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A B S T R A C T   

Three-dimensional solid computational representations of natural heterogeneous materials are challenging to 
generate due to their high degree of randomness and varying scales of patterns, such as veins and cracks, in 
different sizes and directions. In this regard, this paper introduces a new architecture to synthesise 3D solid 
material models by using encoding deep convolutional generative adversarial networks (EDCGANs). DCGANs 
have been useful in generative tasks in relation to image processing by successfully recreating similar results 
based on adequate training. While concentrating on natural heterogeneous materials, this paper uses an encoding 
and a decoding DCGAN combined in a similar way to auto-encoders to convert a given image into marble, based 
on patches. Additionally, the method creates an input dataset from a single 2D high-resolution exemplar. Further, 
it translates of 2D data, used as a seed, into 3D data to create material blocks. While the results on the Z-axis do 
not have size restrictions, the X- and Y-axis are constrained by the given image. Using the method, the paper 
explores possible ways to present 3D solid textures. The modelling potentials of the developed approach as a 
design tool is explored to synthesise a 3D solid texture of leaf-like material from an exemplar of a leaf image.   

1. Introduction 

Natural heterogeneous materials are complex and challenging to 
regenerate as computational models [1]. Their composition includes 
several types of elements with different densities and distribution, which 
are mainly related to the events that occurred during their emergence, 
making every sample unique [2]. Based on the texture classifications 
prepared by Pietroni et al., marble is a stochastic texture with a high 
degree of randomness [3]. Further, a brick wall is a structured regular 
texture and a stone wall is a structured irregular texture. It is challenging 
to model solid stochastic textures unless they are scanned and recorded. 

Generating 3D solid textures are time-consuming and costly. Addi
tionally, current 2D and 3D material synthesis approaches are generally 
restricted with an output size. As a result, computer-generated image 
renderings of large spaces consist of repetitions of small 2D material 
patches [4]. Popular rendering engines including V-ray and their exist
ing material palettes are in a 2D format. When working with an object 
expected to have a solid texture with patterns continuing on every face – 
for instance, when rendering a marble block – if the patterns do not 
continue from one face to the other because of a lack of 3D solid texture 
data, visually inconsistent results are created. The method of this paper 

focuses on generating a cube, from which a desired shape can be 
extracted to be used for modelling or rendering purposes, which is a 
common practice in solid texture synthesis. Also mentioned as a type of 
boundary-independent method, the intended geometry is placed in a 
synthesised cube of material to obtain the material information specific 
to each pixel on its surface [3]. 

The proposed system can be used to generate material blocks 
consistent with the original input for modelling and design purposes. In 
addition to the texture generation for computer generated architectural 
images, there are two practical uses of microscale material data in 
design; to enhance the creativity of the design process and to design the 
micro structure of materials for the requirements of design. The first 
approach of incorporating “design enhancing data” in relation to various 
aspects of design including performance, materials, and function from 
an earlier stage has been proven to be beneficial [5]. Mitchell describes 
design as an ill-defined problem where the production of a solution that 
cannot be separated from the formulation of a problem [6]. The 
ill-defined nature of design as a constant evolution of problem and so
lution space relies on iterative creative processes [7]. The microscale 
material information can enhance design by informing the design in 
these iterations. The second approach of designing microstructure of 
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materials for the requirements of design is called metamaterial creation 
[8]. Designing with metamaterials with different behaviours in areas 
needed is a smart way to use materials from a durability, economy and 
performance point of view. 

There has been extensive research on ML in recent years, particularly 
regarding generative adversarial networks (GANs) [9]. GANs have been 
useful in image enhancement and generation. There are many variations 
of the initial GANs research. This paper focuses on an unsupervised 
version of GANs using a convolutional neural network (CNN) architec
ture called DCGAN [10]. DCGAN can generate images from an input of 
noise. Some of the impractical aspects of the algorithm include the need 

for a high number of samples to generalise the features and that typically 
an image or a model of fixed size is created. The method developed in 
this paper proposes to solve both issues by first introducing a new 
approach to create an input dataset from a single high-resolution image 
of marble. It analyses a given exemplar to generate an entire dataset for 
an ML algorithm to learn to create similar 3D solid textures while 
eliminating the issues of inconsistencies in solid textures. Secondly, it 
proposes two separate solutions concerning the X-, Y- and Z-axis to 
accomplish results independent of size; the X- and Y-axis are constrained 
by the given image and the Z-axis is generated using the latent repre
sentation. The paper proposes to use two DCGANs: one reversed 
(encoder) and one normal (decoder). They are merged in a similar way 
to auto-encoders, to create a generative system that synthesises marble 
photos based on a given layout. While, the encoder and the decoder 
sections are trained separately, the latent representation of this new 
architecture, the EDCGAN, is prepared by the decoder following its 
training. This way, tile-by-tile, the EDCGAN can copy the patterns of a 
given image to overlay a marble look. To obtain a size-independent 
solution on the Z-axis, the proposal translates 2D tiles into the 3D 
space by gradually changing the noise data. 

The main objective of the paper is to create a designer’s tool that can 
create size-independent models of natural materials. It utilises this 
sample-based texture-synthesis method for modelling and design pur
poses to translate 2D images into 3D models, demonstrated on an 
exemplar of a naturally flat leaf image to synthesise a block of leaf-like 
material. The system creates a 3D leaf block using the original 2D leaf 
image. The veins of a leaf, evenly distributing resources including water, 
continue vertically and change gradually, creating a partition system on 
a non-standard and non-uniform grid. To investigate the results further, 
the paper extracts the geometry of the leaf partition from the rest of the 
block. The isolated section demonstrates a balanced non-uniform grid 
geometry that gradually changes on the vertical axis. Although the 
method presented in this paper is not designed to optimise synthesised 
material blocks for specific solutions, this could be indirectly achieved 
by choosing the right seed image. 

One of the main challenges of ML work is to obtain a workable 
dataset. The approach introduced to create an input dataset from a 
single high-resolution image is beneficial in terms of making it easier to 
obtain a dataset for any other material using a single high-resolution 
photo. Another obvious benefit is that it keeps the style of the marble 
consistent with the original image. The sufficiency of one high- 
resolution image to create an entire dataset increases the efficiency of 
the workflow. 

2. Literature review 

In the field of 2D image and texture generation on a larger scale, a 
study by Wei and Levoy accomplishes a Markov Random Fields-based 
method that synthesises realistic textures despite with an output size 

Fig. 1. Selected Italian Marquina marble for dataset creation. Source: Wall
papertag.com. 

Fig. 2. Square-shaped boundary sizes with edge lengths of 28, 35 and 46 pixels.  

Fig. 3. The architecture of the decoder. The generator part will be used as decoder.  
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restricted to double the size of the input [11]. Furthermore, Lefebvre and 
Hoppe use a parallel synthesis method to create infinite aperiodic pat
terns [12]. Following the advances in ML algorithms, a study by Berg
mann et al. uses a technique of blending in combination with GAN to 

achieve endless image composition [13]. Nevertheless, while the results 
of these studies are satisfying in terms of generating realistic patterns, 
the methods cannot be used in synthesising most of the heterogeneous 
natural materials. A white vein in Italian Nero Marquina marble 

Fig. 4. The architecture of the encoder. The generator part will be used as encoder.  

Fig. 5. The architecture of the EDCGAN.  
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continues until it gradually dissolves and timber has annual rings 
gradually changing their thickness to make space for emerging knots. 
These characteristics cannot be reproduced using aperiodic approach 
based on repetition. 

Material data which includes the interior configurations along with 
the faces is called a 3D solid texture. One of the early studies on solid 
textures by Perlin proves the effectiveness of such materials in realistic 
renders [14]. Perlin’s study is limited to isotropic materials due to a 
function-based approach to synthesising its patterns. Kopf et al. classify 
methods to synthesise solid textures under three categories: parametric, 
non-parametric, and optimisation-based [15]. Parametric approaches 
require a set of rules to create the texture. Non-parametric approaches 
solve the overall configuration by calculating each pixel individually. 
Optimisation-based approaches generate the final pattern through iter
ations of development. Kopf et al. utilise a global histogram-matching 
method with a non-parametric algorithm while successfully creating 
solids from 2D images [15]. ML-based material synthesis can be 
considered as the fourth category, where a model is trained to generate 
sections of a consistent result. 

ML has been used extensively in generative image modelling. Algo
rithms like GANs, variational inference, and autoregressive are some of 
the well-known techniques. An example study by Zhang et al. focuses on 
creating large images using GANs, while omitting a tiling-based 
approach, by stacking two GANs to first create a low-resolution image 
and secondly to create a super-resolution image [16]. The dataset used 
for this research is MS COCO, containing 80 K samples. Although the 
results are encouraging, it cannot create an image of infinite size. 

An example of generative image modelling in 3D space is by Doso
vitskiy et al., who trained a CNN with rendered 3D models of chairs [17]. 
The results are successful in terms of acknowledging the capacity of 
these networks for learning and interpolating shapes of the real world in 
3D. The resulting network of the study can generate new chairs by 
combining learned examples from the training set. A study on 3D texture 
synthesis using GANs by Zhao et al. successfully demonstrates a 
GAN-based algorithm creating textures similar to the given exemplars 
[18] while being limited to aperiodic textures and size restrictions. 
Another influential work by Portenier, Bigdeli, and Goksel utilises Gram 
matrices of features to synthesise 3D solid textures using GANs [19]. An 
on-demand approach to texture synthesis by Gutierrez et al. utilises a 
CNN generator focusing on isotropic and anisotropic textures [20]. 
These studies generally omit heterogeneous natural materials with 
varying scales of patterns in different sizes and directions. In particular, 
the pattern distribution in marble is random, with some areas almost 
blank and others with high concentrations of patterns. The continuity of 
the features, as in the veins of marble, of the synthesised materials of the 
studies has not been fully explored in 3D space. 

Transfer learning is an ML method that utilises knowledge gained 
from a previously used model to extend training to perform a similar 
task. The study by Bostanabad focuses on transfer learning to synthesise 
3D models based on 2D images of irregular patterns [21]. It proposes a 
system that is quick to train with minimal computational cost, and a 
pre-trained CNN transfers the 2D data into a 3D material, where the size 
of the synthesised blocks is limited to the size of the neural network. 
Increasing the size of the output is computationally costly as this re
quires the network architecture to be enlarged. Another closely related 
study focuses on synthesising non-stationary textures with large-scale, 

Table 1 
Architecture of the generator section of the DCGAN.  

dense_12 (Dense) (None, 6272) 4923520 
reshape_8 (Reshape) (None, 7, 7, 128) 0 
up_sampling2d_15 (UpSampling (None, 14, 14, 128) 0 
conv2d_36 (Conv2D) (None, 14, 14, 128) 147584 
up_sampling2d_16 (UpSampling (None, 28, 28, 128) 0 
conv2d_37 (Conv2D) (None, 28, 28, 64) 73792 
conv2d_38 (Conv2D) (None, 28, 28, 1) 577  

Fig. 6. The results created by the decoder trained with 28 × 28 pixel tiles 
obtained from the original marble image above. The decoder successfully 
synthesises marble tiles. 
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spatially variant, inhomogeneous structures, which can only double the 
size of an input image while being faithful to the original features [22]. 
Other recent studies include Chen et al.’s work on stationary patterns 
using an implicit periodic field network [23] and Henzler, Mitra, and 
Ritschel’s work on creating spaces of textures addressing the issues of 
variety [24]. The latter study concentrates on the noise of VGG activa
tions with the Gram matrix to create variety in results. However, like the 
previously mentioned studies, the continuity of the patterns, as well as 
the elimination of size restrictions, has not been explored. 

To summarise, the previous studies on solid texture synthesis 
generally aim to work on homogenously porous materials with small 
aperiodic repetitive patterns. In contrast, natural heterogeneous mate
rials, with varying scales of patterns in different sizes and directions, are 
difficult to model. Further, the studies that do focus on natural hetero
geneous materials are characterised by size restrictions, originating from 
either the model or the input. Therefore, the synthesis of 3D models of 
natural heterogeneous materials, including their specific traits, such as 
veins and cracks, with no size restrictions, has not been fully explored. In 
this context, the main aim of this paper is to synthesise size-independent 
natural heterogeneous material blocks containing patterns, such as 

cracks and veins, in various sizes and directions. 
Finally, there has been extensive work in the area of dataset 

enlargement from limited resources. When the source data is an image, 
the conventional methods of pixel interpolation, including pixel repli
cation and cubic-spline interpolation and ML-based methods of single- 
frame super-resolution, are amongst the successful studies [25]. 
Generally referred to as a super-resolution problem, learning-based 
methods enhance low-resolution images using supervised datasets, 
which consist of pairs of images with the low-resolution version as an 
input and the high-resolution version as an output [26]. Furthermore, 
data augmentation is an iterative method based on computing posterior 
distributions to enlarge datasets [27]. Recent research shows that GANs 
can also be used for data augmentation [28]. Two closely related studies 
of training GANs from a single exemplar utilise the models of SinGAN 
and InGAN [29,30]. The first study is based on learning patch distri
butions via a pyramid of GANs, where each GAN is responsible for a 
specific scale of patch. This scaling approach, also existing in the second 
study, is useful to learn features in different sizes. Consequently, the 
dataset prepared for this paper utilises a single high-resolution marble 
image by visiting every pixel to capture its surrounding in three different 
scales, which are normalised by downsizing the captured area into a 
format of unlabelled 28×28pixel tiles. 

3. Approach 

3.1. GANs 

First presented in a paper in 2014 by Goodfellow et al., GANs are 
based on two networks working against each other: a generator and a 
discriminator [9]. The first network learns to generate images, and the 
second learns to detect the mistakes in these images. Therefore, after 
sufficient training, the results of the generator begin to pass the realness 
check of the discriminator. Hence, the generator becomes better at 
creating images of increasing verisimilitude. Based on this structure, a 
sufficiently trained generator takes noise images as an input and creates 
images similar to the input dataset as an output. This paper is based on a 
DCGAN example by Linder-Norén [31]. 

Fig. 7. Random tiling trial, using images generated by DCGAN.  

Fig. 8. The new predictions of the EDCGAN are placed back on the original marble image separated by a white frame. The synthesised section repeats the original 
image, while eliminating some of the less obvious patterns. 
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3.2. Marble 

The selected marble type of Nero Marquina from Italy has intense 
interior ornamentation and its colour range is monochrome as shown in 
Fig. 1. The studies in this paper are limited to grayscale for simplicity 
purposes. However, the approach can easily be applied to colour images 
without any significant modification, yet increasing the computational 
load. 

Marble has isotropic qualities with matching layouts in all directions, 
due to its random nature. For instance, a slice from the X- and Y-axis is 
similar to a slice from the Y- and Z-axis. By looking at a single face image 

of a block, the interior structure of the hidden areas can approximately 
be predicted. This method is commonly used by tile manufacturers for 
material selection purposes prior to the purchase of blocks of raw ma
terials [32]. Generally, the methods investigated in this paper require 
isotropic qualities, to effectively switch from a two-dimensional space 
into three dimensions and to predict or generate material blocks from a 
single image. 

The first step of working with DCGANs is to prepare the dataset 
consisting of 28×28pixel tiles, each one containing a section of the high- 
resolution marble image. The paper follows a pipeline of setting up an 
ML algorithm involving dataset creation, constructing a model for 
training and testing, and image generation. 

3.3. Dataset creation 

This paper confines itself to using a single face image of a marble 
block for the dataset creation. The preparation process is based on a 
logic similar to cellular automata (CA), where each cell in a set of cells is 

Fig. 9. The close-up wood photo used to generate marble.  

Fig. 10. A marble image generated using the close-up wood photo above. 
Although each tile resembles marble and the overall configuration of the image 
follows the grain of the wood, the results are not continuous, and the transition 
between any two tiles is abrupt. 

Fig. 11. A marble image generated after the second iteration, aiming to 
minimise the interruption between the tiles. However, the blending is not 
fully resolved. 

Fig. 12. The second close-up wood photo with intricate patterning used to 
generate marble. 
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relative to its neighbours [33]. CAs are commonly used in material 
sciences, particularly for the simulation of particles [34]. The formation 
process of marble, which is a stone created through the metamorphism 
of carbonate mineral grains, exhibits similar features to CA. Its spatial 
autocorrelation means the shape, colour, or size of a marble composite 
are dependant on the shapes, colours, and sizes of its neighbours [35]. 
Using the analogy of the mineral grains to the cells of CA, each pixel on a 
marble image is strongly related to its immediate neighbours. 

Marble contains patterns in different sizes and directions. To teach 
an algorithm to generate a particular material, the input data should 
reflect the character of that material consistently. While using a CA-like 
logic to create a dataset from a single marble image, “for each cell, a set 
of cells called its neighbourhood” should be defined and this neigh
bourhood should reflect the character of that material. Selecting the 
right size of neighbourhood boundary can be challenging, as the size and 
shape of the patterns are different in each marble. For instance, if we are 
looking at too small an area, we might miss some of the patterns which 
are essential to that type of marble – namely, distinct patterns to identify 
its type. To choose the right neighbourhood boundary, which includes 
most of the distinctive patterns of a particular marble image, this paper 
uses a system with three different square-shaped boundary sizes with 
edge lengths of 28, 35, and 40 pixels as shown in Fig. 2. These different 
scales are downsized to 28 × 28 pixels for standardisation. Finally, using 
the original marble image of 736 × 490 pixels, which is then multiplied 
with the three different scales, resulting in a dataset of 1081,920 tiles is 
created. 

3.4. Constructing the model for training and testing 

To achieve size independence, the paper proposes combining two 
DCGANs – a decoder and an encoder – into a single system called 
EDCGAN. The proposed model is inspired by variational auto-encoders 
(VAE) and VAEGAN [36,37]. The two DCGANs are trained separately 
with the decoder preparing the dataset of the encoder. Once the training 
is complete, the combined system can turn tiles obtained from an image 
into marble. 

3.4.1. Decoder 
Conventional auto-encoders automatically generate the latent rep

resentation. Here, the paper initialises a set of 2D Gaussian 28 × 28 noise 
samples and uses the set as an input to the decoder DCGAN. This is the 
latent representation provided to the decoding step. The training set 
consists of 865,536 28 × 28 Gaussian noise tiles as input and 28 × 28 

marble tiles as output, and the testing set comprises 216,384 pairs of 
noise/marble tiles. The target of the decoder is 28 × 28 marble tiles. 
Fig. 3 demonstrates the architecture of the decoder. In both decoder and 
encoder, X Real refers to the output of its training dataset. X Fake refers 
to the generated tiles during training. 

3.4.2. Encoder 
The paper trains the encoder by using the images generated by the 

trained decoder, targeting the initial Gaussian noise set. The training set 
consists of one million 28 × 28 generated marble tiles as input and 
produces 28 × 28 2D Gaussian noise tiles as output, and the testing set 
comprises 200,000 pairs of marble/noise tiles. The target of the encoder 
is 28 × 28 2D Gaussian noise tiles. Fig. 4 demonstrates the architecture 
of the encoder. 

3.4.3. EDCGAN 
When two networks are put together with the encoder first and the 

decoder second, creating an EDCGAN, noise is generated from a given 
tile as the latent representation, and this noise is then changed back into 
a marble tile. The approach differs from the conventional auto-encoder 
approaches that create latent representation automatically as part of the 
training process. Fig. 5 demonstrates the architecture of the combined 
system. 

In summary, the decoder is trained with the initial dataset, while 
each time the generator section of the network creates an image, the 
discriminator rates the result based on its marble-likeness. This rating is 
then transferred back to the generator to do a better job. Eventually, this 
process leads to a generative network that knows how to create a 
believable marble image from 2D Gaussian noise tiles. Once the training 
is complete, to create the dataset of the encoder, the generated noise and 
marble tiles are recorded. The encoder is trained with the new dataset to 
turn marble tiles into noise. After training, both DCGANs are combined 
in a reversed order, with second as first and first as second. The conse
quence is a combined system that can turn a tile into noise, and from that 
noise a marble tile is generated. If the source image includes continuous 
features, despite being unrelated to the patterns of marble, the system 
can generate patterns following the layout of a given image to create 
marble-like texture with some segmentation between the tiles. Gener
ally, a trained DCGAN can only hallucinate what it is trained with – the 
only thing it knows. Hence, if a model is trained with marble images, 
after training, no matter what the input, it will only produce marble 
patterns. An example of such an approach was studied using deep neural 
networks (DNNs) and applied to different objects to create dream-like 
images of animals, vehicles, etc. [38]. 

Table 1 shows the architecture of the generators, which are a type of 
CNN. Both the encoder and the decoder share the same architecture. 
Several trials aiming to reduce the size of the models to decrease the 
training time resulted in a significant loss in learning. Therefore, the 
demonstrated architecture has been selected as the optimum size of the 
networks. 

4. Investigating and visualising 

The results of the decoder, creating marbles from Gaussian noise, 
show us that it successfully synthesises images of marble. The size of the 
end result is the same as the training set images of 28 × 28 pixel tiles. 
Fig. 6 shows the original marble image above and the generated tiles 
below. The steps of this process involve training a DCGAN, extracting 
the generative section, creating an input dataset consisting of 2D 
Gaussian noise tiles, and feeding each input to the extracted generator to 
obtain the new marble tiles. 

Fig. 7 demonstrates alarger image with randomly configured and 
composed tiles obtained from the decoder to observe the generative 
skills of the DCGAN. Although the tiles are not correlated and create 
segmentation, the overall image resembles an appearance of marble. 

The second step is to create a dataset using the decoder, to train the 

Fig. 13. EDCGAN trained with a marble image modify a section of the timber 
image. The result is a blend of two images while following the underlying 
pattern of the grains and a local marble appearance per tile. 
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encoder in reverse function. Once it is trained, the encoder creates the 
targeted noise of the associated marble tiles. The combined system first 
changes the images into noise and the noise back into marble tiles. Using 
this system, the paper can synthesise results constrained by the size of 
the base image. Some segmentation due to the tile based generation can 
still be observed. To test, while using the original marble image as a 
base, the synthesised tiles are placed back in the same location. Fig. 8 
with 736 × 490 pixels demonstrates that this setup can repeat the 
original image, while eliminating some of the less obvious patterns and 
only recognising the major ones. The seams between the tiles are visible 
but the major white vein continues from left to the right of the image. 

4.1. Trained EDCGAN applied on other image layouts 

As a second trial, the trained system is applied to a wood image 

containing a close-up view of its grains as continuous features. Similarly 
to marble, wood has a heterogeneous structure and a limited colour 
range. Hence, it can conveniently be applied as a base image. Fig. 9 
shows the original photo, while Fig. 10 shows the results of the first trial. 

The size of the image demonstrated in Fig. 9 is 574 × 615 pixels. 
Once the EDCGAN is applied to generate Gaussian noise from the given 
image and marble tiles from the Gaussian noise, the result is 560 × 532 
pixels, consisting of 380 28 × 28 tiles. Although each tile resembles 
marble and the overall configuration of the image follows the grain of 
the wood, the results are not continuous, and the transition between any 
two tiles is abrupt. To address this issue, the resulting image is reapplied 
to the system for a second iteration. In this second iteration, the tiling is 
slightly shifted to fix the segmentation. Fig. 11 shows the final image 
with minimised interruption between the tiles and a continuous global 
patterning following the grain of the wood. Nonetheless, the paper 

Fig. 14. The features extracted from the decoder.  
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acknowledges that even in the second iteration, the blending amongst 
tiles is not fully resolved. Additionally, the marble appearance of the 
final synthesised image is limited due to global patterns originating from 
the wood grain. 

A third trial applies the EDCGANs on a different close-up image of a 
log of wood with intricate patterning as shown in Fig. 12. Similarly, the 
generated tiles are placed back in the same location, as demonstrated in 
Fig. 13. Parts of the original image are untouched for comparison. The 
synthesised section is a blend of two images while following the un
derlying pattern of the grains and a local marble appearance per tile. 

4.2. Further investigation focusing on the decoder 

There have been several studies to understand how CNNs recognise 
patterns and why they are so powerful. Zeiler and Fergus focus on 
regenerating the learned hidden patterns by attaching a deconvolutional 
network to every layer of the original CNN. They can observe which 
areas are activated and what patterns are created [39]. To visualise the 
learned features of the marble synthesiser, a deconvolutional network is 
attached to the last layer of the decoder to produce the results seen in 
Fig. 14. 

Furthermore, an exercise to see a possible correlation between the 
location of the noise data and the actual image is pursued on the 
decoder. In detail, a subset of noise data is selected and deformed 
gradually by deleting and adding a new random bunch to the end of each 
data individually. Fig. 15 shows the result of the trial with 10%, 20%, 
and 40% change to the original noise, demonstrating a lack of spatial 
correlation between the noise and the resulting tile. Table 2 demon
strates the pixel equivalence of the percentages. Specifically, changing 
the noise data on a particular side of a tile does not result in changes on 
that particular side of the synthesised marble. In the following trials, the 
noise is changed from the right side of the tiles and holistic changes in 
the results are observed. It is also noteworthy that 10% change is not 
very significant, but that 40% change creates completely different 
marble tiles. 

4.3. Creating a three-dimensional marble block 

This section focuses on enhancing the results of the EDCGAN from 2D 
into 3D space. Using the two trained networks, to change the base image 
into noises and the noises back into marble, a sequence of tiles enabling 
the transition to the third dimension is generated. Figs. 16 and 17 
demonstrate a gradual change, which is the main characteristic of the 
sequences, that are accomplished by gradual change in their related 
noise data. 

Once the sequence is created, these images are repositioned in 3D 
space to create a material block. In detail, the patterns of the tiles refer to 
the different elements with various densities [40]. The 3D model should 
accurately present the complex composition of the solid texture data. 
Hence, a series of studies aiming to find the most suitable modelling 
method to present the data have been investigated. The following pre
sentation studies are introduced in an order starting from simple to 
complex. 

In Fig. 18, the pixels of the tiles are separated into two sections using 
a threshold greyscale value of 90. Pixels below the threshold are darker 
and omitted in the model. Pixels above the value are lighter and present 
the veins of the marble tiles. Hence, they are incorporated in the model 
as a point cloud. The boundaries of the marble cube are marked as a 3D 

Fig. 15. An investigation of spatial correlation between noise and its syn
thesised tile created by the decoder. 

Table 2 
Sizes of the groups in pixels.  

100% of the latent representation is 28×28 = 784 pixels per tile. 
Approximately 10% of the latent representation is 78 pixels per tile. 
Approximately 20% of the latent representation is 156 pixels per tile. 
Approximately 40% of the latent representation is 313 pixels per tile.  
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grid. 
The second trial focuses on increasing the diversity of different areas 

with various greyscale values. Similarly to the first trial, a grouping 
method based on thresholds is used. Five groups to differentiate the 
material and to generate the marble cube are considered to be sufficient 
without overwhelming the readability of the results. Furthermore, a 
basic point-cloud presentation with colouring of groups is inadequate. 
Hence, 3D geometries per each isolated group are created using the N- 
particle to polygon conversion function of Maya software. Figs. 19 and 
20 show the groups of materials composed in the final block. Fig. 21 
demonstrates the original sequence of tiles. 

In this implementation, the upper limit to grouping based on 
thresholding is 255 as each pixel’s colour value can only range between 
0 and 255. However, this study aims at finding a suitable presentation 
method to maximise readability. The methods selected should show the 
complexity of the material with intertwined clusters. 

Fig. 22 presents the data using a pixel-based approach, where each 
point in the cloud is coloured according to its greyscale value. Therefore, 
this approach is an example of the highest grouping number of 255. 
However, the groups cannot be converted into geometries as they are too 
dispersed. Moreover, the resulting marble block partially show the 
complexity of its interiors. Traits such as veins can be observed as 
continuous lines running across the 3D solid texture. The second pre
sentation method with five groups is selected as the most suitable 
approach to the task of marble cube generation. 

4.4. Variable density material block 

Following the example applications of EDCGAN, this section uses the 
same system to generate a non-existing material from a close-up image 
of a leaf as shown in Fig. 23 Once the models are trained with tiles 
obtained from an exemplar, they learn to repeat the underlying logic 

implicit in the original photo. Therefore, by teaching the models to make 
a leaf, they learn how the paths of the veins are distributed to evenly 
dispense water and other resources throughout the surface, called leaf 
venation [41]. The underlying functions that shape a leaf are repeated 
throughout the synthesised material block, layer by layer. This study 
creates a new material, influenced by the geometrical logic of a 2D leaf 
image expanded into 3D space. The resulting geometry does not 
resemble the cross section of a leaf as leaves have anisotropic characters. 
Hence, this experiment shows that the proposed method is limited to 
isotropic materials with similar patterns on all directions. Indirectly, the 
developed algorithm that synthesises 3D material blocks accomplishes 
two goals:  

1 Repeating a structure without needing to know the hidden rules 
behind it.  

2 Transforming and enlarging this structure. 

The process to turn a leaf image into a 3D material block consists of 
creating the dataset of tiles, training the EDCGAN, generating a 
sequence of leaf images, and creating a 3D material block from the 
sequence. This approach enables a size-independent material generation 
on a single axis. As shown in Fig. 24, the sequence of tiles to generate the 
leaf block can be as many as needed. The resulting block demonstrates a 
gradual change and an adequate leaf pattern on every level. Hence, the 
generated material block extends the logic of a leaf vein system into the 
three-dimensional space. 

The system creates a 3D leaf block using the original leaf image. The 
veins of a leaf, evenly distributing resources including water, continue 
vertically and change gradually, creating a partition system on a non- 
standard and non-uniform grid. The resulting model is generated 
using the pixel-based technique investigated in the previous section. The 
greyscale leaf images are separated into two groups based on a greyscale 

Fig. 16. An example sequence of images to generate a marble block.  

Fig. 17. An example sequence with 375 marble tiles.  
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Fig. 18. An initial experiment on visualising the 3D marble block using a point cloud.  

Fig. 19. 3D geometries of groups composing a marble block.  
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threshold value of 90. Lighter areas, which are the representation of the 
leaf veins, are selected to include in the final model. Fig. 25 shows the 
rendering of the leaf block. 

Figs. 26 and 27 show a3D printed version of this model to test the 
connectivity and continuity of the geometry, which proves that the final 
geometry works as a single entity. The pixels above the greyscale value 
of 90 are connected to the next level at each layer, resulting in an un
interrupted and continuous model. Moreover, the grid originating from 
the leaf structure is gradually changing on the vertical axis. Finally, the 
block is stable and stands on its own. 

5. Conclusion and future works 

This paper presents a method to create 3D textures from a single 
high-resolution exemplar using EDCGANs. The proposed method utilises 
two DCGANs, where the decoder is used to prepare the dataset of the 
encoder. The method can be used to synthesise material images or blocks 
from a base image with continuous features. The paper focuses on 
marble, as it is a natural heterogeneous material, which is generally 
challenging to model due to its random nature. The presented study is 
limited to isotropic materials. While the results on the Z-axis do not have 
a size restriction, the X- and Y-axis are constrained by the given image. 
The paper accomplishes the continuity of features, such as cracks and 
veins, with some segmentation amongst the tiles. To improve the visual 
continuity of the results, it proposes a second iteration of the method to 
minimise segmentation. It achieves the initial promise of proposing a 
framework to synthesise material blocks for marble-like material with 
no size restrictions despite the quality of the results, which can be 

improved in future work. In addition, it can be used to translate a 2D 
image into a 3D model. As an example, a naturally flat-leaf image given 
as an exemplar can create a block of leaf-like material, where the un
derlying logic of a leaf is adapted into a material block. In the future, the 
method can be transformed into a material-generation tool to accom
plish different material behaviours. If the method described in this paper 
will be used to generate metamaterials, various densities can be assigned 
to the clusters of generated geometries while generating blocks like the 

Fig. 20. A 3D model cube generated using five groups with various grey
scale values. 

Fig. 21. The sequence of marble tiles.  

Fig. 22. A 3D model generated using a method of colouring each pixel with its 
greyscale value. Traits such as veins can be observed as continuous lines 
running across the 3D solid texture. 

Fig. 23. Selected close-up image of a leaf.  
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images provided. The individual properties of these groups can be 
optimised based on their structural performance to maximise the overall 
efficiency. 

For future work, the application field of the approach can be 
expanded to the prediction of hidden areas of material blocks which are 
not available in a scan due to resolution or penetration limitations. For 
this, the tools described in this paper should be modified to produce 
results closer to the real which can potentially be achieved by adding an 
interpolation step that merges various axes together. The number of 
exemplars should also be increased to provide other face images of a 
block for higher accuracy. 

Fig. 24. The sequence of a leaf block generated with the EDCGAN.  

Fig. 25. The leaf block generated using EDCGAN. The grid originating from the leaf structure is gradually changing on the vertical axis.  

Fig. 26. The 3D printed model of the generated leaf block.  

Fig. 27. The 3D printed model of the generated leaf block is stable and stands 
on its own. 
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