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Abstract: Drowsiness when in command of a vehicle leads to a decline in cognitive performance
that affects driver behavior, potentially causing accidents. Drowsiness-related road accidents lead to
severe trauma, economic consequences, impact on others, physical injury and/or even death. Real-
time and accurate driver drowsiness detection and warnings systems are necessary schemes to reduce
tiredness-related driving accident rates. The research presented here aims at the classification of
drowsy and non-drowsy driver states based on respiration rate detection by non-invasive, non-touch,
impulsive radio ultra-wideband (IR-UWB) radar. Chest movements of 40 subjects were acquired for
5 m using a lab-placed IR-UWB radar system, and respiration per minute was extracted from the
resulting signals. A structured dataset was obtained comprising respiration per minute, age and
label (drowsy/non-drowsy). Different machine learning models, namely, Support Vector Machine,
Decision Tree, Logistic regression, Gradient Boosting Machine, Extra Tree Classifier and Multilayer
Perceptron were trained on the dataset, amongst which the Support Vector Machine shows the best
accuracy of 87%. This research provides a ground truth for verification and assessment of UWB to be
used effectively for driver drowsiness detection based on respiration.

Keywords: drowsiness detection; respiration rate; physiological signals; machine learning; ultra-wideband

1. Introduction

Drowsiness is a state of tiredness that results in heavy eyelids, daydreaming, rubbing
of eyes, loss of focus and yawning. Drowsiness is one of the main causes of fatal crashes.
According to a recent investigation, 1 million people have died in road accidents [1], 30% of
which have been caused by driver fatigue or drowsiness [2]. The chances of having a crash
are three times higher if the driver is fatigued [3]. According to the American Automobile
Association (AAA), there were 328,000 drowsy driving crashes annually, costing 109 billion
USD to society, excluding property damage [3]. During a 4 or 5 s bout of driver inattention,
a vehicle can almost cover the length of a football field before stopping [3]. Reports reveal
that night-shift male workers and people with sleep apnea syndrome are at the highest risk
of becoming drowsy during driving [4]. Research investigations have been published that
proposed methods to counteract or alert drivers about potential signs of drowsiness [5–10].

Drowsiness detection systems are divided into three main categories: vehicle dynam-
ics, physiological signals and driver facial characteristic recognition [5]. Performance of
the vehicle dynamics-based drowsiness detection systems is low due to the impact of
unpredictable factors such as road geometry, slow processing speed and traffic [5], and
additionally, head movement. Yawning and blinking extracted from the driver facial
images have shown promising results in controlled or virtual environments [5]. In a real
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environment, the performance of these systems decreases due to the impact of factors such
as light variations, skin color and temperature, etc. [5].

On the other hand, systems using physiological signals gave accurate results that
make them a reliable approach to use in the real environment [5]. Physiological signals such
as electroencephalography (EEG) [11–13], electrooculography (EOG) [13–15], respiration
rate [16], electrocardiography (ECG) [17–19] and electromyography (EMG) [20,21] signals
are frequently highlighted in driver drowsiness detection systems. However, most of these
signals are acquired using invasive sensors, making them hard to integrate or employ in real
environments. The respiration system undergoes significant changes from wakefulness to
sleep and varies based on different physiological conditions. However, the respiration rate
is the least-measured vital sign due to uncomfortable nature of respiration rate acquiring
methods [22]. Breathing during sleep is affected by a reduction of muscular tone and the
alteration of chemical and non-chemical responses [23]. Respiration rate usually decreases
before the driver falls asleep [24–26].

The research presented in this manuscript aims towards the detection of driver drowsi-
ness by non-invasively acquiring chest movement with impulse radio ultra-wideband
(IR-UWB) radar. Impulse radio ultra-wideband (IR-UWB) radar is an evolving technology.
It was first used by the US army in 1973 and commercialized by the Time domain and
Xtreme Spectrum companies in the late 1990s [27,28]. USA-based Federal Communication
Commission (FCC) allocated a bandwidth of 7.5 GHz for UWB signals [27]. This band-
width covers a frequency of 3.1–10.6 GHz, and a signal is considered as UWB if that has a
bandwidth of 500 MHz [27]. UWB signals have high data rates and low power transmission
levels, producing high bandwidth signals due to the transmission of very short duration
pulses. IR-UWB radar transmits up to 10 million nano-pulses per second to gather valuable
information that enables the detection and monitoring of micro-movements and vibrations
such as breathing and heartbeats. The IR-UWB radar does not raise any privacy issues
and is not affected by environmental factors as it has no light or skin-color dependencies.
Radar does not have any harmful effect on the human body as the emission power of the
IR-UWB radar is extremely low (limited to −41.3 dBm/MHz) [29–31]. Additionally, this
system does not suffer in the presence of Wi-Fi and mobile phone signals. IR-UWB radar
has advantages over other existing tools due to its non-intrusive, non-tackling capabilities
and its potential to penetrate through different materials or obstacles [32,33]. Various
investigations have been performed on UWB-based wireless sensing devices to detect
vital signs for health care applications [33–36]. To the authors’ best knowledge, there is no
current system to detect drowsiness using data-analysis techniques based on UWB. In this
method, the respiration rate is estimated from the acquired chest movement, and a dataset
is maintained along with age and labels of drowsy/non-drowsy. Different ML algorithms
are trained and evaluated on the dataset.

The rest of this article is organized as follows. Related work is discussed in Section 2.
Section 3 presents the experimental methodology. Results and Discussion are provided in
Sections 4 and 5, respectively.

2. Related Work

In recent years, several respiration-monitoring methods for drowsiness detection
have been introduced. A driver drowsiness detection system was proposed by [37] using
respiration signals acquired by a pulse oximeter. The respiration signal is obtained in
pre- and post-driving states of 150 professional male drivers. During the experiments,
classification accuracy using Daubechies wavelet at decomposition level 3 (CA3) and
classification accuracy using DMeyer wavelet at decomposition level 4 (CA4) showed 100%
accuracy using MIN, MAX, Mean and Mode features.

In [38], a non-invasive method was presented that acquires breathing rate using two
high-dynamic cameras, PAC16 and FRCAM, to detect driver drowsiness. Five males with
ages ranging between 28 and 38 years took part in the data collection process. The subjects’
respiration signals in normal conditions and when sleep deprived (24 hours without sleep)
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were acquired during a 1 h and 40 m driving simulation. The experiment was conducted
in a controlled environment to reduce noise in the data collection process. The videos were
recorded using cameras and were converted to frames. Histogram equalization was applied
to increase global contrast to control lightning conditions in an outdoor environment. Noise
filtering and image stabilization were applied to counteract the effects of motion during
vehicle driving. Frame-differentiation-based techniques were applied to quantify motion
level, and the image was subsequently segmented in regions where motion is detected.
Non-periodic signals were discarded after analyzing the motion signals of each image
segment. A short-term Fourier transform was applied over the motion signals to calculate
the respiration rate.

An optical imaging technique is used to acquire physiological signal brainwave, car-
diac and respiration pulses for fatigue detection in [39]. Driver’s facial images are captured
using an Infrared (IR) camera placed on the dashboard. Physiological signals, heart rate
(HR), heart rate variability (HRV) and respiration are also acquired from captured images
using photoplethysmography (PPG) as acquired by [40]. PPG is an optically obtained
plethysmogram that can be used to detect blood volume changes in the microvascular
tissue. Viola–Jones algorithm was used to detect the face region [41]. PPG extracts blood
volume pulse (BVP) from a sequence of facial images [42]. The HRV was acquired from
BVP by applying a Butterworth filter of window size 15 and bandwidth of 0.75–4 Hz.
Respiration rate was acquired from the center of frequency of HF that was in between
0.15–0.4 Hz of HRV power spectrum density (PSD). These extracted facial and physiological
features are subsequently fed into multiclass SVM [39].

Facial thermal imaging respiration analysis was proposed in [43] to detect driver
drowsiness. Respiration causes temperature changes under the nostrils which was detected
by thermal imaging. The respiration region was detected by the geometrical features of
the face, and then a target tracker was used to track this region in subsequent frames.
In this study, the respiration region was detected in the first few seconds of the thermal
image sequence. To obtain an accurate respiration region, the driver’s head should not
make any rapid movements during the first 5 s of the thermal imaging process. Noise was
eliminated by applying a fourth-order Butterworth low-pass filter with a cut-off frequency
of 0.6 Hz. Two machine learning models, SVM and KNN, were used with the fusion of
all extracted features; SVM showed 90% accuracy, which is better than the accuracy (83%)
showed by KNN.

Multiple Physiological signals, including oximetry pulse (OP), skin conductance (SC)
and respiration signals, were acquired for fatigue detection by tagging respective sensors
of the Nexus-10 [44]. Ten random drivers of taxies, lorries, luxury buses and trucks were
selected for this study. The physiological signals of those drivers were recorded at a
sampling rate of 256 Hz for 3–5 m before driving in the morning and after covering a
distance of 500–600 km in a day. A median filter with a window length of 200 and a
bandpass filter with a cut-off frequency of 200 Hz were applied to remove the baseline drift
and noise, respectively. Hilbert–Huang transform (HHT) was used to remove ECG and
EEG signals from the recorded signals. A Linear combination of the number of intrinsic
mode functions (IMF) was acquired by decomposing the processed signals. Six features,
namely, mean of the signals, maximum of the signal, standard deviation of the signals
and mean, maximum and standard deviation of frequency, are extracted after dividing
the signal into half-second frames. A scatter plot shows the inseparable overlapping of
some features, and classification is performed by random forest (RF). The dataset is divided
into 67% training and 33% testing data. RF combined with HHT gives an accuracy of 99%
which is higher than MLP (93%) and SVC (70%).

A heart and respiration rate acquired using a safety belt for driver state recognition
is presented by [45]. A textile cover for the seat belt comprising of an optical sensor and
magnetic induction (MI) system is validated using ECGs and a piezoelectric sensor. It
is observed during experiments that the proposed system gives better monitoring of the
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respiration rate but produces high-frequency signal noise that makes monitoring of heart
rate difficult during inspiration.

The system proposed by [46] employed respiration rates derived from ECG signals
for drowsiness detection. A portable fingertip pulse wave sensor placed on the left index
finger was used to collect the acceleration pulse wave, which was very similar to the heart
rate (can be considered as a heart rate signal). A non-intrusive driver fatigue detection was
proposed using Continuous-Wave (CW) Doppler radar in [47]. CW radar placed on the
car dashboard was used to acquire driver respiration and heart rate. The collected heart
and respiration rate signals were segmented into 60-second frames. A total of 240 data
points were collected, and seven features in the frequency and time domains are extracted.
A decision tree with an accuracy of 82.5% was used for classification purposes because it
can easily process non-linear characteristics between values [48].

A driver drowsiness detection system based on respiration rate acquired using an in-
ductive plethysmography belt is proposed in [49]. A system using HRV derived respiration
measures to detect driver drowsiness using a wearable ECG device (Polar H7) is presented
in [26]. RR-intervals (RRI) data with constant time intervals at the sampling rate of 0.5 s
is acquired by performing Cubic interpolation. High frequency (HF), low frequency (LF),
LFHF ratio and VLF power are used in predicting a drowsy state of the driver. Random
forest (RF), KNN and SVM, are used to verify the usefulness of the drowsiness detection.
SVM shows better accuracy among these three models.

According to the literature, the the vast majority of systems developed over the recent
and past years employing physiological signals to identify driver drowsiness used invasive
or on-body sensors. Invasive sensors can be utilized in virtual or controlled situations
but cannot be employed in the actual environment since they cause driver distraction or
discomfort while driving and consequently collect unrealistic data. As a result, a non-
invasive, non-camera-based method for gathering physiological data that can be used in
the real environment to detect drowsiness is required.

3. Materials and Methods

Real-time data collection and preprocessing is a key aspect in the development of
any system that promotes safety and warning attributes. During the experimental process
of data collection, the X4m300 ultra-wideband (UWB) radar (NOVELDA, Oslo, Norway)
shown in Figure 1 was used. The UWB radar operates on the X4 system on chip (SoC)
at the unlicensed center frequencies of 7.29 GHz or 8.748 GHz operating at bandwidth
1.4/1.5 GHz(−10 dB), with a configurable frame size [50]. UWB radar has excellent
resolution range due to its nanosecond pulse transmission [51].
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Figure 1. X4m300 UWB radar.

The sensor is powered by XeThru X4 UWB chip. The detection zone is adjustable up
to 9.4 m with a detection time of 1.5 to 3.5 s [52]. Specific Absorption Rate (SAR) radiated
by the radar is well below the limit value established by International Commission on
Non-Ionizing Radiation Protection (ICNIRP) for the general population both for the SAR
as averaged over the whole body and over 10 g [53].

Maintaining the boards default settings, the built-in firmware generates baseband
signal covering distance of 9.4 m starting from 0.18 m. This distance is divided into 181 bins
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with bin length of 0.0514 m. Considering driver sitting position from dashboard, the
effective range in the case of the presented manuscript is taken from within 0.2–1.6 m. The
corresponding bins to this effective range are starting from second bin at 0.282 m to 28th
bin at 1.569 m. The total number of bins in effective range is 27, as shown in Figure 2.
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A Frame Counter is supplied with the baseband data. The Frame Counter increases by
1 for each radar frame that is output from the X4 UWB radar SoC. The frame counter size is
2ˆ32. The frame counter wraps to 0 when it reaches the maximum, and a reset of the X4
UWB radar SoC or a power toggle of the sensor module will reset the frame counter [54].

The inhaling process extends the upper body, and the distance between the radar
and human chest body decreases accordingly, while exhaling enacts the opposite. The
energy intensity (amplitude) of electromagnetic wave decreases if it travels longer distance.
When the distance between radar and the body is shorter, the received signal has higher
energy (amplitude) as compared to the radar signals that travel over a longer distance.
This phenomenon is reflected in the plot shown in Figure 2 by increasing (inhaling) and
decreasing (exhaling) in amplitude at a specific distance corresponding to the target location
with respect to the radar. These amplitude values of the received signal are stored in a
matrix of 6000 rows and 27 columns. The number of rows depends on the time for which
the radar scans, in this case, presented 6000 rows for 5 min scan and columns/bins represent
distance with column/bin length is 0.0514 m.

Let the whole curve f(x) shown in Figure 2 be limited to two extreme points, ‘a’ and
‘b’. The area under the curve shown in Figure 2 is calculated using Trapezoidal rule. The
area value with unique frame (sample) number becomes the single point of the curve
shown in Figure 3.
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Number of frames in 1 s = 20.
Number of frames in 1 min = 1200.
Total number of frames in 5 min = 5 × 1200 = 6000.
These 6000 values of the area cover under the curve of each radar sample data relate

to respiration, heartbeat and noise that includes eyeblink, eyeballs movement and other
ambient movements that present in the effective range of radar for the whole 5 min duration
and stored in a vector A as shown in Figure 3.

The frequency spectrum of vector A is obtained by taking Fourier transform as shown
in Figure 4. The frequency of signal acquired from UWB lies between 0 and 10 Hz, as
shown in Figure 4.
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Figure 4. Fourier transform of noisy signal.

The maximum frequency of respiration rate of an adult is 0.4 Hz [55–58]. A filter with
a cut-off frequency of 0.4 Hz is required to acquire the respiration rate. In our case, when
we take the normalized frequency, the cut-off frequency 0.4 Hz maps to 0.04.

Thus, a respiration signal is extracted by applying a tenth order low-pass Butterworth
filter with a cut-off frequency 0.04 to the normalized spectrogram of the radar data fre-
quency shown in Figure 5, removing the higher frequency noise with the outcome shown
in Figure 6.
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Figure 6. Respiration signal.

Finding the number of peaks and subsequently dividing this with number of durations
in minutes provides a respiration rate per minute (RPM).

The RPM derived from the UWB-radar-acquired chest movement was validated using
a commercially available pulse oximeter device, as shown in Figure 7. Three individuals
were chosen for the validation experiment that includes one male and two females between
the ages of 25 and 30 years. The individuals were instructed to sit comfortably on a chair
facing the radar, with the pulse oximeter attached to the index finger of their left hand.
Each subject’s chest movement was recorded twice, both times for 1 min. Table 1 shows the
results validating the Extracted RPM using the proposed technique with the commercially
available pulse oximeter. Table 1-column-3 values are taken from pulse oximeter and
are merely used as a gold standard to compare with. Table 1-column-4: the RPM values
extracted by the proposed algorithm using UWB.
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Table 1. Validation results.

Subject Test Time Respiration Acquired by
Pulse OXIMETER

Respiration Acquired by
Proposed IR-UWB Method

Subject 1 09:57–09:58 15 15
11:03–11:04 18 18

Subject 2 10:05–10:06 16 16
11:09–11:10 17 17

Subject 3 10:11–10:12 21 21
11:17–11:18 12 12

Forty professional male drivers commonly carrying out long intercity driving hours
(10 h approx) were selected for this experiment. For non-drowsy data collection, chest
movement was acquired before driving in late evening, and for the drowsy data, the same
subject’s respiration data were acquired immediately after they finished their arrival from
a 10 h driving shift. During the data collecting procedure, drivers were encouraged to
position themselves in front of the radar. To ensure that drivers were assessed as soon
as they arrived from their journey, a test bed was set up in an empty room at Manthar
Transport Company’s terminal, Sadiq Abad, Punjab, Pakistan. Ethical approval for this
work was sought and approved by the Khwaja Fareed University of Engineering and
Information Technology. Each participant was presented with the investigation, the data
collection process, the experiments to be carried out and provided with a consent form
that was read through with them. Participants were requested to sign the consent form
to take part in the experiments. A minimum of 1 m distance between the radar and the
subject at the subject’s chest level was maintained, as shown in Figure 8. The radar can
cover 9.4 m distance from an object to the radar transmitter–receiver point. Within this
range, any movement can be captured. The 1 m distance is chosen on the assumption that
driver could be anywhere within this range while driving. With the system placed in or
around chest level, the subject should be in front of the effective radar range; in practical
implementation, it could be 0.2 m–0.5 m (distance from dashboard to human body).
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Figure 8. Subject sitting in front of the radar.

The chest movement of each participant was recorded for 5 m using the radar before
and after 10 h drive and RPM (average respiration rate of 5 m) is extracted by the proposed
method. The RPM, along with the subject’s age and labels, i.e., non-drowsy and drowsy,
was stored in a CSV file. Figures 9 and 10 show raw respiration signals from the first
minute in drowsy and non-drowsy states.
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Figure 10. Radar signal for non-drowsiness.

Driver movements do not affect the performance of the proposed system. To ensure
the above fact, an experiment was performed in a real driving environment; participants
were asked to drive the car at various speeds, the Video S1 can be seen in the Supplemen-
tary Materials.

A pulse oximeter (encircled blue) was attached to the subject’s left index finger while
driving, and radar (encircled red) was mounted on the dashboard, as shown in Figure 11.
Six male subjects participated in this experiment, and data is recorded from pulse oximeter
and radar parallelly while driving in real environment. The respiration rate calculated
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from chest movement recorded during driving is validated using a pulse oximeter, and the
findings are given in Table 2.
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Table 2. Results of experiment conducted in real environment.

Subject Respiration Rate Acquired
by Pulse Oximeter

Respiration Rate Acquired from Chest
Movement by Proposed Method Car Speed in kms/Hour

Subject_1
15 16 20

17 17 40

Subject_2
19 18 20

17 18 40

Subject_3
16 17 60

15 15 45

Subject_4
17 18 20

16 16 30

Subject_5
19 18 60

19 20 50

Subject_6
17 17 50

19 19 20

It is evident from Table 2 that the RPM difference between pulse oximeter and radar is
0.58. This shows, the driver moment is not largely affected, since every periodic movement
has a certain frequency, e.g., blinking eyes, eyeball movement, heart rate, respiration rate,
even the posture or body movement do not affect the data collection as they occur at
frequency bands outside the spectrogram frequency of interest.

In order to investigate automated drowsiness detection and optimize outcomes, various
machine learning models suited for these types of data sets were implemented and compared.

3.1. Support Vector Machine (SVM)

SVM is a supervised ML model that uses kernel tricks to transform dataset. An
optimal boundary is set between outputs based on these transformations. This model can
be used for both regression and classification [59]. Three main parameters used in this
manuscript to tune SVM are given in Table 3.
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Table 3. Parameters used to tune classifiers.

Classifier Values of Parameters Used during Training in This System

SVM Kernel = ‘linear’, c = 1.0, gamma = ‘scale’, degree = 3

DT
Criterion = ‘gini’, splitter = best, maximum depth of tree = none, minimum number of samples = 2,
minimum required leaf nodes = 1, random states = none, maximum leaf nodes = none, minimum

impurity decrease = 0.0

ETC Number of estimators/trees = 100, criterion = entropy, minimum number of samples = 2, maximum
number of features to consider during classification = auto

GBM Loss = deviance, number of estimators = 100, criterion = friedman_mse, minimum number of
samples = 2, minimum samples to be a leaf node = 1, maximum depth = 5

LR Penalty = L2 regularization (ridge regression), solver = liblinear, maximum iteration = 100

MLP Hidden layers = 2, neurons = 100 for each layer, epochs = 700, activation = ‘relu’, loss_function =
‘stochastic gradient’, solver = ‘adam’

3.2. Decision Tree (DT)

DT is a supervised ML model used in classification problems that can accommodate
numerical and categorical data, building models in the form of trees. This model divides
the dataset into small subsets, and a decision tree is incrementally developed. Finally, a
tree with decision and leaf nodes is formed. Decision nodes can have two or more than
two branches, while leaf nodes represent a decision/prediction [60]. The parameters that
are used to tune the classifier are given in Table 3.

3.3. Extra Tree Classifier (ETC)

Extra tree classifier is an ensemble ML model. It creates a large number of DTs from
training data. Predictions are made by majority voting in classification and averaging the
prediction in regression data. ETC randomly samples the features at split point of each decision
tree [61]. The tuning parameters of ETC used in this manuscript are given in Table 3.

3.4. Gradient Boosting Machine (GBM)

A method of converting weak classifiers into strong classifiers is called boosting. In
boosting, a new tree is trained on the modified version of original data. GBM makes
decision trees in an additive, sequential and gradual manner. It finds the shortcomings of
weak decision trees based on the gradients in the loss function as shown in equation.

y = ax + b + e

where ‘e’ is the error term in this equation.
The Loss function is the difference between an actual and predicted value and indicates

how good a model is performing on a given dataset [62]. Parameters that are used to tune
the GBM classifier are given in Table 3.

3.5. Logistic Regression (LR)

LR is an ML model based on probability. It is also known as linear regression but
uses a complex cost function called Sigmoid function. LR limits its cost function between
zero and one. Sigmoid function maps any real value between 0 and 1. Mathematical
representation of Sigmoid function is given in equation below. It gives an S-shaped curve.

g(x) =
1

1 + e−x

LR returns output class based on the probability when an input is passed through the
prediction [63]. Three main parameters used to tune the LR are given in Table 3.
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3.6. Multilayer Perceptron (MLP)

MLP is a fully connected multilayer neural network that is composed of generally
three layers, namely, input layer, hidden layer and output layer. Hidden layers could be
more than one, known as deep neural network. The input layer is the lowest layer that
receives data from a data set. The neural network is drawn with one neuron per input
value or column in a dataset as an input layer. Hidden layers receive a set of weighted
inputs and generate output through an activation function. Output layer is responsible for
generating a value or vector of values that matches the format required by problem.

Different parameters were used to tune the ML models and parameters where the
models were generalized are tabulated below.

4. Results

A structured dataset was formed with RPM (average respiration rate) and age of subjects
(drivers) along with labels (non-drowsy, drowsy). The data set was divided into training and
testing sets in 70% and 30% ratios, respectively. The test data set that was kept unknown to the
model was set aside for evaluating the classifier. Different supervised ML algorithms including
SVM, DT, ETC, GBM, LR and MLP were used for classification of data.

A 15-fold cross-validation was used for training to tune the hyperparameters of the
classifiers. The non-standardized feature vector comprising RPM (average respiration rate
of 5 m) and age were fed as input to the ML models to classify into labels (drowsy or
non-drowsy). Subsequently, ML models were evaluated on previously split test data. The
accuracy of ML models that is shown in Table 4 was computed from the predictions made
on test data by using the following formula.

Accuracy =
TP + TN

TP + TN + FP + FN
× 100

where
TP = the subjects correctly identified as drowsy while subjects were actually in drowsy state.
TN = the subjects correctly identified as non-drowsy while subjects were actually in

non-drowsy state.
FP = the number of subjects incorrectly identified as drowsy while subjects were

actually in non-drowsy state.
FN = the number of subjects incorrectly identified as non-drowsy while subjects were

actually in drowsy state.

Table 4. Accuracies of classifiers.

Classifier Accuracy Precision Recall F1 Score

SVM 87% 0.86 0.88 0.86
LR 70% 0.68 0.69 0.68

GBM 62% 0.59 0.59 0.59
ETC 70% 0.68 0.69 0.68
DT 62% 0.59 0.59 0.59

MLP 70% 0.68 0.69 0.68
Threshold 18.5 87% 0.73 0.75 0.73

The findings in Table 4 reveal that SVM outperformed other ML models, indicating
that SVM is a more generalized approach. Tree-based ensemble learning methods like ETC
are mostly used for multiclass classification where the dataset comprises non-linear and
categorical data [64]. SVM performs better in binary classification where the dataset has a
linear dependency creating a hyperplane dependent on the data points that best separate
the labels. A tendency towards linear dependency in Figure 12 can be seen between age
and respiration per minute. Figure 12 comprises 80 points (40 for each label of drowsy/non-
drowsy); however, some of the points overlapped, which is why Figure 12 has fewer points.
The result reflects the fact that respiration per minute decreases in a drowsy state [26].
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Further, in a drowsy state, the decrease in RPM is higher in younger as compared to older
subjects. The same pattern follows in non-drowsy state with a bit shift toward right on
the x-axis.
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A threshold of 18.5 is compared with other classifiers used in this study at the same
test data. Findings in Table 4 shows that SVM and threshold show same accuracy, but SVM
shows better precision, recall and F1 score, which means SVM is better generalized.

5. Discussion

As mentioned earlier in the manuscript, driver drowsiness is one of the major causes of
accidents worldwide. Many approaches that have been adopted to detect driver drowsiness
via physiological signals employ invasive or wearable sensors. Invasive sensors can be
used in virtual or controlled environments, but in real-world circumstances, they require
driver commitment and compliance as well as the possibility of driver discomfort and
privacy issues. A non-invasive, camera-free method is presented to detect drowsiness
based on respiration rate acquired from the chest movement recorded by UWB radar.
The accuracy achieved by the proposed method is compared with some state-of-the-art
techniques mentioned by the investigators to detect drowsiness. From Table 5, it can
be seen that [37,43,44] show better accuracy than the proposed method. However, [37]
used an oximeter, and in [43], thermal imaging was used to acquire the respiration rate.
In [44], researchers used a Nexus-10 device. Apart from invasiveness characteristics, the
pulse oximeter must be connected correctly to the body in order to obtain the breathing
rate, whereas the Nexus-10 device acquires physiological signals by various on-body
sensors. These two devices are less likely to have a meaningful impact in a real-world
driving scenario since they must have driver compliance and commitment and rely on
placement-correction software being used. Additionally, the pulse oximeter used by [37]
gives an unreliable reading when the fingers of the subject are not dry or contaminated
with oil, grease and dust, which is common during driving [65,66]. In paper [43], the
team used thermal imaging to estimate respiration rates from changes in temperature
below the nostrils during inhalation and exhalation. This is unlikely to succeed in the
real environment due to the likelihood of sudden head movement during driving. The
proposed method uses UWB radar to acquire respiration rates from chest movements UWB
radar is a non-invasive method that can acquire chest movements, in this case, over a range
of 0.2–1.6 m. Other driver movements such as blinking, head movements, etc. can be
identified as subject to appropriate filtering and data logging, but importantly do not affect
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respiration rate collection. The proposed method has limitations which the investigators
will now build on following this trial: initial results are based on a small data set; more data
is required to enhance the accuracy of classifiers. During the data-gathering procedure,
drivers of a certain age (30–50 years) and same ethnic background were considered; the
team will increase diversity for further tests.

Table 5. Comparison with different studies.

Reference Accuracy

[37] 100%
[43] 90%
[44] 93%
[46] 82.55%

Proposed method 86%

6. Conclusions

Driver drowsiness is one of the leading causes of accidents. Many investigators have
presented systems to detect drowsiness using respiration rates acquired by invasive sensors.
A non-invasive, i.e., non-wearable, non-camera-based driver drowsiness detection system
based on wirelessly extracting respiration rates is designed and presented. The respiration
monitoring system was validated with a readily available, off-the-shelf, medically accepted,
commercial pulse oximeter device. After the validation of the respiration rate monitoring
system, it was used to acquire the respiration rates of drivers in pre- and post-driving
states. A structured dataset was formed based on the respiration per minute (RPM), age
and labels. Machine learning models were trained and validated on the dataset. The ML
algorithm SVM shows better accuracy, outperforming other ML models trained in this
manuscript. This research provides ground truth for the verification and assessment of
UWB as an effective technology for driver drowsiness detection based on respiration. In
the future, data will be collected in a real driving environment, or the control of a vehicle
can be transferred to a computer for the detection of drowsiness.

Supplementary Materials: The Supplementary Materials is available online at https://www.youtube.
com/watch?v=r-B5tVp1scA, Video S1: UWB Radar Setup in Vehicle for Drowsiness Detection.

Author Contributions: Conceptualization, H.U.R.S. and A.A.S.; methodology, H.U.R.S., A.A.S. and
R.B.; software, H.U.R.S. and A.A.S.; validation, R.B., B.B. and S.D.; formal analysis, H.U.R.S. and A.A.S.;
investigation, H.U.R.S., A.A.S. and R.B.; resources, E.L. and S.D.; data curation, F.R.; writing—original
draft preparation, H.U.R.S. and A.A.S.; writing—review and editing, S.D., R.B. and B.B.; visualization, F.R.;
supervision, S.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Florida Center for Advanced Analytics and Data
Science funded by Ernesto.Net (under the Algorithms for Good Grant).

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Ethics Committee of KFUEIT (protocol code 312 on
4 September 2020).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The dataset is in use in another research and will be made available,
once the other research is done.

Acknowledgments: Authors of this manuscript thank the Manthar Transport company and Faisal
Movers Sadiq Abad, Punjab, Pakistan, for their collaboration in the data collection process.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.youtube.com/watch?v=r-B5tVp1scA
https://www.youtube.com/watch?v=r-B5tVp1scA


Sensors 2021, 21, 4833 15 of 17

References
1. World Health Organization. Global Status Report on Road Safety 2018: Summary; World Health Organization: Geneva, Switzerland, 2018.
2. Martiniuk, A.L.; Senserrick, T.; Lo, S.; Williamson, A.; Du, W.; Grunstein, R.R.; Woodward, M.; Glozier, N.; Stevenson, M.; Norton,

R.; et al. Sleep-deprived young drivers and the risk for crash: The DRIVE prospective cohort study. JAMA 2013, 167, 647–655.
[CrossRef] [PubMed]

3. National Safety Council. Drivers Are Falling Asleep behind the Wheel. Available online: https://www.nsc.org/road-safety/
safety-topics/fatigued-driving (accessed on 6 November 2020).

4. Drowsy Driving and Automobile Crashes. Available online: https://www.nhtsa.gov/sites/nhtsa.gov/files/808707.pdf (accessed
on 28 November 2020).

5. Sahayadhas, A.; Sundaraj, K.; Murugappan, M. Detecting Driver Drowsiness Based on Sensors: A Review. Sensors 2012, 12,
16937–16953. [CrossRef]

6. Patel, M.; Lal, S.; Kavanagh, D.; Rossiter, P. Applying neural network analysis on heart rate variability data to assess driver
fatigue. Expert Syst. Appl. 2011, 38, 7235–7242. [CrossRef]

7. Lin, F.-C.; Ko, L.-W.; Chuang, C.-H.; Su, T.-P.; Lin, C.-T. Generalized EEG-Based Drowsiness Prediction System by Using a
Self-Organizing Neural Fuzzy System. IEEE Trans. Circuits Syst. I Regul. Pap. 2012, 59, 2044–2055. [CrossRef]

8. Lin, C.-T.; Chang, C.-J.; Lin, B.-S.; Hung, S.-H.; Chao, C.-F.; Wang, I.-J. A Real-Time Wireless Brain–Computer Interface System for
Drowsiness Detection. IEEE Trans. Biomed. Circuits Syst. 2010, 4, 214–222. [CrossRef] [PubMed]

9. Khushaba, R.; Kodagoda, S.; Lal, S.; Dissanayake, G. Driver Drowsiness Classification Using Fuzzy Wavelet-Packet-Based
Feature-Extraction Algorithm. IEEE Trans. Biomed. Eng. 2010, 58, 121–131. [CrossRef]

10. Akin, M.; Kurt, M.B.; Sezgin, N.; Bayram, M. Estimating vigilance level by using EEG and EMG signals. Neural Comput. Appl.
2007, 17, 227–236. [CrossRef]

11. Mikaili, M.; Mardi, Z.; Ashtiani, S.N.M. EEG-based drowsiness detection for safe driving using chaotic features and statistical
tests. J. Med. Sign. Sens. 2011, 1, 130–137. [CrossRef]

12. Budak, U.; Bajaj, V.; Akbulut, Y.; Atilla, O.; Sengur, A. An Effective Hybrid Model for EEG-Based Drowsiness Detection. IEEE
Sens. J. 2019, 19, 7624–7631. [CrossRef]

13. Mikaeili, M.; Noori, S.M.R. Driving drowsiness detection using fusion of electroencephalography, electrooculography, and
driving quality signals. J. Med. Signals Sens. 2016, 6, 39–46. [CrossRef]

14. Tabal, K.M.R.; Caluyo, F.S.; Ibarra, J.B.G. Microcontroller-Implemented Artificial Neural Network for Electrooculography-Based
Wearable Drowsiness Detection System. In Advanced Computer and Communication Engineering Technology; Springer: Cham,
Switzerland, 2015; pp. 461–472. [CrossRef]

15. Ma, Z.; Li, B.C.; Yan, Z. Wearable driver drowsiness detection using electrooculography signal. In Proceedings of the 2016
IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet), Austin, TX, USA, 24–27 January 2016; pp. 41–43.
[CrossRef]

16. Leng, L.B.; Giin, L.B.; Chung, W.-Y. Wearable driver drowsiness detection system based on biomedical and motion sensors. In
Proceedings of the 2015 IEEE Sensors, Busan, Korea, 1–4 November 2015; pp. 1–4. [CrossRef]

17. Chui, K.T.; Tsang, K.F.; Chi, H.R.; Wu, C.K.; Ling, B.W.-K. Electrocardiogram based classifier for driver drowsiness detection.
In Proceedings of the IEEE 13th International Conference on Industrial Informatics (INDIN), Cambridge, UK, 22–24 July 2015.
[CrossRef]

18. Lee, H.; Lee, J.; Shin, M. Using Wearable ECG/PPG Sensors for Driver Drowsiness Detection Based on Distinguishable Pattern of
Recurrence Plots. Electrons 2019, 8, 192. [CrossRef]

19. Babaeian, M.; Mozumdar, M. Driver Drowsiness Detection Algorithms Using Electrocardiogram Data Analysis. In Proceedings
of the 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 7–9
January 2019; pp. 0001–0006. [CrossRef]

20. Mahmoodi, M.J.; Nahvi, A. Driver drowsiness detection based on classification of surface electromyography features in a driving
simulator. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2019, 233, 395–406. [CrossRef]

21. Boon-Leng, L.; Dae-Seok, L.; Boon-Giin, L. Mobile-based wearable-type of driver fatigue detection by GSR and EMG. In
Proceedings of the TENCON 2015-2015 IEEE Region 10 Conference, Macao, China, 1–4 November 2015. [CrossRef]

22. Douglas, N.J.; White, D.P.; Pickett, C.K.; Weil, J.V.; Zwillich, C.W. Respiration during sleep in normal man. Thorax 1982, 37,
840–844. [CrossRef]

23. Xie, A. Effect of sleep on breathing-why recurrent apneas are only seen during sleep. J. Thorac. Dis. 2012, 4, 194. [PubMed]
24. Yang, C.; Wang, X.; Mao, S. Respiration Monitoring With RFID in Driving Environments. IEEE J. Sel. Areas Commun. 2020, 39,

500–512. [CrossRef]
25. Warwick, B.; Symons, N.; Chen, X.; Xiong, K. Detecting Driver Drowsiness Using Wireless Wearables. In Proceedings of the 2015

IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems, Dallas, TX, USA, 19–22 October 2015; pp. 585–588.
[CrossRef]

26. Kim, J.; Shin, M. Utilizing HRV-Derived Respiration Measures for Driver Drowsiness Detection. Electronics 2019, 8, 669. [CrossRef]
27. Brown, R.; Ghavami, N.; Siddiqui, H.-U.; Adjrad, M.; Ghavami, M.; Dudley, S. Occupancy based household energy disaggregation

using ultra wideband radar and electrical signature profiles. Energy Build. 2017, 141, 134–141. [CrossRef]

http://doi.org/10.1001/jamapediatrics.2013.1429
http://www.ncbi.nlm.nih.gov/pubmed/23689363
https://www.nsc.org/road-safety/safety-topics/fatigued-driving
https://www.nsc.org/road-safety/safety-topics/fatigued-driving
https://www.nhtsa.gov/sites/nhtsa.gov/files/808707.pdf
http://doi.org/10.3390/s121216937
http://doi.org/10.1016/j.eswa.2010.12.028
http://doi.org/10.1109/TCSI.2012.2185290
http://doi.org/10.1109/TBCAS.2010.2046415
http://www.ncbi.nlm.nih.gov/pubmed/23853367
http://doi.org/10.1109/TBME.2010.2077291
http://doi.org/10.1007/s00521-007-0117-7
http://doi.org/10.4103/2228-7477.95297
http://doi.org/10.1109/JSEN.2019.2917850
http://doi.org/10.4103/2228-7477.175868
http://doi.org/10.1007/978-3-319-24584-3_39
http://doi.org/10.1109/wisnet.2016.7444317
http://doi.org/10.1109/icsens.2015.7370355
http://doi.org/10.1109/indin.2015.7281802
http://doi.org/10.3390/electronics8020192
http://doi.org/10.1109/ccwc.2019.8666467
http://doi.org/10.1177/0954411919831313
http://doi.org/10.1109/tencon.2015.7372932
http://doi.org/10.1136/thx.37.11.840
http://www.ncbi.nlm.nih.gov/pubmed/22833825
http://doi.org/10.1109/JSAC.2020.3020606
http://doi.org/10.1109/mass.2015.22
http://doi.org/10.3390/electronics8060669
http://doi.org/10.1016/j.enbuild.2017.02.004


Sensors 2021, 21, 4833 16 of 17

28. Ghavami, M.; Michael, L.; Kohno, R. Ultra Wideband Signals and Systems in Communication Engineering; John Wiley & Sons:
Hoboken, NJ, USA, 2007.

29. Dinh, A.; Teng, D.; Wang, X. Radar Sensing Using Ultra Wideband—Design and Implementation; IntechOpen: Rijeka, Croatia, 2012.
[CrossRef]

30. Tsang, T.K.; El-Gamal, M.N. Ultra-wideband (UWB) communications systems: An overview. In Proceedings of the The 3rd
International IEEE-NEWCAS Conference, Quebec, QC, Canada, 22 June 2005; pp. 381–386.

31. Chong, C.-C.; Watanabe, F.; Inamura, H. Potential of UWB technology for the next generation wireless communications. In
Proceedings of the 2006 IEEE Ninth International Symposium on Spread Spectrum Techniques and Applications, Manaus, Brasil,
28–31 August 2006; pp. 422–429.

32. Rana, S.P.; Dey, M.; Siddiqui, H.U.; Tiberi, G.; Ghavami, M.; Dudley, S. UWB localization employing supervised learning method.
In Proceedings of the 2017 IEEE 17th International Conference on Ubiquitous Wireless Broadband (ICUWB), Salamanca, Spain,
12–15 September 2017; pp. 1–5.

33. Rana, S.; Dey, M.; Brown, R.; Siddiqui, H.; Dudley, S. Remote Vital Sign Recognition through Machine Learning augmented UWB.
In Proceedings of the 12th European Conference on Antennas and Propagation, London, UK, 9–13 April 2018. [CrossRef]

34. Schleicher, B.; Nasr, I.; Trasser, A.; Schumacher, H. IR-UWB Radar Demonstrator for Ultra-Fine Movement Detection and
Vital-Sign Monitoring. IEEE Trans. Microw. Theory Tech. 2013, 61, 2076–2085. [CrossRef]

35. Khan, F.; Cho, S.H. A Detailed Algorithm for Vital Sign Monitoring of a Stationary/Non-Stationary Human through IR-UWB
Radar. Sensors 2017, 17, 290. [CrossRef]

36. Schires, E.; Georgiou, P.; Lande, T.S. Vital Sign Monitoring Through the Back Using an UWB Impulse Radar with Body Coupled
Antennas. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 292–302. [CrossRef]

37. Sharma, M.K.; Bundele, M.M. Design & analysis of k-means algorithm for cognitive fatigue detection in vehicular driver using
oximetry pulse signal. In Proceedings of the 2015 International Conference on Computer, Communication and Control (IC4),
Indore, India, 10–12 September 2015; pp. 1–6. [CrossRef]

38. Solaz, J.; Laparra-Hernández, J.; Bande, D.; Rodríguez, N.; Veleff, S.; Gerpe, J.; Medina, E. Drowsiness Detection Based on the
Analysis of Breathing Rate Obtained from Real-time Image Recognition. Transp. Res. Procedia 2016, 14, 3867–3876. [CrossRef]

39. Tayibnapis, I.R.; Koo, D.-Y.; Choi, M.-K.; Kwon, S. A novel driver fatigue monitoring using optical imaging of face on safe driving
system. In Proceedings of the 2016 International Conference on Control, Electronics, Renewable Energy and Communications
(ICCEREC), Bandung, Indonesia, 13–15 September 2016. [CrossRef]

40. Poh, M.-Z.; McDuff, D.J.; Picard, R.W. Advancements in Noncontact, Multiparameter Physiological Measurements Using a
Webcam. IEEE Trans. Biomed. Eng. 2010, 58, 7–11. [CrossRef]

41. Viola, P.; Jones, M. Rapid object detection using a boosted cascade of simple features. In Proceedings of the 2001 IEEE computer
society conference on computer vision and pattern recognition. CVPR 2001, Kauai, HI, USA, 8–14 December 2001; pp. 511–518.

42. Allen, J. Photoplethysmography and its application in clinical physiological measurement. Psychol. Meas. 2007, 28, R1. [CrossRef]
[PubMed]

43. Kiashari, S.E.H.; Nahvi, A.; Bakhoda, H.; Homayounfard, A.; Tashakori, M. Evaluation of driver drowsiness using respiration
analysis by thermal imaging on a driving simulator. Multim. Tools Appl. 2020, 79, 17793–17815. [CrossRef]

44. Wang, D.; Shen, P.; Wang, T.; Xiao, Z. Fatigue detection of vehicular driver through skin conductance, pulse oximetry and
respiration: A random forest classifier. In Proceedings of the 2017 IEEE 9th International Conference on Communication Software
and Networks (ICCSN), Guanzhou, China, 6–8 May 2017; pp. 1162–1166.

45. Leicht, L.; Vetter, P.; Leonhardt, S.; Teichmann, D. The PhysioBelt: A safety belt integrated sensor system for heart activity and
respiration. In Proceedings of the 2017 IEEE International Conference on Vehicular Electronics and Safety (ICVES), Vienna,
Austria, 27–28 June 2017; pp. 191–195.

46. Tateno, S.; Guan, X.; Cao, R.; Qu, Z. Development of drowsiness detection system based on respiration changes using heart rate
monitoring. In Proceedings of the 2018 57th Annual Conference of the Society of Instrument and Control Engineers of Japan
(SICE), Nara, Japan, 11–14 September 2018; pp. 1664–1669.

47. Gu, X.; Zhang, L.; Xiao, Y.; Zhang, H.; Hong, H.; Zhu, X. Non-contact Fatigue Driving Detection Using CW Doppler Radar. In
Proceedings of the 2018 IEEE MTT-S International Wireless Symposium (IWS), Chengdu, China, 6–10 May 2018; pp. 1–3.

48. Lavanya, K.; Bajaj, S.; Tank, P.; Jain, S. Handwritten digit recognition using hoeffding tree, decision tree and random forests—A
comparative approach. In Proceedings of the 2017 International Conference on Computational Intelligence in Data Science
(ICCIDS), Chennai, China, 2–3 June 2017; pp. 1–6.

49. Guede-Fernandez, F.; Fernandez-Chimeno, M.; Ramos-Castro, J.; Garcia-Gonzalez, M.A. Driver Drowsiness Detection Based on
Respiratory Signal Analysis. IEEE Access 2019, 7, 81826–81838. [CrossRef]

50. Novelda. X. Available online: https://novelda.com/x4-soc.html (accessed on 28 November 2020).
51. Kim, D.-H. Lane Detection Method with Impulse Radio Ultra-Wideband Radar and Metal Lane Reflectors. Sensors 2020, 20, 324.

[CrossRef]
52. Corp, L. X4M. Available online: https://www.laonuri.com/en/product/x4m300/ (accessed on 28 November 2020).
53. Cavagnaro, M.; Pisa, S.; Pittella, E. Safety Aspects of People Exposed to Ultra Wideband Radar Fields. Int. J. Antennas Propag.

2013, 2013, 1–7. [CrossRef]

http://doi.org/10.5772/48587
http://doi.org/10.1049/cp.2018.0978
http://doi.org/10.1109/TMTT.2013.2252185
http://doi.org/10.3390/s17020290
http://doi.org/10.1109/TBCAS.2018.2799322
http://doi.org/10.1109/ic4.2015.7375629
http://doi.org/10.1016/j.trpro.2016.05.472
http://doi.org/10.1109/iccerec.2016.7814994
http://doi.org/10.1109/TBME.2010.2086456
http://doi.org/10.1088/0967-3334/28/3/R01
http://www.ncbi.nlm.nih.gov/pubmed/17322588
http://doi.org/10.1007/s11042-020-08696-x
http://doi.org/10.1109/ACCESS.2019.2924481
https://novelda.com/x4-soc.html
http://doi.org/10.3390/s20010324
https://www.laonuri.com/en/product/x4m300/
http://doi.org/10.1155/2013/291064


Sensors 2021, 21, 4833 17 of 17

54. Novelda. X4M300 Datasheet. Available online: http://laonuri.techyneeti.com/wp-content/uploads/2019/02/X4M300
_DATASHEET.pdf (accessed on 28 November 2020).

55. Quintana, D.S.; Elstad, M.; Kaufmann, T.; Brandt, C.L.; Haatveit, B.; Haram, M.; Nerhus, M.; Westlye, L.T.; Andreassen, O.A.
Resting-state high-frequency heart rate variability is related to respiratory frequency in individuals with severe mental illness but
not healthy controls. Sci. Rep. 2016, 6, 37212. [CrossRef]

56. Ahmed, A.K.; Harness, J.B.; Mearns, A.J. Respiratory control of heart rate. Eur. J. Appl. Physiol. Occup. Physiol. 1982, 50, 95–104.
[CrossRef]

57. Tiinanen, S.; Kiviniemi, A.; Tulppo, M.; Seppänen, T. RSA component extraction from cardiovascular signals by combining
adaptive filtering and PCA derived respiration. In Proceedings of the Computing in Cardiology, Belfast, UK, 26–29 September
2010; pp. 73–76.

58. Kircher, M.; Lenis, G.; Dössel, O. Separating the effect of respiration from the heart rate variability for cases of constant harmonic
breathing. Curr. Dir. Biomed. Eng. 2015, 1, 46–49. [CrossRef]

59. SETHI, A. Support Vector Regression Tutorial for Machine Learning. Available online: https://www.analyticsvidhya.com/blog/
2020/03/support-vector-regression-tutorial-for-machine-learning/ (accessed on 11 December 2020).

60. Sehra, C. Decision Trees Explained Easily. Available online: https://chiragsehra42.medium.com/decision-trees-explained-easily-
28f23241248 (accessed on 14 December 2020).

61. Brownlee, J. How to Develop an Extra Trees Ensemble with Python. Available online: https://machinelearningmastery.com/
extra-trees-ensemble-with-python/#:~{}:text=The%20Extra%20Trees%20algorithm%20works,in%20the%20case%20of%20
classification (accessed on 14 December 2020).

62. Singh, H. Understanding Gradient Boosting Machines. Available online: https://towardsdatascience.com/understanding-
gradient-boosting-machines-9be756fe76ab (accessed on 14 December 2020).

63. Abbas, N.M. What Is Logistic Regression? Available online: https://medium.com/swlh/what-is-logistic-regression-62807de6
2efa (accessed on 14 December 2020).

64. Cutler, A.; Cutler, D.R.; Stevens, J.R. Random forests. In Ensemble Machine Learning; Springer: Berlin/Heidelberg, Germany, 2012;
pp. 157–175.

65. Kamaras, G.; Geller, T.; Dioszeghy, C. Effect of road traffic accident contaminants on pulse oximetry among normoxaemic
volunteers. Austral. J. Paramed. 2010, 8. [CrossRef]

66. Clinical Procedures for Safer Patient Care. Available online: https://opentextbc.ca/clinicalskills/ (accessed on 14 December 2020).

http://laonuri.techyneeti.com/wp-content/uploads/2019/02/X4M300_DATASHEET.pdf
http://laonuri.techyneeti.com/wp-content/uploads/2019/02/X4M300_DATASHEET.pdf
http://doi.org/10.1038/srep37212
http://doi.org/10.1007/BF00952248
http://doi.org/10.1515/cdbme-2015-0012
https://www.analyticsvidhya.com/blog/2020/03/support-vector-regression-tutorial-for-machine-learning/
https://www.analyticsvidhya.com/blog/2020/03/support-vector-regression-tutorial-for-machine-learning/
https://chiragsehra42.medium.com/decision-trees-explained-easily-28f23241248
https://chiragsehra42.medium.com/decision-trees-explained-easily-28f23241248
https://machinelearningmastery.com/extra-trees-ensemble-with-python/#:~{}:text=The%20Extra%20Trees%20algorithm%20works,in%20the%20case%20of%20classification
https://machinelearningmastery.com/extra-trees-ensemble-with-python/#:~{}:text=The%20Extra%20Trees%20algorithm%20works,in%20the%20case%20of%20classification
https://machinelearningmastery.com/extra-trees-ensemble-with-python/#:~{}:text=The%20Extra%20Trees%20algorithm%20works,in%20the%20case%20of%20classification
https://towardsdatascience.com/understanding-gradient-boosting-machines-9be756fe76ab
https://towardsdatascience.com/understanding-gradient-boosting-machines-9be756fe76ab
https://medium.com/swlh/what-is-logistic-regression-62807de62efa
https://medium.com/swlh/what-is-logistic-regression-62807de62efa
http://doi.org/10.33151/ajp.8.1.111
https://opentextbc.ca/clinicalskills/

	Introduction 
	Related Work 
	Materials and Methods 
	Support Vector Machine (SVM) 
	Decision Tree (DT) 
	Extra Tree Classifier (ETC) 
	Gradient Boosting Machine (GBM) 
	Logistic Regression (LR) 
	Multilayer Perceptron (MLP) 

	Results 
	Discussion 
	Conclusions 
	References

