCO 2
2
32 2 +⇒+ −−                                                                   

3
22

3 CaCOCaCO ⇒+ +−
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2.5. Detection of the progress of the lime-clay reactions 

 
As explained in the previous section, the progress of lime modification and pozzolanic 

reactions with time can be monitored by measuring changes in the Atterberg limits and 

strength (usually in terms of unconfined compression strength) (Hilt and Davidson 1960; 

Holtz 1969; Bell 1988; Holt and Freer-Hewish 1996; Rogers and Glendinning 1996; 

Rogers et al., 1997; Boardman et al., 2001). However researchers can further support the 

findings in terms of effects of lime on soil properties by methodically investigating the 

development of reactions using microscopic analyses, mineralogical studies, as well as by 

performing physico-chemical testing (e.g. pH changes, electrical conductivity changes, 

calcium concentration and soluble ion concentration measurements etc.). Thus, scanning 

electron microscopy (SEM) and / or mercury intrusion porosimetry (MIP) performed in 

parallel with hydro-mechanical testing of lime treated soils have been extensively used for 

examining the changes in the micro-fabric and to confirm (by direct inspection or 

indirectly, in terms of effects on the porosity) the development of different cementation 

products (e.g. Choquette et al., 1987; Delage et al., 1996; Locat et al., 1996; Ninjgarav et 

al., 2007; Koliji et al., 2010). Mineralogical studies are also commonly performed by X-

Ray Diffraction Analysis (XRD). These are used to follow the evolution of the clay-lime 

reaction by identifying and potentially quantifying the mineralogical changes in the soil as 

well as any new chemical reaction products formed in time (i.e., CSH, CAH, CSAH, 

CaCO3 etc) if new reflection intensities appear on the spectrum of the results (e.g. Lambe 

& Whitman 1959; Eades & Grim 1960; Mitchell, 1976; Arabi & Wild, 1989; Bell, 1996; 

Al-Mukhtar et al., 2010; and Metelkova et al., 2012). For instance, Lambe and Whitman 

(1959) and Eades and Grim (1960) found that upon lime addition, new reflections were 

visible at d-spacings of 3.87, 3.67, 3.035, 1.619, and 1.582 Å (1 Å = 0.1 nm), which 

appeared to be indicative of calcite, feldspars, kaolinite, and chlorite, respectively. Another 

example of XRD results that can be used to identify the evolution of pozzolanic reactions 

is shown in Figure 2.7 (after Al-Mukhtar et al., 2010). The figure shows CAH products 

clearly identified in the lime-treated soil through the XRD results (not present in the 

untreated soil), and that their characteristic reflections intensities increased with curing 

time.  
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Figure 2.7: X-Ray diffraction of 20 % lime treated and untreated bentonite with curing  

                   time (Al-Mukhtar et al., 2010)    

 

Other techniques used for clay mineralogy studies (e.g. Differential Thermal Analysis 

(DTA), various spectroscopic methods such as infrared spectroscopy (IR), nuclear 

magnetic resonance spectroscopy (NMR) etc) can be applied to detect mineralogy changes 

in the soil due to lime treatment. Examples of such studies include Maubec (2010) using 

XRD and NMR to detect the effect of lime on Polwhite kaolinite and calcium bentonite or 

Eisazadeh et al. (2012) who used Fourier transform infrared (FT-IR) spectroscopy and 

solid state nuclear magnetic resonance (SS-NMR) to detect the time-dependent changes in 

the structure of lime stabilized montmorillonitic and kaolinitic clays.  

 

Moreover, the progress of pozzolanic reactions can be monitored by pH measurements. An 

initially high pH is observed due to the presence of the Ca2+ and hydroxyls in solution. 

This would be expected to remain constant as long as lime modification reactions have 

been completed. Instead, a pH reduction is observed in the longer term which can be linked 

to the consumption of the necessary Ca2+ and OH- for pozzolanic reactions, thus 

confirming that such reactions are developing (Broadman et al., 2001; Rao and 

Shivananda, 2005b; Al-Mukhtar et al., 2010). Note that the maximum pH that the soil can 

reach is that of a saturated solution in Ca(OH)2. This varies with temperature and is 12.64 

at 20˚ C (Maubec, 2010). 
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Another indicator can be the changes in the electric conductivity of suspensions of the 

materials in water. These follow the same pattern as the pH changes, i.e. an initial rise in 

conductivity, followed by a period of constant conductivity indicating (according to the 

literature) that pozzolanic reactions are not yet happening, and then a continuous drop in 

the conductivity which is believed to be concurrent with the consumption of Ca2+ and OH- 

for pozzolanic reactions (Broadman et al., 2001; Rao and Shivananda, 2005b). 

 

2.6. Practical implications: Reported geotechnical properties of lime-treated clays  

 
The previous section mentioned the implications of lime treatment in qualitative terms for 

the respective stages of modification and stabilisation/cementation, linking these to the 

chemical reaction mechanisms. This section provides examples of reported geotechnical 

parameters / soil properties which are of practical relevance to the geotechnical engineer, 

giving an appreciation of the expected changes in the geotechnical properties in 

quantitative terms. Of course as noted earlier, the exact results of the treatment would be 

variable and would depend on a number of factors identified above, namely: the soil type / 

mineralogy, the lime amount, curing method, curing time and conditions during curing 

(e.g. temperature, humidity etc.), and the possible presence of deleterious substances for 

lime treatment (gypsum, organic content etc.) amongst other.  

 

Most studies in the literature are based on simple tests, and refer to changes in basic 

characteristics or indices such as Atterberg limits, Proctor characteristics, CBR or 

unconfined compressive strength (UCS). For these a vast literature exists and only some 

selected indicative examples will be shown. Conversely much fewer and recent studies 

refer to more advanced testing (e.g. triaxial testing) and could thus provide parameters that 

could be used for constitutive modelling. These studies will be reported in more detail.  

 

2.6.1. Plasticity characteristics 

 
It was mentioned that lime has an immediate effect on reducing the plasticity of the soil. 

Several authors report a substantial reduction in plasticity index (PI) for clay soils when 

mixed with lime (Sherwood, 1993). However the change in the plastic and liquid limit 

individually (which usually is reported to happen to some extent for both limits) (see e.g. 

Brandl, 1981; Sivapullaiah et al., 2000; Dash & Hussain, 2012) differ depending on the 
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type of soil as they do not always go in the same direction, so that the eventual effect on 

the plasticity index is also variable. For instance Ola (1978) reported an increase in both 

the liquid limit and the plastic limit with the lime amount increase, resulting in plasticity 

index decrease which is due to faster increase in plastic limit. Conversely Osula (1991), 

studying a problematic lateritic soil from Nigeria stabilised with lime, found a reduction in 

liquid limit and a slight increase in plastic limit with lime content increase. The 

differences, due to the different soil type, can be seen clearly on collective graphs of 

researchers studying more than one soil. For instance Figure 2.8 below from de Brito 

Galvao et al., (2004) represents the effects of lime on the Atterberg limit of two Brazilian 

soils of different origin (a brown saprolitic soil noted (1) and a red lateritic soil noted (2)). 

The figure shows no substantial change in the plasticity index of soil 1 (although the liquid 

limit and plastic limit both increased slightly) as opposed to a clear decrease in the 

plasticity index of Soil 2 for up to 6% lime addition. The latter effect was due to the 

decrease in the liquid limit (for 2 – 4% lime addition), while the changes in the plastic limit 

were far too small to be considered of significance.  

 

 
 

Figure 2.8: Variation of liquid limit and plastic limit with lime content of soil  

(de Brito Galvao et al., 2004) 
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The differences were even more pronounced in the study by Dash & Hussain, (2012) on a 

montmorillonite-rich expansive soil (ES) and a silica-rich non-expansive residual soil (RS) 

(see Fig 2.9 & 2.10).  The liquid limit of the former soil was clearly shown to decrease. 

Conversely the residual soil (other than for some non-monotonic changes with lime 

percentage immediately after treatment) showed generally a clear increase in the liquid 

limit, which became more pronounced with curing time. The authors attributed this 

behaviour to the production of increased quantity of water holding gelatinous products 

during pozzolanic reactions, and suggested that this is the typical behaviour of soils rich in 

silica treated with lime. As for the plastic limit this generally increased for both soils 

(except for some non-monotonic changes with lime percentage immediately after treatment 

observed for the ES soil). In particular for the silica-rich soil RS, the plastic limit was 

shown to increase dramatically with curing times, and this was again attributed to the water 

holding CSH gel formation. 

 

The former were but examples of variations in the plasticity characteristics reported in the 

literature. Due to the differences in the findings depending on the soil subjected to 

treatment, the studies on lime treatment always start by reporting the effects on the 

plasticity characteristics of each particular soil, often for varying lime amounts added to 

the soil until the specified plasticity requirements for construction are met. 

 

Figure 2.9: Variation in liquid limit with lime content: (a) expansive soil and (b) 

residual soil (Dash & Hussain, 2012) 
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Figure 2.10: Variation in plastic limit with lime content for (a) expansive soil and (b) 

residual soil (Dash & Hussain, 2012) 

 

 

2.6.2. Swelling and shrinkage 

 

A substantial amount of work was carried out to assess the effect of lime on the 

swelling/shrinking behaviour of soils. In fact the treatment of non-sulphate bearing 

swelling soils with lime has been one of the most common engineering applications of lime 

treatment. The beneficial effect of lime on the swelling potential /deformation of shrinking 

swelling of non-sulphate bearing soils (consistent with the change in the nature of the soil 

and its plasticity characteristics) was thus the main focus of a large number of  studies. 

Examples include (amongst many others): 

 

• Brandl (1981) who observed that different lime-treated soils all absorbed less water 

than the respective untreated soils but also dried in the air much slower than the 

untreated soils. The swelling potential of montmorillonitic soils was also improved. 

Overall 1-3 % lime was found to be sufficient for improving the shrinking/swelling 

characteristics of the soils beyond which no further improvement was noted.  

• Bell (1996) who found that linear shrinkage of Upper Boulder Clay and Tees 

Laminated Clay treated with various amounts of lime reduced drastically compared 

to the untreated soils (beyond 8% lime however no further changes were observed). 
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• Al-Rawas et al. (2005) who investigated the effect of cement, lime and Sarooj (an 

artificial pozzolan) for expansive soils from Oman and found that lime performed 

best of all other stabilisers (or their combination) in improving the swelling 

characteristics of the soil; namely with the addition of 6% lime, both the swell 

percent and swell pressure were reduced to zero.  

• Nalbantoglu and Tuncer (2001) who tested expansive marine clays of the 

Degirmenlik flysch, in Northern Cyprus and found almost 0% swelling potential for 

lime percentages higher than 3% and curing times of seven days or more. 

• Rao & Thyagaraj (2003) treating an expansive Indian black cotton soil with lime 

slurry columns and noticing a 30% reduction in the swelling potential of the soil. 

 

It is interesting to note however that Rao et al. (2001) claimed that the beneficial effect of 

the lime treatment on the volumetric stability of expansive soils would be at least partly 

reversible upon cycles of wetting/drying, based on studies of Indian Black Cotton Soils.  

 

2.6.3. Strength and shearing behaviour characteristics 

 

In common practical applications the strength of the chemically stabilised soils is usually 

assessed in terms of the unconfined compressive strength (UCS), uq . In fact the UCS of 

the lime-stabilised soil is one of the criteria used for the selection of appropriate lime 

percentages1 in addition to plasticity testing and/or ICL testing. The literature concerning 

the effects of lime on the UCS of different soils is therefore vast and only the salient 

features together with recent papers will be reviewed. The main findings are that the UCS 

is affected by a number of factors mentioned above on which the success of lime treatment 

and the development of pozzolanic reactions depend; thus empirical correlations were also 

suggested to address its dependence of such factors. Examples of such correlations follow 

in this section. Very few papers investigated the shear strength characteristic and behaviour 

based on advanced triaxial testing. These will be reviewed in detail as they are of particular 

relevance to the present study. 

 

                                                 
1 For common highway engineering applications the CBR of the soil can also be used to support the selection 
of an appropriate lime percentage 



Chapter 2 / Literature review 

 

 25 

As explained above, the pozzolanic reaction development and hence the acquired strength 

generally depends on the quantity of lime consumed and the resulting amount of 

cementitious gel produced. Thus the added lime should be beyond a certain threshold 

(indicated as the LFP or ICL of the soil), to enable pozzolanic reactions. In general 

increasing amount of lime is reported to increase the strength; for instance in recent testing 

of a highly expansive soil treated with varying lime percentages (0 - 20%), Al-Mukhtar et 

al. (2010), showed that for all percentages used, the uq  increased in time with high lime 

percentages (see Fig 2.11). As the tests were accompanied by XRD analyses, the authors 

were in position to prove their findings in terms of pozzolanic reaction products. It was 

thus found that at low lime percentage addition (2 and 4%), strength kept developing up to 

28 days curing. In terms of the modification reactions (believed to be completed within a 

few days), this would appear to be a rather long term evolution; however there was no 

evidence of any pozzolanic products forming based on the XRD results. The authors thus 

concluded that no pozzolanic reaction products were created in the treated soil for these 

lime amounts, even if there was some strength increase also for lower percentages of lime. 

Pozzolanic products were detected for lime quantities %6≥  which showed a sustained 

increase in the UCS with curing time, so that the uq  of the specimens treated with 6% lime 

was found to be 5 times higher after 28 days curing and 6 times after 90 days curing 

compared to the uq  of the untreated specimen. With 20% lime addition, uq  increased by 8 

times for 28 days curing and 17 times after 90 days curing compared to the uq  of the 

untreated specimen. Note the very high percentages of lime used for this soil, which 

contradicts statements that usually 1%-3% by soil weight would be enough for soil 

treatment when using quicklime (e.g. Bell, 1996), and 2 to 8% of hydrated lime are used 

for soil stabilisation (e.g. Basma & Tuncer, 1991) but shows the strong dependence of the 

necessary lime percentage on the type of soil.   
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Figure 2.11: Unconfined compressive strength (UCS) of bentonite soil with curing time 

for various amount of lime (Al-Mukhtar et al. 2010). 

 

Consoli et al. (2009) investigated the influence of the amount of cementitious agent, the 

porosity and the moisture content on the strength of a sandy lean clay material from 

Southern Brazil, treated with two different chemical additives, i.e. lime and cement (only 

lime will be reviewed here). The UCS tests showed a linear relationship between lime 

percentage and unconfined compressive strength ( )uq , for different compaction dry 

densities. The authors also investigated the effect of the water/cementitious material ratio 

and found that this did not appear to be a useful parameter in the analysis of the strength 

development of the studied lime-treated soil. Similarly, varying the moisture content while 

keeping the dry unit weight unchanged was not found to affect considerably the uq  of the 

soil. However they suggested the existence of a unique, linear relationship to describe the 

increase in uq  with the ratio of porosity/ lime content (see Fig 2.12) and concluded that 

this ratio plays a fundamental role in the target strength determination. This finding would 

be useful for practical applications, as the required lime percentage could be adjusted for 

specific target strength. For their particular soil, they expressed this relationship as: 
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n , is the porosity and ivL , is the volumetric lime content 

 

 

 

Figure 2.12: Variation of unconfined compressive strength with adjusted  

            porosity/volumetric lime content (Consoli et al. 2009) 

 

Of course, for the possible generalisation of these findings to other soils, further studies on 

more soils would be required.  

 

In other studies it was however shown that strength does not increase linearly with lime 

content and that it may in fact decrease upon excessive lime addition. Thus it has been 

observed that the uq  would first increase with the addition of lime; then, after reaching a 

maximum, it would start declining upon further lime addition (Brandl, 1981; Bell, 1996; 

Dash & Hussain, 2012). The latter authors suggest that some soils, predominantly silica-

rich soils that form silica gel, when treated with lime percentage higher than just the LFP 

can lose strength after a prolonged curing period (see Fig. 2.13). To understand this, it 

should be kept in mind that cementation is limited by the available amount of silica; when 

all silica in the clay is used up, further lime addition would not result in the formation of 
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any new cementation products (Hausmann, 1990). One would then expect the strength to 

remain constant rather than to decrease. Dash & Hussain (2012) attributed the observed 

strength reduction to the fact that with increasing lime amount, the soil structure tends to 

become increasingly porous (due to the excess formation of the high-porosity silica gel), 

thus counteracting the strength gained through cementation. The explanation put forward 

by Bell (1996) is that the lime does not have a suitable friction or cohesion, and that the 

excessive lime amount serves as lubricant to the soil particles, which decreases the strength 

of the soil. Brandl (1981) specifically states that the particles ‘swim’ without touching each 

other within the gel, which thus acts as lubricant. He also notes however that the maximum 

strength indicates “the point of saturation which shifts towards higher dosage with curing 

time”. He claims that the reaction products gradually grow into “crumbs” (which is 

probably consistent with the observation of Dash & Hussain, 2012 that the cementitious 

products are more ‘porous’) and he also points at the possible carbonation, which can be of 

importance regarding its effects on strength.   

 

 

Figure 2.13: Variation in unconfined compressive strength with lime content:  

                  (a) expansive soil and (b) residual soil (Dash & Hussain, 2012) 

 

The above discussion again shows the high dependence of the findings on the nature of the 

soil and can lead to the conclusion that complementary testing (mineralogy, chemistry, pH, 

microstructural analysis with ESEM etc) is necessary to support any assumptions in terms 

of mechanisms affecting the strength change of a particular soil. 
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Regarding the effect of curing time in particular, Figures 2.11 & 2.13 presented above 

(from Al-Mukhtar et al. 2010 and Dash & Hussain, 2012 respectively) show that in general 

uq  would increase with curing time until it reaches a maximum after which very little 

further evolution happens. The evolution of curing was reported to be linked to the type of 

soil and it was shown to be dependent on the percentage of lime used (Sherwood, 1993). 

Some authors reported rather early times where further strength development may stop 

(e.g. Zhang, 2011)  but others, like Brandl (1981) observed an evolution of uq  with curing 

times of up to seven years after which no further evolution in strength was apparent (even 

for highly active clays, which show strength change over long curing periods). Brandl 

stated that the uq  evolution with the log of the curing time would be approximately linear 

after 7 days of curing and suggested the following relationship: 

 

 ( ) 7,, 7logtan utu qtq += α                                                                                                              

 

Where 

 

tuq , , Is compressive strength at time t 

7,uq , Is compressive strength after 7 days 

t , Is the period of curing (days) 

αtan  is the gradient of the straight line of cementation  

 

Another study that addressed the expected rate and degree of strength increase in time was 

that by Ahnberg (1996). Figure 2.14 which is based on this study, shows the strengths 

measured for the three tested soils treated with different binders (including lime) together 

with the amount of reaction products (their approximate calculation as suggested by 

Ahnberg (1996) was reported in section 2.4 (b) above). The average strength values of 

specimens tested after 28 days curing were moderately proportional to the theoretical 

amount of short-term reaction products formed, unlike results obtained from specimens 

tested after one year curing (these showed a considerably higher strength in a number of 

cases). The variation in strength for different soils was found to be greater for binders such 

as lime that are likely to react mainly with minerals in the soil. However Ahnberg pointed 

out that the rate of strength gain may also be influenced by other factors, such as chemical 
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constituents initially contained in a particular soil, which may hinder or accelerate its 

strength increase. 

 

 

 

Figure 2.14: Estimates of the amount of reaction products contributing to the strength of  

stabilised soils (bars) together with measured strength in three soils one month and the 

range one year after mixing. [c = cement, l = lime, s = slag, f = fly ash]. (Ahnberg, 1996.) 

 

Finally, the uq  was found to be dependent on the compaction delays (i.e. what is called in 

the literature the ‘mellowing’ time, as opposed to ‘curing’ time, which refers to times after 

compaction). The (up to three hours) strength characteristics of lateritic soil treated with a 

maximum of 8% lime (by dry weight) were introduced by Osinubi (1998a). These 

indicated that the compaction and strength properties of lime treated soil declined with an 

increase in mellowing time (Figure 2.15). Note that the studied compaction delay 

(mellowing) times in Osinubi (1998a) are indeed quite short – the British Standards specify 

for a minimum of 12 hours for untreated London Clay samples and between 24 and 48 

hours duration for lime treated samples to allow for mellowing (BS.1924 – 1: 1990) 
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Figure 2.15: Variation of UCS of lime-stabilised lateritic soil with compaction delays / 

Standards proctor (Osinubi, 1998a) 

 

Some papers discussed the stress-strain behaviour of the soils tested in UCS. Figure 2.16 

describes strains at failure decreasing with increasing unconfined compressive strength 

(Ahnberg et al., 2003). The somewhat apparent change from a higher to a lower (almost 

constant) failure strain, reflects the transition from contractive to dilative behaviour as the 

strength of the stabilised soils increases. This was attributed to the formation of higher 

amount of cementation bonds between soil particles within a short curing time. A more 

ductile behaviour with larger strains at failure can be observed for soils with lime contents 

higher than the LFP, when tested at high confining pressures (1 MPa and beyond).  
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Figure 2.16: Changes in strain at failure with increase in unconfined compressive 

strength. (Ahnberg et al., 2003)  
 
 
As opposed to the abundant literature on the UCS of lime treated soils, there is a paucity of 

information on the shear strength and shear strength characteristics, as well as the overall 

behaviour of lime-treated soils based on triaxial testing. Some rare studies include those by 

Oh et al. (2008); Ahnberg (2007) and Zhang (2011). The first of these papers presented a 

large number of conventional consolidated undrained triaxial tests on a saturated clay soil. 

The results in terms of peak strengths plotted far above the Critical State of the untreated 

material. However upon breakage of the cementation bonds the strength of the soil reduced 

to the critical state strength of the untreated soil, consistently with findings on natural 

cemented soils when compared to remoulded soils (e.g. Coop and Atkinson, 1993). The 

shear strength of the treated soil therefore lied between the tensile strength envelope, which 

constitutes its upper limit, and the Critical State of the untreated soil. An increase was also 
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noted in the yield point with increasing lime content and curing time (represented in terms 

of  (q,εs) , (u,εs) as well as (q, p’) plots).  

 

Ahnberg (2007) presented the results of an extensive programme of saturated soil triaxial 

testing, based on two different high plasticity clay soils from Sweden, stabilised with three 

different stabilisers (cement, lime and slag) and also binary combinations of these three 

binders. The aim of the study was to investigate the effects of the quasi-pre-consolidation 

pressures (i.e. yield stresses due to cementation forming rather than the effect of the 

previous loading history) on the strength behaviour of the stabilised soil. In addition, the 

effect of curing under different stresses was to assess the implications for deep soil mixing 

purposes. The tests included triaxial extension and compression under drained and 

undrained conditions. Oedometer tests were also performed in parallel to enable 

comparisons based on the quasi-pre-consolidation pressures obtained from these tests. As 

expected from the literature review, a large variation in the strength of the soils was found, 

depending on the type of clay, type and amount of binder, curing time but also due to the 

curing stress and testing conditions. In particular it was found that the strength and quasi-

pre-consolidation stress of stabilised samples subjected to confining stresses during curing 

were higher than those of samples cured at zero confining stress. On the other hand, it was 

found that the soils would behave as  overconsolidated materials if the consolidation stress 

during triaxial testing was higher than the quasi-preconsolidation pressure and as normally 

consolidated soils otherwise (note that the results of the cement stabilised soils manifested 

a more brittle behaviour than the lime-treated ones). This led to the recommendation to 

apply the construction load (e.g. from an embankment) as soon as possible to produce a 

certain compression of the material shortly after treatment.  It was also concluded that for 

deep mixing (i.e. at high confining stresses) the strength of the untreated and treated soils 

(especially the lime treated ones) were mobilised at similar strain levels especially in 

undrained loading. Mobilisation of shear strength was observed within low strain levels in 

drained shearing at low confining stresses, with a subsequent abrupt loss in strength linked 

to brittle behaviour. This was particularly the case for cement treated samples compared to 

lime treated samples and in both instances this occurred much earlier than in the untreated 

soil. A yielding model proposed by Larsson (1977) for natural clays (similar to the model 

by Leroueil and Barbosa (2000) suggested for unsaturated clays and clays of varying 

microstructure) was found to be applicable to describe the strength behaviour of the 

stabilised soils. 
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To the Writer’s knowledge, Ahnberg’s (2007) paper is perhaps the most comprehensive 

study published in English on triaxial testing results for saturated lime-treated clay soils. 

 

Finally, a recent PhD work conducted at London South Bank University (Zhang, 2011) 

investigated the mechanical properties of lime-treated London Clay through triaxial 

testing, focussing in particular on suction-controlled testing. Limited saturated soil triaxial 

tests were performed to complement the results and address the effect of suction. These 

results also showed the beneficial effect of the lime on the shear strength within ranges of 

strain relevant to engineering design (despite the observed strain softening behaviour). The 

results also indicated that although the properties of the soil have obviously changed upon 

lime treatment, the behaviour of the unsaturated lime treated soil presented behaviour 

trends consistent with the reported behaviour of uncemented unsaturated soils regarding 

the effect of suction or mean net stress on the shear stress and shearing behaviour of the 

soil. The research supplied valuable quality data of suction controlled testing of lime-

treated soils and addressed the behaviour of the lime-treated soil, within an unsaturated soil 

mechanics framework. However, due to the length of the constant suction triaxial testing 

undertaken, it was not possible to consider different lime percentages and compaction 

conditions. These are likely to affect the properties of the lime-treated soil in terms of the 

resulting differences in the soil fabric as well as cementation bonding. Indeed, for natural 

bonded soils it was demonstrated that both fabric and degree of cementation affect the 

shear strength and shearing behaviour of the geomaterials in terms of position and shape of 

the yield surface  (e.g. Maccarini, 1987; Vaughan, 1988; Bressani, 1990), stiffness, peak 

strength magnitude or mobilisation strain range and brittleness or ductility (Cuccovilo and 

Coop, 1993) 

 
2.6.4. Permeability  

 

Although not as well researched as the UCS and plasticity characteristics, permeability of 

lime-treated soils was investigated in a number of studies. Permeability is an important 

property, as it can directly affect the pore water pressure response at loading and, 

depending on the rate of loading, influence the extent to which undrained or drained 

conditions govern the strength behaviour (Ahnberg, 2006). Moreover, during the 

stabilisation course, permeability will affect the rate of consolidation after construction and 
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the possible impact on the environment from the leaching of stabilisers (in addition to 

losing part of the stabiliser meant to be necessary for stabilisation purposes). 

 

The findings of previous studies on lime-stabilised soil permeability appear to be 

inconclusive, in that many studies report in some instances an increase in permeability 

(which is generally attributed to particle aggregation e.g. Brandl, 1981; Nalbantoglu and 

Tuncer, 2001; Rajasekaran & Narasimha Rao, 2002) but in other instances a decrease in 

permeability with respect to that of the untreated soil or both an initial increase and 

subsequent decrease depending on the lime amount used, the curing period, the stress 

conditions and the macro-structure of the stabilised soils (e.g. Locat et al., 1996). 

 

For instance, Nalbatoglu and Tuncer (2001) testing an expansive marine clay from 

Northern Cyprus, found an increase in permeability compared to that of the untreated soil, 

regardless of the amount of lime used or curing time (see Fig 2.17 below). Brandl (1981) 

showed an increase in permeability of “over one or two decimal exponents”. He suggested 

that the more ‘cohesive’ and reactive the untreated soil is, the higher the increase in 

permeability due to initial flocculation. de Brito Galvao et al. (2004) investigated the effect 

of lime on the permeability of two Brazilian soils of a different origin, namely brown 

saprolitic soil (1) and red lateritic soil (2). Results obtained from the test indicate that the 

coefficient of permeability for soil 1 increased about five times with only 2% lime 

addition, presumably due to flocculation-aggregation, then decreased on further lime 

addition (without reaching the low permeability recorded for the untreated soil) which was 

attributed to the formation of cementation products, filling the voids within the aggregates. 

The permeability then continued to drop with lime addition but at a lower rate. On the 

other hand soil 2 (the lateritic soil) experienced a continuous decrease in the coefficient of 

permeability with lime addition, which was also attributed to the cementation product 

formation.  
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Figure 2.17: Lime content effect on hydraulic conductivity at different curing time 

(Nalbantoglu & Tuncer, 2001) 

 

Locat et al. (1996) tested soft organic clay and found that the cementitious material 

produced during the process of artificial cementation filled the pore spaces, so that 3.5-

10% lime content addition resulted in a reduction of hydraulic conductivity with curing 

time by up to one order of magnitude compared to that of the untreated soil for different 

initial soil void ratios (Figure 2.18). The authors correlated the permeability decrease with 

the consumption of lime during curing (see Fig. 2.18b). Lower lime percentages however 

appeared to have increased the permeability of the soil.  
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Figure 2.18: Permeability curves Vs Void ratio: a) Time effect at 30, 100 and 200 days  

                       curing, b) lime content effect at 30 days of curing (hydraulic conductivity Vs 

lime content at e = 2.0) (Locat et al., 1996) 

 

Osinubi (1998b) followed the changes in permeability of specimens treated with varying 

percentages of lime, compacted at different conditions and cured for different time periods. 

Non cured specimens were also tested immediately after treatment. The effects on the 

permeability were observed to be variable, with overall an initial increase for up to 14 days 

of curing and a subsequent decrease (with one exception only where permeability was 
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almost constant -slightly lower- then increased to subsequently decrease again slightly). 

The interpretation of the findings was that an initial flocculation and other structural 

changes instantly transformed the permeability after stabilisation. Osinubi (1998b) 

suggested that as a rule, a permeability increase would be expected during the stabilisation 

process, although the addition of a large quantity of cementing agents to highly organic 

soils, combined with pre-determined compaction energy, could instead cause an initial 

decrease in permeability. Permeability would then decrease with time, due to the different 

cementitious products forming (see Fig 2.19). The author attributed the observed variations 

in the complexity of the lime-soil reaction mechanisms, which are very dependent on the 

amount and type of clay mineral present in the soil.  The interpretation is consistent to that 

of Metelková et al. (2012) suggesting that the initial change in permeability (during the 

formation of primary reaction products) is associated with a change in the void ratio, and 

can also be approximately related to the moisture content change after mixing and possible 

compaction and that the cementation process leads to about the same relative decrease in 

permeability as to the increase in strength associated with pozzolanic reactions. This 

appears to be a fair conclusion on the effects of the lime on the permeability of soils, 

consistent with the review of other papers in the literature. 

 

 

 

Figure 2.19:  Variation of coefficient of permeability of treated Lateritic soil with curing 

period (Osinubi, 1998b) 
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2.6.5. Compressibility  

 
 

Whereas plasticity, shrinkage and swelling, UCS and CBR of lime treated soils have been 

extensively investigated, relatively fewer studies investigated the effect of lime treatment 

on the compression behaviour of the soil, mostly through oedometer testing. 

 

Examples include Nalbatoglu and Tuncer (2001) and Rao and Shivananda (2005a) who 

studied respectively the K0 compression behaviour of expansive soils from Northern 

Cyprus and India, or de Brito Galvao et al. (2004) who investigated the effect of lime 

stabilisation on the compressibility of two Brazilian soils of different origin, namely a 

brown saprolitic soil, and a red lateritic soil. These have all demonstrated the beneficial 

effect of lime leading to a sharp reduction in the compressibility of the lime-treated soil 

compared to the respective untreated soil. This is manifested both by the increase in the 

vertical effective yield stress p'c (apparent pre-consolidation pressure), as well as the post-

yield stiffness of the soil. An example is shown in Fig 2.20 (a) & (b) based on the results 

by de Brito Galvao et al. (2004). The increase of the yield stress of the lime-treated soil 

compared to that of the untreated saturated soil is consistent with the behaviour of 

cemented geomaterials. Nalbantoglu and Tuncer (2001) argued that for lime-treated soils it 

is due to a chemically-induced pre-consolidation effect, caused by the cation-exchange 

reaction, as well as cementation bonds (the latter is the reason most other authors invoke 

for the decrease in the compressibility of the soil, e.g. Ingles and Metcalf (1972) and de 

Brito Galvao et al. (2004)). According to Nalbantoglu and Tuncer, both aggregation 

formations of the clay treated with lime as well as cementation effects on soil particles 

result in stronger aggregates and give higher resistance to compression which results in an 

increase in yield stress and stiffness. Various ways of estimating different compression 

parameters of stabilised soils have been suggested including the vertical yield stress as 

related to the void ratio (Tremblay et al., 2001; Rotta et al., 2003). For instance, Tremblay 

et al. (2001) experimentally investigated the one-dimensional compression behaviour of a 

number of clays from eastern Canada treated with lime or cement. Based on the 

experimental data, they developed a general compressibility model, estimating the 

compressibility reduction for a given soil treated with a particular additive, by defining 

relationships between initial void ratio, additive content, and vertical effective yield stress. 

Rotta et al. (2003) highlighted the importance of the void ratio during the formation of 
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cementitious bonds. The authors demonstrated that the yielding stress variation with void 

ratio and cement content is dependent of curing stress.  

(a) 

                                                                                           

(b) 

 

Figure 2.20: Strain Vs Pressure for (a) brown saprolitic soil and (b) red lateritic soil, 

treated with lime. (de Brito Galvao et al., 2004) 

 

It is interesting to note that in the above Figures by de Brito Galvao et al. (2004), the 

results on the compressibility lines of the lime-treated soil did not eventually converge to 

that of the untreated soil; this would be the expected behaviour based on the well-

documented broader literature on naturally cemented geomaterials when subjected to 

destructuration (e.g. Lagioia & Nova, 1995; Callisto & Calabresi, 1998; Coop, 1999). The 
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expected behaviour is shown qualitatively in Åhnberg’s (1996) thesis, who presented a 

schematic variation of the oedometric compression modulus with increasing confining 

stress, expressed in accordance with the model normally used for calculations of 

settlements of natural soft soils in Sweden (e.g. Larsson et al., 1997) (see Fig. 2.21). 

According to Åhnberg after passing a yield stress, the modulus reaches a minimum value. 

Thereafter, it increases with further increase in stress and, as an effect of the breakdown of 

the cementation forces with increasing stress level, is then governed by a modulus number 

M′ of the same magnitude as that of the unstabilised soil.  

 

 

Figure 2.21: Schematic variation in compression modulus to oedometer tests  

(Åhnberg 1996) 

 

Of all papers mentioned above on lime-treated soil compressibility, only Rao and 

Shivananda (2005a) demonstrated the effect of full destructuration by performing one 

dimensional compression load tests, applying a maximum load up to 12.8 MPa. Thus the 

authors noted an initial yield linked to the start of the cementation bonding destructuration 

at lower load application but the full breakage of cementation bonds, which brought 

together the compression curves of the treated soil, only occurred in the range of 3.9 and 

5.2 MPa (see Fig. 2.22 &2.23). However, so high load stresses are not relevant for 

common geotechnical applications of lime-treated soils especially when used in shallow 

mixing. 
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Figure 2.22: Compression curves of 4% lime-stabilized specimen  
(Rao & Shivananda, 2005a) 

 

 

Figure: 2.23: Variation of yield stress with soil-lime content (Rao & Shivananda, 2005a) 
 

 

Based on the latter paper the compressibility of the lime-treated soils can be considered as 

consisting of an elastic zone, plastic zone and post failure zone (same as for natural 

structured soils). Hong et al. (2012) suggested that it consists of the following three zones: 
 

i) The pre-yield zone characterised by small compressibility, with soil structure 

resisting the deformation up to pre-consolidation yield stress. 

ii) The transitional zone characterised by the start of structure resistance gradual loss 

between the initial yielding point up to maximum pre-consolidation yielding 

stress a natural clay can withstand. 
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iii) The post transitional zone, when the effective stress is higher than the transitional 

stress. 

 

2.7. Constitutive modelling  

 

Traditional geotechnical engineering has focussed on parameters describing ultimate limit 

state conditions linked to simple failure criteria, such as the Mohr-Coulomb criterion. The 

criterion has been used to express failure of both naturally and artificially cemented soils 

but a curved failure envelope has been reported for low confining stress levels of cemented 

soils (Muhunthan and Sariosseiri, 2008). In addition, as due to cementation the treated soil 

acquires properties and behaviour similar to a soft rock, common failure criteria such as 

Griffith’s crack theory (e.g. Mitchell 1976; Muhunthan and Sariosseiri, 2008) or Hoek-

Brown’s failure criterion (e.g. Karaoulanis and Chatzigogos, 2011) used in rock mechanics to 

describe failure due to cracking, have also been used in their originally expressed or 

modified form to express the failure of cemented soils.  

 

On the other hand, for the analysis design of problems in which displacements and stresses 

under working load well below failure linked to serviceability limits control design, some 

more detailed description of the behaviour of the material is necessary, especially when 

numerical modelling is involved. This can only be achieved with constitutive modelling 

also capturing the behaviour of the material from the pre-yield region to yielding in 

addition to post-yield and failure. Such models can be complex and involve a large number 

of parameters that need to be identified based on sophisticated testing. However as the 

previous review showed, most previous research results and design for practical 

applications of lime-treatment have been based on simple testing and found to be 

insufficient to provide these parameters, as opposed to more advanced testing (in particular 

triaxial testing) which is only rarely found in the literature of lime-treated soils. 

Consequently, constitutive models describing the behaviour of lime-treated soils in 

particular, are lacking from the international literature. Conversely a large number of 

quality triaxial data have been obtained for naturally cemented soils or more generally 

natural soils with structure over several decades (Sangrey, 1972; Clough et al., 1981; 

Maccarini, 1987; Bressani, 1990; Coop and Atkinson, 1993;  Cuccovilo & Coop, 1993 to 

name a few) as well as cement treated soils for stabilisation purposes , often produced as 

analogue for the laboratory study of naturally cemented soils (e.g. Huang & Airey, 1993; 
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Uddin et al., 1997; Horpibulsuk et al., 2004;  Kamruzzaman et al., 2009). Based on the 

substantial amount of experimental evidence, a large number of models have been 

developed for naturally cemented or structured soils and some models were also proposed 

for soils stabilised with cement (e.g. Horpibulsuk et al., 2010). Such models were not 

proven for lime-treated soils in particular and differences in the structure as well as 

property values of lime-treated clays compared to other cemented clays (or soils) can be 

expected. However as a key reference by Leroueil and Vaughan (1990) has shown 

(followed by further experimental evidence on this in subsequent years) cemented /bonded 

or in general structured soils of  different nature and of cementation/bonds/structure arising 

from different factors (soft rocks, weak and weathered; stiff clays or aged sands; residual 

soils) show some common behaviour characteristics. Thus, it can be expected that models 

suggested for natural or cement treated soils could possibly be used to describe the 

behaviour of a lime treated soil potentially with some adaptation to better reflect this type 

of soil. 

 

The observations regarding the common characteristics of bonded/structured soils can be 

summarised as (Leroueil and Vaughan, 1990; Gens and Nova, 1993; Tamagnini et al., 

2011): 

 

• Experimental results showed that in naturally bonded or structured soils, geological 

history produces a diagenetic microstructure, causing the elastic domain of natural 

soils to be substantially increased. Similar effects can be obtained by artificial 

cementation of the soil.  

 

• The geomaterial exhibits tensile strength and true cohesion due to bonding. 

 

• These effects are however subject to degradation upon mechanical or chemical 

disturbance, when the cemented bonds may be destroyed, leading to a loss of 

stiffness, strength (often brittle failure) and softening. 

 

• The general behaviour of this type of material (bonded/cemented) is a stiff 

response in loading, followed by yield. It was pointed out by Leroueil and 

Vaughan, (1990), that a similar effect is observed as a consequence of over-

consolidation (despite the fact that this is a distinct phenomenon). 
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• In general, yield phenomena are very marked with clear yield loci evident during 

testing. These can be determined for different modes of yield, i.e., upon 

compression, shear or unloading. An initial yield is often also observed with the 

stress path still inside the main yield locus. 

 

• Following yield, bonds degrade gradually until full debonding / destructuration. In 

the case of compression/consolidation (whether isotropic or under 0K  conditions), 

the consolidation curves after a distinct yield point, tend to converge towards the 

consolidation curves of the unstructured / unbonded material, as discussed earlier.  

 

• Similar to the behaviour of rocks (on a different scale) these materials would show 

a brittle/dilating behaviour when shearing under low confining stresses which is 

gradually becoming more ductile/compressive at higher confining stresses. 

 

• Similarly, stiffness and deviator stress at yield may decrease when confining 

stresses increase.   

 

These observations have been supported by experimental evidence on either naturally or 

artificially lightly cemented soils (the latter were created in the laboratory for the purposes 

of studying the naturally cemented soils). Overall, the two main features of the generalised 

framework proposed by Leroueil and Vaughan (1990) were (a) the need to consider the 

structured soil behaviour in comparison to that of the unstructured / unbonded soil and (b) 

the fundamental role of yielding phenomena in the description of the behaviour of the 

bonded/structured geomaterial. Based on these pertinent observations on the similarities 

between these geomaterial types, a number of constitutive models were formulated to 

address these features, using as a starting point the mathematical structure of common 

constitutive models suggested for unbonded soils (i.e. models capable of describing the 

behaviour of the reconstituted soil as a reference state). Such models include the critical 

state soil mechanics (CSSM) framework and Cam-Clay type models, with some 

modifications/extensions, to accommodate the particularities of the bonded/structured 

geomaterials.  
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A key reference in the constitutive modelling of cemented soils is the framework suggested 

in a series of publications by Nova and co-workers with various extensions/modifications 

(e.g. di Prisco et al., 1992; Gens & Nova, 1993; Lagioia & Nova, 1995), based originally 

on data from calcarenite. In this non-associative elasto-plastic model, shapes for both yield 

surface and plastic potential are described using the expression given by Lagioia et al. 

(1996). Elastic behaviour is described by a four-parameter hyper-elastic formulation (Borja 

et al., 1997). In total the model contains thirteen parameters. Apart from stress (or elastic 

strain) any material state is described using two independent internal scalar variables with 

stress dimensions, which control the size of the current yield surface as well as of an inner 

reference surface corresponding to a fully destructured material. The first variable is linked 

to stress memory of the material i.e., similar to the usual pre-consolidation pressure and 

hence either increasing or decreasing, depending on the state of stress and history of the 

material; the second is related to the effects of bonding /structure and can only decrease 

with plastic strains (in further developments, e.g. Nova et al. (2003) this variable is also 

dependent on weathering and/or chemical degradation). Consequently, either softening or 

hardening can take place, depending on the relative amount of the rate of change of the 

internal variables. Note that the concept of using an independent hardening/softening 

variable was subsequently used in other, more complex, elasto-plastic models of bonded or 

structured soil behaviour, e.g., enhanced to include amongst other anisotropic behaviour 

(Rouainia & Wood, 2000)2 or stiffness nonlinearity in the model of Baudet & Stallebrass 

(2004). The latter model was suggested for structured clays. It incorporates a sensitivity 

parameter “s” to characterise the expanded yield surface due to structure (“the sensitivity 

surface”). This surface starts from the axes origin in the p–q space, and is s times larger 

than the intrinsic yield surface for fully remoulded states. Natural soil structure is assumed 

to be composed of meta-stable and stable elements, i.e. not degrading with straining. They 

defined a damage strain as a function of plastic volumetric and shear strains so that, upon 

destructuration the surface shrinks gradually as sensitivity decreases exponentially with the 

damage strain. Ultimate states (i.e. the fully disturbed state) are not made to converge to a 

unique critical state surface in the p–q–e space.  Note that this model does not consider the 

development of tensile strength that is produced by inter-grain bonds.  

 

                                                 
2 Note that artificially cemented materials with cement or lime-treated can reasonably be considered to be 
isotropic due to remoulding while mixing 
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Yu et al. (2007) developed an isotropic hardening model but considering the effects of true 

cohesion and the development of tensile strength due to bonding between soil particles.  To 

achieve this, they introduced two bond-related parameters to define the size and location of 

the yield surface as shown in Fig 2.24. The evolution laws of the pre-consolidation stress 

parameter 'cp  and cohesion c  can then simulate the progressive degradation of the bonds. 

The model is not, however, intended to simulate the brittle mode of failure that is linked to 

an abrupt destruction of the true cohesion. 

 

 

Figure 2.24: Yield surfaces for reconstituted and bonded materials (Yu et al. 2007) 

 

Vatsala et al. (2001) modelled the behaviour of the cemented soil as the coupled response 

of the soil skeleton represented by the modified Cam Clay and that of cementation bonding 

component for which a new elasto-plastic model was formulated. The stresses attributed to 

each of these separate components were thus calculated for each strain level and added to 

generate the overall response of the cemented soil. The proposed model was successfully 

applied to a number of naturally cemented soils (both clays and non-clayey material) to 

simulate their compression behaviour. However according to this model the microstructure 

of the material is not considered to have changed due to cementation. This may therefore 

not be a good representation of the lime-treated soil for which microstructure is expected to 

change according to the previous literature review.   

 

A model to simulate the compression behaviour of the structured soil was also suggested 

by Liu and Carter (1999). To describe the virgin compression of the structured soil the 

effects of structure are directly introduced explicitly through a mathematical relation 
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between additional void ratio of structured soil compared to that of the reconstituted soil. 

The model thus begins in the oedometric (or isotropic) compression plane where the initial 

yield limit and excess void ratio of structured soil compared to the reconstituted soil at this 

yield limit are considered as parameters of structured soil. An equation for the virgin 

compression curve of structured soil dependent on these parameters is formulated and the 

‘de-structuring index’ is used to represent the rate of  structure degradation corresponding 

to a non-linear decrease of the void ratio of the structured soils as a function of the ratio of 

current pressure over the initial yield limit. The model was then extended (Liu and Carter, 

2002) to also simulate structure degradation due to deviatoric effects using a strain 

hardening rule as in modified Cam-Clay model. The model contains a formulation to find 

the additional void ratio based on the mean yield effective stress and a “b” parameter 

called the destructuration index, which should be obtained for a specific soil based on 

experimental data. The model was later adopted with modifications by other authors e.g. 

Horpibulsuk et al. (2010) to model the constitutive behaviour of artificially cemented 

clays; the concept to express critical state behaviour used a yield surface was shifted to the 

left in the qp −'  plan, so that its intercept with the q  axis was not zero. The model was 

found to reasonably predict the shearing behaviour of a number of artificially cemented 

soils.  

 
Note that although the above models have often been used in the literature to describe both 

naturally and artificially cemented clays, Sasanian (2011) pointed out that there appears to 

be significant differences in the behaviour of the natural and artificial structure, which are 

not fully understood and addressed. Therefore, the author studied the mechanical response 

of artificial and natural “Ottawa clay” specimens subjected to complex stress path tests, in 

order to compare the behaviour of the two types of structure (natural and artificial). 

Important distinctions were observed between the behaviour of naturally structured and 

artificially bonded material. For instance, the undisturbed Ottawa clay showed a more 

sudden structural collapse compared to the artificially cemented specimens which undergo 

a gradual destruction. In addition, the yield locus of the artificially cemented soil was 

found to be more elongated than the naturally structured soil. As a result, Sasanian 

proposed a new framework to define the yield locus of the artificially cemented material. 

This consists of a combination of two elliptical models, the elliptical cap (Chen & Mizuno, 

1990) for ce MM ≤≤η  and the modified cam clay model (Muir Wood, 1990) for 

ceM ηη ≤≤  and ee M≤≤ηη . This requires three parameters (the isotropic yield 
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stress ( )0'p , the mean effective stress ( )l corresponding to CS and the gradient ( )M  of the 

CSL). The newly proposed framework successfully estimates the experimental data in 

compression, while some difficulties were encountered by the author to produce a yield 

loci which best estimates the experimental data in extension. 

 

Other authors attempted to recover the constitutive models for cemented soils starting from 

thermodynamics principles. Thus, Tamagnini et al. (2010), Tamagnini et al. (2011) and 

Yan and Li (2011) derived thermodynamically consistent Cam-Clay type models with 

associative flow rules (as opposed to most other common approaches) modified to account 

for the effect of cementation. To do this, they used the concept of frozen (or locked) energy 

accumulated in the bonds/soil structure which upon destructuration is then gradually 

released so that the soil gradually approaches more stable states (remoulded states). The 

yield surface in the model of the former authors is based on the Modified Cam-Clay 

formulation whereas the latter model modifies the shape of the yield surface to a teardrop 

shape surface by using an additional parameter as suggested in Collins and Kelly (2002). 

An additional internal variable is then introduced; in the former model this represents the 

amount of bonding created due to cementation; in the latter model this represents the 

bonding evolution. Both models are validated against experimental data for various types 

of bonded geomaterials. 
 

A simple model for cement-treated clays was suggested by Arroyo et al. (2011). The model 

also incorporates a bonding variable “b”, so that the yield surface grows with an increasing 

amount of bonding in the soil. The model only required unconfined compressive strength 

data, and measurements of porosity as well as of the cement amount in the mixture. With 

this information the main state variable of the bonded soil elastoplastic model were 

identified. The model successfully simulated laboratory testing data for cement-treated 

Bangkok clay. 

 

While most models suggested for the behaviour of bonded geomaterials were within the 

frameworks of hardening elasto-plasticity and critical state soil mechanics, other 

frameworks were also used for bonded / cemented materials, for instance visco-plastic 

formulations. Thus, in a conference on hard soils and soft rocks, Oka et al. (2011) used a 

Perzyna - type elasto-viscoplastic formulation to model the triaxial behaviour of soft 

porous rocks (tuffs). The effect of the cementation on the yielding surface was 
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incorporated via the quasi-overconsolidation. In the same conference, another visco-plastic 

formulation (Duvaut-Lions) was also introduced by Karaoulanis & Chatzigogos (2011) 

together with Hoek-Brown’s failure criterion, to model the time-dependent behaviour of 

soft rocks. 

 

2.8. Conclusion 

 

The literature review covered previous work on lime treatment of clay soils. The review 

highlighted the complexity of the phenomena and the strong dependence of the processes 

on the particular soil. From this literature review findings, it was clearly concluded that to 

interpret the changes in the hydro-mechanical properties of the soil, accompanying testing 

is necessary (e.g. XRD, ESEM, electric conductivity testing, analytical testing etc.) to 

investigate the mineralogy changes and the evolution of the reactions based on the new 

products formed. This will therefore be the methodology followed in this study to interpret 

the findings of the geotechnical testing. Moreover, it was found that hydro-mechanical 

properties have mostly been related to simple tests, mainly adopted for road construction 

applications such as (CBR, UCS, and plasticity testing), which would be insufficient to 

provide parameters for advanced constitutive modelling as those required in the reviewed 

models for structured/bonded soils. The need for further advanced testing, in particular 

triaxial testing was therefore highlighted and this will be the main focus of the research 

described in the following sections.  
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Chapter 3 

 

3. Material description and laboratory testing procedures 

 
3.1. Introduction 
 

This chapter describes the material used during the experimental programme. It also 

highlights the selected chemical agent for the material treatment. 

 

The methods developed for specimen preparation are also presented. Finally the chapter 

describes the equipment used, the instrumentation calibration, the experimental procedures 

and the testing programme of this research, which aimed at investigating the effects of lime 

percentage, compaction characteristics and curing time on the mechanical properties and 

behaviour of the lime-treated soil, through a series of extensive triaxial tests. 

 

3.2. Materials 
 

3.2.1 London Clay 

 

In this study bulk London Clay samples from a deep excavation at Westminster Bridge in 

London were obtained from a depth of approximately 26-30 m below ground level. The 

London Clay Formation is a well-developed marine geological formation found in the 

London Basin and Hampshire Basin, UK, reaching an average thickness of 130 m. It is 

therefore a soil extensively encountered in construction in the London area and the South 

Eastern England, including pavement construction, airports (e.g. Heathrow Terminal 5), 

underground railway (an example of recent engineering works being the Crossrail project), 

embankment and building foundation construction. In its natural state London Clay is a 

stiff over-consolidated clay, as in most parts of the London Basin, substantial erosion has 

taken place in the late Tertiary and Pleistocene times, removing the upper parts of the 

London Clay, and any other overlying Tertiary (King, 1981). 
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• London Clay main characteristics 

 

A number of comprehensive studies were carried out on the characteristics of London 

Clay. These include works by Bishop et al. (1965); Ward et al. (1959 & 1965); Webb 

(1964) and Skempton et al. (1969), for soil coming from the London area, such as Ashford 

common, Prospect Park and Wraysbury reservoir. The data was re-analysed by Wroth 

(1972), and reviewed by Burland (1990). Later, Hight and Jardine (1993) investigated the 

characteristics on London Clay related to its geology by considering samples from 

different sites in Central London. More recent studies include those by Gasparre (2005) 

and Hight et al. (2007) who added the newest comprehensive information on the London 

Clay based on tests performed on the new Heathrow terminal 5. Standing and Burland 

(2006) highlighted the effects of the geological characteristics on engineering applications, 

while Pantoulidou and Simpson (2007) emphasised the geotechnical variation of London 

clay across central London. 

 

The unit weight of the excavated London Clay was found to be about 3/205.19 mkN− , 

and the in situ natural moisture content of the natural London Clay material range between 

25 and 30%, which is consistent with the findings of Standing and Burland (2006), for 

samples from St James Park, a region close to Westminster Bridge. 

 

Particle size distribution analysis carried out by Zhang (2011) on two duplicate London 

Clay samples has identified from the same sources the material as approximately 53% clay 

and 45% silt (see Figure 3.1).  
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Figure 3.1: Particle size distribution curves of London Clay (Zhang, 2011) 

 

3.2.2. Lime 

 

Lime is a broad term which is used to describe calcium oxide CaO  as quicklime, calcium 

hydroxide 2)(OHCa  as slaked or hydrated lime and calcium carbonate 3CaCO  as 

carbonate of lime. Lime is used as chemical stabiliser for soils, particularly expansive 

clays. Lime is considered as low cost material, making it a popular choice among many 

other effective stabilisers. Nowadays, lime treatment for soil improvement is extensively 

employed within the civil engineering industry, such as embankment, road construction, 

foundation slabs and piling applications. Adding lime to clayey soils in the presence of 

water, a number of reactions take place, resulting in soil engineering properties 

enhancement.  

 

The use of quicklime CaO  is generally preferred to hydrated lime 2)(OHCa , this is 

attributable to the availability of high amount of calcium cation content, per unit mass, 

which is crucial for the development of the reactions. Moreover, the highly exothermic 

slaking reaction speeds up the development of pozzolanic bonds among the grains 

(Greaves, 1996). However, due to its greater vulnerability in exposing the user to skin and 

eye burns, the type of lime used during this study for London Clay treatment is chosen to 
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be hydrated lime, it comes in the form of fine dry powder. Chemical analysis carried out on 

two separate lime samples illustrated that its calcium hydroxide content ranges between 

95% and 97%. 

 

3.3. Specimen preparation 

 

Specimens have been prepared following the same procedure as the previous research 

carried out by Zhang (2011) on lime treated London Clay to ensure consistency and a 

compatible link between the two research studies. However, it is possible that the London 

Clay samples used in this study may not have always come from exactly the same depths 

as in Zhang (2011) (depths of collected samples varied from 26-53 m). 

 

In order to obtain quality results during the laboratory testing, a certain expertise on 

specimen preparation was developed. The specimen preparation process consisted of the 

following main phases (see Figure 3.2), namely:  

 

• Air drying  

• Grinding  

• Sieving 

• Clay-lime dry mixing 

• Adding water and mellowing  

• Static compaction.  

• Curing period.  
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Figure 3.2: Specimen preparation stages 
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(a) Air drying and grinding 

 

Part of the soil obtained from the excavation was broken into small lumps using a rubber 

pestle, exposed to an open air in metallic trays at controlled room temperature for 

approximately one month (air drying). During the drying process, soil lumps were turned 

upside down on a regular basis to avoid local drying. Next was the grinding in a 

mechanical grinder at Imperial College to fine particles passing the mµ425  sieve (No. BS 

410). The process generated clay powder, which was inserted in sealable plastic bags and 

stored for future use. 

 

(b) Clay-lime dry mixing  

 

Each soil sample was individually prepared using the same basic soil. A standard 

procedure was followed to accomplish consistent results in the main tests. 

 

In order to obtain a homogeneous clay-lime mixture, the clay powder was first mixed with 

lime in a dry state for an approximate duration of 5 minutes inside a sealed polyethylene 

bag, until the colour of the mixture became uniform. An extra 0.5 to 1g of clay powder was 

added to compensate for the loss of particles during the mixing.  

 

(c) Adding water and mellowing 

 

Adding water was the next stage, lime treated and untreated London Clay samples all had 

water added using distilled water. This was de-aired by the use of water de-airing (ELE) 

system device, which removes air bubbles contained from a liquid. The wetting procedure 

was carried out within a reasonable time in accordance to BS 1377 – 4: 1990, lasting an 

average of 20 minutes to ensure that lime was not exposed to the air for too long.  

 

De-aired water was added by increments of 2 to 4% alternating with mixing. Once the 

desired moisture target was reached, and an homogenous material was obtained, the wet 

mixture was immediately inserted in a separate sealed polyethylene bag to preserve the 

obtained moisture content target by preventing water evaporation. Without delay the sealed 

wet mixture was stored in a room with a controlled temperature of C°±° 120  for a 

minimum of 12 hours for untreated London Clay samples and 24 hours duration for lime 
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treated samples to allow for mellowing, before proceeding the following day with 

subsequent static compaction. These arrangements guaranteed the homogeneity of water 

content within the specimen by uniformly distributing the water. A small portion of the 

prepared wet mixture was also oven dried overnight to determine / confirm the water 

content of the specimen.  

 

Note that both the required lime and the water amounts per dry soil weight to be added 

during dry mixing and water addition respectively were calculated taking in consideration 

the residual water content of the London Clay which was found to be between 4 and 5%. 

 

(d) Static compaction 

 

Research has shown that more consistent, uniform clay specimens are obtained by static 

compaction (compression) compared to dynamic compaction (Sivakumar, 1993; and 

Tabani, 1999).  The literature identifies two different types of static compaction, depending 

on whether the compaction effort or the target dry density is controlled during the 

compaction process. Venkatarama Reddy and Jagadish (1993) named these two methods as 

the “Constant peak stress – Variable stroke compaction” and the “Variable peak stress – 

Constant stroke compaction” respectively. In the former method the applied stress is 

gradually increased at a defined rate until a specific peak stress is reached. The thickness of 

the compacted specimen and the required compacting energy are dependent on the water 

content of the soil. In the latter method, which was used in this study, compaction is 

carried out by controlling the target dry density of the soil (i.e. the static force is applied at 

a constant rate, until a specific final specimen thickness is achieved).  

 

In this study the cylindrical specimens were statically compacted in a custom built brass 

mould of 38 mm in diameter and 76 mm in height, by a gradually applying a monotonic 

force on to the soil, triggered by the vertical movement of a piston at a rate of  1 mm/min, 

until this was achieved. A compression frame (ELE) with a compressive capacity of kN28  

was used.  The compacting effort was measured via an attached (separately calibrated) 

proving ring with a calibration constant of N26  per division (see Figure 3.3).                                                                          
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Figure 3.3: Split mould and ELE compacting device 

 

All specimens were consistently compacted in six equal layers, using the same amount of 

mass per layer, and scarified before a further layer was added. Once the sixth layer was 

compacted, the cylindrical specimen was kept under the compacting load for a duration of 

5 minutes in order to reduce rebound up on load removal (Jotisankasa, 2005). The 

compacted specimen was then carefully extracted from the mould, followed by acquiring 

the specimens’ mass, average height and diameter, which were separately noted for future 

use. In order to facilitate the specimen’s extraction, silicon oil had been lightly wiped 

around the inside of the brass mould surface before the compaction, as recommended by 

BS 1377 – 1:1990 / part 4 (BSI, 1990). 

 

It should be noted that before adopting the above mentioned compaction procedure, an 

investigation of possible variations was carried out. In particular, research at Imperial 

College, London (e.g. as described in Jotisankasa, 2005) followed a static compaction 

Split mould Compaction 
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procedure by compressing specimens in several layers, except that the mass was checked 

for every compacted layer, and the varying soil mass to add was determined for each 

compacted layer in order to compensate for any loss of mass. The author believes that this 

procedure is time consuming and results in more mass loss, since the mass reduction is 

mainly due to water evaporation, which may become more pronounced if the compaction 

procedure lasts longer, due to the mass checks mentioned above. Replacement by wet 

mixture containing both soil and water does not represent the real loss and may lead to the 

specimen being over-compacted due to extra soil added during the use of this procedure. 

Layers should be of approximately similar mass, to have a uniform density for the 

specimen throughout their height; Whitman et al. (1960) as well as Booth (1975) proved 

that if the same soil mass was used for each layer, statically compacted specimens showed 

no density variation with height, when the sample’s diameter to height ratio is 1:2, as in the 

case of these specimens. 

 

This was verified by the author by performing mass and volume measurements from 

different heights of trial compacted specimens, for which the standard compaction 

procedure using layers of equal mass was used. 

 

For this reason, in this study, an equal mass (1/6 of the total required mass) of the wet 

mixture was added for each layer; mass checks were only performed after the completion 

of the fifth layer, to verify the exact amount of wet mixture needed to complete the last 

layer. Consequently, the possibility of ending up with extra dry soil mass in the specimen 

was reduced by up to five times, minimising the likely error margin on the dry density 

target.  

 

All specimens selected for Triaxial testing were assessed to be within mm5.038 ±  

diameter and mm176 ±  height at the time of the extrusion from the brass mould. 

Specimens outside these required ranges were discarded. It was also verified that they were 

within %1±  of the dry unit weight of the target value, as well as within %5.0±  of the 

required water content target value.  

 

Repeatability was verified on randomly selected specimens, oven-dried to determine the 

dry mass and the initial water content. It was generally found to be consistent within an 

acceptable margin variation %35.0±  for water content and %75.0±  for the dry unit 
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weight, establishing the good reproducibility of the compacted specimens. 

 

(e) Curing 

 

With the intention of preventing moisture loss, after the extrusion, the specimen was 

immediately wrapped in several cling film layers, inserted in a sealable polyethylene bag, 

and finally stored in an hermetic container, and left in a controlled room temperature of 

C
o120 ±  for the desired curing duration.  

 

Each specimen measurements (length and diameter) were taken twice before being 

subjected to triaxial testing (as compacted measurements and as cured measurements). 

Slightly higher values were observed after the curing period essentially due to the 

inevitable rebound. 

 

3.4. Experimental apparatus 

 

3.4.1. Triaxial testing systems used in this study 

 

In this study the following two triaxial testing systems were used:  

 

• A stand-alone Wykeham Farrance unit (WF) without stress path control, which was 

only used for simple testing such as unconsolidated undrained (UU) tests. 

 

• One stress path apparatus referred to as the Imperial College (IC) cell was used for 

shearing specimens under stress path control in saturated state.  

 

The systems are described in more detail in the following sections. 

 

(a) Wykeham Farrance Triaxial system (WF) 

 

The WF 1020 loading frame is of a rigid chromed steel twin column construction. For 

rigidity at large loads the loading platen is made of stainless steel and can impose 

displacements at rates between 0.0006 and 1.140 mm / minute. It is accompanied by 70 

mm diameter triaxial cell, which can house a specimen of 38 mm in diameter. The main 
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body of the cell consists of two parts; namely the circular base plate of the cell, which lies 

on the moving base plate of the frame, and the cell with the loading piston. Both the base 

plate and the ram are made of stainless steel in order to reduce the weight and increase 

their resistance to pressure and rust. The cell chamber, made of Plexiglas, reinforced by 

three plastic strips, is designed to resist an operating pressure up to 1500 kPa (Figure 3.4). 

As the WF was used for UU tests only no internal instrumentation was necessary. 

 

 

 
 

Figure 3.4 (a): Wykeham Farrance body frame 

 

(a) 
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Figure 3.4 (b): Wykeham Farrance base plate 

 

(b) Imperial College Triaxial system (IC) 

 

IC system consists of a Bishop and Wesley type cell (Bishop and Wesley, 1975). The 

system accommodates cylindrical specimens 38 mm in diameter and 76 mm in height. It 

can be used for stress path controlled Triaxial tests, under either saturated or unsaturated 

state conditions; for the latter a simple modification to the system should be introduced to 

accommodate the axis translation technique (Hilf, 1956). However, during this research 

study, tests on the IC Triaxial system were only performed on saturated specimens under 

drained and undrained conditions. 

 

The top plate is designed to accommodate an internal submersible load cell with a 

mechanism to maintain it in a fixed position by means of an adjustable rod passing through 

the top plate and threaded mechanism, allowing the internal load cell to be lowered or 

raised according to the specimen height. The air pressure supplied to the system is adjusted 

by a servo-control electric pneumatic valve / pressure converter. The pressure applied to 

(b) 
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the pressure lines, namely the back pressure and the cell pressure, is generated by an air 

compressor at a maximum capacity supply of kPa700  through separate pipe lines to reach 

the air water interface (Figure 3.6) before being transformed into hydraulic pressure. The 

existing constant rate strain pump (CRSP) within the system is guided by a stepper motor 

and a gearbox, operated by a frequency pulse box. 

 
Unlike the WF system, the IC system is controlled by a computer via an encoded input / 

output interface for the connected PC. Tests are controlled and data recorded using TRIAX 

software developed by Toll (2002). Figure 3.5 shows the IC system, connected to Datascan 

7200 modules for data logging. 

 

 

 

 

Figure 3.5: Imperial College Triaxial cell body 
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Figure 3.6: Air water interface 

 

The following instrumentation is used in the IC system for volume change measurements: 

 

i) A linear variable differential transformer (LVDT) with a maximum range of 25 mm 

is attached outside to the top of the cell to measure the movement of the cross head in 

order to determine external axial strain.  

 

ii) Miniature submersible RDP D5 / 200W LVDT transducers, consisting of two axial 

and one radial transducer. They are placed on the outer membrane surrounding the 

specimen for local measurements of the axial and radial strains, and hence the 

determination of the volumetric strain of the specimen. Two identical secondary coils 

are placed on a common bobbin and a moveable armature. The armature movement 

from its initial position produces an output proportional to the armature displacement. 

The combined output from the local LVDT represents the difference in the voltage 

induced into the secondary coils (Cuccovillo and Coop, 1997). Each transducer’s 

armature is supported by a lower mount, and the body is mobilised by tightening the 
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large-headed screw on the upper mount to hold the transducer’s upper part (Figure 

3.7). The mounts were specially designed to allow the barrelling or the development 

of shear plane for the tested specimens without causing the armature to jam (Gasparre, 

2005). Great care is required during the installation of the internal transducers to 

ensure perfect alignment. 

 

 

    

 

Figure 3.7: Local axial & radial LVDTs mounted on London Clay specimen 

 

iii) A 50 cc Imperial College volume change gauge connected through the back pressure 

line to the IC Triaxial cell to measure the water volume change. The volume gauge is 

essentially a semi-rigid air-water interface, which measures the water flowing in and 

out of the specimen by the piston movement (Figure 3.8) via an LVDT attached onto 

the volume gauge. The obtained value is corrected for dimensional changes of the 

Perspex chamber caused by the pressure applied during the test stages; corrections for 

deformation due to pressure and creep are also applied. Air pressure supplied by an 

electro-pneumatic controller, is converted in the gauge to a desired water pressure, 

which is then applied to the tested specimen (Nishimura, 2005).  
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Figure 3.8: IC Volume change gauge 

 

3.5 . Instrumentation calibrations 

 

The following section explains the general procedures followed for the calibration of 

different types of instrumentation involved in the testing. These consist of fully 

submersible load cells installed in all triaxial cells, pressure transducers for cell, pore 

pressure measurements (used in the Triaxial cells for the pressure control/measurement 

function), and LVDTs for external or local strain measurements. In addition, calibrations 

of the IC volume gauge are shown.  
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Sample calibration for transducer type is shown, whereas indicative data calibration is 

included in Appendix A. The calibration factors are determined and summarised in Table 

3.1.    

 

3.5.1. Load cell calibration 

 

In the lack of a large dead weight device the calibrations of all load cells were performed 

based on the readings of a proving ring containing a reading dial gauge, fitted in the WF 

compression frame. A brass cylinder of 38 mm and 76 mm height and a top cap were used 

during the calibration process (see Figure 3.9). After initialisation of the dial gauge, the 

calibration begun by inputting and recording the actual readings using TRIAX software for 

each applied load, up to the maximum achievable point. A similar repeated procedure was 

followed during the load decrease input and record. The maximum hysteresis and non-

linearity were found to be %5.0±  in full scale. An example of calibration curve generated 

using this procedure is shown in Figure 3.10 

 
 

 
 

Figure 3.9: Load cell calibration using (WF) body frame and a proving ring 
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Figure 3.10: Submersible load cell calibration curve 
 

3.5.2. Pressure transducer calibration 

 

Pressure transducers were all calibrated using a hydraulically operated dead weight 

calibration unit manufactured by Budenburg Ltd (Figure 3.11). The procedure consisted of 

placing precise loads on the hydraulic piston cylinder, while the pressure transducer was 

connected to the second cylinder of the device. The fluid pressure in the reservoir was 

increased by turning the handle until a large enough force was obtained to just lift the 

piston-weight combination. As the piston floated, the pressure applied to the transducer 

was measured. The wiring connection of the pressure transducer (consisting of a shield 

from cable wires ending to a 5 pin socket plug) was directly connected to the data logger 

box from which, using the software interface, the raw output of the transducer (in terms of 

voltage) corresponding to the applied pressure was recorded. The procedure was repeated 

until several calibration points were obtained. In order to identify any hysteresis, 

calibrations of pressure transducers were performed over a range between 0 and 600 kPa 

using the pressure system under loading and unloading conditions.  

 

Regression analyses were then performed, using the software (TRIAX) to show the 

relationship between voltage and pressure. These were saved in the computer program 

allowing real time plotting and recording of the transducer outputs. An indicative 

calibration curve for a pressure transducer (in this case the pore water transducer) is shown 
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in Fig 3.12. A 100 % linearity can be seen for the recorded pressure range. The rest of the 

pressure transducer calibrations performed in the same fashion is presented in Appendix 

A1.  

 

 

 

 

Figure 3.11: Budenburg dead weight calibration unit 
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Figure 3.12: Indicative pressure transducer calibration curve 

 

3.5.3. Internal and external LVDT calibration  

 
LVDTs are all calibrated in similar procedure as detailed by Dineen (1997) and Kuano 

(1999), using a specially designed depth micrometer (Figures 3.13a & 3.13b) with 0.01 

precision achieving a linearity of 100% (Figures 3.14, 3.15a & 3.15b). Calibration is done 

after the imposition of wanted amounts of applied displacement by means of micrometric 

slides. The calibration of the radial strain belt transducer was also carried out using a 

micrometer rig as shown in Figure 3.15b with a linear range of mm150 ±  between the two 

pads. 
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Figure 3.13 (a): calibration of an external LVDT by means of depth micrometer rig 

 

 

 

Figure 3.13 (b): Micrometer rig used for local RDP and DPT 
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Figure 3.14: External axial displacement transducer calibration curve 
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Figure 3.15 (a): Calibration of the RDP (1) & (2) for axial strain measurements 
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Figure 3.15 (b): Calibration of the DPT for radial strain measurements 

 

3.5.4. IC Volume change gauge calibration 

 

The IC volume change gauge was calibrated following the method described in Zhang 

(2011) using a GDS controller. An empty volume gauge is connected to water filled digital 

controller through the top, and linked to the air water interface via the bottom, which in 

turn is connected to a pressure gauge panel (Figure 3.16). Water contained in the 

controller’s cylinder was allowed to gradually flow into the volume gauge, with a 

measured volume accuracy of %1± . The LVDT readings were recorded in terms of raw 

voltage using the TRIAX software calibration module for every 1cc, until 10cc; then every 

5cc thereafter, and up to 20cc. This procedure was carried out under a back pressure of 20 

kPa , which is the pressure value used during the saturation stage. The calibration was also 

performed in the reverse way allowing water to flow from the volume gauge to the GDS 

controller, and recording voltage for every 5cc taken into GDS controller (Figure 3.17). It 

is noteworthy that although generally during the triaxial testing, the range for the volume 

gauge varied between 0 and 10cc, the calibration was extended to 20cc as a precaution. 

 

To determine the apparent volume change in the volume gauge originated from the 

compressibility of the water, the back pressure was gradually raised stepwise at kPa50  
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steps up to a pressure of kPa400  (the highest back pressure value used during triaxial 

testing in view of the available air pressure in the laboratory), and kept at this pressure 

level for 24 hours. The pressure was then decreased to kPa100  (Figure 3.18). The 

maximum volume change caused by pressure increase, as well as the internal gauge rolling 

diaphragm deformation was approximately cc
31015 −× for the gauge used in the IC system. 

The measured effect was considered during the volume change determination, and 

adjustments were made to all tests carried out in the IC system as explained in Appendix 

B.  

 

 

 

 

Figure 3.16: Layout of the IC volume gauge calibration 
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Figure 3.17: IC Volume gauge calibration curve 

 

0

2

4

6

8

10

12

14

16

18

20

0 100 200 300 400 500

Applied back pressure [kPa] 

A
p

p
a
re

n
t 

v
o

lu
m

e
 c

h
a
n

g
e
 [

c
c
 1

0
^

-3
]

Increase

Decrease

 

 

Figure 3.18: IC Gauge volume variation with respect to the back pressure 
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3.5.5. Calibration constants 

 

Following the calibration of all necessary instruments, resulting in the best calibration 

curves, it was discovered that devices were not all linear within the full calibration range. 

For instance this is particularly noticeable at high stress level for both external and local 

LVDTs as well as the IC volume gauge. Therefore for these devices, calibrations were 

conducted so they can operate accurately over the central part of their travel (Richardson, 

1988). This almost eliminated the non-linearity as it was shown on the calibration curves. 

 

A calibration constant was then selected for each device, ordering the system to assume 

devices as linear. The offset magnitude is not great, but still needs to be assessed to 

determine the error margin.  

 

For the axial load cell used for the determination of deviator stress in conventional triaxial 

compression tests, the force will typically range from zero to the final positive compressive 

value, and non linearity will be covered. Generally errors due to non-linearity are 

significant only when working at low stress level. During this investigation, tests were 

conducted at sufficiently moderate stress level; therefore the errors due to non linearity 

would be negligible. 

 

Table 3.1 shows the calibration constants for each device and the respective accuracy. 
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Table 3.1: Characteristics of instruments used in the experimental study 

 

System 
Transducer 

type 
S/N 

Working 

Range 

Voltage 

output 

Calibration 

factor 
Accuracy 

Load cell 1080 5 KN 30mv 0.4328 0.1% 

LVDT 6441 50 mm 5000mv 0.0007 0.1% 

PWP 6100A 1000 kPa 100mv 0.0396 0.1% 
WF 

CP 4-306 1000 kPa 100mv 0.0495 0.1% 

Load cell 1081 4.5 kN 30mv 0.0778 0.1% 

LVDT 2624 50 mm 5000mv 0.0061 0.1% 

IC VCG 6442 50 cc 5000mv 0.0014 0.1% 

CP 2710 700 kPa 100mv 0.0203 0.1% 

PWP (BP) 191494 1000 kPa 100mv 0.0201 0.1% 

PAP 191474 1000 kPa 100mv 0.0203 0.1% 

RDP L1 113869 10 mm 1000mv 0.0033 0.1% 

RDP L2 113857 10 mm 1000mv 0.0034 0.1% 

RDP LR 113863 5 mm 1000mv 0.0017 0.1% 

IC 

Temp. 002 0-50º C 1000mv 0.0223 0.2% 

 

 

3.6. Triaxial testing programme 

 

In this study, three types of triaxial compression tests were performed on a series of lime 

treated and untreated London Clay specimens. The tests were carried out at London South 

Bank University geotechnical research laboratory and comprised (a) Unconsolidated 

Undrained tests (UU) on as compacted specimens, (b) Consolidated Drained (CD) and 

Consolidated Undrained (CU) tests on saturated specimens.  
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The UU tests were used as a quick and simple way to investigate the effect on a number of 

parameters on the undrained shear strength of the treated soil, namely: 

 

• The effect of the lime percentage on specimens compacted at the same dry density 

and water contents for two lime percentages (4% and 6%) compared to the 

untreated specimen, the former percentage having been identified as the minimum 

necessary amount to induce the complete development of both cationic exchange 

and pozzolanic reaction (more details are provided in chapter 4).  

 

• The effect of the compaction characteristics, such as water content (using 

characteristics both below and above the Proctor optima). 

 

• The effect of the curing time (i.e. the time period between end of compaction and 

beginning of testing), using six different curing times ranging from one day to 250 

days for both lime percentages (the selected curing times and respective strength 

values are shown in Chapter 5). From this investigation, appropriate curing times 

for the specimens were then identified, beyond which curing would not be 

expected to greatly affect the properties of the soil. This was very important for 

consistent comparisons between tests in view of the length of the triaxial testing, 

during which the specimen continues to cure in the water.  

 

Undrained shearing for all previously mentioned tests was performed at a confining cell 

pressure equal to 200 kPa for all specimens and compacted to a similar dry density 

3/43.1 cmgd =ρ . 

 

The rest of the triaxial tests (CD and CU), which were more sophisticated and lengthy, 

they have been performed to investigate the effect of the same parameters on the 

mechanical behaviour of the specimens in more detail. However due to the length of each 

test, a control lime-treated mix was selected to be studied thoroughly, whereas parametric 

studies varied each of the other parameters (namely compaction water content – both dry 

and wet of Proctor optimum, as well as lime percentage) for a limited number of tests. The 

control mix was 6% lime-treated soil cured for 28 days and compacted at the same dry 

density and water content values as in Zhang (2011) (who tested saturated water-cured 4% 
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lime-treated London Clay specimens and saturated untreated London Clay specimens). 

These were respectively ( )
3

max /43.1 cmgd =ρ and %27=w  (i.e. dry of the standard Proctor 

optimum of the lime-treated soil). As these did not correspond to the standard Proctor 

optimum of the 6% lime treated London Clay (which were respectively 

( )
3

max /38.1 cmgd =ρ  and %5.29=optw ) a higher compacting effort was required to 

achieve the 1.43 g/cm3 dry density for 6% lime treated London Clay specimens compared 

to 4% lime-treated specimens. 

 

The identification of tested specimens follows the general nomenclature:  

 

( )
mn yxUU − , ( )

mn yxCD −  and ( )
mn yxCU −  

 

Where 

 

UU , unconsolidated undrained  

CD , consolidated drained  

CU , consolidated undrained 

n , number of the test 

m , the applied stress ( )3σ for UU tests and the effective stress ( )'
3σ  for CD and CU tests 

x  and y , are the lime amount and the curing period respectively 

 

The triaxial testing plan is summarised in Tables 3.2 for UU tests. Whereas the CD & CU 

testing program are outlined in table 3.3. All triaxial test results and analysis are presented 

in Chapter 5.  
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Table 3.2: Performed UU triaxial tests on lime treated and untreated London Clay 

 

Lime Curing time 

 

Confining stress  

 

Water content 

 

Dry density 

 Specimen ID 

( )%  ( )Days  3σ , ( )kPa  ( )%cw  ( )3/ cmgdρ  

( )2001 00 −UU  0 N/A 200 25 1.43 

( )2001 14 −UU  4 1 200 27 1.43 

( )2002 74 −UU  4 7 200 27 1.43 

( )2003 284 −UU  4 28 200 27 1.43 

( )2004 604 −UU  4 60 200 27 1.43 

( )2005 1204 −UU  4 120 200 27 1.43 

( )2006 2504 −UU  4 250 200 27 1.43 

( )2001 16 −UU  6 1 200 27  1.43 

( )2002 76 −UU  6 7 200 27 1.43 

( )2003 286 −UU  6 28 200 27 1.43 

( )2004 606 −UU  6 60 200 27 1.43 

( )2005 1206 −UU  6 120 200 27 1.43 

( )2006 2506 −UU  6 250 200 27 1.43 

( )2007 16 −UU  6 1 200 32 1.43 

( )2008 76 −UU  6 7 200 32 1.43 

( )2009 286 −UU  6 28 200 32 1.43 

( )20010 606 −UU  6 60 200 32 1.43 

( )20011 1206 −UU  6 120 200 32 1.43 
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Table 3.3: Summary of CD & CU Triaxial tests on lime treated and untreated London 

Clay 

 

Saturated CD Triaxial compression tests 

Lime Curing time 

 

Effective stress  

 

Water content 

 

Dry density 

 Specimen ID 

( )%  ( )Days  '3σ  ( )kPa  ( )%cw  ( )3/ cmgdρ  

( )1001 00 −CD  N/A 100 1.43 

( )2002 00 −CD  N/A 200 1.43 

( )3003 00 −CD  

0  

N/A 300 

optw  

1.43 

( )1001 74 −CD  100 1.43 

( )2002 74 −CD  200 1.43 

( )3003 74 −CD  

4 7 

300 

optw  

1.43 

( )1001 76 −CD  100 1.43 

( )1502 76 −CD  150 1.43 

( )2003 76 −CD  200 1.43 

( )3004 76 −CD  

7 

300 

dryw  

1.43 

( )1005 286 −CD  100 1.43 

( )2006 286 −CD  200 1.43 

( )3007 286 −CD  300 

dryw  

1.43 

( )1008 286 −CD  100 1.43 

( )2009 286 −CD  200 1.43 

( )30010 286 −CD  

6 

28 

300 

wetw  

1.43 
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Saturated CU Triaxial compression tests 

Lime Curing time 

 

Effective stress  

 

Water content 

 

Dry density 

 Specimen ID 

( )%  ( )Days  '3σ , ( )kPa  ( )%cw  ( )3/ cmgdρ  

( )1581 286 −CU  28 158 dryw  1.43 

( )2502 286 −CU  

6 
28 250 dryw  1.43 

 

The following section describes in detail the triaxial testing procedures followed in this 

study, including apparatus setting up prior to testing. 

 

3.7. Testing procedures 

 

3.7.1. Triaxial testing of saturated specimens 

 

3.7.1.1. Pre-test checks 

 

Checks prior to triaxial testing are essential procedures and must not be overlooked. It is 

important to ensure that all pipe lines are air free and leak free, as the slightest leak must 

not be tolerated. Consequently, the back pressure and cell pressure lines were pressurised 

to a maximum working pressure equal to kPa700  (according to the capacity of the 

laboratory system air-pressure) and left overnight in order to identify any existing leaks 

and eliminate all traces of trapped air within the pipe lines. Moreover, it is necessary to 

flush the system and recharge it with freshly de-aired water before the start of each triaxial 

test. 

 

3.7.1.2. Testing procedure 

 

(a) Setting up 

 

All pressure line valves were closed prior to specimen setting up. A pre-saturated porous 

disc was first placed on the pedestal without trapping any air, then a filter paper cut to size, 

and finally the compacted specimen was placed. A second filter paper and a second pre-
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saturated porous disc (with excess surface water removed) were positioned on the top end 

of the specimen; the top cap was then placed with a half steel bearing ball on it. In order to 

prevent any water ingress from the cell chamber to the specimen during the long lasting 

test, two rubber membranes were used, separated by coated silicon grease. When the first 

membrane was inserted on the specimen, an upwards stroking with the fingers was applied 

to remove as much air as possible between the specimen and the membrane. Without 

disturbing the specimen, two tight fitting “O” rings are slipped over to seal the membranes 

at each end. This operation was made easier by using the split steel stretcher. The internal 

strain transducers (RDP D5/200W) were then carefully mounted on the specimen with a 

minimum disruption. The two axial strain transducers were rigorously mounted on 

opposite sides of the specimen by gluing the purpose built mounts on the outer rubber 

membrane surrounding the specimen. Adjustments were made to the armature resting on 

the lower mount, through the upper mount screw; this should be near-perfect in vertical 

position, subsequently followed by the radial strain transducer mounting using a similar 

procedure. The Perspex cell chamber was then installed with great care, ensuring the load 

cell piston was vertically aligned on the same central axis as the half steel bearing ball 

placed on the top cap without making direct contact. A minimum gap of 3 to 5 mm was left 

between the load cell and the half steel ball, to allow the specimen to freely move upwards 

during the saturation process without restrain. The cell chamber was then filled with 

freshly de-aired water. At the end of this stage, the pressure line valves were opened, 

followed by the initialisation of all the necessary variables on the TRIAX software before 

commencing the triaxial test.  

 

In addition to the above steps, several necessary measures were taken before the start of 

each test to prevent incorrect volume measurements from the IC water volume gauge. 

These were as follows: 

 

i) The system was flushed several times with fresh de-aired water to eliminate any 

existing air bubbles within the inner gauge;  

ii) The back pressure line connected to the gauge was pressurised to the maximum 

available pressure ( )kPa700 , and left overnight in order to dissolve any trapped 

air bubbles. 

iii) Triaxial tests were performed in temperature controlled environment in order to 

minimise the temperature’s effect on volume gauge. 
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Note that the volume gauge expansion and contraction may be considerable during the 

tests due to back pressure variation. However, in this study, compression for each tested 

specimen was performed at a constant back pressure, therefore this effect was considered 

negligible. Despite the above precautions, the volume gauge did exhibit measurable 

pressure change compliance, and required correction of its measured value as previously 

explained. 

 

(b) Saturation phase 

 

Saturation was performed by applying increments of back pressure, automatically also 

incrementing the cell pressure accordingly, to ensure that the effective stress in the 

specimen remained constant during saturation. This was achieved by the use of air pressure 

regulator valves controlling the cell pressure and the back pressure systems simultaneously 

with a variable speed electric motor drive. Initially, the system was set to seek a cell 

pressure equal to kPa30 , followed by a target back pressure equal to kPa10 , and hence an 

effective stress of kPa20 in the specimen, which was maintained during the saturation 

stage. Once the equilibrium was established (after approximately two hours) the automated 

system would slowly introduce de-aired water to the specimen through the drainage 

system.  

 

In order to avoid a sudden pore water pressure increase resulting in a hasty swelling, an 

incremental saturation rate of no more than kPa5.1 per hour was deemed to be suitable. 

Thus the triaxial saturation stage for each specimen, lasted an average of 14 days. Note that 

previous work by Schnaid et al., (2001) and Consoli et al., (2001) on triaxial response of 

cemented soils have shown that B-values of about 0.90 or higher result in negligible 

suctions, if any. In this study, a Skempton parameter B value check was performed at the 

end of saturation phase; values above 99% and between 91 and 98% were obtained for the 

untreated and lime-treated specimens respectively, depending on lime amount, initial water 

content and the curing time (see Fig. 3.19). When a satisfactory B value was acquired, the 

specimen was left under the same pressure conditions until stable reading of pore water 

pressure was achieved or the pore pressure was relatively equal to the back pressure. 
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Fig. 3.19: Average B-value for lime treated and untreated London Clay 

 

It should be emphasised that the saturation volume measurement in the IC system is 

considered to correspond to the amount of water transferred from the volume gauge to the 

specimen, occupying the air void space inside the specimen by dissolving the existing air 

into water. The initial air volume was therefore determined for each specimen and was 

subtracted from the water volume absorbed by the specimen during the saturation. Table 

A2.1 in appendix A indicates the steps followed for a selected specimen to determine the 

volume of the initial air void. Other corrections applied to the IC volume change 

measurements to obtain the true specimen’s volume change are also shown in Appendix B.  

 

(c) Isotropic consolidation phase 

 

Once the B value check is confirmed to be appropriate, the loading stage can be set to the 

desired effective stress (ranging 100 - 300 kPa), either by raising the cell pressure at the 

rate specified below to reach the desired value, or by reducing the back pressure (the latter 

technique is acceptable providing the back pressure is not reduced below kPa400  for lime 

treated specimens as recommended by Head (1986) for compacted samples), or by the 

combination of both, then allowing the tested specimen to consolidate. 

 

In this study, each tested specimen was consolidated by applying an isotropic load 
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increment, this is performed by means of an automatic cell pressure increase at a loading 

rate equal to hkPa /2.1 , while the back pressure is kept constant. The aforementioned rate 

was determined based on the method suggested by Head (1986). Once the effective stress 

target is reached, and in order to achieve equalisation, a waiting time period is observed by 

keeping the specimen under the same loading pressure until the rate of change in 

volumetric strain fell below day/%05.0  as recommended by Sivakumar (1993). 

Consolidation is considered to be achieved once the pore water pressure dissipation is 

greater than or equal to 97%. This consists of applying a calculating method to determine 

the amount of pore pressure dissipated at time (t) using the following equation:  

  

( ) %100% ×
−

−
=

bi

ti

uu

uu
u  

 

Where iu  is the initial pore pressure, tu  is the pore pressure at time t, and bu is the back 

pressure. 

 

(d) Shearing Phase 

 

Axial load was gradually increased while the confining pressure remains unchanged until 

failure occurs. In this study, the shearing stage was performed beyond failure point in order 

to reach the critical state. The specimen was sheared either under drained or undrained 

conditions, up to a maximum axial strain varying between 20 and 23%, under controlled 

and sufficiently low shearing  rate equal to h/%1.0  as recommended by Consoli et al., 

(2001), which is approximately equivalent to min/2.1 mµ . For the drained tests, 

compression was applied slowly enough to allow pore pressure changes to equalise 

throughout the whole specimen while the volume change measurement is recorded. For the 

undrained tests, shearing was fast and the generated excess pore water pressure was 

continuously monitored using pressure transducers. Constant rate strain pump (CRSP) was 

used to keep the strain rate constant during the shearing stage. Relevant data was collected 

using the computer logging system supported by TRIAX software, set to scan every 20 

minutes switching to 5 minutes scan during the shearing stage. 

 

At the end of each triaxial test, the specimen was immediately removed from the base 
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pedestal to prevent any swelling. The water content was determined by weighting and oven 

drying the specimen. Any soil which may have adhered to the porous disc or drains was 

included in the measurement of the water content.  

 

3.7.1.3. Applied corrections and used formulae  

 

Stress-strain and volume change measurements are vital parameters in triaxial testing. In 

order to better understand the data analysed in this chapter, a brief explanation of the 

applied corrections to the measurements is given in Appendix B. In addition, the main 

formulae’s used in the analysis are also included.   
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Chapter 4 

 

4. Physicochemical property testing 

 

4.1. Introduction 

 

Several basic properties of the soil were determined from preliminary tests. These include 

specific gravity test, Proctor test, plastic and liquid limit tests, free swell test, pH testing, 

chemical tests (calcium and sulphate content tests) and X-Ray diffraction testing.  

 

Moreover, the aim of the study presented in this Chapter is to observe the changes in the 

soil with time due to short term (cationic exchange) and long term (pozzolanic) reactions 

during the curing time at a moderate temperature ( C°±120 ). These are evidenced by the 

changes in pH and calcium level with curing time as well as changes in the mineralogy 

based on X-Ray diffraction testing.  

 

4.2. Suitability assessment of London Clay lime treatment 

 

In order to proceed with lime treatment, it was necessary to identify the suitability of the 

soil for lime treatment by performing a sulphate content test. It is widely known that in the 

presence of excess water, sulphates can be highly damaging to the lime stabilisation 

process due to the potential reactions with the calcium (from the lime) and the dissolved 

silica and alumina (from the soil). The reaction products namely ettringite or thaumasite 

are expansive in nature and thus occupy a greater volume than the combined volume of the 

reactants (Sherwood, 1993). This in turn causes heave and then damage of light weight 

structures (Mitchell & Dermatas, 1992; Puppala et al., 2005; Yong & Ouhadi, 2007 and 

Little et al., 2010). For this reason, the total sulphate content of the soil was determined by 

the gravimetric method using the acid extract according to BS: 1377 – 3:1990 / part 5.  
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Figure 4.1: Determination of sulphate content on prepared solution – Gravimetric method 

 

The acid soluble sulphate (hydrochloride acid) content of soil was first prepared. This 

solution was prepared at 10% (v/v) by diluting 100 ml of concentrated hydrochloride acid 

(relative density 1.8) in 1000 ml distilled water. Good practice in chemical testing requires 

that duplicate specimens should be tested. Two small containers with a quantity of fine 

grained soil (passing the mµ425 ) were weighed and inserted in the oven overnight for a set 

temperature (70 - 80°C). The following day, the soil quantity was weighted again and each 

of the soil’s dry mass ( :1m  Initial mass of the soil to use in the test) was determined. 

 

The dry soil was put in a 500 ml beaker; then a small amount of distilled water was added 

by washing the container to clean it from any remaining soil particles, 150 ml of diluted 

hydrochloride acid is added to the beaker where the soil is contained then put on the hot 

plate. Once the solution is brought to the boiling point, a 10 ml Barium chloride solution 

was added by small drops. The precipitate was transferred to a suitable filter paper type 

(Nº 42) in the glass funnel and filtered, connected to a 300 ml conic beaker which was 

linked to vacuum source. The total sulphate present in London Clay soil was extracted, 

precipitated as barium sulphate, and then ignited (see Fig. 4.1). 

 

An ignition of about 15 minutes at red heat was sufficient. The crucible was cooled to 

room temperature in a desiccator and weighted to the nearest 0.001g. The next step was to 

calculate the mass of ignited precipitate ( 2m ). 
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The sulphate content is expressed in terms of 3SO , the % of total sulphates as 3SO  in the 

fraction of the soil sample was determined using the following equation (Head, 2006). 

Where the mass of 3SO is equal to (radical mass/molecular mass) = 80/233 = 0.343 

 

( )%343.0%100
1

2
3

m

m
SO ××=   

 

The average from the two results was taken and found to be less than 0.1%; hence lime 

stabilisation should not cause problems due to the formation of expansive crystals. 

 

4.3. Lime percentage 

 

To determine the necessary lime quantity for the soil used in this study both the “Initial 

Consumption of Lime” (ICL) method and “Lime fixation point” (LFP) method were used 

(Eades and Grim, 1966). The latter method estimates the necessary amount of lime based 

on plasticity change whereas the former method defines the minimum amount of lime as 

the percentage of lime per dry soil mass, causing the pH value of the soil-lime mix to rise 

up to 12.4.  

 

4.3.1. Initial consumption of lime (ICL) 

 

The minimum required lime percentage was determined through the Initial Consumption 

of Lime (ICL) test. The ICL test was performed according to BS 1924 – Part 2 (BSI, 

1990). A duration time between 8 and 24 hours was allowed for the prepared solution 

contained in tightly stoppered bottle, before being subjected to pH measurements by means 

of digital pH meter. The pH meter was calibrated using two buffer solutions pH = 4.01 and 

pH = 7. The error was estimated to be between 2 and 2.5%.  

 

According to pH measurement results (see Figure 4.2), 3.45% is the least required lime 

addition to London Clay in order to reach the minimum essential pH level of 12.4. The pH 

then stabilises between 12.4 and 12.5 for a variation of lime portions between 4 and 14%. 

The ICL of the soil is therefore 3.45%. 
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Figure 4.2: pH variation of lime treated London Clay   

 

4.3.2. Lime fixation point (LFP) 

 

The lime fixation point (LFP) is the other method based on plasticity tests of several 

London Clay samples treated with different lime percentages. Figure 4.3 indicates the 

plasticity evolution for several lime amounts. A plasticity increase is observed in 

conjunction with the lime fractions, up to a value slightly below 4%; it then stabilises for 

higher percentages. The exact LFP value is found to be equal to 3.47%, which is very 

consistent with the ICL value of 3.45%. It is interesting to note that this contradicts claims 

by Rogers & Glendinning (1996) that the ICL overestimates the necessary lime percentage. 
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Figure 4.3: Plasticity tests on lime treated London Clay 

 

Based on the findings of the above two methods, an amount of 4% lime per dry soil mass 

is considered to be sufficient for triggering both cationic exchange and to some extent 

pozzolanic reactions for London Clay. This amount of lime was consistent with previous 

assessments made by Tembo (2005) and Clark (2007) in different projects carried out at 

London South Bank University. However, in this study, two lime percentages 4 and 6% 

were used, above the minimum required percentage (according to the above mentioned 

tests). 

 

4.4. Identification tests 

 

A series of identification tests have been performed on both lime treated (4 and 6%) and 

untreated London Clay, in particular the determination of Atterberg limits and the specific 

gravity measurement. The grain size distribution test was performed by Zhang (2011). 
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4.4.1. Atterberg Limits 

 

In order to understand the plasticity characteristics of the soil, the Atterberg’s limits 

corresponding (0, 4 and 6%) lime content were determined after 24 hours of lime addition 

as commonly done for lime treated soil. Table 4.1 gives the values of the liquid limit, 

plastic limit and plasticity index of the lime treated and untreated soil.  

Lime treatment increase the liquid limit to 86.2 and nearly 90% for 4 and 6% lime addition 

respectively. This is consistent with the change in the mineralogy of the soil due to 

immediate modification reactions. In addition, the lime treatment increases the plastic limit 

from 26.1 to almost 54% at the highest added lime amount (6%). The observed increase in 

the plastic limit indicates the decrease of the adsorbed layer (Rogers and Glendinning, 

1997). 
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Figure 4.4: Plasticity index ( )
pI  variation with lime percentage 

Fig. 4.4 shows that the plasticity index ( )
pI  decreases with the lime content. There is an 

average of 10% reduction compared to the untreated soil. The plasticity reduction could be 

attributed to the flocculation taking place due to ++
Ca  and −

OH  presence. The lower 
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plasticity index implies that the treated soil, when subject to water content changes will be 

less susceptible to volume change and soil strength reduction. The drop in plasticity index 

due to lime addition which leads into more workable material is useful for excavation, 

loading, discharging and levelling. In this study, the plastic limit and liquid limit were both 

observed to increase with lime addition for up to 6% (see Table 4.1), but the decrease in 

plasticity index was mainly due to faster increase in plastic limit. Similar plasticity index 

decrease was reported by Ola (1978) caused by an increase in both the liquid limit and 

plastic limit with lime increase. Whereas the plasticity index decrease observed by de Brito 

Galvao et al. (2004) for red lateritic soil (up to 6% lime addition), was attributed to the 

liquid limit decrease, while changes in plastic limit were too small to be considered.  

 

4.4.2. Specific gravity 
 

London Clay and lime treated London Clay specific gravities were determined through the 

small pycnometer method, according to BS 1377 – 2: 1990. The specific particle density 

for lime on its own could not be accurately achieved due to high solubility of lime in 

distilled water. Hence, the specific gravity of each lime treated London Clay soil (4% and 

6% lime respectively) was determined. The results are presented in table 4.1. These are 

each an average of three readings having a scatter of about 005.0± .  

 

4.5. Standard Proctor compaction characteristics 

 

Standard Proctor compaction was carried out on the three types of the studied mixtures 

(0%, 4% and 6% lime), according to BS 1377 – 4: 1990. In order to obtain a uniform water 

content within the prepared samples, a minimum mellowing time of 12 hours was used for 

untreated London Clay samples, and 24 hours for lime treated samples. Three layers of 

each tested specimen were remoulded inside mm84.104  diameter metallic mould; each 

layer was compacted by the free falling of Kg5.2  rammer for 27 blows from mm302  

height. The same procedure was applied to all three soil types.  All the dry densities and 

water contents of each compacted mixture (0, 4 & 6% lime) are determined and plotted in 

Figure 4.5.  

 
Lime treatment flattened the compaction curve; it increased the optimum water content and 

decreased the maximum dry unit weight of the soil. This behaviour was reported for both 
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lime and cement treated soils (e.g. Bell, (1988) and Sariosseri & Muhunthan, (2009) 

respectively). The maximum dry density ( )maxdρ  and the optimum water content ( )optw  for 

each mixture are presented in Table 4.1. 
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Figure 4.5: Standard Proctor compaction test on lime treated & untreated London Clay 

 

Table 4.1 presents the variation of the main physicochemical characteristics of lime treated 

and unthread London Clay. 

 

Table 4.1: Lime treated and untreated London Clay main characteristics 

 

LW  pW  pI  
sG  ( )optw  ( )maxdρ  

Soil type 
(%)  (%)  _ _ (%)   )/( 3cmg  

London Clay   73.5 26.1 47.4 2.76 25 1.52 

+ 4% lime  86.2 50.7 35.5 2.74 27 1.43 

+ 6% lime  89.6 53.6  36 2.74 29.5 1.38 
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4.6. Free swell test 

 

Free swell tests performed as per BS 1377 – 2: 1990 on several lime fractions added to 

London Clay. Free swell is defined as the increase in volume of soil from loose dry powder 

form when it is poured into water, expressed as a percentage of the original volume. Soils 

with free swell values less than 50% are not likely to show expansive properties (Head, 

2006). Free swell test on untreated London Clay produced an 80% volume increase, 

whereas several lime frictions added to London Clay showed a free swelling of 

approximately 69% and 48% for 4 and 6% lime addition respectively (see Figure 4.6). 

Therefore, 6% lime addition is considered as sufficient to reduce the swelling capacity of 

London Clay since it does not exceed the maximum tolerable swelling percentage of 50%.   
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Figure 4.6: Free swell test on lime treated London Clay 

 

The free swell reduction is attributed to the reduction of water absorption capacity of the 

material used. The lime amount which showed the minimum free swell is 8%. Adding 

extra lime beyond this percentage did not produce any further swelling reduction.   
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4.7. Calcium concentration measurements 

 

The free lime which was not consumed during London Clay lime treatment was measured 

by means of calcium concentration measurements, using a spectrometer (Hitachi Z-8100). 

The preparation of soil-lime solutions was carried out using 0.5g of dry London Clay 

mixed with two lime percentages (4 & 6%) by dry soil weight, scattered in 40cc distilled 

water. The solution was then poured in a glass tube, hermetically sealed to avoid lime 

carbonation, and finally mechanically rattled. After 1, 7, 28 and 60 days of curing at 

C°±120  , the solutions were extracted and calcium content was measured. The calcium 

concentration was converted into lime percentage based on a chart of calcium 

concentration for pure lime; the absorbed lime during the imposed curing periods for 4 and 

6% lime addition is indicated in Table 4.2. 

 

Table 4.2: Consumed lime during the curing period in days 

 

Curing periods (Days) 

1 7 28 60 Lime (%)      

Consumed lime content (%) / Represented percentage from total lime  

0 N/A N/A N/A N/A 

4 3.1 / (77.5%) 3.3 / (82.5%) 3.4 / (85%) 3.5 / (87.5%) 

6 4.7 / (78.5%) 5.1 / (85%) 5.3 / (88.5%) 5.4 / (90%) 

 

 

The consumed lime content after one day curing for 4% lime addition is shown to be 3.1%. 

Additional lime was then consumed but at a much slower rate. The higher the lime 

addition, the bigger the difference in lime consumption is observed. After 28 days the 

consumption reached 3.4% for an addition of 4% lime, which represents 85% of the total 

lime amount. For 6% lime the consumption was 5.3% (88.5% of the total lime content) 

during 28 days curing. However, a very small further amount of lime was consumed 

between 28 and 60 days. Fig. 4.7 shows a similarity in lime consumption rate increase 

from 1 to 60 days curing; an almost identical trend for both 4 and 6% lime addition is 

observed. 



Chapter 4 / Physicochemical property testing 

 99 

2

4

6

8

0.1 1 10 100

Curing time, Log scale (Days)

L
im

e
 c

o
n
s
u
m

p
tio

n
 (

%
)

4% Lime

6% Lime

 

Figure 4.7: Evolution of lime consumption with curing time 

 

4.8. pH evolution in lime treated London Clay with curing time 

 

The dissolution of clay minerals is highly dependent on pH level. Figure 4.8 shows the pH 

values of lime treated London Clay decreasing with curing time. Up on lime addition the 

pH values increased to 12.4 for 4% lime and 12.5 for 6% lime as observed during the ICL 

test (see Fig. 4.2); subsequently they started decreasing with curing time. A fast pH 

decrease to reach a value equal to 12 is observed between 1 and 7 days of curing for 4% 

lime treated sample. In later times the 4% lime treated sample maintained a sufficiently 

high pH level (>10) but lower than the 6% lime treated specimen which had a pH value 

just below 12.4 after 28 days curing. This is still a very high pH value ensuring the 

successful production of pozzolanic reactions, further strengthening the choice of 28 days 

as the minimum required curing time for 6 % lime treated London Clay samples. 

 

Figure 4.9 shows the trend for the remaining lime and pH value with curing time up to 60 

days for both 4 and 6% lime addition, they appear to follow similar decreasing rate. A 

decrease in the available lime reflects a pH decrease with curing time as it would be 

expected due to the use of calcium in chemical reactions. 
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Figure 4.8: pH evolution with curing time of compacted lime treated London Clay 
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Figure 4.9: pH evolution and the available lime variation with curing time of compacted 

lime treated London Clay  
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4.9. X-Ray Diffraction test (XRD) 

 

In order to identify the phase compositions and mineralogy modifications related to the 

effect of lime addition to London Clay, X-Ray diffraction (XRD) was performed on 

selected specimens using a Bruker D2 Phaser diffractometer (Figure 4.10). The method is 

based on the principle that for a given X-Ray emitted source with a wavelength 

5406.1=λ Å, the scanning along an angle (θ ) between 10 and 60° allows the 

identification of all spacing ( d ) of the material (d-spacing is a fixed perpendicular 

separation between each plane, also called interplanar spacing). Data were analysed using 

kerBruc
plus

DIFFRAC  EVA  software.  

 

 

 

Figure 4.10: X-Ray diffractometer (Bruker D2 Phaser) 

 

The study was carried out on pulverised untreated & lime treated London Clay samples. 

Two lime percentages (4 & 6%) and different curing periods (1, 7, 28 and 60 days) at a 

moderate temperature (20 - 22°C) were used. The choice of different curing times allows 

the study of the mineralogy evolution affected by lime treatment. 60 days being the highest 

period here was identified as reasonable curing time where sufficient pozzolanic reaction 
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development has occurred (see Chapter 5 / section 5.2.1). All powder samples were 

prepared by manual grinding of the cured specimen (after air drying) in a porcelain mortar 

using a pestle. 

 

4.9.1. Mineralogy evolution of lime treated London Clay 

 

Figure 4.11 presents the untreated London Clay diffraction, indicating the clay mineral 

peaks such as Illite (I) at an angle (2θ =19.7; 24,9; 34.8 and 45.7°) and Kaolinite (K) at 

(2θ =12.3 and 54.7°), as well as non clay minerals such as goethite (g) at (2θ =36.5°), 

feldspar (F) at (2θ =27.4 and 42.3°) and quartz (Q) at (2θ =20.7; 26.5; 39.4 and 50°). In 

addition, the presence of gypsum (G) is identified at an angle 2θ = 11.56° and d spacing 

equal to 7.68Å. The base line intensity of London Clay is used as a reference to compare 

the different diffractions obtained during the XRD tests performed on lime treated London 

Clay samples.  

 

Figures 4.12 & 4.13 present all the diffractions of lime treated London Clay at different 

curing periods. The investigation of lime-clay reaction evolution is easily identified on the 

highest lime percentage (6%) by the changes observed with the curing periods (new phases 

appearing, and potential clay minerals destruction). The diffractions show diminishing 

reflexions at 2θ =37.05° indicating that lime is consumed with curing time increase. 

Similar decreasing peak reflexion is observed at 2θ = 54.03° but at lower intensity. In 

addition, the gypsum initially identified in London Clay sample is observed to gradually 

disappear from the first day of curing period as shown for 4% lime treated London Clay 

(Figure 4.12) as well as for 6% lime treated samples (Figure 4.13) at a similar curing time. 

A peak at an angle 2θ = 15.7° in the lime treated London Clay is identified as Ettringite. 

The presence of this peak while the gypsum disappeared illustrates that it has been rapidly 

consumed at early age to form the new mineral, but the XRD patterns shown in Figures 

4.12 & 4.13 do not indicate a large amount of ettringite formed (hence sulphate induced 

risk would be low), probably due to low gypsum content identified in London Clay sample 

(1.2%). This is consistent with the sulphate content test presented earlier on London Clay 

which indicated a negligible amount of soluble sulphate. 

 

The pozzolanic reactions between lime and clay minerals occur and progress gradually 

with curing time as indicated in the XRD analysis, producing some calcium silicate hydrate 
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(CSH) in the form of 393 SiHOCa . This hydrate crystallises with time (one reflexion is 

observed in 4% lime treatment at 7 day curing, progressing to two as from 28 days curing). 

In addition, a Calcium Aluminate Hydrate (CAH) in the form of 121232 OHCaAl  is shown 

to start forming as early as the 7th day of curing at °= 1.322θ at a low intensity increase 

with curing time.  

 

For a higher lime addition (6%), the diffraction pattern shows some clearer CSH peaks, 

and a higher reflexion number (4 reflexions observed) at higher intensity than the ones 

observed in 4% lime treatment. This new compound rapidly formed in the presence of 

higher lime amount (more calcium as indicated in section 4.7). It started appearing as from 

7th day of curing period. Although not at significant intensity, these reflexions appear to 

increase with curing time indicating that a higher number of cementation bonds formed at 

higher curing periods. In addition, a CAH phase also formed for 6% lime treatment, at an 

angle °= 08.322θ , but detected at an earlier age (7 days) compared to the 4% lime treated 

sample. Another reaction was detected at a longer curing period (60 days). This reaction 

resulted in the formation of Calcium Silico-Alumina Hydrate (CSAH) which appeared at 

an angle of °= 44.132θ  in the form of 11.125.1618211.2 SiOHCaAl .  
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Figure 4.11: X-Ray diffraction of untreated London Clay / Illite (I), Kaolinite (K), goethite (g), Feldspar (F), Quartz (Q) and Gypsum (G) 
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Figure 4.12: X-Ray diffraction on 4 % lime treated London Clay
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Figure 4.13: X-Ray diffraction on 6 % lime treated London Clay 
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From the above observations of the XRD patterns it can be concluded that already at early 

curing times (7 days), the effect of a higher lime amount on the quantity of hydrates is 

visible. The intensity of these hydrates is also observed to increase with curing period at 

slightly faster rate for 6% compared to that of the 4% lime addition. Although the peaks 

are small due to the quantity of free lime available, it is observed that lime consumption 

increases with the amount of lime added and the curing time increase, which is in 

agreement with the lime consumption reported in section 4.7. Similar findings were 

reported by a number of other researchers (Eades & Grim, 1960; Clara & Handy, 1963; 

Ormnsby & Kinter, 1973; Cabrera & Nwakenma, 1979; Arabi & Wild, 1986; Wild et al., 

1986; Locat et al., 1990; Locat et al., 1996; Bell, 1996; Rajasekaran & Narasimha Rao, 

1997; Khattab, 2002).  

 

For the 4% lime, the limited lime amount available was mostly consumed at early curing 

times by cation exchange during the short term reactions. This is in agreement with the 

results of calcium concentration percentage indicated in section 4.7. Thus a limited amount 

of pozzolanic reactions occur, generating a low hydrates production. The newly formed 

reflexions are of a low intensity and are in some cases not easily detectable by the XRD 

diffractometer.  
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Chapter 5 

 

5. Triaxial test results, presentation and discussion 

 

5.1. Introduction 

 

The chapter presents in detail the results of Undrained Unconsolidated (UU), Consolidated 

Drained (CD) and Consolidated Undrained (CU) Triaxial tests performed on lime treated 

and untreated London Clay samples. The effects of lime addition, curing time and the 

initial water content on London Clay yielding behaviour and shear strength are 

comprehensively studied. An attempt to explain the formation and the breakage of the 

cementation bonds phenomena is also made.  

 

Presentation and discussion of the triaxial compression tests results under saturated 

conditions, is based on stress-strain ( )aq ε− , volumetric strain-axial strain ( )av εε − , pore 

water pressure and effective stress paths plots. The mechanical behaviour of lime treated 

and untreated London Clay are compared. The dilation of the lime treated specimens is 

also examined and discussed. This considers the effect of effective confining pressure, lime 

amount, curing time and the initial water content on the stress-dilatancy behaviour of the 

soil.   

 

5.2. Unconsolidated undrained (UU) Triaxial tests  

 

5.2.1.  Stress-strain response and strength development 

 

Initially, the strength of lime treated and untreated London Clay samples was assessed by 

means of series of Unconsolidated Undrained (UU) triaxial compression tests at as 

compacted conditions. In these series of experiments, two lime dosages and a variation of 

curing times are considered. Curing time is defined as the duration elapsed from the end of 

static compaction to the beginning of the testing. These tests are principally significant for 

control purposes and as an indicator of strength evolution. Figures 5.1 (a & b) show the 

stress strain curves from the UU triaxial tests performed at a 200 kPa confining pressure. 
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The lime treated London Clay samples were cured for periods of 1 to 250 days and labelled 

accordingly as 1D, 7D, 28D etc (1D being 1-day curing, 7D for 7 days curing etc) on the 

figures. In these figures, the deviator stress - axial strain relationship shows the strength 

evolution with curing time. 

 

From the figures it can be seen that the axial strain at peak deviator stress ( uuq ) ranged 

from 1.5 to 4%. Most lime treated London Clay specimens failed by single slip line, while 

others failed by displaying multiple surfaces in different directions as shown in Figure 5.2. 

The untreated London Clay presented a ductile behaviour with a deviator stress levelling at 

high strains. At earlier curing times 4% lime treated London Clay specimen manifested a 

similar ductile behaviour, with the post-peak stress gradually decreasing to reach a 

constant low deviator stress at a value close to the one produced by the untreated London 

Clay specimen. At a higher lime content (6%), the treated specimen shearing behaviour 

(except for the 1 day cured sample) became much more brittle with an abrupt loss in 

strength in the post-peak stress zone. This is similar to the behaviour of heavily over-

consolidated or highly structured natural soils (Leroueil & Vaughan, 1990). The brittleness 

and the sudden stress drop in the post peak region is also observed to be more pronounced 

for longer curing periods as indicated in Figure 5.1 (a & b).   

 

Although results of this part of the study are associated with UU tests rather than the 

Unconfined Compressive Strength (UCS) tests usually reported in the literature, the 

observed undrained strength behaviour is consistent with the UCS testing results of many 

other researchers’ work on lime treated clay soils (e.g. Bell, 1989 & 1996; Osinubi, 1998a 

& 1998b; Arabani et al., 2005; Al-Mukhtar et al., 2010).  
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Figure 5.1 (a): UU Triaxial compression tests on 4% lime treated London Clay (200 kPa confining pressure). 
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Figure 5.1 (b): UU Triaxial compression tests on 6% lime treated London Clay (200 kPa confining pressure). 
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The shear behaviour of lime treated London Clay up to the peak state, depends largely on 

the cementation products formed during the curing time (this is better explained through 

XRD tests in Chapter 4).  

 

    

   

 

Figure 5.2: Failure type of untreated and lime treated London Clay samples in UU Triaxial 

tests (Sheared as cured) 

 

To better illustrate the effect of different factors considered, Fig. 5.3 presents peak deviator 

stress evolution with curing time for 4 & 6% lime treated and untreated London Clay 

samples. No clear pattern of change that relates to curing time or the initial water content 

for 6% lime treatment is observed. However, the results obtained show some variability 
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with respect to strength development, and suggest that higher lime addition induces a 

higher strength gain. This is in agreement with findings reported by a number of other 

researchers (e.g. Bell, 1996; Rajasekaran & Narasimha Rao, 1997; Al- Mukhtar et al., 

2010). In addition, the curing time evolution is found to be consistent with the work 

presented by Dumbleton, (1962) on 10% lime treated London Clay; his UCS test results 

showed a similar trend of strength evolution with curing time as the present work. Similar 

trends of strength increase with curing time were also observed in other studies. (e.g. 

Ahnberg & Johanson, 2005; Al-Mukhtar et al., 2010; Dash & Hussain, 2012) performed on 

different soils.   

 

Moreover, Figure 5.3 indicates that varying the initial water content while keeping the 

same dry density has a minor influence on lime treated London Clay strength (up to 28 

days curing) similar findings were reported by Consoli et al. (2009). However, at later 

curing times, the 6% lime treated specimens’ compacted to wet of optimum ( )wetw display 

a higher strength than similar specimens prepared to dry of optimum ( )
dryw .  
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Figure 5.3: Curing time & initial water content effect on lime treated London clay strength  
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In the literature, no boundaries are clearly defined between strength gain due to 

“Modification” and that due to “Stabilisation”. While no figures are available, Sherwood 

(1993) suggests that “Modification” is associated with at least a three-fold increase in 

strength improvement. Therefore to acquire a clearer picture of the strength evolution with 

curing time and its likely causes, the results of Figure 5.3 are plotted again in two separate 

graphs (Fig. 5.4(a) and (b) for the 4% and 6% lime-treated soils respectively), with the 

strength gain marked. From Figure 5.4(a) it can be seen that for the 4% lime-treated, cured 

for 7 days there is a 145% strength increase compared to that of the untreated soil (2.45 

times). This is approximately half of the three-fold strength gain, which Sherwood (1993) 

attributes to modification rather than stabilisation reactions. It can then be noted that there 

is no further strength gain up and to 60 days curing. This is consistent with the XRD results 

which show no considerable differences in the treated soil spectra between 7 and 60 days. 

Any reaction products appear to have been produced within the first 7 days of treatment 

which is consistent with the usual short-term timelines suggested for modification 

reactions in the literature. A further supporting evidence is provided from the evolution of 

the calcium consumption of the 4% lime-treated soil which shows very little evolution 

after 1 day. All these results would consistently converge towards the conclusion that 4% 

lime was not sufficient to produce long-term pozzolanic reactions. It is however, surprising 

to see that in much later curing times there is a remarkable increase in strength. As there 

are no XRD (or lime consumption) results for these curing periods it is not possible to 

attribute this delayed strength gain on the possible formation of potential pozzolanic 

reaction products. However, it should be noted that the pH of the soil showed considerable 

decrease between 60-120 days of curing, which potentially implies some further reactions. 

Although there is not enough evidence to interpret the sharp increase in strength at later 

curing times, it should be pointed out that similar results were shown in Sherwood (1993) 

for London Clay treated with 10% lime (see Fig. 5.5). The strength magnitudes shown in 

Sherwood (1993) were different to the ones presented here (possibly due to sample 

preparation and testing procedures) but the trends were similar.  
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Figure 5.4: Strength evolution of lime-treated London Clay with curing time. (a) 4% lime, 

(b) 6% lime. 
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Figure 5.5: Relationship between unconfined compressive strength and curing time 

(Sherwood, 1993) 

 

Comparing Figure 5.4(a) to Figure 5.4(b) it can be seen that all 6% lime-treated specimens 

(irrespective of moisture content) showed much higher strength than those achieved by the 

4% lime treated one, and a continuous strength gain in time, after the beginning of curing. 

Within 28 days of curing this amounted to 300% strength gain, approximately, compared 

to that of the untreated soil; the strength gain continued with time and showed again a 

sharp increase as did the strength of the 4% lime-treated soil after 60 days of curing, to 

reach a strength gain of about 960% compared to that of the untreated soil, after 250 days 

curing. The higher and continuous strength gain of the 6% lime cured soil compared to that 

of the 4% lime treated soil (which showed a lower and almost constant strength between 7 

and 60 days of curing) is consistent with the XRD results reported in Chapter 4 which 

showed clear peaks corresponding to CAH and CSH already after 7 days of curing (these 

were also noted for 4% lime treated soil) and the formation of additional cementitious 

products (CSAH) after 60 days of curing. There is also more available lime for reactions 

and its consumption was shown to continue at a higher rate compared to the 4% lime-

treated soil (see Fig. 5.6). Beyond 60 days of curing there is again no further evidence from 

XRD or calcium concentration measurements to support the interpretation of strength 

increase. It is however reasonable to assume that due to the higher amount of available 
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lime, pozzolanic reactions in the 6% lime-treated soil continued for longer curing times as 

evidenced by many authors (Brandl, 1981; Sherwood, 1993; Rogers & Glendenning, 2000; 

Boardman et al., 2001; Rao & Shivananda, 2005(a) and Al-Mukhtar et al., 2010) which 

resulted in the observed strength gains. This interpretation is also consistent with the pH 

measurements shown in Figure 4.8 (Chapter 4).   
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Figure 5.6: Correlation between mechanical performances and lime consumption at 

different curing time. 

 

Thus, it was decided that the majority of subsequent tests would use 6% lime at 28 days 

curing to ensure adequate pozzolanic activity based on the results of XRD analysis that had 

indicated commencement of pozzolanic activity after 7 days curing. Nevertheless, for 

comparison purposes, samples prepared with 4% lime cured for 7 days were also included 

in the triaxial testing programme. 
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5.3. Isotropic compression (IC) triaxial tests  

 

5.3.1. Introduction 

 

The safety of the structure is influenced by the soil compressibility as much as by the shear 

strength. However, only few studies have been performed to investigate the impact of lime 

treatment on the compressibility behaviour of clay soils (Rao and Shivananda, 2005a). For 

this reason, isotropic compression tests on 4% lime treated (cured for 7 days) and untreated 

London Clay samples were performed in the IC system. However, due to the lack of 

multiple available triaxial testing equipment and the limitations of the apparatus the 6% 

lime treated soils were not performed. The isotropic compression behaviour of saturated 

lime treated and untreated soil is presented from a range of initial specific volumes ( )v .  

 

5.3.2.  Isotropic compression response of saturated lime treated London Clay 

 

Untreated London Clay samples were compacted to an equivalent degree of saturation 

80.0=rs , and an initial void ratio 936.0=ie , whereas for 4% lime treated London Clay 

samples, they were compacted to an approximate degree of saturation 74.0=rs , and a 

void ratio equal to 916.0=ie . Although, lime treated and untreated specimens were 

compacted to similar dry density, their corresponding void ratio is different due to the 

difference in specific gravity of 74.2  and 76.2  for treated and untreated soil respectively. 

Prior to performing the isotropic consolidation tests, lime treated and untreated London 

Clay specimens were saturated under a similar mean effective stress equal to kPa20 . The 

saturation process for lime treated specimen results in a volume increase varying between 

8 and 12% of the initial (as cured) volume. This is due to the amount of water absorbed by 

the treated sample. This observed volume increase may have an impact on the bonding 

particles, consequently affecting the compression response, depending on lime amount and 

the curing period. 

 

The isotropic compression curves are summarised in the semi logarithmic compression 

plane ( )'pv −   (Figure 5.7). However, due to the limitation of the equipment in terms of 

achievable pressures, it was difficult to obtain data for the compression behaviour of the 

lime treated soil. Some data based on a limited range of pressures are presented in Figure 
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5.7. These show that the lime treated soil achieve states far beyond the NCL of the 

untreated soil, which was the expected behaviour of a cemented soil. There is some 

indication of the start of yield for the 4% lime treated specimen at approximately kPa153 . 

However, as shown in Rao and Shivananda (2005a) (see Chapter 2) this point would most 

likely not correspond to the yield stress where complete breakage of bonds occur and 

probably the actual parameter isoλ   may not be obtainable within the range of the presented 

results. The value of isoλ  shown in Table 5.1 for the 4% lime treated soil is thus given with 

some reservation as it may correspond to an early stage of cementation bonding breakage, 

beyond which the slope of the graph could change further until the post yield zone is 

clearly identified. It is however possible that the extend of the zone of progressive bond 

breakage and hence the changes in the compressibility parameter may be small for the 4% 

lime treated soil due to the limited amount cementitious products observed. Either way no 

firm conclusion can be given.  

 

Values of compressibility parameters  isoλ , and N  obtained from the post-yielding linear 

lines (for 0 and 4% lime), and values of the elastic swelling parameter κ  obtained in the 

pre-yielding range for lime treated and untreated London Clay, as well as the identified 

pre-consolidation pressure at which the specimen starts yielding are presented in Table 5.1. 

These parameters are fundamental for the development of constitutive models. Note that 

the gradient of the line isoλ , and the intercept of the NCL “ N ” at kPap 1'=  are obtained 

through the regression analysis performed on the saturated normal compression lines. 

Similar regression analysis on the elastic pre-yielding line (0 and 4% lime) provides the 

swelling parameter κ  representing the slope of the elastic line. 
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Figure 5.7: Isotropic compression curves for 4% lime treated & untreated London Clay
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Table 5.1: Compression parameters for lime treated and untreated London Clay 

 

Lime 
Initial water 

content 
Curing time isoλ  κ  N  'cp  

( )%  ( )%  ( )Days  - - - ( )kPa  

0 optw  N/A 0.142 0.0062 2.772 49.9  

4 optw  7 0.093 0.0049 2.676 152.7  

 

 

5.4. Consolidated drained (CD) Triaxial tests 

 

This section presents results from saturated consolidated drained (CD) triaxial tests, which 

have been performed at different effective stresses (100, 200 & 300kPa), the presentation 

of the results is organised as follows: a) First the stress-strain behaviour of the soils is 

shown; b) Yielding behaviour during shearing compression tests of lime treated soil is 

recorded; c) the void ratio changes for each mixture is then presented; d) shear strength 

indices are obtained and the shear strength parameters of the soil according to Mohr-

Coulomb’s failure criterion are then determined; e) finally the dilatancy behaviour of lime 

treated soil is investigated. The yielding, peak and dilatancy positions are marked on the 

( )'pq − , ( )av εε −  curves and discussed accordingly. Note that in the following section 

“failure” will denote the peak state of the material.  

 

5.4.1. Stress-strain and volumetric response of lime treated London Clay 

 

The ( )aq ε−  graphs have been plotted to identify the strength increase associated with 

lime treatment, as well as strength degradation due to bond breakage. The stress-strain 

curves of untreated London Clay specimens, display a continuous deformation until a 

steady stress state is reached (Figure 5.8a). The av εε −  plot (where vε  is the volumetric 

strain and aε  the axial strain) of untreated London Clay samples showed a compressive 

response until failure at a constant volume change. Bulging was observed at approximately 

10% axial strain (ductile failure / see Fig. 5.10a).   
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Figure 5.8b indicates the deviatoric stress ( )q  versus Axial strain ( )aε  for 4% lime treated 

London Clay. A clear linear part of the stress-strain curve before the plastic zone can be 

seen. A plateau is reached where peak deviator stress is maintained constant; a moderate 

brittle failure due to slip line was observed (see Fig. 5.10b). This is followed by a gradual 

decrease in deviator stress with increasing axial strain. The volumetric response of 4% lime 

treated samples shows an initial compression, followed by dilation after rupture of the 

specimen. This is consistent with the expected behaviour for lightly over-consolidated 

specimens except that dilation occurs after the peak strength. As expected, the axial strain 

at the failure state is observed to increase with increasing effective confining stress. 

Moreover, it can be seen that the stiffness increases with an increase in the effective 

confining stress. However, the effect of effective stress is less pronounced for the 4% lime 

treated specimen compared to the untreated specimen. 

 

The results of the 6% lime treated London Clay specimens were plotted into separate 

graphs (Fig. 5.9 a, b & c) for better clarity, in view of the number of curves presented. It 

can be seen that all 6% specimens had higher peak strengths than the 4% lime specimens 

and exhibited an even more pronounced brittle behaviour with a significant loss of strength 

after rupture. It is important that this sudden strength reduction be carefully modelled to 

better understand the lime treated ground behaviour beyond the peak conditions under 

large strains. The peak / failure strength occurred at lower axial strains, ranging between 1 

and 4%, accompanied by the formation of the shear bands at an angle of 60-70°; 7-day 

cured specimens showed a vertical multi-fissure splitting type (see Fig. 5.10c). Further 

deformation led to rupture along localised zones and an abrupt loss in strength; the strength 

continued to decrease towards a constant value (see Fig. 5.8b). The volumetric strain 

curves of the 6% lime-treated specimens were similar to those of the 4% lime-treated 

specimens, showing an initial small volumetric compression followed by dilation; dilation 

was more pronounced in the case of the 6% lime-treated specimens compared to 4% lime-

treated specimens. Again (as for the 4% lime-treated soil) the behaviour pattern av εε −  is 

similar to that of heavily over-consolidated clayey soils as indicated by Leroueil & 

Vaughan (1990) with the difference that the maximum rate of dilation occurs after the peak 

strength. A possible interpretation of the volumetric behaviour of the lime treated soil is 

that the newly created chemical compounds occupy some of the pore space by cementing 

the particles, consequently creating a denser material similar to a heavily over-consolidated 
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material. At higher strain the dilation rate approached zero. This ultimate condition can be 

considered to be close to the critical condition. This is also consistent with the constant 

stress of the soil recorded in this strain range. The dilative behaviour of the lime treated 

soil is further discussed in section 5.4.4. 

 

The more pronounced strength and brittleness of the 6% lime-treated soil can be attributed 

to the formation of the cementitious bonds as a result of the pozzolanic reactions 

(supported by the detection of cementing compounds during the XRD analysis), and their 

subsequent breakage. 

 

A measure of the brittleness of the specimens that can be used to support the above 

observations on the specimen mode of failure, is the brittleness index ( )BI  defined by 

Bishop (1971) as follow:  

 

1−







=

ult

peak

B
q

q
I                                                                              (5.1) 

 
Where peakq , is the deviator stress at peak, and ultq , is the deviator stress at the ultimate 

state 

 
Fig. 5.11 shows the variation of brittleness index versus the effective stress for untreated, 

4% and 6% lime treated London Clay. As would be expected, the brittleness increased 

significantly with increasing lime percentage (implying increased cementation) and 

decreased with an increase in the effective confining pressure for specimens treated with 

6% lime. It can be observed that brittleness indices for untreated and 4% lime treated soil 

are relatively constant while for 6% lime treated specimens brittleness index decreased 

initially and appears to stabilise at higher effective stress. 6% lime treated soil cured for 7 

days exhibited a higher brittleness index, while no major effect of the compaction water 

content was observed at 28 days curing. 

 

For a clearer picture of the effect of lime percentage, curing time and compaction water 

content on the strength of the soil, the peak and ultimate state deviator stresses are plotted 

in Figure 5.12 and summarised in Table 5.2. From this figure it can be seen that the higher 

the lime content, the higher the location of the respective peak stress envelop. Thus peak 
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stress envelops of all lime-treated specimens are located above the CSL of the untreated 

soil but not parallel to it, highlighting the cementation effect which is characterised by an 

intercept. The intercept of the lime treated soil can be justified by the expected bonding 

brought about by the lime addition. Considering the slope of the envelopes it can be 

implied that the addition of lime increased the peak friction angle. The effect of lime on the 

shear strength parameters is quantified based on Mohr-Coulomb’s in section 5.4.5. 

 

Concerning curing time, the 28 day cured specimen showed a lower strength than the 

corresponding 7 day cured specimen. Figure 5.12 shows that London Clay samples 

prepared with 6% lime addition, cured for 7 days, tested under saturated conditions, 

resulted in slightly higher peak / failure envelope than similarly prepared samples cured to 

28 days. This was not the expected behaviour and it is difficult to explain as cementation 

reactions would normally lead to increased strength development (which was observed in 

UU results but not the CD results), one reason could be the lower saturation achieved for 

the 7 day cured specimen (see Chapter 3 / Fig. 3.19). This result is also believed to be 

partly related to the initial change in structure of the newly formed material during the 

curing period. Although the cementation process to produce the bonds is assumed to have 

developed in the same way for 6% lime treated specimens, cured for both 7 and 28 days, 

since they have been prepared in similar way, but it is believed that once the sample is in 

contact with abundant water during saturation stage, the cementing gel which formed 

during 28 days curing period developed a higher plasticity within the material (softened / 

degraded quicker).  

 

Finally, from Figure 5.12 the effect of compaction water content can be assessed; specimen 

prepared at wet of optimum %32=wetw , cured for 28 days resulted in higher strength 

compared to specimens prepared at dry of optimum %27=dryw . This can be due to the 

better conditions for cementation bond development in the presence of a higher amount of 

water during the curing period, which is in line with the findings presented by Locat et al. 

(1990). According to the authors, a higher humidity environment leads to better particle 

dispersion, facilitating the movement of calcium ions, which favours the development of 

pozzolanic reactions and the development of a stronger and longer lasting cementation 

bonds. Overall (with the exception of the curing time effect), the results are consistent with 

other studies and published data for cemented soils, showing that the peak/failure 
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envelopes of cemented samples lie above those of the corresponding reconstituted samples 

and have an intercept on the q  axis (e.g. Kasama et al., 2000; Consoli et al., 2001; and 

Asghari et al., 2003). 

 

Table 5.2: Peak / failure state parameters 

3'σ  
Peak void 

ratio  

pe  
peakq  peakp'  

 
( )

peak
pq '/
 

peakφ  

Specimen ID 

( )kPa  - ( )kPa  ( )kPa  - ( )Deg  

( )1001 00 −CD  100 0.988 133.83 144.61 0.93 23.63 

( )2002 00 −CD  200 0.899 256.97 283.73 0.89 22.69 

( )3003 00 −CD  300 0.840 361.34 420.45 0.86 22.08 

( )1001 74 −CD  100 1.122 314.94 204.98 1.54 37.79 

( )2002 74 −CD  200 1.082 507.45 369.15 1.38 34.12 

( )3003 74 −CD  300 1.059 745.40 548.47 1.36 33.67 

( )1001 76 −CD  100 1.126 1243.02 514.34 2.42 59.57 

( )1502 76 −CD  150 1.129 1330.22 593.41 2.24 54.64 

( )2003 76 −CD  200 1.126 1558.92 719.64 2.17 52.83 

( )3004 76 −CD  300 1.119 1945.38 948.46 2.05 49.82 

( )1005 286 −CD

 
100 1.099 952.03 417.34 2.28 55.70 

( )2006 286 −CD

 
200 1.080 1231.68 610.56 2.02 49.08 

( )3007 286 −CD

 
300 1.068 1636.96 845.65 1.94 47.14 

( )1008 286 −CD

 
100 1.030 1068.77 456.26 2.34 57.32 

( )2009 286 −CD

 
200 1.022 1324.70 641.57 2.06 50.06 

( )30010 286 −CD

 
300 1.014 1716.26 872.09 1.97 47.86 
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Figure 5.8: Drained triaxial tests for (a): London Clay, (b): 4% lime treated London Clay, ( aq ε− ) & ( av εε − ) 
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Figure 5.9: Drained triaxial tests for 6% lime treated London Clay, ( aq ε− ) & ( av εε − ), (a): 7D - dryw , (b): 28D - dryw  and (c): 28D - wetw
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(a) (b) 
 

    

                                 (c)                                                                        (d) 
 

Figure 5.10: Mode of failures of treated and untreated LC under saturated state  

                          (a): 0%  Lime / Barrelling (b): 4% L – 7D / slip line. (c): 6% L – 7D / 

Multiple fissures. (d): 6% L – 28D / Slip line 
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Figure 5.11: Variation of brittleness index Vs effective stress for lime treated London Clay  
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Figure 5.12: Peak / failure state envelopes for lime treated London Clay 
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A number of detailed observations on the yielding and dilatancy behaviour will now 

follow. These will be based on the results presented in Figures 5.8 and 5.9. In addition the 

void ratio evolution during the CD testing will be presented, as this information will be 

used in Chapter 6. Finally, the shear strength parameters and other strength indices of the 

soil, based on the presented CD and UU triaxial testing results will be quantified.  

 

5.4.2. Yielding behaviour in shear of lime treated London Clay 

 

Yielding in a material is considered to occur during the transition from elastic to plastic 

behaviour, directly associated with the development of sharp curvature in stress-strain 

relationship that had been linear during the elastic deformation. Hence, irrecoverable 

strains develop in the pre-yield zone, and some of the deformation will be permanent and 

non-reversible which is identified as plastic deformation.  

 

The difficulties in identifying the yield points of cemented soils have been reported by 

several researchers (Barksdale & Blight, 1997; Smith et. al, 1992 and Cecconi et al., 1998). 

Yield is best recognised from stress-strain curve when plotted on a linear or log-log scale 

(Leroueil & Vaughan, 1990). The soil grading as well as the micro features of the 

cementitious agent (e.g. Ismail et al., 2002b) can add considerable difficulties in 

determining the yield points for artificially cemented soils. Rotta et al., (2003) indicated 

the gradual onset of the breakage of the cementation bonds in artificially cemented soils. 

They suggested the point where the stress-strain curve deviates from its initial linear trend 

as the primary yielding point in the isotropic compression space. A similar method can be 

applied to identify the yielding point in the shearing compression space at which breakage 

of cementation bonds first commences (Cuccovillo & Coop, 1997). This is how the initial 

yield point was determined in this research.  

 

Initial yielding points for CD triaxial tests performed on lime treated and untreated London 

Clay are plotted in 'pq −  stress spaces (Figure 5.13). Based on this figure it can be seen 

that the yield points do not increase linearly with mean effective stress 'p , instead they 

form a curved envelop with convex shape.  

 

The results are also plotted in terms of initial deviator yield stress yq  versus the applied 
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confining effective stress (see Fig. 5.14). In this case a linear increase of the yield stress 

with effective confining stress is noted, which is the expected behaviour. 
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Figure 5.13: Yield curves in shear for untreated and lime treated London Clay  
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Figure 5.14: Effect of effective confining pressure on yield stress 
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Table 5.3 summarises the yielding point values obtained during the CD triaxial testing of 

lime treated and untreated London Clay specimens under saturated conditions.  

 

Based on Table 5.3 & Fig. 5.13 the following observations can be made regarding the 

effect of lime dosage, curing time and compaction water content: 

 

a) Effect of lime dosage on yielding response  

 

London Clay specimens treated with 4% lime addition showed an expanded yield curve 

compared to the untreated London Clay. This suggests that lime addition influences the 

size of the yield curve, by shifting it higher than the untreated London Clay yield curve. 

Figure 5.13 also shows that a lime amount increase from 4 to 6% shifted the yielding curve 

even higher, indicating that the new material developed a higher stiffness with increasing 

lime amount during shearing compression. This can be attributed to the higher number of 

cementation bonds formed due to the higher lime content. 

 

b) Effect of curing time on yielding response  

  

The yield point envelop of the 6% lime treated specimens cured for 7 days plotted above 

all other envelops (highest yielding surface) when compared to similarly prepared 

specimens at 28 days curing. The experiments on 28 days cured samples revealed a 

smoother transition from elastic to plastic behaviour. Conversely, the yielding response 

observed for 6% lime treated specimens, cured for 7 days is not shown to be strictly elasto-

plastic and exhibit a less apparent yielding behaviour (almost elastic pre-yield response). It 

can be observed that peak strength / rupture occurs soon after yielding commences (Figure 

5.9a), which could be attributable to stronger cementation bonds created by lime addition. 

This was not what was initially expected. It is probable that the difference in the initial 

void ratio due to volume expansion during the curing period, and the timing of the 

saturation (saturation after 7 days curing compared to 28 days) may have had an effect on 

these results (consistent with strength results). In addition, the difference in the average B 

value achieved during saturation stage for each mixture (see Chapter 3 / section 3.7.1.2) 

could have had an impact on this obtained result. 
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c) Effect of compaction water content on yielding response  

 

The compaction water content increase from dry of optimum ( )%27=dryw  to wet of 

optimum ( )%32=wetw  had a clear impact on 6% lime treated London Clay initial yielding 

stress; the yielding curve envelop for specimens prepared at wet of optimum cured for 28 

days plotted higher than the yield curve generated from specimens prepared at dry of 

optimum, cured for 28 days (see Fig. 5.13 & 5.14). This can be attributed to the favourable 

effect of the additional water during the curing period for specimens prepared at wet of 

optimum.  

 

Table 5.3: Summary of yield points 

 

3'σ  
Yielding void ratio  

ye  'yP  yq  

Specimen ID 

( )kPa  - ( )kPa  ( )kPa  

( )1001 00 −CD  100 1.104 105.62 16.86 

( )2002 00 −CD  200 1.012 207.77 23.30 

( )3003 00 −CD  300 0.952 311.20 33.60 

( )1001 74 −CD  100 1.134 165.61 196.82 

( )2002 74 −CD  200 1.105 312.06 336.18 

( )3003 74 −CD  300 1.096 451.22 453.67 

( )1001 76 −CD  100 1.130 440.57 1021.70 

( )1502 76 −CD  150 1.130 545.22 1185.65 

( )2003 76 −CD  200 1.129 635.46 1306.39 

( )3004 76 −CD  300 1.121 840.04 1620.12 

( )1005 286 −CD  100 1.117 290.48 571.43 

( )2006 286 −CD  200 1.091 454.03 762.08 

( )3007 286 −CD  300 1.078 646.29 1038.88 

( )1008 286 −CD  100 1.036 399.98 899.93 

( )2009 286 −CD  200 1.025 595.27 1185.80 

( )30010 286 −CD  300 1.017 766.80 1400.41 
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5.4.3. Recorded void ratio changes 

 

The void ratios of the specimens at the end of each stage (from post-curing to the end of 

CD testing) are shown in Figure 5.15 and summarised in Table 5.4. In addition, the percent 

void ratio changes from end of saturation to end of consolidation and from end of 

consolidation to end of shearing are plotted in Figures 5.16 and 5.17 respectively. From 

Figures 5.15 and Table 5.4 it can be seen that, as expected, the untreated soil sample 

showed the highest volume change between post-curing and end of saturation conditions, 

as London Clay is a shrinking/swelling soil. Conversely all lime treated specimens showed 

less expansion than the untreated soil, indicating the favourable effect of lime in reducing 

the swelling potential of the natural soil. It is however observed that the lime-treated 

specimens are not free from expansion during saturation and that the expansion is variable 

between the lime-treated soil specimens. The expansion of the lime-treated specimens both 

after constant water curing and after saturation could be due to the effect of pozzolanic 

reaction products. In the presence of water during the saturation stage lasting an average of 

14 days, the specimens would continue curing beyond the original constant moisture 

saturation period. As a result of the modification reactions and subsequently the production 

of cementitious compounds, the lime-treated soil can acquire a more open structure. This 

has been reported in the literature based on microstructural analyses (e.g. Tedesco & 

Russo, 2008). In time the voids can be filled by the cementitious products and the number 

of micropores increases (Tedesco & Russo, 2008); this could reduce the void ratio across 

the mixes and increase the mass of the solids. However, in the calculation presented in this 

thesis, the dry mass of the solids was assumed to be constant as it was difficult to quantify 

the exact mass of the cementitious material. Some differences in the saturation void ratios 

across the mixes can be noted (although the target compaction dry density of the lime 

treated specimens was the same); these are likely to be due to the different progress in the 

chemical reactions across the specimens but as there is no evidence from physicochemical 

testing, it is not possible to explain these differences in detail. 

 

Figures 5.15 and 5.16 show a decrease in the void ratios of all mixes during isotropic 

consolidation. However, the changes in the void ratios of all lime-treated specimens are 

very small compared to those of the untreated soil, in particular those of the 6% lime-

treated specimens. This indicates that the stiffness of the lime-treated material increased 

with lime percentage, as a result of the change in the soil structure after modification 
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and/or stabilisation reactions (the latter reactions were evidenced for the 6% lime-treated 

specimens during the XRD testing). On the other hand, inspecting figures 5.15 and 5.17, it 

can be seen that there is a considerable void ratio change (increase) between the end of 

consolidation and end of shearing conditions, especially for the 6% lime-treated 

specimens. This is consistent with the post-rupture dilation of the lime-treated specimens, 

as discussed earlier (see section 5.4.1) 
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Table 5.4: Void ratio changes from as cured initial state to end of shearing state 

 

Lime 
Curing 

time 3'σ  
cw  

Post-curing 

void ratio 

0e  

Saturation 

void ratio 

se  

Consolidatio

n void ratio 

ce  

Peak void 

ratio  

pe  

End of 

shearing 

void ratio 

see /  Specimen ID 

( )%   ( )Days  ( )kPa  ( )%  - - - - - 

( )1001 00 −CD  100 0.936 1.194 1.106 (0.988)* 0.988 

( )2002 00 −CD  200 0.937 1.199 1.014 (0.899)* 0.899 

( )3003 00 −CD  

0% N/A 

300 

optw  

0.938 1.200 0.953 (0.840)* 0.840 

( )1001 74 −CD  100 0.949 1.166 1.153 1.122 1.141 

( )2002 74 −CD  200 0.948 1.194 1.141 1.082 1.089 

( )3003 74 −CD  

4% 7 

300 

optw  

0.944 1.207 1.128 1.059 1.051 

( )1001 76 −CD  100 0.937 1.142 1.141 1.126 1.293 

( )1502 76 −CD  150 0.938 1.140 1.138 1.129 1.262 

( )2003 76 −CD  200 0.941 1.141 1.137 1.126 1.239 

( )3004 76 −CD  

7 

300 

dryw  

0.940 1.139 1.133 1.119 1.221 

( )1005 286 −CD

 
100 0.951 1.123 1.122 1.099 1.157 

( )2006 286 −CD

 
200 0.950 1.107 1.103 1.080 1.121 

( )3007 286 −CD

 
300 

dryw  

0.952 1.093 1.086 1.068 1.095 

( )1008 286 −CD

 
100 0.943 1.049 1.047 1.032 1.146 

( )2009 286 −CD

 
200 0.942 1.041 1.036 1.022 1.093 

( )30010 286 −CD

 

6% 

28 

300 

wetw  

0.940 1.038 1.028 1.014 1.080 

(*) No peak stress observed for untreated London Clay 
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Figure 5.15: Void ratio change path from as cured initial state to end of shearing state of lime treated and untreated London Clay
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Figure 5.16: Change in void ratio (%) of lime treated and untreated London Clay from saturated state to consolidated state 
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Figure 5.17: Change in void ratio (%) of lime treated and untreated London Clay from consolidated state to peak state
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5.4.4.  Strength indices and shear strength parameters 

 

Lime treated materials are generally evaluated on the basis of shear strength tests 

performed on the material after sufficient curing times. In order to quantify the 

performance and development in strength of lime treated London Clay samples, two 

methods to evaluate the strength evolution were used:  

 

1/ Strength index based on tested specimen peak deviator stress range (at a specific 

confining effective stress). The strength evaluation is associated with a set of specimens for 

each mixture. 

 

2/ Strength evaluation based on individual tested specimens under CD conditions 

compared to UU test results. 

 

In addition, the shear strength parameters of the Mohr-Coulomb criterion commonly used 

by practicing engineers are determined. 

 

5.4.4.1. Strength index (based on set of specimens) 

 

The strength index used will be referred to as strength index srI . It was defined as the 

difference between the highest and lowest obtained peak deviator stress values from each 

specimen type, normalised by the difference between the corresponding effective confining 

stresses.  For the presented tests this was written as follow:    

 

( ) ( )

100300
100/300/

−

−
=

peakpeak

sr

qq
I                                                              (5.2) 

 
Table 5.5 contains srI strength indices for all lime specimen types subjected to CD testing.  
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Table 5.5: Strength index variation for lime treated and untreated London Clay 

 

Lime Curing time Water content cw  Strength index srI  

Group 

( )%  ( )Days  ( )%  - 

A 0 N/A optw  1.09 

B 4 7 optw  2.15 

C 7 dryw  3.58 

D 28 dryw  3.46 

E 

6 

28 wetw  3.24 

 

 

The strength index srI  results are also plotted in Figure 5.18. This illustrates the strength 

index evolution with lime addition and curing time. Consistently with the previously 

shown stress-strain results, srI  increased with increasing lime content. In addition, the 

strength of the 7 day cured specimens was found to be slightly higher than that of the 28 

days cured specimens, and so is their corresponding strength index (Group C & D). A 

further small decrease in srI  was recorded for 28 days cured samples (Group E) prepared 

with 32% water content ( wetw ) compared to those prepared at lower water contents (Group 

D). As would be expected, the srI  of 6% lime treated specimens (Group C) is recorded to 

be higher than that of 4% treated specimens (Group B) when cured for 7 days.  
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Figure 5.18: Strength index srI  evolution with lime amount, curing time and compaction 

water content 

 

5.4.4.2. Strength evaluation (based on individual specimen comparison) 

 

A different approach in evaluating the strength of saturated lime treated London Clay 

tested under consolidated drained (CD) conditions is introduced. Individual comparison of 

CD tests to results obtained from UU tests performed at a confining cell pressure 

kPa2003 =σ  provides a different understanding on how strength developed during curing 

time due to the formation of the cementation bonds, and how these bonds degraded and 

others formed under saturated conditions. Note that the UU and CD tests were performed 

on specimens with different degrees of saturation at different rates of strain. Specimens 

tested under UU conditions are not subjected to any back pressure prior to testing, and 

typically performed faster than CD tests. For comparison, the differences in measured 

strength in the CD triaxial tests performed in this study are the applied back pressures, i.e. 

“saturated” specimens.  
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The artificial cementation bonds can be broken either by consolidation or shear 

compression in triaxial tests, but can also be weakened in the presence of high amount of 

water during saturation stage, while suction is reduced to almost zero. The key aspect here 

is the transition from dry curing condition at constant water content (CWC) to wet curing 

at variable water content (VWC), which exposes the lime treated samples to sufficient 

water during saturation for up to 14 days, and consolidation phase for up to 10 days before 

proceeding with shearing stage (see Fig. 5.19). The contact with water (ingress & egress) 

after an imposed curing time at CWC has an effect on the shearing response of the treated 

specimens suggesting that the presence of water plays an important role impacting on 

strength loss. 

 

Lime addition to clayey soils, when cured under unsaturated conditions, produces 

cementation bonds to strengthen and develop a higher resistance to shear compression. 

However, under saturated conditions, a substantial strength reduction takes place, but 

remained much higher than that evaluated for untreated specimens under similar 

conditions. The aspect can be better visualised in Figure 5.20 showing the strength 

reduction of each mixture under saturated state. Results indicates that peak strength of 

untreated London Clay under saturated state decreases by about 52% as of the peak 

strength value obtained in UU test, this is attributed to a combination of bond breakage and 

a reduced suction to a value close to zero. Peak strength of 4% lime treated specimen cured 

for 7 days, obtained in UU test is observed to decrease by 61% after being subjected to CD 

triaxial test under saturated state, which is almost similar strength percentage drop 

observed in untreated sample. This is due to a combination of non existent suction under 

saturated state and the weakening of cementation bonds in the presence of high amount of 

water. A relatively smaller strength decrease was observed for 6% lime amount than 4% 

lime treated specimens (61% to 19% strength decrease for specimens treated respectively 

with 4% and 6% of lime when cured for 7 day). Similar observation was made by Le 

Runigo et al. (2011) when they reported the strength increase with lime addition, while 

saturation (by immersion) for 1 week leads to significant UCS decrease. In spite of this, 

their results remained much higher than that evaluated for untreated specimens. The 

decrease in mechanical strength due to suction decrease is common results for unsaturated 

soils (Cui & Delage, 1996). However, in this particular case the rate of cementation bonds 

degradation is believed to be the main cause for the strength reduction. These phenomena 

explain the loss in strength observed under CD conditions.   
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Figure 5.19: UU & CD triaxial testing stages
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Figure 5.20: Strength evaluation in UU & CD triaxial tests / strength drop under saturated state conditions.
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Moreover, UU tests results indicate that lime amount increase from 4 to 6% cured for 7 

days increases the peak strength. In addition (based on the UU tests results), curing time 

increase from 7 to 28 days for 6% lime treated London Clay also increases the strength of 

the material by a further 40% as of the untreated soil, suggesting that the cementation 

bonds formed during the 28 days curing period at CWC are of a larger amount than the 

bonds formed at 7 days curing time (as evidenced by XRD analysis), thus displaying a 

slightly higher strength for 28 days cured specimens when tested under UU conditions 

(Figure 5.20). However, results from CD triaxial test performed at an effective stress 

kPa200'3 =σ  under saturated state on 6% lime treated sample shows a different response 

with curing time increase, surprisingly strength after 28 days curing is recorded to be 

slightly lower than the strength after 7 days curing, but still stands within a plateau in a 

similar trend seen in UU tests results and the sudden strength increase may occur after 60 

days curing under CD conditions. Nevertheless, when compared to UU tests results, the 

peak strength after 28 days curing shows a 42% strength reduction as of the strength 

initially obtained in UU test, whereas only 19% strength drop for 7 days cured specimen is 

recorded. This indicates that the presence of high amount of water has a lesser influence in 

weakening the cementation bonds formed during 7 days than the bonds produced in 28 

days curing at CWC. Thus, it can be concluded that specimens saturated after 28 days 

curing at CWC, tend to loose their pozzolanic reaction products faster, and degrade to a 

much lower strength than similar specimens cured for 7 days only.  

 

In order to identify the likely cause for the strength slight reduction with curing time 

increase, a detailed forensic investigation was carried out; following back the steps to the 

earliest point possible. Note that at a later time (beyond the testing stage), it is not 

practically possible to physically revisit the samples to identify any anomaly which might 

have occurred during the preparation, nor is it possible to go back on time to identify any 

wrong doing in the testing procedures. However, a complete review of all the recorded 

measurements during the preparation for each sample was performed (i.e. soil mass, lime 

dosage and water content) as well as the measured dimensions of the samples from as 

compacted to as cured stage (i.e. diameter, length and volume). Testing procedures were 

performed (see Chapter 3/section 3.7.1.2) in the same way for both mixture sets as follow: 
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a) Saturation stage was performed for up to 14 days at hourkPa /5.1 for all specimens 

under an effective stress equal to kPa20  until a satisfactory B value is achieved. 

 

b) Consolidation phase for all specimens was carried out by applying a cell pressure 

increase at a loading rate equal to hourkPa /5.1  for up to 10 days (depending on 

the required effective stress). 

 

c) Shearing performed at a similar controlled shearing rate equal to hour/%1.0 for all 

specimens. 

 

In order to eliminate any doubt on the sample preparation and to ensure that the testing 

procedures were followed in a similar way as all the other specimens, a decision was taken 

to include in the program a fourth sample treated with 6% lime and cured for 7 days. This 

sample was sheared under drained conditions at kPa150 effective stress. This is the only 

additional sample in the study among all other mixtures, by following exactly the same 

sample preparation and tested with the same calibrated equipment using the same 

procedure as detailed in Chapter 3. Results from this fourth specimen showed the same 

response as for the first three tested samples (100, 200 and 300 kPa) and proved to be in 

the same strength path recorded for this set. The maximum deviator stress for the fourth 

tested specimen was observed to be aligned on the peak strength envelop drawn for this 

type of mixture (6% - 7D – dryw  / see Fig. 5.12). This confirms that the sample 

preparation, testing procedures were accurately performed. Note that Brooks et al. (1997) 

reported a surprising strength results of 5% lime treated London Clay when the undrained 

shear strength of 7 day cured sample presented higher strength than 28 day cured sample, 

and even higher strengths were obtained with lower lime contents. The authors attributed 

this latter anomaly to the compaction related effect and no explanation was given for 5% 

lime treated London Clay inconsistent strength results observed with curing time increase. 

In another separate research, Ahnberg (2007) who performed CD and CU triaxial tests on 

two types of soft Swedish clays (Linkoping clay and Loftabro clay), treated with lime and 

cement, cured for 1, 28 and 360 days. A significant exception was observed for the lime 

stabilised Linkoping clay, where no further strength improvement was measured between 

one day and one year. This lack of effect has been observed in other investigations on this 

type of clay (Ahnberg et al., 2003). Another exception from the general pattern of an 
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increase in 'c  with increasing time and binder quantity, is the lime stabilised Loftabro 

clay, which showed no difference in strength for binder quantities corresponding to 50 , 

100  and 3/200 mkg . However, the author indicated that this is common when using lime 

as a binder; effects of larger quantities of lime are, as a rule, observed mainly as a more 

accentuated long-term strength increase. 

 

Nevertheless, in this current research, while reviewing what might have happened to the 

6% lime treated specimens during the curing period, it was found that the treated samples 

expanded in volume due to rebound. Similar observation was made by Brooks et al. (1997) 

when studying lime treated London Clay and Gault Clay, reporting a radial swelling of the 

specimens prior to testing being in a range of 1.5 – 3.8% as of the initial measurements, 

they also indicated that generally marginally more swelling occurred with higher lime 

contents and longer curing period. For this reason the current investigation was diverted 

into theory to find an explanation for the obtained result.     

 

Two main hypotheses are suggested to explain the strength reduction with curing time 

revealed under saturated conditions in 6% lime treated specimens. These may possibly be 

related to the following two observations which are believed to have had a crucial impact 

on the strength results.  

 

i) The post-curing volume variation (expansion) observed in lime treated 

specimens  

 

ii) The timing of the saturation stage during the CD triaxial tests.  

 

There is a higher possibility that the result is caused by the difference in the initial void 

ratio at the start of the test. It is important to indicate that 6% lime treated specimens 

showed a higher volumetric expansion after 28 days curing period (1.8%) compared to an 

expansion of (0.9%) after 7 days curing (Fig. 5.21). This suggests an increase in void ratio 

has occurred during the dry curing period, indicating a more open structure in 28 days 

cured samples, consequently affecting the different testing stages (saturation, consolidation 

and particularly the shearing phase) due to microstructure changes. In addition, the average 

achieved B value during the saturation process was identified to be inferior for 7 days 
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(0.91) than for 28 days cured samples (0.96) (Fig. 5.21). The former specimen proved 

difficult to saturate, indicating a lower permeability for 7 days cured specimens due to 

blocked pores, the lower the permeability the better the durability (Le Runigo et al., 2011). 

Note that in the hope of achieving a better B value, 7 day cured specimens were left 

slightly longer during the saturation stage (up to 48 hours). This is probably the reason why 

a higher void ratio was observed at the end of saturation stage for this mixture set. In 

addition 7 day specimens showed higher stiffness and lower compressibility during 

consolidation stage. This is reflected by the smaller void ratio change recorded in 

percentage (saturated to consolidated state / section 5.4.3 / Fig. 5.16). Given the 

microstructure changes, and the differences in permeability and compressibility between 

specimens saturated after 7 & 28 days curing (amount of water absorbed and expelled), the 

stability of the pozzolanic reaction products becomes of interest. Therefore, given the 

amount of water that gained access into the system and remained, a potential softening and 

damage to the cementitious bonds can be higher in 28 days cured samples (as they showed 

a higher permeability) than 7 days cured samples, reflecting the reduced strength observed 

in 28 days cured samples under saturated state.  

 

This seems to be the most possible reason according to Beetham et al. (2014); the authors 

indicated that water ingress has the potential to influence the clay mineralogy of lime 

treated soil in a similar manner to a natural clay soil. When lime treated specimen is in 

contact with abundant water of neutral pH and low +2
Ca , C-S-H gel will de-constitute into 

( )2OHCa  and silicate (Taylor, 1990). The release of these components will then 

effectively raise the pH and +2
Ca  of the water, the attack on pozzolanic reaction products 

(already formed under unsaturated curing) can be sustained with further water supply into 

the specimen during the saturation stage. This is supported by McAllister & Petry (1992) 

who identified that where permeability is high, the leaching of +2
Ca  from a cured lime-

clay specimen is sustained at a high level for an ongoing period. Therefore, a material with 

a higher permeability can potentially lose strength through softening and removal of the 

pozzolanic reaction products (Le Runigo et al., 2009).  
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Figure 5.21: Average post-curing volume expansion and the average achieved B value for all the mixtures.  
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The second explanation which can be put forward is related to the timing of the saturation 

phase. The reaction between lime and soil continues for an extended period of time, as 

evidenced by the long term maintenance of high pH (>10). This reaction is maintained 

during the saturation process, further altering the material’s structure. It is believed that 

early saturation (7 days after dry curing) of lime treated samples allows a uniform reaction 

between the remaining lime and soil minerals, while similarly prepared samples saturated 

at a later stage (28 days after dry curing) results in disuniformity in reaction products 

distribution due to the fact that a presence of sufficient amount of water is necessary for the 

reaction between lime and soil (note that these specimens were initially compacted to dry 

of optimum).  

 

Di Sante et al. (2014) indicated that early wetting of lime treated samples developed more 

uniform pozzolanic products and these crystallised (which give rise to brittleness) as 

opposed to when they subject them to a prolonged unsaturated condition curing before 

saturation. In the current research, a more brittle structure was observed for specimens 

saturated after 7 days curing (early wetting) compared to specimens saturated after 28 days 

curing, which showed a gradual plastic failure due to more pronounced plastic deformation 

as indicated in section (5.4.1). Hence, assuming that an earlier contact with water (after 7 

days curing at CWC) has allowed the formation of the crystalline reaction products under 

saturated conditions, it can be concluded that structural changes during saturation / 

consolidation stages occurred, and the formation of other cementitious bonds are possible, 

and the strength development in this case is more favourable after 7 day than 28 day 

curing.  

 

To a lesser extent, there might be another possible reason as to why availability of water 

could lead to reduction in strength. There is a well known linear relationship over the full 

plastic range between the water content and its undrained strength and can extend to water 

content greater than the liquid limit condition (Koumoto & Houlsby, 2001; Sharma & 

Bora, 2003). Availability of water will lead to swelling and softening (i.e. a reduction in 

strength) of agglomerations of clay particles. Strength of cemented material is due partly to 

bond strength and partly due to strength of the parent material (i.e. the clay). In this case, 

there is a possibility for the clay to soften during saturation stage for both specimens, 

however, this can affect the 28 day cured sample more than the 7 day cured sample due to 

permeability and the amount of water absorbed.  
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This question is still open as not enough is known about the real causes to this result, and 

more tests are required for a definite conclusion. However, if the above theories are 

correct, this has a significant practice implication in soil stabilisation projects by mean of 

lime addition, at which the curing time can be reduced if an appropriate lime amount 

beyond ICL is used. 

 

Finally, although it has previously been indicated in section (5.4.1), that lime treated 

London Clay specimens prepared at wet of optimum exhibit higher strength (under 

saturated state) than specimens prepared at dry of optimum, but when these are compared 

to UU test results to evaluate the strength loss, it shows that the pre-curing water content 

increases from 27 to 32% does not appear to withheld the gained strength longer in the 

presence of high amount of water, the strength loss during CD triaxial testing under 

saturated conditions is noted to be almost similar for both types of mixtures 42 and 37% 

drop for dry of optimum and wet of optimum respectively (Fig. 5.20). 

 

Therefore, it can be concluded that the likely explanations for the slight strength reduction 

observed in 6% lime addition with curing time increase under CD conditions could have 

been caused by either of the three introduced possibilities or the combination of all of the 

following: 

 

1. The potential loss of strength through softening and removal of pozzolanic reaction 

products (which have already formed during curing at CWC) due to higher amount 

of water ingress into the system / higher permeability, resulting in a faster 

degradation of the cementitious bonds in 28 days than 7 days. 

 

2. The formation of crystalline pozzolanic products for early saturated specimens (7 

days) produces stronger cementitious bonds, resulting in higher strength and 

exhibiting higher brittleness as indicated in section 5.4.1. 

 

3. Swelling and softening can lead to strength reduction due to the presence of high 

amount of water, and this has had a higher effect on the 28 day than 7 day cured 

sample. 
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5.4.4.3. Shear strength parameters (Mohr-Coulomb criterion) 

 

Mohr-Coulomb theory is used in geotechnical engineering as a failure criterion to identify 

shear strength of soils and rocks at different effective stresses. Assuming a linear 

relationship between the shear strength versus the effective stress, normal to the failure 

plane, the Mohr-Coulomb failure criterion is expressed by the following relationship. 

 

nc '' στ +=  ( )'tan φ                                                                       (5.3) 

 

Where τ is the shear strength, n'σ  is the normal effective stress, 'c  is the intercept of the 

failure envelope with the τ  axis named the cohesion, and 'φ  is the slope of the failure 

envelope called the internal friction angle.  

 

In order to identify the peak strength parameters, Mohr Coulomb criterion can be applied 

at peak state for artificially cemented soils which exhibit similar behaviour as lightly and 

heavily over-consolidated soils.   

 

Based on CD results, Mohr circles of effective stress at peak state are shown in Figure 

5.22. From these, the shear strength parameters 'c  and 
'
peakφ  were determined to assess the 

effect of lime dosage, curing time and compaction water content as reflected by these 

parameters. A summary of the values of 'c  and 
'
peakφ  for the different mixtures is shown in 

Table 5.6. From the table, it can be seen that the friction angle as well as the cohesion 

increases with lime amount increase. In addition, and regardless of the initial water 

content, Figure 5.22 shows that 6% lime treated London Clay cured for 28 days, had a 

peak angle of friction °= 39' peakφ  and a cohesion intercept 'c  ranging between 145  and 

181 kPa . These parameters can be used on computer models to predict the material’s 

behaviour in large scale engineering applications. The material’s real behaviour can be 

useful for any numerical modelling and design. 
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Figure 5.22: Mohr-Coulomb envelopes for lime treated & untreated London Clay 
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In general the results are consistent with results found in the literature, i.e. that strength 

parameters of lime-treated soils increase as the degree of cementation increases (e.g. 

Osinubi, 1998a; Le Runigo, et al., 2011). However, some researchers suggested that while 

there is a clear 'c  intercept reflecting the effect of cementation, the friction angle stays 

unchanged compared to that of the uncemented soil (Lambe, 1960; Clough et al., 1981; 

Cecconi & Russo, 2012). On the other hand other researchers (e.g. Consoli et al., 2000 & 

2001; and Schnaid et al., 2001) found friction angles higher than values obtained for the 

untreated soil.  

 

Table 5.6: Shear strength parameters at peak 

 

Lime Curing time Water content ( )cw  Cohesion ( )'c  
Angle of 

friction peak'φ  
Type of 

tests  
( )%  ( )Days  ( )%  ( )kPa  ( )Deg  

0 N/A optw  7 21 

4 7 optw  35 30.5 

7 dryw  220 39 

28 dryw  145 39 

Is
o
tr

o
p
ic

a
lly

 c
o

n
s
o
lid

a
te

d
  

d
ra

in
e
d
 c

o
m

p
re

s
s
io

n
 t
e
s
ts

 

6 

28 wetw  181 39 

 

 

5.4.5.  Stress - Dilatancy behaviour of lime treated London Clay 

 

The tendency of a compacted material to dilate (expand in volume) when subjected to 

shearing, in which there is coupling between shear and volumetric deformation, is 

identified as “Dilatancy”. When stresses are applied to bonded materials and artificially 

cemented soils, they expand after rupture and exhibit volume change (dilation) under 

drained conditions (Cuccovillo and Coop, 1999; Asghari et al., 2003). This was the 

behaviour of the lime-treated specimens observed in this study (as shown in section 5.4.1). 

Note that an initial compression is generally observed before dilating occurs under shear. A 
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suitable parameter to quantify a dilatant material is the dilatancy angle ( )ψ which is defined 

by the following expression: 

 

( )sv δεδεψ /tan 1 −= −                                                                    (5.4) 

 

Where ( )vδε is the volumetric strain increment and ( )sδε is the shear strain increment; the 

negative sign is introduced so that the expansion (negative change in volume) will be 

transformed into positive dilation rate. Note that the volumetric strain was measured using 

the external IC volume gauge in a similar way that was used by Cuccovillo and Coop 

(1999).  

 

During a constant mean effective stress shearing, at large strains, a linear relationship 

between the stress ratio '/ pq  and the rate of dilation sv δεδε / exists (See Figure 5.23). This 

is represented by Taylor’s equation as follow: 

 









−=

s

vaM
p

q

δε

δε

'
                                                                         (5.5)  

 

Where 
)'sin(3

)'sin(6

cs

csM
φ

φ

−
=                                                              (5.6) 

 
If vε  is a constant, meaning that the volume change has stabilised, then: 

 

→= 0vδε    →= 0
s

v

δε

δε
  M

p

q
=

'
 indicating that the soil has reached its critical state.  

 

Figures 5.23 & 5.24 investigate the dilatancy of the specimens during the CD tiaxial tests, 

the results are summarised in Table 5.7. From the figures and Table 5.7, in which dilation 

was quantified, the effect of different factors (lime addition, curing time and compaction 

water content) is examined.  
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Table 5.7: Angle of dilation of consolidated drained (CD) testing specimens 

 

Lime 
Curing 

time 3'σ  

 

Water 

content 

cw  

 
Post-curing 

void ratio 

0e  

 
Saturation 

void ratio 

se  

 

Consolidatio

n void ratio 

ce  

 

Dilatancy 

angle

maxψ  
Specimen ID 

(%)  ( )Days  ( )kPa  ( )%  - 
 
- 
 

- ( )Deg  

( )1001 00 −CD  100 0.936 1.194 1.106 N/A* 

( )2002 00 −CD  200 0.937 1.199 1.014 N/A * 

( )3003 00 −CD  

0% None 

300 

 

optw  

0.938 1.200 0.953 N/A * 

( )1001 74 −CD  100 0.949 1.153 1.140 7.66 

( )2002 74 −CD  200 0.948 1.176 1.124 4.2 

( )3003 74 −CD  

4% 7 

300 

 

optw  

 
0.944 1.190 1.111 2.28 

( )1001 76 −CD  100 0.937 1.142 1.141 64.84 

( )1502 76 −CD  150 0.938 1.140 1.138 67.01 

( )2003 76 −CD  200 0.941 1.141 1.137 71.04 

( )3004 76 −CD  

7 

300 

dryw  

0.940 1.139 1.133 70.77 

( )1005 286 −CD  100 0.951 1.123 1.122 59.39 

( )2006 286 −CD  200 0.950 1.107 1.103 57.27 

( )3007 286 −CD  300 

dryw  

0.952 1.093 1.086 52.09 

( )1008 286 −CD  100 0.943 1.049 1.047 67.46 

( )2009 286 −CD  200 0.942 1.041 1.036 51.61 

( )30010 286 −CD  

6% 

28 

300 

wetw  

0.940 1.038 1.028 33.20 

(* )  No dilation occurred 
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Figure 5.23: Stress-dilatancy behaviour of lime treated and untreated London Clay 
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Figure 5.24: Lime treated and untreated London Clay dilation angle 
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For untreated London Clay, a contracting behaviour was observed for the three tested 

specimens at different effective confining pressures (100, 200 & 300 kPa). The initial 

specific volume position is on the wet side of critical state. For larger deformations, the 

untreated London Clay volume tends to stabilise to a constant value at a constant deviator 

stress. No dilation was observed for these specimens )0( max ≈ψ . For 4% lime treated 

London Clay, a higher contraction phase is observed. However, it is followed by a 

dilatancy phase after the peak state, which is related to destructuration. 6% lime treated 

London Clay specimens exhibit a limited contraction as would be expected and shown in 

Figure 5.23 c, d & e, until reaching the ultimate compressive state where they can not 

contract any further. Then failure occurs, followed by a more pronounced dilating 

behaviour (compared to 4% lime-treated specimens) after the peak, gradually decreasing to 

approach the critical state stress ratio equal to M . An inflexion is detected in the variation 

of the volumetric strain corresponding to an axial strain approximately between 5 and 10%. 

This behaviour occurs after the sample has ruptured due to the development of the shear 

band before the peak at a low average deviator stress, indicating a decrease in the dilating 

rate from this state onwards.  

 

Overall, for all lime treated specimens, a distinct transfer from contractive to dilative 

response under drained conditions is observed between 2 to 3% axial strain. Volumetric 

response was detected to be slightly more contractive for 4% lime treated specimens (7 

days curing) compared to the untreated London Clay response. Nevertheless, the lime 

amount increase from 4 to 6% caused an increase in the dilatancy angles, ranging between 

65° and 70° which is due to cementation effects (Figure 5.24c). Such dilative behaviour if 

ignored can lead to significant error predicting the ultimate bearing stresses, deformation 

or stability of geotechnical structures.  

  

• Effect of lime addition on London Clay stress-dilatancy behaviour 

 

Lime treated London Clay dilative behaviour is considerably influenced by the amount of 

added lime. Figure 5.25 in which stress ratio and dilatancy behaviour obtained at constant 

effective confining pressure (200 kPa) are plotted. A single trend has been identified in a 

similar way as Coop & Wilson (2003) were able to observe for Castlegate sand. 
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Figure 5.25: Effect of lime addition and curing time on London Clay dilatancy  

 

The dilation behaviour seems to be more pronounced at higher lime amount (6%) where 

cementation bonds are stronger, which is in accordance with laboratory data of Schnaid et 

al. (2001) reported by Yu et al. (2007) on artificially cemented soil. In addition, Fig. 5.25 

shows that lime addition increased the maximum stress ratio and dilatancy extent (for 

higher lime amount) occurring at a lower axial strain. However, the contraction (strain 

hardening) was observed to be more pronounced in 4% lime treated London Clay 

specimens, but has diminished with increasing lime amount from 4 to 6%. Note that the 

maximum dilation is not captured at the maximum stress ratio ( )max'/ pq , it occurs beyond 

the peak stress ratio. Asghari et al. (2003) indicated that in cemented samples the 

maximum rate of dilation take place after the maximum stress ratio which is in line with 

this study. Moreover, Leroueil and Vaughan (1990) showed that when dilation is due to 

densely packed materials, the peak and maximum dilation points coincide, but when the 

peak strength is controlled by cementation rather than density, the maximum rate of 

dilation occurs after the bonding has yielded, confirming the presence of cementation 

bonds in the lime treated London Clay specimens used in this study. This suggests that 
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cementation bond control entirely the peak shear strength of the treated samples and 

dilation is playing a secondary role. The most extensive dilation was observed for 6% lime 

treated London Clay sample cured for 7 days (Fig. 5.25), and 4% lime treated sample cured 

for 7 days, was found to dilate less, clearly suggesting that the higher the lime amount, the 

more pronounced the dilation appears to be. 

 

• Effect of curing time on the dilatancy of lime treated London Clay 

 

In order to identify the stress-dilatancy response and the behaviour mechanism of lime 

treated London Clay, an investigation was carried out using ( )'/ pq  - ( )sv δεδε /  graphs. 

Figures 5.23 c & d show the stress dilatancy response of 6% lime treated London Clay 

specimens, cured for 7 and 28 days respectively. These initially displayed a compressive 

response (more pronounced for 28 days cured specimens), followed by dilative behaviour 

until reaching a maximum dilation angle. The highest maximum dilation angle was 

observed subsequently for the 6% treated specimens cured for 7 days (Fig. 5.25), this is 

due to the higher strength / brittleness exhibited by the material as indicated in section 

5.4.1. The rate of dilation reduced to approach zero value at the critical state ( 87.0=M ). 

The sudden change in volume due to dilation suggests that bond breakage must have 

occurred. Similar observations were made by Lade & Overton (1989). The authors have 

indicated that highly interlocked particles, showed greater rates of dilation during shearing 

at low confining stresses.  

 

• Effect of effective confining pressure on lime treated London Clay dilatancy 

 

Based on Figures 5.23 b, c, d & e, the following observations can be made on the effect of 

effective confining pressure on lime treated London Clay soil. As would be expected, the 

stress-dilatancy curve indicates that the maximum dilatancy is obtained at a lower effective 

confining stress and reduces gradually with confining pressure increase. Note that dilation 

may be completely suppressed at high pressures (not possible to obtain with the available 

equipment) as reported by Asghari et al. (2003). The authors indicated that artificially 

cemented soils show a post-rupture dilative response in shear (brittle failure) at low 

confining stresses, but also showed the transition from dilative to contractive behaviour 

(ductile failure) at higher confining stresses.  
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• Effect of the initial water content on lime treated London Clay dilatancy 

 

An initial water content increase from 27 to 32% produced a larger range of dilatancy 

angles varying between 33º and 67º (Fig. 5.24 d & e). The cohesive shear strength for all 

6% lime treated specimens vanishes in the region of 2.5% strain; at the same time the 

frictional strength becomes dominant. 

 

5.5. Consolidated Undrained (CU) Triaxial test  

 

In addition to CD triaxial tests, two isotropically consolidated undrained (CU) Triaxial 

compression tests were performed on 6% lime treated London Clay specimens, cured for 

28 days. The effective confining pressures applied to these samples were 158 and 250 kPa. 

Table 5.8 summarises the maximum excess pore water pressure (PWP) changes obtained 

during the CU tests. 

 

The deviator stress - axial strain ( )aq ε− , and excess pore water pressure - axial strain 

( )au ε−  relationship of 6% lime treated London Clay are shown in Figures 5.27a & 5.27b. 

No major difference was observed in the shearing behaviour of the two specimens. 

However, as was expected, the peak deviator stress was found to increase with the 

effective confining stress increase (Figure 5.27a). The increase in effective stress caused a 

higher excess PWP as indicated in Figure 5.27b. It can also be observed that, at a very low 

strain ( )%2≤ , excess PWP is shown to be of value equal or higher than effective stress. As 

a result, the effective stress dropped to zero, or lower in the case of ( )1581 286 −CU  

specimen. This indicates rupture of the specimen by vertical splitting cracks, which is a 

sign of a tensile failure.  

 

Undrained test results on 6% lime treated samples showed that the excess pore water 

pressure was positive at the beginning of shear (tendency for sample contraction) and 

changed to negative as strain increased (tendency for sample dilation). The initial state in 

this case is said to be on the dry side of critical. The pore pressure balances the increase in 

total mean stress imposed in this constant cell pressure 3/qu δδ =  as shown in Figure 

5.28b. It was seen that substantial post-peak strength reduction took place as shearing 

progressed (Haeri et al., 2005). No strain softening behaviour was observed, due to 
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breakage of cementation bonds by tensile failure, implying that 6% lime addition to 

London Clay after 28 days curing prevented the new material reaching the plastic state 

during shearing compression under undrained conditions. This explains the linear pre-peak 

behaviour of the specimens observed in the stress space ( )'pq −  (Figure 5.27a). Similar 

results were reported by Oh et al. (2008) and Muhunthan & Sariosseiri (2008).  

 

Figure 5.28a shows the PWP changes with the stress ratio ( )'/ pq  for 6% lime treated 

London Clay samples cured for 28 days. Undrained tests results show higher stress ratios 

achieved at the maximum gradient 







= 3

'p

q
 compared to the drained tests. Also it can be 

seen that the maximum PWP change ( )max/ au δεδε  occurs after the maximum stress ratio, 

which is in line with the observations reported by Malandraki (1994) and later by Asghari 

et al. (2003) for other cemented materials. 

 

Table 5.8: Isotropically consolidated undrained (CU) triaxial test data 

 

Lime 
Curing 

time 

Initial 

3'σ  

 

Water 

content 

cw  

 
Post-curing 

void ratio 

0e  

 
Saturation 

void ratio 

se  

 

Consolidatio

n void ratio 

ce  

 

max









a

u

δε

δ

 Specimen ID 

(%)  ( )Days  ( )kPa  ( )%  - 
 
- 
 

- - 

( )1581 286 −CU  158 0.949 1.114 1.111 332.03 

( )2502 286 −CU  

6% 28 

250 

 

dryw  
0.948 1.099 1.094 954.7 

 

 

In the previous section, it was shown that lime treated London Clay peak stress is generally 

reached within a short strain range, followed by continuous post-peak deviator stress. At 

the end of the test, a fairly constant deviator stress was obtained at approximately 20% 

strains. In addition, the av εε −  graphs (see Fig. 5.8 & 5.9) showed no further volume 

change within the same range of strains. This post-rupture state will therefore be referred 

to as critical state.  
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Figure 5.27: Consolidated undrained (CU) triaxial compression tests on 6% lime treated London Clay: (a) Stress-strain, (b) Excess PWP-strain
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Figure 5.28: Pore water pressure change on 6% lime treated London Clay: (a) Stress ratio-PWP, (b) PWP-strain 
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Chapter 6 

 

6. Interpretation of the results using CSSM framework 

 

This chapter analyses the triaxial testing results obtained in this study using a Critical State 

Soil Mechanics Framework.  

 

According to this theory, at failure there exists a unique relationships among specific 

volume csv , mean effective stress 'csp  and deviator stress csq , which can be expressed by 

two following equations as: 

 
'cscs Mpq =                                                                                     (6.1) 

 
which represents the projection of the critical state line onto 'pq −  space, and  

 
'ln cscscs pv λ−Γ=                                                                          (6.2)      

 
which is the projection of the critical state line on 'ln pv −  compression plane                                                 

  

in the above equation csq  is the deviator stress at critical state and csp' is the mean effective 

stress at critical state and M is the gradient of the critical state line in 'pq −  stress space.  

 

The critical state on the specific volume - mean effective stress ( )', pv plane is thus defined 

by two material parameters: csλ the slope of the end of test line, and Γ , the specific volume 

intercept at unit pressure ( )kPap 1'= . The compression lines under constant stress ratios 

are parallel to each other (according to the theory), as shown in Figure 6.1. 

 
In triaxial tests, the stress ratio usually approaches a constant value at the end of test state. 

In this study, it has proved difficult, for this type of material, to identify at a continuous 

shearing a constant stress ratio along with a constant volume change. This is believed to be 

due to the low effective stresses applied in these tests, and also to the non uniform post-

peak deformation observed in lime treated London Clay samples. It is arguable if the post 
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rupture end of test state is a critical state (Burland, 1990). However, this is the mention 

given here to the end of test stresses and strains and that this state will be discussed here 

using the critical state of the untreated soil as a reference for comparisons. 

 
 

 

Figure 6.1: Representative critical state line & normal compression line (Mitchell & Soga, 2005) 

 

Critical state stress ratio ( )
cs

pq '/  values derived from the end points of the test data are 

presented in table 6.1. A range of critical state stress ratio variation is shown, along with a 

variation of critical state friction angle cs'φ with a mean effective stress increase.  

 

6.1. Critical state line of lime treated London Clay in stress space (q-p’) 

 

The end points were plotted in ( )'pq −  and ( ))'ln( pv −  space graphs (Figures 6.2, 6.3 & 

6.4). A best fit line believed to be close to critical state conditions was drawn through the 

end points in the stress plane ( )'pq −  (Figure 6.2 a, b & c). Although the theoretical 

treatment of non-uniform deformation development in specimens is complex (Vardoulakis, 

1978 & Vermeer, 1982), the end points used in this study were found to be consistent in 

providing the closest state to critical state conditions. 
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Table 6.1: Critical state parameters of lime treated & untreated Triaxial tests 

 

 

3'σ  

Critical state 

void ratio 

cse  

'csP  
csq  ( )

cs
pq '/  cs'φ  

Specimen ID 

( )kPa  - ( )kPa  ( )kPa  - ( )Deg  

( )1001 00 −CD  100 0.988 144.61 133.83 0.93 23.63 

( )2002 00 −CD  200 0.899 283.73 251.20 0.89 22.69 

( )3003 00 −CD  300 0.840 420.45 361.34 0.86 22.08 

( )1001 74 −CD  100 1.141 144.78 134.35 0.93 23.69 

( )2002 74 −CD  200 1.089 285.13 255.40 0.90 22.93 

( )3003 74 −CD  300 1.051 421.91 365.74 0.87 22.25 

( )1001 76 −CD  100 1.293 143.79 131.37 0.91 23.36 

( )1502 76 −CD  150 1.262 208.93 176.80 0.85 21.77 

( )2003 76 −CD  200 1.239 283.97 251.90 0.89 22.73 

( )3004 76 −CD  300 1.221 421.21 363.64 0.86 22.17 

( )1005 286 −CD  100 1.157 152.57 157.70 1.03 26.16 

( )2006 286 −CD  200 1.121 297.02 291.06 0.98 24.91 

( )3007 286 −CD  300 1.095 435.10 405.29 0.93 23.78 

( )1008 286 −CD  100 1.146 155.90 167.70 1.08 27.13 

( )2009 286 −CD  200 1.093 288.67 266.00 0.92 23.54 

( )30010 286 −CD  300 1.080 437.29 411.86 0.94 24.02 

( )1581 286 −CU  158 - 557.77 410.22 0.91 23.38 

( )2502 286 −CU  250 - 518.93 480.40 0.93 23.64 
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Figure 6.2: CS lines in stress plane 'pq −  for lime treated London Clay 
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Figure 6.3: Overall CSL in stress plane 'pq −  for all lime treated London Clay  
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Based on the observed results in this section, CS parameters were obtained for untreated 

soil and an estimate of the critical state parameters for lime treated London Clay was made. 

The gradient M  of the critical state line (CSL) was identified from the slope of the line 

drawn in ( )'pq −  space by joining the end points for each set of mixture containing an 

average of three tested specimens, and assuming a zero intercept with the Y axis for the 

untreated soil. 

 

Figure 6.2a shows the critical state lines for lime treated London Clay specimens cured for 

7 days. These are found to be close to that of untreated London Clay specimens with very 

consistent parameter M values, namely ( ) 87.0%0 =M  for untreated London Clay, 

( ) 88.0%4 =M  for 4% lime treated London Clay and ( ) 87.0%6 =M  for 6% lime treated 

London Clay respectively. This indicates that lime addition (up to 6%) to London Clay did 

not have an effect on the CSL gradient M at early cementing times. However, when curing 

time increases from 7 to 28 days for similarly prepared 6% lime treated London Clay 

specimens, regardless of the initial water content and type of test (CD or CU), the CSL 

shifts slightly higher than that of the untreated London Clay with a small intercept of 26-28 

kPa  but remains parallel to its CSL at similar gradient M  of 0.87 (Figure 6.2 b & c). 

Similar findings were reported by Kasama et al. (2000) when comparing cemented to 

uncemented clay.  

 

The small intercept observed in 6% lime treated London Clay is probably due to changes 

caused by the alteration of the frictional properties of the soil. Moreover, the critical state 

data analysed in stress plane 'pq −  (Figure 6.3) based on the points representing the 

critical state condition of all performed CD and CU triaxial tests, show that if all lime 

treated specimens end points are plotted together, the overall critical state line of lime 

treated London Clay appears to be almost parallel to untreated London Clay CSL at the 

same M value equal to 0.89, but lying above the untreated CSL with a cohesion intercept 

equal to kPa8 . The small differences can be an artefact of the curve fitting and presumably 

the intercept is small enough to be ignored. 
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6.2. Critical state line of lime treated London Clay in compression plane (v-p’) 

 

Fig. 6.4a shows the untreated London Clay behaviour in the compression plane, which can 

be modelled by using the equation 'ln pvv λλ −= , where λv is an intercept in ( )'pv −  

space varying between Γ  and N . As expected, it can be seen that the CSL is 

approximately parallel to the isotropic compression line for 0% lime. In addition, the 

projection of lime treated London Clay end points onto the compression plane ( )'pv −  are 

drawn in Figures 6.4b, c & e, along with the CSL for the untreated London Clay. It can be 

observed that lime addition has an effect on the CSL which is shifted higher than that of 

the untreated London Clay CSL, but tilting to the left. The value of the slope parameter csλ  

is also reduced from 0.140 for untreated to 0.083 for 4% lime treated soil when cured for 7 

days. (Note that the end of test line refers to the critical state line in the compression 

plane). Moreover, Figure 6.4b indicates that a lime amount increase from 4 to 6% at 

similar curing period of 7 days shifts the CSL even higher and a less steeper slope is 

observed at csλ value equal to 0.067. Thus, the CSL parameter csλ  decreases with lime 

amount, implying the following: ( )%0csλ  > ( )Dcs 7%4 −λ  > ( )Dcs 7%6 −λ . A similar behaviour of 

cemented clay was reported by Kasama et al. (2000) in regards to the CSL shifting higher 

with cementation increase at an increasing csλ . However, in this study the slope parameter 

csλ  in the compression plane ( )'pv −  was observed to be decreasing rather than increasing. 

 

The effect of curing time increase from 7 to 28 days for the 6% lime treated London Clay 

soil was also investigated. End points plotted in ( )'pv −  space (see Fig. 6.4c) indicate that 

the CSL obtained from 6% lime treated specimens, cured for 7 days, is located higher than 

the CSL of specimens cured for 28 days, without a major change in the slope parameter 

csλ  value. However, the critical state value of the specific volume Γ at 1'=p kPa  is found 

to differ considerably (See Fig. 6.5 and Table 6.2). This is mainly attributed to differences 

in the initial volume of each set of mixture at the start of the test. As explained earlier this 

was caused by post-curing volume expansion as well as the volume increase during the 

saturation stage. On the other hand, the initial water content increase from 27 to 32% does 

not appear to have an effect on the CSL of the 6% lime treated London Clay. Indeed Figure 

6.4d or 6.5 shows minor changes in the CSL position, with a slight difference in the slope 

parameter csλ of the two different soils (prepared at dry and wet of optimum respectively).  
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Figure 6.4: Critical state lines for lime treated London Clay mixtures in compression plane ( ))'ln( pv −  
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Figure 6.5: End of test lines for all lime treated London Clay in compression plane ( ))'ln( pv −  
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The estimated critical state parameters csλ ,  Γ  and M  derived from the best fit lines of the 

results, along with the critical friction angle cs'φ  are listed in Table 6.2. It is recalled for a 

compression test that the angle of internal friction cs'φ  can be connected to the gradient of 

the critical state line M  through the following equation, 
M

M
cs

+
=

6
3

'sinφ  from where the 

Critical friction angles cs'φ  are derived. 

 

It should be noted that parameters such as ( )N  (specific volume determined under isotropic 

consolidation) and ( )Γ  (specific volume determined under shearing condition) have 

significant practical implications in the critical state numerical modelling when effective 

stress analysis is required. 

 

Table 6.2: Measured critical state parameters for lime treated and untreated London Clay 

 

Lime 
 

Curing time 
 

Water content 

cw  

 

csλ  

 

Γ  Intercept 

 

M  
 

cs'φ  

Type of 
test ( )%  ( )Days  ( )%  - - ( )kPa  - ( )Deg  

CD 0 N/A optw  0.140 2.685 0 0.87 22.33 

CD 4 7 optw  0.083 2.553 0 0.88 22.56 

CD 6 7 dryw  0.067 2.624 0 0.87 22.33 

CD 6 
 

28 
 

dryw  0.059 2.452 

CU 6 28 dryw  - - 

28.2 0.87 22.33 

CD 6 28 wetw  0.066 2.473 26.1 0.87 22.33 
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6.3. Stress paths for CD & CU triaxial tests  

 

6.3.1.  Stress paths of lime treated London Clay under drained conditions 

 

Stress paths of the consolidated drained triaxial compression tests are plotted in ( )qp :'  

space as shown in Figures 6.6 a & b. The effective stress paths derived from the CD 

triaxial tests are straight lines, with a gradient of 3'/ =pq δδ . Regardless of lime content 

and the curing period, the effective stress path (ESP) of lime treated London Clay rises 

with clear increase of deviator stress and mean effective stress to the peak; it then falls 

down along the same stress path towards an ultimate state, possibly the critical state line. 

Conversely the untreated London Clay specimens rise steadily until reaching a more stable 

state where failure occurs at wet side of critical. Note that although the ESP for lime 

treated specimens appears to intersect the CSL in the stress plane ( )qp :'  before yielding, 

but in fact it is missing the CSL in ( )qvp ,,'  space, as it is better illustrated in the 

compression plane ( )vp :'  (see Fig. 6.8 & 6.9). After failure (post-peak), the state of the 

treated specimen moves back down a similar ESP to a point “C” on / or close to the CSL 

(Fig. 6.6 b & 6.7a, b & c). 

 

As shown earlier (see Chapter 5, Fig. 5.8 & 5.9), untreated London Clay specimens failed 

by bulging, while treated London Clay specimens have ruptured due to the formation of 

shear surfaces (slip plane). It is interesting to note that 4% lime treated specimens cured for 

7 days, which failed dry of critical, were observed to have a smoother transition from 

elastic to plastic behaviour, accompanied by a small post-peak drop as it can be seen in 

stress-strain curves, while specimens treated with 6% lime and cured for 7 days (which 

also failed dry of critical) showed the highest drop due to increased brittleness (see Chapter 

5, section 5.4.3). This brittle failure was followed by a considerable volumetric expansion 

of the material. 

 

The initial state of the material at “A”, peak state at “B” and critical state / end points at 

“C” of each soil mixture are shown in Figures 6.6 & 6.7. The difficulties encountered in 

identifying clearly the critical state were discussed at the start of this section. The end 

points used in this work do not all lie on the drawn CSL. It was observed that the states of 

the material were in fact still moving towards a critical state at the end of each tested lime 
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treated London Clay specimen. Towards the end of the tests, some of the lime treated 

specimens displayed an increase in the mean effective stress 'p  indicating that they could 

fall above the critical state line. Other specimens showed a continuous decrease in mean 

effective stress 'p , suggesting that they could fall below the critical state line. A similar 

behaviour was observed by Smith et al., (1992) during a study on Bothkennar soil. The 

authors have identified that no test has truly approached a critical state conditions and only 

relied on the end points of different tests to plot the CS lines. However, reports in the 

literature indicate that high confining pressure test results in excess of 20% axial strain 

show that a constant stress ratio state can be obtained. On the other hand, Atkinson, (2000) 

and Haeri et al., (2005), indicated that the chosen critical state line might not represent the 

true critical sate because cemented samples showed a shear zone, therefore, it is difficult to 

say whether the stress conditions are representative of the sample as a whole. 
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Figure 6.6: Stress paths for London Clay & 4% lime treated London Clay under drained conditions in stress plane ( )'pq −  
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Figure 6.7: Stress paths for 6% lime treated London Clay under drained conditions in stress plane ( )'pq −   
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In order to observe the stress path in the compression plane of each tested mixture set, 

results of lime treated and untreated London Clay are plotted in ( ))'ln( pv −  space (see 

Figures 6.8 & 6.9). The state of the untreated specimens initial positions were identified to 

be above the critical state line (wet side of CSL) at point “A”, moving downward seeking 

the CSL during the shearing process of CD triaxial tests (Figure 6.8a). As already indicated 

in Chapter 5 / section (5.4.3), untreated London Clay specimens contract during shearing, 

until failure occurs on the wet side of critical at point “C”. These specimens showed almost 

zero rate of volume change at the end of the test, suggesting that they are either close to, or 

have reached the critical state.  

 

Similarly, 4% lime treated London Clay specimens initially showed a reduction in specific 

volume due to contraction. The initial state of these specimens is indicated by the point 

“A”, moving downward during shearing compression stage (contraction). Sometime after 

yielding, rupture occurs at “B”, where the direction route changes from contractive to 

dilative, accompanied by a specific volume increase with a decreasing mean effective 

stress. The state of the material in the compression plane ( ))'ln( pv −  moves upward, 

attempting to reach the critical state at the end point “C” (Figure 6.8b), whereas 6% lime 

treated London Clay specimens initially positioned at point “A”, move along the shearing 

compression path (contraction) towards the point “B” where rupture occurs. At this stage, a 

sudden specific volume increase is observed, resulting in an immediate direction change of 

the material state (dilation), following an upward path in search for the CS, and settling at 

the ultimate point “C” at the end of the test (Figure 6.9 a, b &c). Such specimens are 

described as being on the dry side of the critical.  
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Figure 6.8: Initial side position and stress paths for London Clay & 4% lime treated London Clay in ( )'pv −  space 
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Figure 6.9:  Initial side position and stress paths for 6% lime treated London Clay in ( )'pv −  space
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6.3.2. Stress paths of lime treated London Clay under undrained conditions 

The effective stress paths (ESP) results of two lime treated London Clay samples, sheared 

under undrained conditions at different effective stresses equal to 158 & 250 kPa are 

presented in Figure 6.10. The state of the material (for both tested specimens) is initially at 

point “A”, rapidly rising up at a decreasing mean effective stress, crossing the CSL until 

reaching minimum mean effective stress value ( )min'p . At this stage each specimen’s stress 

path shows a tendency to move from the left towards the right of its corresponding total 

stress as there is a reduction in the rate of increasing pore water pressure. For this type of 

samples, the stress path is well rounded, the state of each lime treated London Clay 

specimen is seen to be approaching its corresponding peak state moving upwards on the 

tension cut off line at a gradient equal to 
3
1

 until rupture occurs at “B” by tensile failure 

due to pore pressure increase. This is followed by a sudden drop in deviator stress with a 

continuous mean effective stress increase, reaching the maximum ( )max'p  to curve sharply 

down seeking the critical state, and takes a reversing route towards the left with a 

decreasing mean effective stress laying on the CSL, ending at point “C”. Similar stress 

path shape was also observed by Asghari et al. (2003) for cemented gravely sand; Haeri et 

al. (2005) for artificially cemented sandy gravel; Gasparre (2005) for London Clay; Xiao & 

Lee (2008) from isotropically consolidated undrained tests performed on cement treated 

marine clay and Le Runigo et al. (2011) for lime treated silty soil.  

 

The “zero tension” or “limiting tensile strain” criteria are the most widely used among the 

alternative theories to quantify tensile failure (Schofield, 1980). The following simple 

checks can be performed to identify the cause and type of failure of the CU specimens. 

 

3
'
=

p

q
                                                                                           (6.3) 

 
Where q , is the deviator stress and 'p , is the mean effective stress. In CSSM concept, the 

following apply: 

 

31 σσ −=q                                                                                     (6.4) 
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up −
+

=
3

2
' 31 σσ

                                                                          (6.5) 

 
Substituting (6.4) & (6.5) in (6.3), will result in cell pressure equating the pore water 

pressure u=3σ , consequently resulting in the effective stress reaching zero 

0' 33 =−= uσσ . For the triaxial specimen, the zero tension criteria with 0'3 =σ  results in 

3
'

3
' 11 σσ

=
−

=
u

p  or 3
'
=

p

q
 and leads to vertical split of the specimen (tensile failure) 

which is the case for these CU tests performed in this study. However, this tensile failure 

does not occur immediately after the effective stress 3'σ  reaches zero. The specimens were 

shown to travel up the part of the stress path (see Fig. 6.10) before complete failure occurs. 

This indicates that the 6% lime treated specimens have not only developed high 

compressive strength (as indicated in Chapter 5 / section 5.2 & 5.4) but also showed a 

further tensile resistance due to the development of the cementitious products. 

 

In order to reach compressive failure for such type of material, the effective stress will 

have to always be positive 3'σ > 0 , implying the following:  

 
u−= 33 ' σσ > 0          →  3σ > u  

 
In this case it is recommended to perform the consolidated undrained tests at higher 

confining pressures, so that the pore pressure increase would not reach the applied cell 

pressure and the effective stress will always remain positive.  

Note that the difference between the maximum and the minimum mean effective 

( ( ) ( )minmax '' pp − ) is found to be similar for both CU tests, approximately valued to kPa500  

(see Fig. 6.10). This indicates that the state of the material oscillates in a shearing zone 

within a boundary of a minimum and a maximum mean effective stress in a domain which 

remains constant regardless of the initial effective stress.  

 

Overall, the 6%  lime treated samples tested under undrained conditions show rigid 

behaviour, the strength observed is related to the cementation bonds formed during curing 

time, which controls the shearing stage until the bonds are broken. The role of fabric is 

limited to a minimum in this case.  
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Figure 6.10: CU stress paths for 6% lime treated London Clay in stress plane ( )'pq −  (28 days curing) 
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Similarly, test results plotted in the compression plane ( ))'ln( pv −  (Figure 6.11) indicates 

that the state of the material moves initially, at a constant volume, leftward from the 

starting point “A”, at a decreasing mean effective stress. This stress path turns back once 

the minimum effective stress ( )min'p  is reached, moving towards the right, passing the CSL 

for 6% lime treated London Clay, to reach the peak state at “B” where rupture occurs. The 

path continues further to a maximum achievable effective stress ( )max'p , reversing again to 

follow a leftwards direction, finally ending at “C” once the test comes to an end. In 

addition, it was observed that the end point “C” for ( )2501 286 −CU  specimen positioned on 

the “End of test line” drawn in ( ))'ln( pv −  for similar specimens tested under CD 

conditions. Conversely, the end point “C” for ( )1581 286 −CU  specimen was recorded not to 

reach the “End of test line” along the stress path (see Fig. 6.11). This is believed to be due 

to the test being stopped earlier than its designated target. It is noteworthy to indicate that 

the pore pressure was observed to be increasing at the end of the test for both specimens, 

implying a fall in mean effective stress.  

 

In comparison to CU triaxial test results from similar material, CD stress path of lime 

treated London Clay rises up, passes the CSL to reach the material’s peak state then 

travel’s back once rupture occurs through the same route seeking the CSL which is typical 

of the behaviour of heavily over-consolidated and bonded materials. Conversely results 

from CU triaxial test show a stress path passing the CSL of untreated London Clay, 

moving towards its peak / failure state, to drop after rupture seeking the CSL. The end 

points of both types of testing lay on the same CSL, but a higher peak deviator stress is 

observed in samples tested under undrained conditions compared to drained tests for 

similarly prepared samples (Figure 6.12). This is due to volumetric straining; when 

volumetric strains are prevented (in undrained tests) a higher strength can be sustained 

before the bonds break down, until failure occurs either by tensile failure (such as in this 

case) or by strain softening if high enough confining pressure is applied (Malandraki and 

Toll, 2001). Once the treated specimen develops strain softening, the sample experiences 

destructuration. The OCR of these specimens is very high; these act like a material being 

on the dry side of the critical state. This is in line with other researchers’ results on 

artificially cemented soils and bonded materials (e.g. Kamruzaman, 2002; Asghari et al., 

2003 and Haeri et al., 2005). 
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Figure 6.11: CU stress paths for 6% lime treated London Clay in compression plane ( )'pv −  (28 days curing)



Chapter 6 / Interpretation of the results using CSSM framework 

 

 213 

 

0

400

800

1200

1600

2000

0 200 400 600 800 1000

Mean effective stress, p' [kPa]

D
e

v
ia

to
r 

s
tr

e
s
s
, 

q
 [

k
P

a
]

    CD / Peak state

    CD / End points

    CU / Peak state

    CU / End points

CD & CU / 6% Lime - 28D - Wdry

CSL for Untreated LC

M = 0.87

CD / Peak line

Tension cut off line q = 3p'

300 kPa

200 kPa 

100 kPa 

250 kPa 

158 kPa 

 

Figure 6.12: CD & CU stress paths in ( )'pq −  stress plane 
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6.3.3. Stress paths and the stable state boundary surface (SSBS) 

 

One of the fundamental concepts in Critical State Soil Mechanics theory (CSSM) is that a 

surface exists in ( )qvp ,,'  space which defines the states of the yielding (Schofield and 

Wroth, 1968), this is named the Stable State Boundary Surface (SSBS) (Fig. 6.13). The 

state of soil sample under trixial testing is portrayed by a point in ( )qvp ,,'  space. The 

elastic response of the tested specimen is identified by a point lying bellow the surface, 

whereas the plastic yielding commences once the point reaches the surface and remains on 

it until failure occurs. The behaviour of bonded soils has previously been discussed by 

several researchers, notable contribution include Leroueil & Vaughan (1990); Burland 

(1990); Gens & Nova (1993); Coop & Atkinson (1993); Liu & Carter (1999); Schnaid et 

al. (2001); Yu et al. (2007) and Muhunthan & Sariosseiri (2008) among others. They 

described the effect of bonding as permitting the soil to exist in states outside the SSBS 

ascertained for the unbonded soil.   

  

 

 

Figure 6.13: The Stable State Boundary Surface (Britto and Gunn, 1987) 
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In order to display information about the three quantities ( )qvp ,,'  defining the state of the 

soil, it is a standard practice to use a two dimensional presentation of the SSBS by 

normalising 'p  and q  with respect to an equivalent consolidation pressure ep' . This is the 

most useful plot to examine the effect of bonding as indicated in Fig. 6.14 which shows the 

normalised form of the SSBS for the modified theory. In this plot, the critical state line has 

become a point on the curve (yield locus) representing the SSBS.  

 

 

Figure 6.14: Normalised form of the Stable State Boundary Surface according to the 
modified theory (Muir Wood, 1990) 

 

ep'  is defined as the mean effective stress on the isotropic compression line corresponding 

to specific volume at any stage of the triaxial test (e.g. Atkinson & Bransby, 1978; and 

Muir Wood, 1990). The isotropic normal compression line is 

 
'ln pNv λ−=                                                                            (6.6) 

 
Where N is the specific volume intercept at unit pressure ( )kPap 1'= , and λ  is the average 

experimental value found from both the isotropic compression line and critical state line in 

the volumetric plane. 
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Hence, for a particular specific volume v  during a triaxial test, ep'  can be obtained by 

using the following expression (Muir Wood, 1990) 

 








 −
=

λ

vN
p e exp'                                                                        (6.7) 

 
The form of the SSBS according to the modified yielding theory introduced by Roscoe and 

Burland (1968) is presented by the following yield locus equation: 

 

22

2

0'
'

η+
=

M

M

p

p
                                                                          (6.8)  

 

Where 
'p

q
=η  

 

At any mean effective stress 'p  inside or on the current yield locus of size 0'p , the 

equivalent pressure ep'  can be related to 'p  by the following equation (Muir Wood, 1990) 

 






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


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
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p

p

p

e

                                                                           (6.9) 

 
Hence, substituting (6.8) in (6.9) 
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
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                                                                 (6.10) 

 

The 
ep

q

'
 can be determined by multiplying 

ep

p

'
'

 by  η  , resulting into the equation (6.11) 
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ee

                                                     (6.11) 

 
At critical state, where M=η , both equations (6.10) & (6.11) will be simplified to: 
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A boundary surface for untreated London Clay can be drawn in a normalised space using 

the equations (6.10) and (6.11). For stress states on the normalised space, equation (6.12) 

defines a point on the yield locus (identified as critical state point on the plot / see Fig. 

6.14a), corresponding to the critical state at coordinates

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whereas the point N 







== 0

'
;1

'

'

ee p

q

p

p
 correspond to isotropic normal compression line.  

Alternatively, plotting the surface in terms of normalised volume λv and stress ratio η  can 

be used to display information about ( )qvp ,,'  values defining the state of the soil. At any 

values of stress ratio η  characterising successive similar points on successive yield loci 

generates a line, which is parallel to the compression line, and has an equation of similar 

form as (6.6) 

 
'ln pvv λλ −=                                                                           (6.13) 

 
A yield locus is associated with an unloading reloading line in the compression plane vp ,'  

which has a general equation 

 
'ln pvv k κ−=                                                                           (6.14) 

 
Where κ , is the slope of unloading reloading lines, and can be estimated by finding the 

slope of the initial elastic compression line. The expression for the specific volume at a 

point on unloading reloading line, corresponding to a yield locus with size 0'p  is 

represented by the following expression (Muir Wood, 1990) 

 

'

'
ln'ln 0

0
p

p
pNv κλ +−=                                                           (6.15) 

 

Combining (6.13) and (6.15), along with the equation of the yield locus (6.8) results in the 

following expression  
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For the modified version of the Cam Clay model N is related to other defined parameters 

by the following equation 

 
2ln)( κλ −+Γ=N                                                                    (6.17) 

 
Hence,  
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The yield locus for untreated London Clay is presented in Fig. 6.15 showing a typical 

behaviour of a normally consolidated soil, using the general equation (6.8), the Cam Clay 

model (modified version) appears to fit the material’s plastic response to shearing (Fig. 

6.15a). From the initial state “A”, stress paths for untreated London Clay specimens 

initially displays an elastic response with an increasing stress ratio (Fig. 6.15b) and any 

stress state which is on the current yield locus is shown to be close or lie on this curve. Fig. 

6.15a show the soil starts yielding when the state reaches the boundary surface at “B” at 

stress ratio η ˂M , while a continued loading is associated with plastic hardening where 

simultaneous elastic and plastic strains are occurring. At this stage the state boundary 

surface is the yield surface, and the soil state is on the surface following the yield curve 

towards the left. A perfectly plastic critical state is reached at point “C” with  M≈η .  

 

For lime treated London Clay specimens (see Figs. 6.16, 6.17, 6.18 & 6.19), the stress 

paths are shown to evolve outside the original boundary surface, implying that the yield 

locus in 







ee p
p

p
q

'
','  space has enlarged with increasing amount of bonding in the 

material as compared to the original boundary. However, this expansion could not be fully 

drawn due to the experimental difficulties in obtaining the normal consolidation lines and 

the corresponding compression and critical state parameters, particularly for 6% lime 

treatment. The expansion of the original boundary observed in the qp −'  plane is due to the 

effect of cementation bonds.  

 



Chapter 6 / Interpretation of the results using CSSM framework 

 

 219 

Fig. 6.16a, representing 4% lime treated London clay specimens at 7 days curing, shows 

similar stress paths direction as of the untreated specimen’s response which tends to seek 

the failure state position by following a rising path towards the peak from the initial state at 

a decreasing specific volume, but recorded at a much lower rate than for the untreated 

specimens, without a clear indication of the yielding taking place. However, based on 

results obtained from stress-strain behaviour (Fig. 5.9 in section 5.4.2) clearly shows that 

yielding occurs in ( )qp ,'  space at an axial strain varying between 1 and 3% before the 

specimens rupturing, which correspond to η > M . This implies that plastic strains are 

occurring during the progressive de-bonding, and a continued deformation is associated 

with plastic softening (contraction of yield locus) at a decreasing stress ratio 
ep

p
'

' while 

seeking the critical state, this is typical of lightly over-consolidated specimen’s behaviour.  

 

Similarly, the 6% lime treated London Clay specimens’ yielding occurs at η > M  followed 

by a sudden failure after rupture with a volumetric expansion to critical state, where stress 

ratio 
ep

p
'

'  increases.  

 

Moreover, a lime amount increase from 4 to 6% is observed to significantly increase the 

domain (SSBS) where the material can subsist. However, the curing time increase from 7 

to 28 days and the pre-curing water content did not have a major effect on the expanded 

domain. Although that yielding occurs in all 6% lime treated specimens as indicated in 

( )qp ,'  space (see Chapter 5 / Figs. 5.8 & 5.9), but it is not being reflected in the 

normalised space 







ee p
p

p
q

'
',' , implying that lime treated London clay specimens have 

all failed in the elastic region before entering the plastic zone. This response can be 

explained by the presence of a higher cementation bonds developed during the curing time. 

The stress paths for 6% lime treated specimens (7 days cured) start from an initial state by 

following a direction towards the right at gradient 3, clearly showing that the original 

SSBS expanded much more than for specimens treated with 4% lime when cured for a 

similar duration, but can not be identified as yielding is skipped due to specimens rupturing 

before reaching the plastic zone and failing in the dry side of critical. This is typical 

behaviour of heavily over-consolidated soils and bonded materials, which is mainly due to 

the amount of cementation bonds playing an important role during the shearing stage by 
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initially displaying rigid type behaviour until a sudden rupture occurs due to shear band 

localisation.  

 

The boundary expansion appears to be more pronounced for a higher lime amount (6%) as 

shown in Figs. 6.17, 6.18 & 6.19, with various amount of bonding gained (regardless of the 

curing time and the initial compacting conditions). This suggests that the failure surface of 

lime treated London Clay increases with lime amount increase, which is in agreement with 

the findings reported in Chapter 5 / section (5.4.4) related to the failure envelope. 

 

Note that the MCC is the only model applied in this study, and it is only being referred to 

for a comparison purpose to the original SSBS. It is noted that the amount of cementation 

bonds will decrease with loading when bonding is gradually damaged. However, when all 

bonding is completely broken, lime treated London Clay specimens critical state lines, 

each represented by a point on 







ee p
p

p
q

'
','  space have been observed to fail on / or 

closer to a line with a gradient value 87.0=η  as indicated in Fig. 6.20. Conversely, the 

boundary surface at the critical state for the lime treated specimens (assuming that the 

original yield locus isotropically expands and based on the drawn points) is identified to be 

in a higher position as of the untreated material, but also detected to be lower than their 

corresponding peak / failure envelope (the assumed yield locus shrinks after failure), which 

is also an important feature to consider in modelling and design. 

 

Overall, it can be concluded that lime addition to London Clay allows the expansion of its 

existing stable state boundary surface where the untreated material subsist. The principal 

mechanism of bonding has the effect of shifting the state boundary surface, the 

enlargement is observed to be larger for a higher lime amount (6%) due to the material 

being stronger as shown in 







ee p
p

p
q

'
','  space. Whereas, the curing time and 

compaction water content did not show a major effect on the treated material. The distance 

between the state boundary surfaces for treated and untreated soil depends principally on 

the strength and the amount of cementing (Atkinson, 2007). 
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Figure 6.15: Normalised form of the stable state boundary surface for untreated London Clay (according to modified theory) 
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Figure 6.16: 4% lime treated London Clay stress paths compared to the original SSBS (7 days curing) 
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Figure 6.17: 6% lime treated London Clay stress paths compared to the original SSBS (7 days curing) 
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Figure 6.18: 6% lime treated London Clay stress paths compared to the original SSBS (28 days curing / dryw ) 
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Figure 6.19: 6% lime treated London Clay stress paths compared to the original SSBS (28 days curing / wetw ) 
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Figure 6.20: End points of lime treated London Clay in normalised stress space 
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6.4. Comparison of the results to other similar soils  

 

Several studies on London Clay have been performed by other researchers to determine the 

geotechnical and engineering properties of the soil. Although that the geotechnical 

properties such as the liquid limit, plastic limit and the plasticity index of London Clay 

were found to vary, but generally the shear strength parameters ( 'c  and 'φ ) and the critical 

state parameters such as the slope parameter λ , the gradient of the critical state line M and 

the critical state friction angle cs'φ were found to be almost similar. For comparison, a 

summary of each research results is presented in Table 6.3, indicating that the results 

obtained in this study are somehow within the same line as other researchers published 

work on London Clay. However, a limited number of studies on the same or similar soils 

treated with lime were found in the literature, but generally other studied clayey soils 

treated with different binders using the same approach are available. For instance, Brooks 

et al. (1997) performed a laboratory study on lime treated London Clay and Gault Clay in 

order to found a solution to an identified problem of the slopes on the motorway network 

in England and Wales that are at risk from instability. Property indices for both materials 

were determined by the authors and the results presented particularly for London Clay are 

found to be very close to the current research results (See Table 6.3). 

 

These two clayey soils are both over-consolidated in nature and of very high plasticity. The 

authors used the composition of the optimum mix to make recommendations for the field 

trial. Cylindrical specimens were prepared (100/200), compacted to their natural water 

content, and treated with 5, 10 and 15% lime addition. Specimens were cured for 1, 4, 8 

and 16 weeks for both treated materials. One major observation made by the authors is that 

radial swelling of the specimens prior to testing was in a range of 1.5 – 3.8% as of the 

initial measurements, they also indicated that generally marginally more swelling occurred 

with higher lime contents and longer curing period. Similar observation was made in this 

current research, by identifying a post-curing expansion of the treated specimens, 

depending on the lime amount and curing time.  

 

A first set of specimens were tested in triaxial compression under undrained conditions 

(these were not saturated and are comparable to UU tests carried out in this research). A 

low confining stress of kPa50  was applied during the tests to reflect or simulate the 
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approximate stress regime surrounding a lime stabilised soil column or lime pile used to 

improve slope stability at the site of potential shallow slip. The second set containing 

specimens cured for 16 weeks were subjected to effective stress tests, sheared under 

consolidated undrained conditions with pore pressure measurements. They were conducted 

at the confining pressures of 50, 100 and 200 kPa. To facilitate comparison to the current 

research, only results from the 5% lime treated soil are presented in the table. However, it 

is important to indicate that Brooks et al. (1997) curing procedure was carried out at 

variable water content using side drains straight from compaction (no dry curing 

performed). It is believed that his procedure results in a softening of the treated samples 

due to leaching. Whereas, in the current research; a dry curing method was used which 

consist of curing the specimens at constant water content, before being installed in the 

triaxial cell for the saturation and consolidation stages. This procedure results in significant 

strength enhancement of the treated specimens. Therefore, it can be concluded that the 

lower strength obtained by Brooks at al. (1997) (See table 6.4 & 6.5) is due to the different 

curing procedure, which may have facilitated leaching (lime loss) during moisturising and 

curing time, consequently affecting strength.  

 

Nevertheless, Brooks et al. (1997) results indicated that in general strength increased with 

lime addition except for 5% & 10% which the authors explained that is probably due to the 

density effect. They also reported the effective shear strength parameters )'(c  and )'(φ  

increase with lime amount increase (see table 6.4 & 6.5). It must be noted that, similarly to 

the Gault clay, a brittle failure was observed, and the strains to failure were generally small 

and less than one half of that of the untreated clay. Similar results as of Brooks et al., 

(1997) were obtained in this current study. 

 

The other comparable research carried by Zhang (2011) on lime treated London Clay; the 

author mostly investigated lime treated soil response under unsaturated state. However, 

few UU triaxial tests were performed on as cured 4% lime treated London Clay and can be 

compared to the present investigation. Similar response of lime treated soil was observed 

in this research, and almost the same strength results were obtained with strength 

increasing with lime addition, except that no strength increase beyond 7 days curing (and 

up to 166 days) was observed in Zhang (2011) work, whereas in this research, strength was 

found to increase after a plateau (60 days onwards) for two different lime dosage (4% & 

6%). In a recent geotechnical European conference, a keynote lecturer (Gomes Correia, 
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2015) using De Bel et al. (2011) study on lime treated soil has shown a sudden increase in 

strength with curing time after a plateau (100 days onwards), which is similar results 

obtained in this research related to UU triaxial tests. An explanation for this result was 

provided by Kinuthia (2015) as follow: “Early gains in strength are due to cation exchange 

effects. Cemented material is slowly formed, initially around contacts between 

agglomerations of clay particles and then spreads around the surface of these 

agglomerations. When this spreading is complete, a full matrix of cemented material exists 

and the higher strengths are observed (60 days onwards). At intermediate times failure 

takes place through the weaker element of the material (i.e. the clay particles)” 

 

In addition, another set of 4% lime treated London Clay samples tested by Zhang (2011) 

under saturated state were also compared to this research, and no major differences were 

observed. However, a slightly higher strength was obtained in this research, which is 

believed to be due to the different saturation procedure performed in each study. In this 

research, specimen saturation was performed inside the triaxial cell straight after the dry 

curing period, while in Zhang (2011) study, lime treated samples were saturated for 28 

days outside the triaxial cell using saturators before installing the specimens in the triaxial 

cell for testing. This is believed to be the main reason for the observed differences in 

strength values (see Table 6.4 & 6.5). 
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Table 6.3:. Index and Geotechnical properties of London Clay reported by other researchers 

 

 

 

 

 

 

 

 

 

 

 

Index & Geotechnical properties of LC reported by other researchers 
Source 

Lw  Pw  PI  sG  λ  M  'csφ  

Skempton (1944) 77 28 49 2.71 * * * 

Parry (1960)  78 26 52 * 0.161 0.888 22.5° 

Bishop et al. (1965) 58.9 - 70.6 23.8 - 29 35.1 - 41.6 2.72 - 2.77 * * * 

Sherwood (1993) 80 26 54 * * * * 

Brooks et al. (1997) 76 27 49 * * * * 

Sidique & Clayton (1999) 69 24 45 2.74 * 0.76 19.6° 

Jardine et al. (1985) 62.3 24.3 38 2.73 0.16 0.88 22.5° 

Gasparre (2005) &  Gasparre 

et al. (2007) 
59 - 74.5 21 - 32 38 - 42.5 2.65 - 2.76 * 0.85 21.3° 

Pantelidou & Simpsom 

(2007) 
* * * * * 0.86 22° 

Zhang (2011) 64 26 38 2.75 0.139 0.88 22.5° 

Present investigation 73.5 26.1 47.4 2.76 0.142 0.87 22.33° 

(*): Data not available 
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Table 6.4: Comparison of lime treated soil undrained strength results 
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Table 6.5: Comparison of lime treated soil effective stress strength results 

Effective stress strength results & comparison 
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Studies on similar soils using different approaches treated either with the same or different 

binder can be found in the literature. For instance, Thomas (2002), performed a study on 

the effect of lime addition on the various engineering properties of sulphide rich clay 

(lower oxford clay), which was found inadequate for lime treatment. The author included 

two other binders, ground granulated blast furnace slag and Portland cement to improve the 

strength of the material. Results showed (when compared to lime treated soil) that strength 

enhanced, the linear expansion reduced and durability improved. The author concluded 

that soil stabilisation with lime and GGBS is particularly effective for naturally occurring 

sulphite rich clay soils. Ahnberg (2006) carried out an extensive experimental investigation 

on Swedish clayey soils treated with three different binders, mainly focusing on strength 

properties using UCS tests and triaxial tests to study the strength behaviour under various 

drainage and stress conditions, resulting in an improved strength model being proposed. 

The author has identified that the general strength and deformation properties are the same 

for soils stabilised by the most common binders. However, the study did not cover the 

post-peak state of the treated materials, and was not extended into the critical state 

framework. Tedesco (2006) using lime to treat Italian clay has mainly identified the treated 

soil properties and the effects of lime addition as well as the curing time. Sasanian (2011) 

using cement to stabilise clay investigated the formation of microstructure in artificially 

cemented material with Portland cement, the author identified the relationships between 

cementitious bonding and clay mineralogy, and found that the addition of cement reduces 

the amount of macro-pores within the cemented material. In addition, the study was 

extended to investigate the yielding and stress-strain behaviour of the cemented Ottawa 

clay and compared to the naturally structured state in similar way carried out in this 

research against the reconstituted London Clay. The study was performed using the critical 

state framework, allowing the identification of fundamental parameters (isotropic 

compression and critical state parameters) to develop a constitutive model for predicting a 

mechanical behaviour of artificially cemented material. One important finding similar to 

this research is the cement addition does not have any effect on the CSL gradient M, and a 

new state boundary surface was identified for cemented material but an attempt to apply 

similar concept for naturally structured Ottawa clay was not successful. Kamruzzaman 

(2002) studied physico-chemical, microstructural (using SEM & XRD analysis), and the 

engineering properties (based on UCS) as well as the stress-strain response of cement 

treated Singapore marine clay based on triaxial tests. The author identified that the yield 

surface as well as the failure envelope shifted further upward with higher cement content 



Chapter 6 / Interpretation of the results using CSSM framework 

 

 235 

and found that yielding is associated with the breaking of cementation bonds which was 

confirmed by SEM images. The effective shear strength parameters )'(c  and )'(φ  were 

found to increase with the increase of cement content, which is a similar result obtained in 

the current study. In addition, Kamruzzaman (2002) indicated that the stiffness of the 

treated clay increases significantly due to cementation (similar behaviour observed in the 

current research), but the study was limited to the peak state only and was not taken to the 

critical state framework. 

 

From this comparison, it is clear that the influence of lime addition on the geotechnical 

properties is unique for each soil. These compared soils are relatively inhomogeneous and 

have relatively different micro-structural properties due to the difference of physico-

chemical nature of their components. Additionally, the chemical reactions between the soil 

particles and lime varied depending on the chemical and mineralogical composition of 

each soil treated with lime. The difference in strength is probably due to the difference in 

sample preparation procedure such as water content, curing conditions and most 

importantly the compaction related effect.  
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6.5. Implications of the research for Geotechnical design 

 

In engineering designs and safety check, engineers are only concerned about two facts of 

our structures: the strength and deformation of the structure. However, recent codes of 

practice for geotechnical design (e.g. EC7 (2004)) place an increased emphasis on carrying 

out explicit calculations of ground movement as opposed to carrying out ultimate limit 

state calculations (using ground strength) and applying large safety factors to ensure 

ground movements remain small. These explicit calculations of ground movements require 

soil stiffness and measuring these in field conditions and the laboratory has been an 

important area of geotechnical research during the last 30 years (Simpson, 1992; Oztoprak 

and Bolton, 2013) 

 

From an economical point of view, it is becoming increasingly important to account for the 

properties of treated materials in the design of the geotechnical structures. In the case of 

lime treated clays (despite its proven efficacy) relatively little data exists on material 

stiffness, and there are doubts on whether designing structures on lime treated soil has to 

be performed to the peak state or critical state. The current research has tried to fill this gap 

and represent a useful starting point in the knowledge of treated clay. Laboratory tests are 

performed in order to improve the understanding of some of the important aspects of the 

strength behaviour, and assemble observations which can help researchers to develop and 

calibrate constitutive models of soil behaviour. These provide the link between stress 

increments δσ  and strain increments δε  which are needed for the performance of 

numerical analysis of geotechnical systems (Muir Wood, 2004).  

 

A fundamental requirement of engineering design in geotechnic is to examine the 

serviceability limit state and to demonstrate the movements will not exceed some limit 

determined by the design team. For structures such as foundations the design is controlled 

with serviceability limit state, the structure must not move too much. One of the methods is 

to apply a load factor to a collapse analysis and the question is whether the collapse 

analysis should be done with the peak or with the critical state strength?  

 

Modern research on soil stiffness usually builds on the concepts of Critical State Soil 

Mechanics (Schofield and Wroth, 1968) according to which there is pseudo elastic 

behaviour (characterised by the propertyκ ) when the soil state lies within the Stable State 
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Boundary Surface. When the soil is loaded it may reach the Stable State Boundary Surface 

and yielding commences (characterised by the property λ ). Descriptions of the behaviour 

of bonded soils (whether bonding is due to natural or artificial causes) are based on the 

idea that the bonding increases the size of the Stable State Boundary Surface (see Liu & 

Carter, 2002 and Yu, 2007). The SSBS is not fixed in stress space, but it can expand due to 

plastic straining. The practical implication of this concept is that a geotechnical design 

using treated soil could be arrived at so that likely loadings of the ground would not result 

in yielding behaviour, i.e. states of the soil would continue to lie beneath the Stable State 

Boundary Surface and thus excessive deformations of the ground would be avoided. For 

instance, the failure of slopes made by cutting through soil mass is very common. When a 

cut slope is made, removal of soil from one side causes the release of horizontal stress and 

the soil on the other side is under decreasing effective stress. The failure of soil mass in 

this scenario is at low stress state. Most of the slope stability analysis methods assume that 

failure surface is either inclined planar or circular and uses the shear strength parameters 

( 'c  and 'φ ) obtained from triaxial compression tests for the analysis. In case of cut slopes 

in cemented soils, failure occurs by detachment of bonds (brittle failure) and hence the 

failure surface may not be circular. For lime treated soils, they exhibit high cohesion due to 

the artificial bonding of the cementing agent and therefore cannot be easily lost on removal 

of stress. Based on the triaxial tests results analysed using Mohr-coulomb failure criterion, 

lime addition to London Clay is assumed to increase the shear strength parameters (at peak 

state) from values of kPac 7'=  and °= 21'φ  to a maximum achievable of kPa220  and 

°39 with 6% lime addition.  

 

For structures such as slopes in rural locations, where relatively movements do no damage, 

the design is controlled by the ultimate limit state with an applied factor of safety. For 

soils, it has to be decided between the peak or critical state (Atkinson, 2007). Slope 

stability can be investigated using the slip circle to identify the factor of safety (FOS). One 

of the methods which can be used to determine the factor of safety, based on the effective 

stress analysis, is Bishop’s conventional method. This is given by the following 

expression: 
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∑

−+= 'tan)sec(cos'
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Where,  

 

W : The weight of the slice 

α : The angle between the total normal force (acting on base of the slice) and the vertical 

'c  and 'φ : Effective stress parameters (cohesion and friction angle respectively)  

l : The length of slice base (taken as straight line) 

Z

u
r

sat

u
γ

= : The pore pressure ratio for a steady seepage, with )( 0 uuu ∆+=  being the pore 

pressure at any point and Z is the vertical depth of the slope. 

 

The first step in the analysis is to conveniently divide the sliding sector of the slope into 

suitable number of equal vertical slices. The flow net must be established so that the 

equipotentials through the centre points of each slice can be inserted, and then determine 

the pore pressure ratio ur at the mid point of the base of each slice. To determine the area of 

a particular slide its mid-height is multiplied by its breadth )(b , the weight of the slice is 

then obtained )( AreaW sat ×= γ , and then set of as a vector below it. When working by 

hand the final analysis of forces acting on a vertical slice is best carried out by tabulating 

the calculations. However, in most design offices, slope stability problems are now 

computerised (Smith, 2006). 

 

To facilitate the evaluation of the FOS of slope treated with lime, variables are separated 

from constants in the expression (6.19). Assuming that the saturated unit weigh satγ is 

constant for all mixtures, the only variable parameters in the expression (6.19) are 'c  and 

'φ . All other parameters are constants and will carry the same values for all the mixtures. 

Therefore the constant parts in the expression (6.19) can be presented in the following 

form: 
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Where A and B  are constants, the Bishop’s conventional expression (6.19) can be 

rewritten as: 

 

'tan' φBAcFs +=                                                                          (6.22) 

 

Designing to the peak state, the effective stress parameters pc'  and peak'φ  values are 

needed. Table 6.6 presents values of the peak and critical state determined in this research. 

 

Table 6.6: Peak state and critical state strength parameters of lime treated London Clay 

 

 Soil + Lime 0% 4% 6% 

Curing time N/A 7 D 7 D 28 D / dry 28 D / wet 

)(' kPac p  7 35 220 145 181 Peak state 

strength 

parameters )(' °peakφ  21 30.5 39 39 39 

)(' kPac cs  0 0 0 26.1 28.2 Critical state 

strength 

parameters )(' °csφ  22.33 22.56 22.33 22.33 22.33 

  

 

The factor of safety value for each mixture can be estimated from the expression (6.22) as 

follow: 

 

( ) BAFs 41.07%0 +=  

 

( ) BAFs 59.035%4 +=   

 

( ) BAF
to

s 8.0)220145(%6 +→←=    

 

The above equations clearly indicate that the FOS increases with lime amount. In order to 

evaluate the increase of the factor of safety, the values of constants A and B have to be 

determined, which in turn are related to the weigh )(W , the angle )(α and the pore pressure 

ratio )( ur for each slice, the increase as of the FOS of the untreated soil can then be 

evaluated.  
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It can be concluded that lime addition increases the factor of safety for slope stability 

( )%0sF ˂ ( )%4sF ˂ ( )%6sF , this can successfully be applied for re-instatement of slopes and 

embankments slips (which are a major problem on many highways and canals cuttings in 

the UK) by using lime as a binder (ICI, 1990). Lime addition to soil, which enhances the 

FOS of the slope when designed to the peak state strength, is also beneficial in 

conditioning the fill and so aiding compaction during construction.  

 

For most purposes, the critical state strength is the worst that need to be considered in 

design. Depending on the problem faced, if there are pre-existing slip surfaces or if large 

displacements are expected, then the critical state strength should be considered in design. 

In the other hand, there are cases in which the critical state strength should be used in 

geotechnical design. For instance, in a slope, the shear stress on the potential slip surface is 

governed by the critical state, because even in a stable slope, there will probably be strains 

in the ground larger than 1% (Atkinson, 2007). For this reason, design using the critical 

state strength is used, and factors of safety values (as a function of the constants A & B) 

are also determined here. Note that these factors of safety values are the same as of the 

untreated soil (see Table 6.7).  

 

Table 6.7: Factors of safety for lime treated & untreated London Clay 

 

 Soil + Lime 0% 4% 6% 

Curing time N/A 7 D 7D 28D - dry 28D - wet 

Factor of safety 

at peak state 

 

 
BA 41.07 +

 

BA 59.035 +  

 

BA 8.0220 +
 

BA 8.0145 +  BA 8.0181 +  

Factor of safety 

at critical state 

 
B41.0  B42.0  B41.0  BA 41.01.26 +  BA 41.02.28 +  

 

 

One important result from the current research is the observation of the experimental 

evidences never pointed out before; the ultimate angle of friction of the treated soil (i.e. 

after strain softening from peak) is just the same as that of the untreated soil. Schofield and 

Wroth (1968) proposed that geotechnical design should be carried out using ultimate (i.e. 

critical state) strengths, an idea that is consistent with the requirement of material ductility 
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for plastic design. This approach has significantly influenced current geotechnical design 

practice in the UK (although much design is still carried out using peak strengths). 

 

For instance, to determine the bearing capacity of a foundation, several analytical methods 

can be used in design (Smith, 2006). The general form of the bearing capacity equation for 

q  is proposed by Meyerhof (1963). 

 

γγγγγγ disBNdisZNdisNcq qqqqcccc 5.0' ++=                             (6.23) 

 

Where  

 

'c  is the cohesion, γ  is the unit weight of the soil, Z is the depth and B is the least 

dimension or diameter of the footing 

 

cs , qs and γs  are shape factors 

ci , qi  and γi are inclination factors 

cd , qd and γd  are depth factors 

 

The coefficients cN , qN and γN  depend upon the soil’s angle of shearing resistance 'φ  and 

can be obtained from Meyerhof’s equation as they are recognised as being the most 

satisfactory in geotechnical design according to Atkinson (2007). 

 

'cot)1( φ−= qc NN                                                                      (6.24) 

'tan2

2
'

45tan φπφ
eNq 







+°=                                                          (6.25) 

 

For the remaining factor γN , an equation proposed by Vesic (1973) is the mostly used in 

geotechnics  

 

'tan)1(2 φγ += qNN                                                                     (6.26) 
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The shape factors are intended to allow for the shape of the foundation on its bearing 

capacity. The factors have largely been evaluated from laboratory tests and the values in 

present use are those proposed by De Beer (1970) 

 

c

q

c
N

N

L

B
s .1+=                                                                                (6.27)     

'tan1 φ
L

B
sq +=                                                                             (6.28) 

L

B
s 4.01−=γ                                                                                (6.29) 

 

The inclination factors are estimated from Mayerhof’s expressions as follow: (Smith, 

2006) 

 

2)90/1( °−== αqc ii                                                                     (6.30) 

2)/1( φαγ −=i                                                                               (6.31) 

 

Where, α  is the eccentric load inclination to the vertical.  The depth factors are intended to 

allow for the shear strength of the soil above the foundation. Hansen (1970) proposed the 

following (see table 8):  

 

Table 6.8: depth factors for geotechnical design 

 

Depth factors 0.1/ ≤BZ  BZ / > 0.1  

 cd  )/(4.01 BZ+  )/arctan(4.01 BZ+  

qd  )/()'sin1('tan21 2 BZφφ −+  )/arctan()'sin1('tan21 2 BZφφ −+  

γd  0.1  0.1  

(arctan) values are expressed in radians 
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The bearing capacity of a foundation can be determined immediately after a construction. 

In current geotechnical practices, both the peak and ultimate (critical state) strengths are 

used in design, depending on the country and the problem faced. However, CSSM argued 

the use of the ultimate / critical state strength (Schofield & Wroth, 1968).  

 

The choice of soil parameters for bearing capacity equation can be used with either the 

undrained or the drained soil parameters. The general procedure is to work with undrained 

parameters '( uc  and )'uφ  (with 'uφ  taken equal to zero). However, in this study, the 

relevant effective stress parameters 'c  and 'φ  for drained test are used from Table 6.6, with 

'c generally taken as equal to zero according to Smith (2006).  

 

For simplicity, we assume that the structure is a rectangular shallow foundation 

( 0.1/ ≤BZ ), and only a vertical load is acting on the foundation, 0=α , implying that 

1=== γiii qc  

 

In this research, parameters were determined under saturated state conditions, therefore it 

is appropriate to use the saturated unit weight w

sat

sats
sat

e

eG
γγ .

1

)(

+

+
=  which is calculated 

based on the average value from the set of performed tests in this study for each mixture, 

wγ  is the unit weight of water equal to 3/81.9 mkN . The average values are presented on 

Table 6.9. 

 

Table 6.9: Average values of saturated unit weigh for each mixture 

 

 Soil + Lime 0% 4% 6% 

Curing time N/A 7 D 7 D 28 D / dry 28 D / wet 

)/( 3
mkNsatγ  

17.68 
17.66 
17.66 

17.69 
17.59 
17.54 

17.78 
17.79 
18.09 
17.79 

17.85 
17.91 
17.96 

18.14 
18.17 
18.19 

Saturated unit 

weight 

Average Avγ  17.67 17.61 17.86 17.91 18.17 

 

 

The qN  value for peak state in each mixture can be separately determined. 
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As recommended in design practice, in drained test, 'c  is taken equal to zero, and the value 

of 'φ  (either at peak or at critical state) is used in the expression (6.23). The bearing 

capacity can be determined as follow: 
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When working at the peak state, cN , qN and γN  increase with lime amount increase (due 

to peak'φ increase). Replacing satγ , qN  as well as the peak friction angle )(' peakφ  values in 

the bearing capacity expression for each mixture, the following is obtained: 
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In order to evaluate the effect of the lime addition on the bearing capacity of the 

foundation, some arbitrary dimension values for the foundation are given ( mB 2= , 

mZ 1= , and mL 4= ), therefore, the bearing capacity values for each mixture can be 

evaluated (see Table 6.10) 

 

Table 6.10 present the bearing capacity of lime treated and untreated London Clay for both 

states (peak state) indicating the increase due to lime addition and the (critical state) where 

the bearing capacity is the same for all soil mixtures. Analysing the results (based on the 

arbitrary dimensions given), It can be concluded that adding lime to London Clay, under 

saturated state conditions, the bearing capacity at peak state increases by 3 times as much 

for 4% lime addition, and by 11 times as much for 6% lime, resulting in the following: 

%)0(q  ˂ %)4(q  ˂ %)6(q , which is an advantage to take in consideration in design 

practice, but high factors of safety are required to avoid excessive soil deformations.  

 

Table 6.10: Bearing capacity of a foundation laid on of lime treated London Clay 

 

 Soil + Lime 0% 4% 6% 

Curing time N/A 7 D 7D 28D - dry 28D - wet 

Bearing capacity at peak state 

)(kPaq peak  
272.67 913 3137.06 3145.84 3191.5 

Bearing capacity at critical state 

)(kPaqcs  
321.71 330.07 325.18 326.09 330.83 

 

 

An old concept for calculating settlements (e.g. construction fill) is used to ensure stress 

changes due to construction of the fill do not reach yield, thus avoiding excessive 

settlements and ensures the design stays within the yielding surface. This concept consist 

of performing either oedometer tests or isotropic compression triaxial tests on natural 

samples from different depth, the effective stress values at yield for each sample (which 

increases with depth Z) are used as the limit to ensure that the construction of (e.g. the fill) 

does not cause stresses changes beyond the elastic deformation. In critical state concept, 

the modelling approach is to work within the yield surface which is similar to the above 

concept used for settlement calculations. The stable state boundary surface (SSBS) was 

identified to expand with lime addition (See section 6.3.3), bounded by the tensile strength 
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envelope as the upper limit and the critical state line as the lower limit. This larger domain, 

expressible as a function of p and q, is the boundary to all permissible states of stress that 

the new material can sustain without yielding. The SSBS could not be fully drawn due to 

lack of further triaxial testing in different stress path direction as well as the pre-

consolidation pressure which is needed to identify the size of the yield surface. 

Nevertheless, by assuming that the yield surface increased shape is isotropic, it can be 

drawn based on MCC model as shown in Figures 6.21.   

 

 

 

Figure 6.21: Yield surface likely increase due to cementation  

 

Where 0'p and '*
0p  are the pre-consolidation pressures for untreated and lime treated soil 

respectively. 

 

When a treated soil is loaded from an initial state ):'( aa qpA  to final state ):'( bb qpB  (as 

shown in Fig. 6.21), the state of the material (stress path) travels beyond the original 

boundary surface of the untreated soil (as indicated in section 6.3), but the stresses still be 

oscillating within the elastic deformation zone of the newly expanded surface. The gained 

advantage here is that the expansion of the yield surface allows for a safe design by 

avoiding the yielding limit state which is also known to increase with depth.  
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This gained knowledge that is applied to useful practical outcomes with the aid of 

appropriate theoretical analysis, is of a significant interest to geotechnical engineers, and 

provides an understanding mechanism picture for modelling purposes of the critical state 

behaviour of lime treated soil. Applying the concept on lime treated soil under load (e.g. 

foundations, which are generally more rigid than flexible and tend to impose a uniform 

settlement), an approximate mean value of settlement under the foundation can be 

determined by using the elastic parameters obtained from the CD triaxial tests performed 

on each mixture. This also means that in the critical state concept, soil deformations are 

occurring inside the yield surface and do not go beyond the SSBS (which has enlarged due 

to cementation).  

 

For a rectangular foundation, the mean value of the immediate settlement is given by: 

 

E

FpB i
i

)1( 2ν
ρ

−
=                                                                         (6.32) 

 

Where, 

 

iρ : The immediate settlement under the foundation 

B : The width of the foundation  

ip : The uniform contact pressure (arbitrary values given in table 6.12) 

AvEE = : Average Young’s modulus of elasticity for the soil (see table 6.11) 

Avνν = : Average Poisson’s ratio of the soil determined using the expression 
e

a

e

r

ε

ε
ν

∆

∆
−=  

where 
2

e

a

e

ve

r

εε
ε

−
=  (see Table 6.11)  

iF : Influence factor depending upon the diminutions of the foundation.  
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Table 6.11: Elastic parameters of lime treated and untreated London Clay 

 

Soil + Lime 0% 4% 6% 

Curing time N/A 7 D 7D 28D - dry 28D - wet 

ν  
0.34 
0.31 
0.36 

0.31 
0.33 
0.35 

0.34 
0.41 
0.41 
0.39 

0.29 
0.29 
0.36 

0.33 
0.36 
0.33 Poison’s ratio 

Average Avν  0.34 0.33 0.39 0.31 0.34 

)(sec kPaE  
8986.7 
10648.1 
15061.4 

17301.4 
14736.3 
21151.6 

58311.4 
60956.4 
57287.7 
60264.3 

52881.5 
55314 

75183.2 

54275.8 
61257.6 
80384.3 

Secant Elastic 

Modulus 

Average AvE  11565.4 17729.77 59204.95 61126.23 65305.9 

 

 

A reinforced concrete foundation used previously to determine the ultimate bearing 

capacity, with the same dimensions, is also used here ( mB 2= , mL 4= ), and based on 

these dimensions (i.e. 2/ =BL ), iF  will take the value of 1, as per Skempton (1951) 

recommended values. An immediate settlement under the foundation can be determined in 

this case. The mean value of settlement for a rectangular foundation on the surface of semi-

elastic medium can be written from the expression (6.32) as follow: 

 

Av

Avi
i

E

p 1)1(2 2
×−×

=
ν

ρ  

 

To evaluate the settlement reduction due to lime addition, arbitrary pressure values are 

suggested. Immediate settlement values for each suggested pressure are presented in the 

Table 6.12.  

 

Table 6.12: Immediate settlement under a foundation constructed on lime treated soil 

 

Soil + Lime 0% 4% 6% 

Curing time N/A 7 D 7D 28D - dry 28D - wet 

kPa50  7.6 5.0 1.4 1.5 1.4 

kPa100  15.3 10.1 2.9 3.0 2.7 

P
o

ss
ib

le
 

p
re

ss
u

re
  

kPa200  

Immediate 

Settlement 

)(mmiρ  

30.6 20.1 5.7 5.9 5.4 
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The results in Table 6.12 clearly indicate (regardless of the pressure ip ) that 4% lime 

addition reduces immediate settlement by almost 35%, while 6% lime addition further 

reduces the settlement by as much as 80% as of the settlement determined for the untreated 

soil, benefiting the construction industry. Lime addition not only increases the shear 

strength, but reduces settlement. In the case of deep excavation projects, the soil 

improvement work (by lime addition) is generally carried out before the start of an 

excavation that provides an improved soil layer and helps in limiting the movement of soil 

below the final excavation level. In this application the stiffness behaviour of treated clay 

layer is more critical than its shear strength.  

 

From the above, it can be concluded that designing a foundation on lime treated soil 

indicates that: 

 

a) Bearing capacity either 

 

- is increased by designing to peak strength 

- Stays the same by designing to critical state strength 

 

b) Much increased scope for elastic deformation allows for the design to be within the 

increased boundary surface (due to cementation), which is an advantage to take in 

consideration. 

 

The British standards (BS 8004:2015) gives further details on how foundations should be 

designed according to limit state principles and provides information missing from 

Eurocode 7 but of importance to UK practice. The standards give a list of safe bearing 

capacity )( sq  and allowable bearing pressure )( aq values. Slopes, foundations and walls 

designed to these values will normally have an adequate factor of safety )( sF against the 

ultimate bearing capacity )( uq , and a load factor )( fL against the peak strength )( peakq . For 

treated soil, safe bearing capacity, allowable bearing pressure, and the ultimate bearing 

capacity are designated by )( *
sq , )( *

aq  and )( *
uq  respectively (see Fig. 6.22). 

 

u

s

s q
F

q
1

=  
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 peakfa qLq =  

 

These factors are intended to move the design away from a collapse state into a safer state, 

where movements are acceptably small. A factor of safety is applied to soil strength and its 

purpose is to ensure that the structure does not approach its ultimate limit state. A load 

factor is applied to a load and its purpose is to ensure that the deformations remain within a 

small strain range to restrict the ground movements (Atkinson, 2007). This is better 

illustrated in the Figure 6.22, where lime treated soil response to shearing, which was 

shown in section 6.3 (stress paths) to go beyond the critical state line of the untreated soil, 

comes back after reaching its peak to the same ultimate state (critical state). Hence, 

designing to the peak state (where the soil fails) means going beyond the ultimate state and 

approaches the collapse state where it requires a much higher factor of safety for the 

bearing capacity. In order to avoid the danger of collapse, one could conclude from the 

current research that a sensible way forward for design of structures on lime treated soils 

would be to use the ultimate strengths for limit state design, but take advantage of the 

enhancement of stiffness that soil treatment delivers. 

 

 

 

Figure 6.22: Treated and untreated soil response under load 
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6.6. Research findings link to existing models and modelling 

 

Research studies of stress-strain are expected to lead to useful design calculations. When 

the constants of lime treated soil are obtained by interpretation of test data the question that 

immediately arises is of their use in design calculation. Parameters such as cohesion ( )'c , 

angle of friction ( )'φ , dilatancy angle ( )ψ  and the void ratio ( )e  obtained through 

subsequent tests data in a laboratory investigation, as well as other experimental findings, 

are fundamental for the development of suitable constitutive models to predict the 

material’s behaviour in large scale engineering applications. The material’s real behaviour 

can be useful for any numerical modelling and design. Such a framework would assist 

engineers in preliminary design studies and minimise the number of trials needed to 

determine the required lime amount and the curing period.  

 

Geotechnical engineers only need to know soil strength parameters for use in limiting-

stress design calculations. Schofield & Wroth (1968) indicated that only critical state data 

of the soil is fundamental to the choice of soil strength parameters. For this reason, the 

state of the material was explored beyond the peak and analysed using the CSSM 

framework. The critical state framework is examined here to highlight its feasibility to 

quantify the behaviour of lime treated soil. Based on the theoretical considerations within 

the critical state framework, several basic concepts for the development of a constitutive 

model or an expansion of existing models for cemented soils are presented.  

 

In this research, the SSBS at the critical state was identified to expand with lime addition, 

but could not be fully drawn as further triaxial testings are needed in order to determine the 

shape and the size of the new boundary. However, based on the results obtained in this 

research, such as the slope parameter λ decreasing with lime amount in the compression 

plane )'( pv − , and the unchanged gradient M of the critical state line in the stress plane 

)'( pq −  with a negligible intercept, the likely expansion of the SSBS could be guessed as 

drawn in Fig. 6.23, showing its shifted position and the change in size. The CSL projection 

onto the stress plane )'( pq −  and the compression plane )'( pv −  are also plotted in Figs. 

6.24a & 6.24b. Using the MCC yield function, the yield locus of the untreated material is 

drawn in the stress plane as shown in Fig. 6.24a. 
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From Fig. 6.24a, it can be observed that the yield surface of the treated material in the 

stress plane )'( pq −  slightly reduces in size from the origin 0'=p  to '' ipp = , and 

increases from '' ipp =  to '' *
0pp = . The projection of the state material from the space 

)'( pqv −−  to the compression plane )'( pv −  reflects that the critical state lines of both 

the treated and untreated soil intersect at mean effective stress 'ip  (see Fig. 6.24b) and its 

value can be determined as follow: 

 

The critical state line in the compression plane can be modelled using the following 

equation (Muir Wood, 1990). 

 

'ln pv λ−Γ=                                                                                 (6.33) 

 

At the intersection point I (see Fig. 6.24b), the treated and untreated soil’s specific volume 

iv  is the same, implying the following: 

 

( ) ( )treateduntreatedi vvv ==  

 

From (6.33) the following can be written 

 

'ln'ln ** pp λλ −Γ=−Γ                                                                 (6.34) 

 

Therefore the mean effective stress 'ip at the intersection point I  can be written as follow: 

 

*

*

'' λλ−

Γ−Γ

== epp i                                                                                 (6.35) 
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Figure 6.23: SSBS expansion of lime treated material in 'pqv −−  space 
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Figure 6.24: Size and shape change of the yield surface after lime treatment 

 

Also, the projection of the state material from )'( pqv −− space to the stress plane )'( pq −  

(see Fig. 6.24a) at the critical state is mirrored as follow: 

 

 Using the yield function derived from the MCC model for the untreated material,  

 

( )''' 0 pppMq −=                                                                        (6.36a) 
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If ip  is known, then iq  can be determined from (6.36a) as follow: 

 

( )''' 0 iii pppMq −=                                                                    (6.36b) 

 

The point I )':( ii pq  can be drawn in the stress plane. In addition, the yield surface of the 

treated material in the stress plane starts from the original point )0:0(  as of the untreated 

material. From this point onwards, the size of surface is below the original yield surface 

and gradually increases until the two yield surfaces coincide at the point I )':( ii pq  (see 

Fig. 6.24a). From this intersection point and beyond, the treated yield surface surpasses the 

untreated yield surface by increasing to its maximum size, controlled by the tip 

pressure '*
0p . The yield surface enlargement to the right side due to bonding (horizontal 

increase) is measured by the difference between the treated and untreated isotropic pre-

consolidation pressures and its value is equal to )''( 0
*
0 pp − .  

 

From the above analysis, it can be concluded that the shape of the yield surface changes 

with lime addition and the increase in size is anisotropic.  Providing further triaxial testing 

are performed on different directions for lime treated soil, the new SSBS can be drawn 

based on the observed changes of *λ ,  *κ  and *Γ using the equation (6.18), this can be 

written as follow: 

 

( ) 








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
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
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'
1ln2ln 22

2
***

pM

q
v κλλ                                             (6.37) 

 

To achieve a better agreement between predicted and observed cemented soil behaviour, a 

large number of modifications to the standard and modified Cam Clay models have been 

proposed over the last two decades. In order to relate the important findings of this 

research, such as the critical state angle of friction cs'φ  being the same as for the 

comparable untreated material, and the slope parameter λ  decreasing with cementation. 

( λ  >
*λ ), to models and modelling. Two suitable models which have the potential to be 

extended using the findings of the current research are introduced here. The authors of 

these two models having both assumed that the CSL in the stress plane shifting higher at a 
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constant gradient M which is similar to the current research findings, but a different 

assumption on the changes of the slope parameter λ  in the compression plane with 

cementation was put forward for each suggested model. A brief description of the models 

is made in this section, and a comparison of their yield surfaces increase to the likely yield 

surface increase derived from this study is also presented. Note that no existing model 

associated with cementation with a decreasing λ  is available in the literature. 

 

Kasama et al. (2000) proposed a constitutive model for cemented soils incorporating 

cementation using an extended critical state concept. The authors claim that this model can 

be used for all artificially cemented clay. 

 

Failure state conditions with cementation in 'pq −  and )'ln( pe −  space were given by: 

 

'Mpq =   

'ln pe λ−Γ=                      

 

Γ : is the void ratio ( e ) for the critical state at kPap 1'=  

λ : is the slope of the critical state line and/or normally consolidated line 

M : is the Cam Clay parameter describing the stress ratio at the critical state 

 

Two assumptions were made by the authors in order to introduce the cementation effect in 

the failure state (taken here as the critical state). 

 

1. The failure state line (which in fact is the final state and is the CSL) in 'pq −  space 

is parallel to that of an uncemented clay with an intercept rp' characterising the 

cementation. Similar results were obtained in this study but the failure state is not 

the final ultimate state. 

 

2. the failure state line of cemented clay in the compression plane ( )rppe ''ln +−  is 

steeper than that of the uncemented material with the slope parameter λ  increasing 

with the cementation *(λ > )λ , while in the current study, the CSL of the treated soil 
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in the equivalent compression space ( 'ln pv − ) also shift higher but at a decreasing 

value of the equivalent slope parameter *(λ ˂ )λ  (see Fig. 6.25a) 

 

The failure state line in 'pq −  and )''ln( rppe +− was extended by the authors as follow: 

 

)''( rppMq +=  

)''ln(**
rppe +−Γ= λ  

 

Where rp'  is the cementation defined as a value of 'p  at 0=q  and *Γ is the void ratio for 

the failure state (CS) at which p=1kPa in the )''ln( rppe +− space. M is the CSL gradient 

in 'pq −  and given by a modified stress ratio *η  at failure state in which 

rpp

q

p

q

'''*
*

+
==η   

where rppp '''* +=  is the modified stress. 

 

When the cementation effect is introduced, the yield function takes the following general 

form: 
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rppp ''' 0
*
0 += , where 0'p  is the hardening parameter. 

 

The shape of the yield curve changes elliptically with the increasing parameter c, and with 

variation of rp' , indicating the extension of the yield curve with both parameters. This 

theoretically explains the existence of tensile strength in cemented clay. The proposed 

model by Kasama et al. (2000) may be suitable to describe the experimental data obtained 

in this research. However, the slope parameter λ  of the CSL in the compression plane 
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does not increase as assumed by the author, but will have to be taken at different 

decreasing values for each lime amount.  

 

In another interesting model proposed by Tamagnini et al. (2011), which is an extension of 

MCC model, the authors used the principal of thermodynamics and the classic theory of 

plasticity to account for cementation bonds. The new model using an associative flow rule 

was developed to simulate the behaviour of saturated cemented soils, it describes the 

process of bonding and debonding based on exchange of mass )(m between the granular 

skeleton and the bonding material. The extended MCC model contains the same number of 

parameters as the MCC model ',,,,( 0pM Γκλ  and )ω , the newly introduced parameter ω  

accounts for controlling the hardening (due to changes in the mass of the cementing 

material). 

 

The authors assumed that the yield locus derived from the MCC model yield function, 

expands at a constant shape )( *λλ = (see Fig. 6.25b) and is represented by the following 

equation: 

 

0)''(' 0
22 =−+= pppMqf                                                          (6.38) 

 

Where, 

 

q : The deviator stress 

'p : The mean effective stress 

M : The slope of the critical state line in 'pq −  plane 

0'p : The pre-consolidation pressure which controls the size of the elliptical yield locus 

 

In elastic plastic model such as the MCC model, the incremental stress-strain relations are 

defined by the following equations: 

 

p

v

e

vv ddd εεε +=   Is the volumetric increment 

 

p

s

e

ss ddd εεε +=  Is the deviatoric increment 
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The elastic volumetric strain increment )( e

vdε  and plastic volumetric strains increment 

)( p

vdε  can be written as follow: 

 

'
'

p

dp
d e

v κε =                                                                                   (6.39) 

0

0

'

'
)(

vp

dp
d

p

v κλε −=                                                                        (6.40) 

Where, 

 

κ : The slope of the unloading re-loading line (k-line) 

λ : The slope of the normal compression line in the compression plane 'pv −  

e

vdε : The elastic volumetric strain increment 

p

vdε : The plastic volumetric strain increment 

 

The condition for (6.39) and (6.40) to cancel out 

 

0=+ p

v

e

v dd εε         or         
0

0

'

'
)(

'
'

p

dp

p

dp
κλκ −−=                       (6.41) 

                                 

The change in 0'p , and relatively in the yield function, are controlled by the plastic 

volumetric strain p

vε . Equation (6.41) provides a link between changes in mean effective 

stress 'p  and changes in the size of the yield locus controlled by 0'p . The authors indicated 

that in the new extended MCC model, the change in 0'p  also accounts for effects of 

bonding / debonding in the following form: 

 

)(0)(00 ''' BondMCC dpdpdp += , the last term according to thermodynamics can be written as: 

 

dmpdp Bond 0)(0 '' ω= , this term describes the evolution of the yield surface produced by 

changes in bonding mass )(m , where )(ω  controls the rate of change in 0'p  caused by 

change in bonding mass. 
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Also, in this proposed model, the authors assumed that the material obeys the normality 

conditions, implying that the vector of plastic strain increments )( p

vdε are in the direction 

of the outwards, normal to the yield locus. 

 

In CSSM yielding states of a material is represented by a surface in ),,'( qvp , called a 

SSBS. States below the SSBS represent elastic states, whereas states above the SSBS are 

impossible. The CSL and NCL all lie on the SSBS, the usual path followed by cemented 

material when sheared to failure contains an initial elastic phase within the SSBS followed 

by yielding where the state of the material is on the SSBS seeking the CSL until reaching 

the end of the test (end point).  

 

During the cementation process, the authors assumed that the void ratio is constant and 

does not change, while in this research it was found that the specimen volume changes 

with curing time, implying that the void ratio increases which it should be taken in 

consideration. The pre-consolidation pressure, which reflects the start of the yielding of the 

material, is assumed to increase with cementation, which is the results observed in the 

isotropic compression test on lime treated and untreated London Clay. The authors have 

presented this as follow: 

 

)(
)(00 *'' m

MCC epp
ω=  

 

In terms of the compression plane ( )'pv − , this means that a point on the initial NCL 

moves to the iso-NCL of the cemented soil in the unloading re-loading line, and the 

horizontal move was deduced to be equal to )( mω . This point lies inside the SSBS for the 

cemented material. The authors assumed that the slope parameter λ of the CSL and iso-

NCL is constant *)( λλ = . However in this research, results indicated that while the 

parameter M  in the stress plane ( )'pq −  is unchanged, the value of the parameter λ  in the 

compression plane ( )'pv −  was found to decrease with lime addition *(λ ˂ )λ , 

consequently affecting the value of ( )Γ . In addition, the elastic parameter κ , which is the 

slope of the unloading re-loading line, is also assumed to be constant for the proposed 

model, while in this research it was found to decrease with cementation *(κ ˂ )κ . It is 
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therefore recommended for the new SSBS equation to consider )(λ  and )(κ  as decreasing 

parameters with cementation and ( )Γ  as a variable. 

 

In addition, the upward displacement of the CSL in the ( )'pv −  caused by the cementation 

was evaluated by the authors to be equal to mωκλ )( − , while in this current research, the 

observed changes in the parameter λ  (which decreases with lime addition) does not reflect 

a vertical displacement of the CSL in the compression plane as assumed by the authors, but 

shows a change in its position by rotating around the intersection point I  in the 

compression plane, its right side moves upwards and the left side moves downwards (see 

Fig. 6.24b). This indicates that the SSBS changes in size and shape, implying that the 

increase is anisotropic.  

 

In addition, since λ  is found to decrease with cementation in this study, 
)(

1
κλ

ω
−

=  can 

not be assumed a constant as suggested by the authors but is a variable parameter 

depending on cementation and can be Witten as follow: 
)(

1
**

*

κλ
ω

−
=   

  

Despite having the same unchanged value of the CSL gradient M in the stress plane 

)'( pq − , differences in yield surface increase due to cementation are observed between the 

two proposed models and the current study. This is better illustrated in Fig. 6.25, where the 

yield surfaces show their unique increase in size and path depending on the slope 

parameter *λ  in the compression plane ( )'pv − , either increasing as suggested by Kasama 

et al. (2000), constant as for Tamagnini et al. (2011) model or decreasing as in the current 

research findings. 
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Figure 6.25: Yield surface comparison of the current results with available models for treated soil 

Kasama et al., (2000) Tamagnini et al., (2011) Present research 
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Chapter 7 

 

7. Conclusions and recommendations 

 

7.1. Summary and conclusions 

 

This thesis investigated the influence of lime dosage, curing period and the compaction 

water content on the mechanical response of London Clay. The study was carried out in 

order to identify the important parameters governing the mechanical behaviour of lime-

treated London Clay. Laboratory results from UU, CD & CU triaxial tests on several types 

of lime treated London Clay specimens were examined, and theoretical analysis were 

conducted. The main focus was on observing the changes in the mechanical properties and 

behaviour of the treated soil, and on interpreting these based on physicochemical and XRD 

testing. Valuable information on the shear strength behaviour is provided, the reported data 

may be found useful for the development of constitutive models and further study 

 

In the following, the main findings and conclusions based on the testing results are 

presented. The conclusions formulated along this thesis lead to suggestions which can 

allow the continuation of the study.  

 

1. XRD results indicated that higher curing time leads to the formation of increasing 

amount of cementitious compounds (CSH, CAH and CSAH hydrates) which would 

cause the increase of the strength of the soil. Lime content higher than the ICL 

causes more cementitious compounds to form, confirming the importance of 

determining an adequate lime amount for the treatment of a particular soil. Overall, 

the pozzolanic reactions due to lime addition are responsible for the formation of 

the cementitious bonds during the curing time at constant water content, resulting 

in enhanced strength. The pH level for treated samples, cured between 1 and 250 

days was observed to decrease, suggesting that long term strength gain for 6% lime 

treated London Clay specimens is due to pozzolanic activity leading to the 

formation of cementitious products.  
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2. These newly formed phases CSH, CAH & CSAH observed in the XRD analysis are 

consistent with the considerable strength gain and the increase in stiffness of the 

treated soil. At higher lime amount (6%) the pozzolanic reaction activity progresses 

faster. This accelerates the hydrate products formation, and increases their quantity, 

leading to a significant shear strength gain (exhibited in both UU and CD triaxial 

test). The explanation for a lesser quantity of hydrates produced in 4% lime 

treatment is associated with the limited pozzolanic reaction development due to 

lower lime amount available. Results clearly show structural changes are possible 

and are expected as lime substantially improves the soil physical properties in the 

large majority of applications. In line with this, the triaxial tests (both UU and CD) 

showed that strength improvement is more pronounced for specimens with higher 

lime amount at similar curing period rather than higher curing period and a similar 

lime amount. This suggests that the impact of curing period prior to saturation was 

less significant than the lime content effect.  

 

3. Although, based on CD tests, the strength increased with lime percentage as of UU 

triaxial tests results, there are differences between CD and UU test regarding the 

effect of curing time. Once the treated specimen is in contact with external water, a 

slightly higher strength is gained for specimens initially cured for 7 days as 

opposed to 28 days curing when tested under saturated state. Hence, it is likely that 

treated specimens cured for 7 days are in more favourable conditions, due to their 

earlier contact with water, facilitating the pozzolanic reactions with the available 

lime, thus resulting in higher strength gain. This indicates that the prevailing 

parameter in terms of strength development may not be the length of the initial 

curing time but rather the timing of the saturation stage in which the specimen was 

in contact with water. This is consistent with concrete behaviour where curing 

usually takes place in the presence of water. In line with this, the specimens 

compacted wet of optimum showed slightly higher strength increase. 

 

4. It was also observed that the strain associated with the peak deviator stress 

decreases with an increase in lime amount. The addition of lime content resulted in 

brittle behaviour causing the peak/failure to occur at smaller strain levels, the 

brittleness increased with a higher lime content. These treated specimens failed 

“dry” of critical state line, displaying an approximately linear elastic pre-yield 
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response followed by an abrupt failure. The sudden strength decrease observed 

after the peak can be attributed to rapid breakage of strong bonds which have 

developed in particular for 6% lime treated specimens during the curing time as it 

has been evidenced by the XRD analysis. Specimens that exhibited an elasto-plastic 

gradual yielding (ductile response) are said to have failed “wet” of CSL. It is 

important that this sudden strength reduction be carefully modelled to better 

understand the lime treated ground behaviour beyond the peak conditions under 

large strains. 

 

5. Lime addition increased the initial yield stress. In addition, the peak / failure 

envelops of lime treated soil is shown to shift higher with lime amount increase and 

becomes steeper due to cementation effect. The envelops appear to form straight 

lines in this study, but are not parallel to the untreated soil failure line. The addition 

of lime increased the shearing resistance angle ( peak'φ ). The peak'φ  increased to 

30.5° with 4% lime addition and to 39° for 6% lime amount. The cohesion ( 'c ) in 

London Clay soil was also observed to increase with lime amount, but not 

consistently with the curing period increase. 4% lime addition increased the 

cohesion to 35 kPa, whereas 6% lime at 7 days curing resulted in 220 kPa. The 

curing time increase from 7 to 28 days for 6% lime addition has resulted in a lower 

cohesion (145 kPa), while no effect on the effective peak angle of friction was 

observed. This implies that the peak state behaviour of lime treated London Clay is 

predominantly dependent on cementation bonds rather than friction. These 

parameters are fundamental for the development of suitable constitutive models to 

predict the material’s behaviour which can be useful for any numerical modelling 

and design. 

 

6. The behaviour of lime treated London Clay presents the same features as over-

consolidated clay and bonded materials, namely a contractive-dilatant response. For 

instance, at an effective stress kPa200'3 =σ  the dilatancy angle of 4% lime treated 

London Clay was 4.2°. An increase in lime content from 4 to 6% also increased the 

dilatancy angle from 4.2° to 71.04° at 7 days curing and to 57.27° at 28 days 

curing. The compaction water content increase did not show a significant effect on 

the maximum dilation angle value which is another important factor to not ignore 
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in geotechnical design and modelling. As expected, the dilation angle of lime 

treated samples decreased with the effective stress increase, suggesting that 

dilatancy may disappear at a high effective stress. It was also observed that the 

maximum rate of dilation in drained tests and the maximum rate of excess pore 

water pressure in undrained tests did not occur at the same strain level as the 

maximum stress ratio in lime treated specimens. This is the expected behaviour of 

cemented geomaterials.  

 

7. Lime addition to London Clay does not have an affect on the ultimate strength or 

the gradient M of the CSL. However, when curing time increased from 7 to 28 days 

for similarly prepared 6% lime treated London Clay specimens, irrespective of the 

compaction water content, the CSL shifted higher indicating the presence of an 

intercept in ( )'pq −  space, but remained parallel to the CSL of the untreated soil at 

a very similar gradient M determined to be between 0.87 and 0.88. In addition, 

regardless of the lime amount, curing time and the compaction water content, an 

overall CSL was drawn and found to be almost at the same gradient M value equal 

to 0.89, lying above the original CSL with a negligible intercept 8 kPa. This 

indicates that no changes are required in critical state design of lime treated soil.  

 

8. Moreover, the parameter csλ  which represent the slope of the CSL in ( )'pv −  space, 

decreases with lime addition: ( )%0csλ  > ( )Dcs 7%4 −λ  > ( )Dcs 7%6 −λ . On the other hand, for 

a curing time increase from 7 to 28 days for 6% lime treatment, the CSL shifted to 

a lower position in ( )'pv −  space, without any major change in the slope parameter 

csλ  value. However, the intercept Γ=λv  which locates the CSL in the 

compression plane was found to vary. This variation is believed to be related to the 

initial specific volume of the specimens. Note that these parameters are usually 

used in critical state numerical modelling. 

 

9. Lime addition to London Clay allowed the expansion of the stable state boundary 

surface where the untreated material subsists. The larger area is bounded by the 

tensile strength envelope as the upper limit and the critical state line as the lower 

limit. No single SSBS was identified for lime treated soil but the stress paths in the 
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normalised space 







ee p
p

p
q

'
','  showed the soil to be stronger due to the 

increasing amount of bonding in the material as compared to the original boundary. 

The expansion of the original boundary observed in the normalised space is due to 

the effect of cementation bonds. The CSL (represented by a point for each mixture) 

was noted to increase with the lime amount. Conversely, the curing time and 

compaction water content did not show a major effect on the SSBS for similar 

material treated with the same amount of lime. More importantly, after the SSBS 

expansion (post-rupture), it was observed that all lime treated soil end points fail on 

or close to the same line at a stress ratio η  equal to 0.87. However, the 

corresponding critical state lines of lime treated specimens were located at a higher 

position than the CSL of the untreated soil. Thus, it is essential to note that these 

points are not on the same boundary surface. 

  

7.2. Practical implications  

 

In the last few decades, there has been an increasing demand in road transportation and 

construction projects as a result of fast growing economy, obliging governments to build 

more roads, highways and construction projects. It would be ideal to find a satisfactory soil 

as it exists in nature; unfortunately such a thing is of a rare occurrence, and building 

structures on unsuitable soil is highly risky, while replacing it with a better material will be 

costly and environmentally damaging. An alternative approach to improve the geotechnical 

parameters of a problematic soil is to use one of several ground improvement methods 

developed in the construction industry. Lime stabilisation is one of the most effective 

ground improvement methods in civil engineering industry, due to its cost effectiveness, 

easy adaptability and its instant beneficial effect on mechanical behaviour of the soil. The 

lime stabilisation technique is routinely applied in a variety of applications, such as road 

foundation, railways, retaining walls reinforcement and bearing capacity soil improvement 

in similar construction projects. It is essential to highlight that the present work was limited 

to a low range of effective stresses, making it attractive to a large variety of problems such 

as shallow foundations assented on improved layers and pavement structures. 
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In order to obtain realistic predictions, the use of appropriate soil models that can 

satisfactorily describe the soil behaviour is necessary. Parameters such as cohesion ( )'c , 

angle of friction ( )'φ , the dilatancy angle ( )ψ  and the void ratio (e) obtained through 

subsequent tests data in a laboratory investigation, as well as other experimental findings, 

are fundamental for the development of suitable constitutive models to predict the 

material’s behaviour in large scale engineering applications. The material’s real behaviour 

can be useful for any numerical modelling and design. Such a framework would assist 

engineers in preliminary design studies and minimise the number of trials needed to 

determine the required lime amount and the curing period.  

 

One important result from the research is the ultimate angle of friction of the treated soil is 

just the same as that of the untreated soil. The SSBS is not fixed in stress space, but it can 

expand due to plastic straining. The practical implication of this concept is that a 

geotechnical design using treated soil could be arrived at so that likely loadings of the 

ground would not result in yielding behaviour, i.e. states of the soil would continue to lie 

beneath the Stable State Boundary Surface and thus excessive deformations of the ground 

would be avoided. One could conclude from the current research that a sensible way 

forward for design of structures on lime treated soils would be to use the ultimate strengths 

for limit state design, but take advantage of the enhancement of stiffness that soil treatment 

delivers. 

 

7.3. Recommendations for further research 

 

The present work provides a conceptual basis and useful sets of data for the development 

of suitable constitutive models describing the features observed for the behaviour of lime 

treated London Clay. In addition, several recommendations can be made based on this 

work in regard to both research and practical applications. In particular, a number of points 

which deserve further investigation were identified: 

 

1. The study on behaviour of lime treated London Clay under drained and undrained 

conditions was performed on isotropically consolidated samples, sheared under a 

constant effective stress ( )'3σ . Further investigation should consider a clockwise 

change of stress path directions in order to identify the complete state boundary 
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surface. For instance, strain controlled triaxial tests at a constant vertical effective 

stress ( )'1σ  and a constant mean effective stress ( )'p  would be of interest to 

research. Also, it is recommended to carry out tests at higher confining pressures in 

order to determine the complete compression parameters needed for constitutive 

modelling. 

 

2. In the laboratory, as a parametric study, it would be interesting to follow the 

investigation by varying the dry density and a wider range of water contents (dry 

and wet of the optimum for each mixture). In addition, tests under saturated 

conditions on lime treated samples cured for 60 days and beyond are needed to 

identify the strength evolution path with time and compare to UU tests results. 

 

3. In addition, tests at microscopic level (SEM) are fundamental to better comprehend 

the complex reactions occurring in lime treated soils and their geotechnical 

properties development. Examining the influences of lime on the molecular 

structure of treated soil through infrared spectroscopy tests can also be useful.  

 

4. It is highly recommended to cure specimens while in the compacting mould to 

eliminate the volume expansion due to rebound and avoid changes in the initial 

void ratio before the start of the triaxial test. Moreover, in order to accurately 

perform data processing, determination of the true post-curing void ratio for lime 

treated specimen is of high importance, therefore more tests such as porosity and 

pore size distribution are a must for tracking the changes that take place in lime 

treated soil.  

 

5. A deeper understanding of the changes occurring in the mineralogy of lime treated 

soil is essential for better interpretation of the modifications in the geotechnical 

properties. Therefore, more XRD tests should be performed on lime treated London 

Clay samples cured beyond 60 days. In addition, XRD tests on lime treated samples 

should be performed under saturated state to identify the newly formed phases and 

the possibility of these phases disappearing during the saturation stage. These 

investigations would be useful to assess the strength evolution and generalise the 

validity of the conclusions derived from the present work. 
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6. The durability of the treated soil is another unknown. For in-situ ground treatment, 

it is necessary to study the behaviour of the lime treated material in the long run. 

The concern over long-term performance stems from questions about whether the 

change in soil structure due to cementation bonding process may be fully or 

partially reversed, and whether some of the engineering properties gained through 

cementation would be lost.  
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Appendix A 

 

A1. 

 

Table A1.1: Indicative data calibration for back pressure transducer of the IC system 

 

Readings Actual values 
calculated 

values 
Error Percent error 

μV N N N % 

-463.89 0.0 -0.942 0.942 0.13 

4568.62 100.0 100.373 -0.373 0.05 

7057.31 150.0 150.475 -0.475 0.07 

9522.56 200.0 200.105 -0.105 0.01 

12004.92 250.0 250.08 -0.08 0.01 

14489.18 300.0 300.092 -0.092 0.01 

16972.8 350.0 350.092 -0.092 0.01 

19453.88 400.0 400.041 -0.041 0.01 

21934.98 450.0 449.991 0.009 0.00 

24421.73 500.0 500.054 -0.054 0.01 

26905.99 550.0 550.067 -0.067 0.01 

29380.12 600.0 599.876 0.124 0.02 

 

 

A2. Determination of the initial air content 

 

The air void is calculated based on the measurements taken at the initial state (as cured), 

but corrected at the end of the test once the dry density and the water content are both 

identified. 

 

Below are the details on how to determine the initial air void for each specimen, by 

following the steps indicated in table A2.1, from initial measurement (as compacted) to the 

final step at the end of the test when the sample is removed and its final water content and 

dry density determined. 
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Table A2.1: Indicative procedure for 6% lime treated LC specimen measurements during each stage 

 

Target Measurement values  

Length          0L   mm  76 

Diameter     0d  mm  38 

Water masse  ( )0waterM  g  33.28 

Dry soil masse  ( )0soilM  g  123.25 

Masse of used wet soil  ( ) ( )000 soilwater MMM +=  g  156.53 

Water content  0w  %  27 

Volume  [ ] 4/0
2

00 LdV ××= π  3
cm  86.19 

Area  [ ] 4/2
00 dA ×= π  2

mm  1134.11 

Bulk density  ( ) ( ) ( )[ ] 0000 /VMM soilwaterb +=ρ  3/ cmg  1.816 

Dry density  ( ) ( ) 000 /VM soild =ρ  3/ cmg  1.43 
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Measurements after compaction 

Measured length (average)  1L   mm  76.46 

Measured diameter (average)  1d  mm  38.05 

Measured volume [ ] 4/1
2

11 LdV ××= π  3
cm  86.94 

Measured area [ ] 4/2
11 dA ×= π  2

mm  1136.52 

Compacted sample masse 1M  g  156.39 

Masse loss (%) ( )[ ]100/100 01 ×− MM  % 0.09 

Corrected water masse ( ) ( ) ( )( )[ ]100/100 %01 lossMM waterwater −×=  g  33.25 

Corrected soil masse ( ) ( ) ( )( )[ ]100/100 %01 lossMM soilsoil −×=  g  123.14 

Corrected dry density ( ) ( ) 111 /VM soild =ρ  3/ cmg  1.42 

Corrected bulk density ( ) 111 /VMb =ρ  3/ cmg  1.80 

Corrected water content ( ) ( )[ ] 100/ 111 ×= soilwater MMw  %  27.00 

Soil specific gravity ( )soilSG  -  2.76 

Soil-Lime specific gravity ( )esoilSG lim+  - 2.74 
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Measurements after curing (28 days) 

Measured length (average)  2L   mm  77.14 

Measured diameter (average)  2d  mm  38.28 

Corrected volume 2V  3
cm  88.78 

Corrected area 2A  2
mm  1150.89 

Masse after curing 2M  g  156.39 

Corrected water masse ( ) ( ) [ ]2112 MMMM waterwater −−=  g  33.25 

Corrected soil masse ( ) ( )12 soilsoil MM =  g  123.14 

Corrected dry density ( ) ( ) 222 /VM soild =ρ  3/ cmg  1.39 

Corrected bulk density ( ) 222 /VMb =ρ  3/ cmg  1.76 

Corrected water content ( )( ) ( )[ ] 100/ 2222 ×−= soilsoil MMMw  %  27.00 
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Quantified initial values  

Degree of saturation ( ) ( ) ( )( )[ ]blswlsbr wGGwS ρρρ −+××××= ++ 220 1/   - 0.76 

( ) ( )[ ]020 / rls SGwe +×=   - 0.98 

( )[ ] 1/ 20 −= + dlsGe ρ   - 0.98 

( )[ ] 1/ 220 −×= + soills MVGe   - 0.98 
Void ratio 

( ) ( )( )2exp00 /1 VVeee ansionsat ×+−=   - 1.07 

[ ] watersoilair VVeV −×= 0   
3

cm  10.59 

( )2waterwater MV =  3
cm  33.25 

waterairsoil VVVV −−= 2  3
cm  44.94 

Air volume 

( ) ( )[ ] [ ]0020 1/1 eVeVeV waterair +×+−×=  3
cm  10.59 

Water volume used for 
saturation ( )satgaugeV   3

cm  14.85 

Sample volume expansion ( ) airsatgaugeansion VVV −=exp  3
cm  4.27 

Final saturated sample volume ansionfinal VVV exp2 +=  3
cm  93.05 

Consolidated values 

Water volume used for 
consolidation  ( )congaugeV  3

cm  14.66 

Volume change ( ) ( )congaugesatgaugec VVV −=∆  3
cm  0.2 

Consolidated sample’s volume cfinalc VVV ∆−=  3
cm  92.85 

( ) ( )[ ] 1/ 2 −×= + soilclsc MVGe  -  1.07 
Consolidated void ratio 

( ) ( )( )
finalcsatsatc VVeee /1 ∆×+−=  -  1.07 
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After Shearing process  

Wet masse after removal 3M  g  170.48 
Sample masse 

Dry sample masse 4M  g  123.56 

Final water content ( )[ ] 100/ 443 ×−= MMMw f  %  37.97 

Initial water content  ( )[ ] 100/ 442 ×−= MMMwi  %  26.57 

Initial water volume ( ) ( ) [ ]42 MMMV wateriwateri −==  3
cm  32.83 

Initial bulk density  ( ) ( )[ ] 24 /VMM wateriib +=ρ  3/ cmg  1.76 

final bulk density  ( ) cfb VM /3=ρ  3/ cmg  1.84 

Initial dry density  ( ) 24 /VMid =ρ  3/ cmg  1.39 

Corrected values / Used for data processing 

Initial degree of saturation ( ) ( )( ) ( ) ( )( )[ ]ibilswlsiibir wGGwS ρρρ −+××××= ++ 1/   - 0.75 

Final degree of saturation ( ) ( )( ) ( ) ( )( )[ ]fbflswlsffbfr wGGwS ρρρ −+××××= ++ 1/   - 0.98 

 Initial void ratio ( ) ( ) ( )[ ]irlsii SGwe /+×=   - 0.97 

Initial air volume ( ) ( )( ) ( )( ) ( )[ ] ( )[ ]iwateriiiRair eVeVeV +×+−×= 1/12  3
cm  10.86 

Real expanded volume ( ) ( )Rairsatgaugeansion VVV −=exp  3
cm  4.00 

Saturated volume ( ) ( ) ( )RairsatgaugeRsat VVVV −+= 2  3
cm  92.78 

Saturated void ratio ( ) ( ) ( )( ) ( )( )2exp /1 VVeee ansioniiRsat −×+−=  - 1.06 

Consolidated volume ( ) ( ) cRsatRc VVV ∆−=  3
cm  92.58 

( ) ( )( )[ ] 1/ 4 −×= + MVGe RclsRc  -  1.05 
Consolidated void ratio 

( ) ( ) ( )( ) ( )( )( )RsatcRsatRsatRc VVeee /1 ∆×+−=   - 1.05 
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Appendix B 

 

B1. Applied corrections to triaxial data 

 

• Water content and dry density corrections  

 

Due to post curing mass change and volume expansion of lime treated London Clay samples, 

a method was developed in order to quantify the pre-curing water content and dry density, as 

well as the post-curing water content and its related dry density, which results in identifying 

the void ratio of lime treated specimen prior to subjecting the specimen to triaxial testing. 

(See form A2.1/ Appendix A) 

 

• Length and diameter correction 

 

cl  is the consolidated length obtained from the post-curing samples’ length 0l and the average 

axial displacement change ( )cxl measured by the two internal axial strain transducers at the end 

of the consolidation stage. 

 
±= 0llc ( )cxl  

 
Similarly, the length at the start of the split line splitl  is determined by using the internal axial 

instrumentation as follow. 

 

( )splitxsplit lll ±= 0  

 

cd  Is the diameter of the specimen at the end of the consolidation stage, it is identified from 

the initial samples’ diameter 0d  and the radial displacement measured by the internal radial 

strain transducer ( )cxd  from the start of the test to the end of the consolidation stage. 

 

( )cxc ddd ±= 0  
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Similarly, the diameter at the start of the split line splitd  is determined by using the internal 

axial instrumentation as follow. 

 

( )splitxsplit ddd ±= 0  

 
Where ( )splitxd is the radial displacement measured by the internal radial strain transducer from 

the start of the test to the start of slip line. 

 

• Volume change corrections  

 

Providing that there is no leakage in the system and the back pressure line is allowed to 

expand overnight prior to Triaxial testing, no other correction should be necessary. However, 

the amount of water moving into the sample during the saturation process does not necessarily 

correspond to the total volume change of the specimen. The air bubbles contained initially in 

the samples are absorbed into the flowing water during saturation, occupying the air voids 

space while the back pressure is gradually raised to form one solid block. Hence, the 

movement of water into or out of specimen from the back pressure system is not a true 

measure of the volume change of the specimen. 

 

The volume change can be determined using measurements of axial and radial strain 

instrumentation mounted directly on the specimen, this technique should give more or less an 

accurate value of sample volume change during saturation / consolidation as indicated by 

Cabarkapa, (2001). However, it has proved difficult in this study to rely on this technique 

during the shearing process of lime treated London Clay, due to the internal instruments 

dislocating from their position or reaching the maximum set limit long before achieving the 

20% axial strain target. Experience has shown that it generally happens after the peak (failure 

surface), particularly for highly brittle specimens, which is found to oscillate between 5 and 

10% axial strain. Therefore, the most reliable instrument for volume change measurement in 

this study was found to be the Imperial college volume gauge. A methodical procedure was 

developed, and consistently applied during this work in order to determine, prior to the test, 

the approximate amount of initial air void airV  contained in each specimen. This in turn is 

taken in consideration during the volume change correction (See table A2.1 / Appendix A).  
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• Area correction  

 

Two types of failures were observed on the tested specimens during the shearing process, 

namely ductile failure for statically compacted London Clay samples (Barrelling) and brittle 

failure for artificially cemented London Clay samples (failure surface). The area corrections 

proposed by Head (1986) were adopted for the two failure modes. 

 

The correction to apply for the deviator stress value due to the increasing area caused by the 

barrelling at an increasing axial strain is:   

 

( ) 








−

−
=−=

(%)100
(%)100

31
v

a

cA

P
q

ε

ε
σσ   

 
p : Applied shearing load ( )kPa  

cA : Sample’s consolidated area ( 2
mm ) =

c

c

l

V
, where cV  is the consolidated volume 

aε : Axial strain ( )%  

vε : Volumetric strain ( )%  

 

If failure occurs by single slipping along the sheared surface, the effective plan area decreases 

during shearing process as indicated by Head, (1986) (See figure B1.1) 
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Figure B1.1:   Area correction due to single-plane slip: (a) mechanism of the slip, (b) area of 

                            contact between the two portions of the sample, (c) projected area of contact, 

                                       (d) displacement along slip surface related to vertical deformation (after Head, 1986) 

 

 

This can be calculated using the expression given by Chandler, (1966) namely: 

 

( )

( )

( )βββ
π

cossin
2

0

−=
slip

xslip

A

A
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Where: 

 

( )0slipA : Area of the sheared sample at the start of the slip line 

( )xslipA : contact area at any axial displacement during the slip 

 

( ) θεβ tancos slipa

slip

slip

d

l
=  

 
( )θ  Is the inclinaison of the slip surface relative to the sample axis, ( )( )

slipaε  is the axial 

strain measured from the start of the slip, ( )
slipl is the length of sample at the start of slip, 

and ( )
slipd  is the diameter at the start of the slip. Note that the internal axial and radial 

instrumentation were used to identify the approximate length and diameter of the 

specimens at / or close to the start of the slip line. 

  

• Membrane correction  

 

Chandler, (1968) investigated the effect of membrane stretching in shear plane failure and 

concluded that soils such as stiff clays and artificially cemented soils, which exhibit a high 

strength, shows a considerable drop in strength when slip plane develops. These materials 

are not likely to be influenced by the membrane restraint effect, this was found to be 

insignificant, therefore it was neglected in data analysis. Moreover, as recommended by 

Molenkam & Luger (1981) and due to the observed smoothness on all lime treated 

specimen’s external surfaces, the effect of penetration membrane into the voids between 

particles at the interface in volume change is negligible. 

 

B2. Main formulae used  

 

For compacted sample, the post-curing void ratio ( )0e was determined based on the 

following formulae 

 
( )

1
1*

0

0
0 −

+
=

b

s wG
e

ρ
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Where: 

 

0w  is the post-curing water content, determined through the method previously described 

in section B1 and referred to as 2w  in table A2.1. 

 

0

0
0

V

M
b =ρ  is the post-curing bulk density determined through the ratio of the post-curing 

mass 0M  over the post-curing total volume 0V of the sample (Note that 0M and 0V are 

referred to as 2M  and 2V in table A2.1) 

 

The saturated void ratio ( )se  was determined using the following formulae 

 

( ) 






 ∆
+−=

0
00 *1

V

V
eee sat

s  

 

satV∆ , is the measured volume change at the end of saturation stage based on the recorded 

IC volume change gauge ( )satgaugeV , less the initial air volume of the sample airV . It is worth 

noting that the pressure applied to the triaxial cell has a negligible effect on the volume cell 

expansion due to the low pressure applied during this experimental work. Thus, it was 

considered to be constant during the whole test. In addition, the system is pressurised for 

several hours overnight prior to the specimen being installed. Therefore, the specimen 

volume expansion during saturation stage is calculated based only on the measured IC 

volume change and the initial air void.  

 

( ) airsatgaugesat VVV −=∆  

 
The consolidated void ratio ( )ce  was also calculated using the equation below 

 

( ) 






 ∆
+−=

0
00 *1

V

V
eee con

c  

 

conV∆  is the measured volume change at the end of the consolidation stage, equal to the 

recorded IC volume change gauge ( )congaugeV , less the initial air volume of the sample airV . 
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( ) aircongaugecon VVV −=∆  

 
Axial strain ( )aε  calculation during shearing stage is directly related to the ratio of the 

axial length change ( )l∆  measured from the external axial displacement, over the pre-

shearing length of the sample, which in this case is the consolidated length ( )cl , presented 

by the following formulae. 

 

c

a
l

l∆
=ε  

 
The volumetric strain ( )vε  during shearing stage is determined using the IC volume 

change gauge, and based on the ratio of the measured volume change V∆ over the 

specimen’s total volume at the end of the consolidation stage cV . 

 

c

v
V

V∆
=ε  

 

cV  is calculated by adding the recorded water volume from the IC volume gauge at the end 

of consolidation stage ( )congaugeV , to the initial volume 0V , less the sample’s post-curing air 

volume airV . 

 

( ) aircongaugec VVVV −+= 0  

 
The shear strain of lime treated / untreated London Clay sample ( )sε  was identified based 

on the following formulae. 
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