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Abstract 
 

Acoustic Emission (AE) is a passive Non-Destructive Testing (NDT) technique which is employed to identify critical damage in 

structures before failure can occur. Currently, AE monitoring is carried out by calculating the features of the signal received by 

the AE sensor. User defined acquisition settings (i.e. timing and threshold) significantly affects many traditional AE features such 

as count, energy, centroid frequency, rise-time and duration. In AE monitoring, AE features are strongly related to the damage 

sources. Therefore, AE features that are calculated due to inaccurate user defined acquisition settings can result in inaccurately 

classified damage sources. This work presents a new feature of the signal based on the measure of randomness calculated using 

2nd order Renyi’s entropy. The new feature is computed from its discrete amplitude distribution making it independent of acquisi-

tion settings. This can reduce the need for human judgement in measuring the feature of the signal. To investigate the effective-

ness of the presented feature, fatigue testing is conducted on an un-notched steel sample with simultaneous AE monitoring. Digi-

tal Image Correlation (DIC) is measured alongside AE monitoring to correlate both monitoring methods to material damage. The 

results suggest that the new feature is sensitive in identifying critical damages in the material. 
 

Keywords: Acoustic Emission, Fatigue Damage, Digital Image Correlation, Structural Health Monitoring. 

Article Highlights 
 This paper presents a new AE monitoring technique. The new technique is based on an AE feature that reduces human 

involvement with the acquisition settings, unlike many traditional AE features. 

 The new AE technique has proved to be an efficient condition monitoring method to indicate damage in steel. 

 The technique has the potential to be implemented in commercial AE data acquisition systems for monitoring steel struc-
tures. 

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

 
 

1. Introduction 

Acoustic Emission (AE) is a passive Non-Destructive 

Testing (NDT) technique for examining the behavior of 

materials under stress [1]. It can be defined as a mecha-

nism where materials emit elastic waves when they fail at 

a microscopic level due to stress. The emitted elastic 

waves are detected as analog signals using AE sensors. 

The analog signals are fed to a data acquisition system 

which digitizes each signal and measures its features (i.e. 

count, energy, centroid frequency, rise-time, duration and 

peak amplitude). The digitized waveform of the signal 

and their features can be stored in a computer for post 

processing. Figures 1 and 2 highlight the AE working 

principle and definitions of the features respectively. AE 

has been adopted as an efficient Structural Health Moni-

toring (SHM) technique as it can provide real time in-

formation regarding the damage location, damage stages 

and their characteristics. Many other NDT techniques are 

not able to do this. It has been shown to be successful in 

monitoring many structures and components [2] [3].  

AE features are sensitive to several stages and characteris-

tics of damage in metal such as crack formation/initiation, 

stable & accelerated crack propagation, brittle fracture, plastic 

yielding, twinning and change in fracture mode, etc. [4] [5] [6] 

[7] [8] [9] [10] [11] [12]. For example, crack formation in 

Incoloy 901 has been proven in [5] [6] to be accompanied by a 

very low count rate. Sinclair et al [7], showed in a fracture 

toughness test of a wide range of steels (AISI 1060, AISI 1080, 

SA333 and AISI 304LN) that crack initiation in brittle and 

ductile material can be correlated with an increase in count 

and energy. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. AE Working Principle. 
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Fig. 2. Definition of AE features: (a) Rise-time, Peak Amplitude, 

Duration, (b) Energy, (c) Counts 

Peak amplitude exhibits a significant increase due to 

crack initiation in both brittle and ductile materials. Cu-

mulative count in Incoloy 901 and Q345 steel has been 

shown in [5] [6] [8] [9] to increase steadily during stable 

crack propagation and rapidly during accelerated crack 

propagation. Shi et al [10] showed that the cleavage frac-

tures in R260 steel are correlated with a significant in-

crease in cumulative energy. It has been shown [11] that 

damage sources in AZ31 magnesium alloy (i.e. cleavage 

facture, twinning, yielding at plastic zone, crack exten-

sion and the tear of ligament between micro-cracks and 

micro-voids) can be distinguished by rise time and peak 

amplitude observation. Fracture mode changes (i.e. ten-

sile to shear) in Q345 is accompanied by a noticeable 

increase in rise time and peak amplitude [9]. Fracture 

mode changes in Aluminum (AA 7075) have been shown 

to have a noticeable increase in duration, rise time and 

RA value [12].  Robert et al [13], demonstrated a quanti-

tative approach to estimate crack length based on the 

count rate of the signals. Despite the reported success of 

AE, damage identification is still challenging. This is 

because the current method of analysis for AE monitor-

ing is based on the traditional AE features. AE features 

are representative of the damage source and many tradi-

tional AE features depend on the user defined acquisition 

settings (i.e. threshold and timing). AE features calculat-

ed due to inaccurate user defined acquisition settings will 

be misleading and can make damage detection difficult. 

Also, several noise sources may be present during AE 

data collection, e.g. noise from the loading train, which 

may mask the signal generated from the primary AE 

source. 

This paper presents a new AE feature to identify dam-

ages. It is based on the measure of randomness of the 

waveform which is calculated using Renyi’s entropy. The 

new feature is based on the fact that the discrete ampli-

tude values of each waveform will have a unique proba-

bility distribution and level of randomness. A spreadsheet 

of a digital waveform shows all the discrete amplitude 

values including the ones which are well below the 

threshold. The number of digital values in a transient 

waveform depend on its page length (e.g. 2500 µs) and 

sampling frequency. In Fixed Page Length Settings 

(FPLS), discrete amplitude values are not strongly de-

pendent on the threshold and timing settings. For exam-

ple a burst signal sampled with different settings (e.g. 

threshold and timing) with a given FPLS (e.g. 2500 µs), 

will have an almost identical waveform and probability 

distribution. The little difference between them as a result 

of different thresholds can be explained by the difference 

in pre-trigger samples. Renyi’s entropy computation 

takes into account all the discrete amplitude values in a 

waveform (even below threshold). As a result, provided a 

FPLS is used, it will not be significantly affected by 

threshold and timing settings. The threshold and timing 

independence of Renyi’s entropy is unlike many AE tra-

ditional features. If implemented in AE data acquisition 

systems, it may improve damage identification. Moreo-

ver, computation of entropy uses more information of the 

waveform than the traditional AE features. The effective-

ness of the proposed idea is validated by computing 

Renyi’s entropy of AE signals recorded in 316L stainless 

steel during fatigue tests and compared with the tradi-

tional AE features. Prior to the analysis, AE data is fil-

tered in order to remove unwanted noise.  To relate the 

material behavior, such as plastic zone, with AE activity, 

Digital Image Correlation (DIC) is used simultaneously 

with AE monitoring. 

The paper is divided into several sections. Section 2 

presents the methodology including experimental setup, 

material, specimen and Renyi’s Entropy. In section 3 

results of DIC, AE data filtration technique and AE are 

documented. This section compares the new feature with 

the traditional features and correlates AE and DIC data. 

Section 4 addresses the challenges associated with the 

new feature and suggests future work. Section 5 summa-

rizes the important message of this research. 

 

2. Methodology  

2.1 Experimental Procedure  
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Renyi’s entropy of transient AE waveforms recorded 

in a sample of 316L stainless steel during fatigue endur-

ance test is computed with a Matlab script. Table 1 shows 

the mechanical properties of the material used for the 

experiment. The experimental procedure for the tests was 

similar to our previous work in ref [14]. Two samples 

were designed using the guidelines of Standard E466-15 

and tested at room temperature. The samples were pol-

ished to 1200 grade before the test to reduce the stress 

concentration areas. During the test in an Instron machine, 

the specimens were subjected to sinusoidal loading of 

5Hz and maximum and minimum stress of 480 MPa and 

48 MPa. 

The elastic waves emitted in the samples were captured 

as analog signals by a couple of resonant AE sensors 

(VS-160, Resonance range: 100 kHz to 450 kHz) manu-

factured by Vallen. Figure 3 shows an image of the ex-

perimental setup and figure 4 shows a schematic illustra-

tion of the fatigue endurance test. The analog signals 

were amplified with a 34 dB Vallen preamplifier. The 

amplified signals were fed to the AMSY-6 data acquisi-

tion system which digitized the signals with a sampling 

frequency of 5 MHz. After digitization, AE signals were 

stored as a waveform and their features were calculated. 

The two ways of recording a waveform are as AE events 

and as a waveform stream. In a waveform stream, the 

entire waveform from the start of the test until failure is 

recorded. A waveform stream is also sometimes called a 

continuous recording. In AE events the dominant portion 

of a waveform stream is recorded as a separate and indi-

vidual waveform. AE features are then calculated from 

the individual waveform. The technique records a contin-

uous waveform and requires a significant amount of stor-

age capacity in the hardware. It may be impractical to use 

this technique if the application requires long term moni-

toring. The AE events technique was chosen for this re-

search because it requires much less space to save the 

data in hardware and at it also retains information regard-

ing the dominant portion of the continuous waveform. 

Traditional AE features require some user defined acqui-

sition settings. Therefore, the acquisition settings shown 

in Table 2 were used for this test. 

 

 During AE monitoring of fatigue, several unwanted 

signals originating from the loading train mask the useful 

signal and make the interpretation of the results difficult. 

Therefore, AE signal filtration is an important step in AE 

monitoring. Several AE filtration techniques for fatigue 

tests have been proposed in the literature. It has been 

suggested in [13] [15] [16] that signals originating near 

the maximum of the load cycle are from material damage. 

Therefore signals in the lower load range are considered 

to be noise and hence filtered out. J.A Pascoe et al [17], 

suggested that damage in the material occurs neither at 

maximum load nor at minimum load in a cycle, but oc-

curs in a segment of the cycle which is above a certain 

load threshold value. Load threshold value is not a mate-

rial constant and depends on load history and test fre-

quency. Therefore, the effectiveness of the peak load 

filtration technique remains questionable. Work per-

formed in [18] used two filtration techniques. Firstly, a 

frequency filter eliminated all the transient signals of 

frequencies below 25 kHz from the data set. Secondly, a 

count filter eliminated all the transient signals with 

counts of less than 10. Although these filtration tech-

niques were highly effective, some noise of long duration 

(10ms) remained in the data set, which was removed 

manually. The work performed in [9] [19] [20] used a 

localization filtration technique to filter out unwanted 

signals and ensured that the signals were received only 

from the area of interest. In our work, a 1D localization 

filtration technique was used to avoid reflections and 

noise generated at the grips (i.e. loading contact point). 

The wave velocity chosen for the localization filtration 

technique was 5000m/s. It was calculated in 316L stain-

less steel with the AMSY-6 data acquisition system by 

pulsing waves from one sensor and receiving the signal 

with another sensor. The wave velocity calculated by this 

method is consistent with the asymmetric (A0) wave 

velocity of 4873.3 m/s and symmetric (𝑆0) wave velocity 

of 4500 m/s below 200 kHz. The reliability of the calcu-

lated wave velocity was checked by performing pencil 

lead breaks (PLB - an artificial damage source) on the 

surface of the specimen and checking it against the 

mapped accuracy (i.e. by checking the mapped location 

in software with the physical location where the pencil 

lead was broken). The localization results from the PLB 

test show good agreement with the actual location in the 

specimen where PLB was performed. This filtration 

technique considered signals generated within the gauge 

section of the specimen to be useful and avoided unwant-

ed signals from the grips.  

To correlate both material behavior and AE activity 

during the test, the specimens were monitored simultane-

ously with DIC. The DIC measurement setup was identi-

cal to our previous work in ref [14]. 

 

Table 1. Mechanical properties of the material 

 

 

 

Table 2. Acquisition Settings 

Hit Definition Time (HDT) 400μs 

Re-Arm Time 1ms 

Threshold 40dB 

Max duration TR page length 26,214μs 

Young’s modulus (GPa) 193GPA 

Yield Strength (MPa) 347MPA 

UTS (MPa) 613MPA 
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 Fig.3. Experimental Setup. 
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2.2 Renyi’s Entropy  

In physics and mathematics, entropy of a waveform is 

the measure of information contained in it [21]. Several 

attempts have been made in the past to successfully 

measure the entropy of a waveform. Hartley [22], pro-

posed a mathematical model to calculate the total infor-

mation in a waveform, which was later known as max 

entropy. Shannon [23], extended Hartley’s theory by 

introducing a weighting function in the calculation, 

which is recognized as Shannon’s entropy. Alfred Renyi 

[24] pointed out that Shannon’s entropy restricts the ad-

ditivity of independent event in a signal to the first (line-

ar) functional class and there exists a second functional 

class that could also be used. He developed a continuous 

family of methods to measure the information in a wave-

form, by introducing a second (exponential) functional 

class in the additivity of independent events in a wave-

form. This computation was regarded as a flexible form 

of information measure [21] and was later known as 

Renyi’s entropy. Renyi’s entropy of a waveform having a 

random amplitude distribution {x1,x2,x3…..xn} can be 

calculated using equation 1 as: 

 

1

1
( ) log ( ( ))

1

n
a

a k

k

H x P x
a 

 
  

  
            (1) 

The term ‘α’ in equation 1 represents the order of the 

entropy. The most interesting property of Renyi’s entropy 

is its generality because of the choice of ‘a’ in equation 1. 

As ‘α’ in equation 1 increases, more weight is provided 

to the events with higher probability [25]. A study per-

formed in ref [26] suggests more weight is given to the 

events with high probability when α > 1, whereas more 

weight is given to the events with low probability when α 

< 1. Depending on the choice of ‘α’ Renyi’s entropy de-

fines many other forms of entropy, such as: 

 When ‘α’ approaches 0 it becomes Hartley’s entro-

py or max entropy, shown in equation 2. 

0 ( ) logH x n                             (2) 

 When ‘α’ approaches 1, the limiting value of H(xk) 

yields Shannon’s entropy [27], shown in equation 3. 

1
1

lim ( ) ( ) log( ( ))
n

a k k
a

k

H x P x P x



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 When ‘α’ approaches 2, it becomes quadratic 

Renyi’s entropy, shown in equation 4. 

2

1

( ) log ( ( ))
n

a

k

k

H x P x


 
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 
                (4) 

 When ‘α’ approaches infinity, it yields min entropy, 

shown in equation 5. 

 inf ( ) log max ( )k
k

H x P x                (5) 

In our research, we have chosen quadratic Renyi’s en-

tropy (α=2) for measuring the information contained in a 

AE waveform because of two reasons. Firstly, the contri-

bution of events with large probabilities are higher in 

entropy computation than that of events with lower prob-

ability. Therefore, it becomes reasonable to emphasize 

more on the events with higher probabilities by choosing 

α>1. On the other hand, choosing a higher value of ‘α’ 

would significantly weaken the contribution of events 

with smaller probability. Considering this trade off, α=2 

provides an optimum solution because it provides more 

weight to the events with higher probability and it is 

close to Shannon’s entropy thus contains information on 

all probability events. Secondly, quadratic Renyi’s entro-

py has significant computational advantage compared to 

any other measures of entropy. By using the Prazen win-

dow and kernel, it can be estimated directly from the 

random amplitude distribution {x1,x2,x3…..xn} very 

quickly, bypassing the need to accurately measure the 

probability distribution [28] [29] [30]. This may reduce 

the computation time of entropy if the Prazen window 

and kernel density is implemented in a AE data acquisi-

tion system.  

P(xK) in equation 1 is the discrete probability distri-

bution of the Kth number of bin. There are a number of 

methods to generate the discrete probability distribu-

DIC Camera 

AE Sensor 

Loading Jaw 

Fig.4. Specimen Dimension (mm) and test illustration 
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tion [31] [32] [33]. In our previous work [14], discrete 

probability distribution was generated by considering 

the original spectrum of the waveform. This technique 

has been widely used in signal processing [34] [35]. 

Discrete probability distribution in the research per-

formed in [36] [37] was based on the frequency of 

occurrence with a bin width. A comparison between 

these two techniques in ref [32] suggests that an en-

tropy computation by considering the probability dis-

tribution with frequency of occurrence and a bin width 

to be more reliable than the original spectrum of the 

signal. In this work, entropy was computed by taking 

into account the probability distribution with frequen-

cy of occurrence and a bin width of 0.000153 mV.  

In order to measure the signal entropy in bits, the base 

of the log was chosen to be 2. This research will refer 

to quadratic Renyi’s entropy of transient AE wave-

form as AE entropy. The following steps demonstrate 

the AE entropy calculation procedure.  

Step 1: AE waveforms recorded by the AMSY-6 

data acquisition system were copied into a spreadsheet 

containing the amplitude distribution values (Table 3). 

Step 2: The spreadsheet containing the amplitude 

distribution values were imported into Matlab. Dis-

crete probability distribution of the amplitude se-

quence was then generated using a bin width of 

0.000153 mV (see figure 5). 

Step 3: From the discrete probability distribution, 

calculation of AE entropy was accomplished by equa-

tion 1. AE entropy of the discrete amplitude distribu-

tion in figure 5 was found to be 8.3. This value repre-

sents the degree of disorderness in the discrete ampli-

tude distribution and is the average number of bits 

required to store it. The larger the disorderness in dis-

crete amplitude distribution, the larger will be the av-

erage number of bits required to store it.  

Table 3. Entropy Computation Step 1 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Entropy Computation Step 2 

 

 

3. Results 

3.1 Digital Image Correlation (DIC) 

The DIC measurement and AE data was synchronized 

by starting the DIC camera and AE data acquisition sys-

tem at the same time, such that they start capturing data 

simultaneously. There were several images taken by the 

DIC camera during the entire length of the test. Figure 6 

highlights a few important images of strain map (εyy) 

taken by the DIC for test 1. Figure 6a is the reference 

image, this image was taken before the onset of loading. 

The image in figure 6b was taken at 10000s after the 

onset of loading, it can be observed in this image that 

strain maximizes at the middle of the gauge section. The 

image in figure 6c at 21556s does not show any differ-

ence from the image in figure 6b. This suggests that the 

surface strain remains stable within this time. The image 

in figure 6d at 22911s shows that the strain concentrates 

at the edge of the specimen forming a plastic zone 

(marked by a black arrow). The plastic zone at this point 

is likely due to significant formation and coalescence of a 

micro crack. This phenomenon is explained in ref [38]. 

The image in figure 6e at 23250s shows an increase in 

the plastic zone area found at the edge of the image in 

figure 6d (marked by a black arrow). The image in figure 

6f at 23590s shows that the plastic zone area becomes 

clearly highlighted (marked by a black arrow). The image 

in figure 6g shows a macro fatigue crack initiation from 

the plastic zone formed earlier. The time instance of plas-

tic zone localization and macro crack initiation will be 

cross validated with AE activity. 

Figure 7 shows a few important images of strain map 

(εyy) taken by DIC for test 2. The image in figure 7a is the 

reference image taken before the onset of loading. The 

image in figure 7b was taken 10000s after the onset of 

loading. Like the image in figure 6b, the image in figure 

7b also shows strain maximization at the center of the 

gauge section. The image in figure 7c at 23636s does not 

show any difference from the image in figure 7b. This 

suggests that there is no change in surface strain within 

this time. The image in figure 7d at 25084s shows slight 

changes in the strain map of the gauge section as com-

pared to the image in figure 7c. The image 7e at 25265s 

shows two strain concentrated areas (marked by black 

arrows). The formation of two strain concentrated areas 

could be a result of the plastic zone formed by the crack 

initiation on the other side of the specimen, which is not 

covered by the DIC camera. This is very likely because 

the thickness of the specimen was very small (2.5mm). 

The formation of two strain concentrated areas becomes 

very evident in the image in figure 7f at 25446s (marked 

by black arrows). The image in figure 7g at 25627 shows 

a crack initiation from the middle of the two strain con-

X1 -0.88291329 

X2 -0.71850872 

…… …… 

X3899                    4.9595370 

X3900 -5.4953742 
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centrated areas. The time instance of the strain concentra-

tion will be cross validated with AE activity. 

 

  

 

 

 

 

 

 

Fig. 6. DIC Images test 1: (a) Reference stage (b) at 10000s (c) at 

21556s (d) at 22911s (e) at 23250s (f) at 23590s (g) at 23928s 

 

 

 

 

 

 

 

 

 

 

Fig. 7. DIC Images test 2: (a) Reference stage (b) at 10000s (c) at 23636s 

(d) at 25084s (e) at 25265s (f) at 25446s (g) at 25627s. 

 

3.2 Acoustic Emission Data Filtration 

Figures 8a and 8c show the unfiltered data of cumula-

tive count for test 1 and 2 respectively. It is mentioned in 

[5] [6] [39] that cumulative trend remains stable in the 

early stages and increases at the later stages of fatigue. It 

can be observed in these figures that no typical trend as 

mentioned in [5] [6] [39] can be identified in these plots. 

1D linear localization filtration technique mentioned in 

section 2.1 was applied to these unfiltered data sets. Fig-

ure 8b and 8d show the cumulative count plot of the fil-

tered data for test 1 and 2. It can be observed in figure 8b 

and 8d that the cumulative count begins to increase dur-

ing the later stage of test and is consistent with the obser-

vations of other researchers [5] [6] [39]. The trend ob-

served in these plots will be discussed in detail later in 

section 3.3. It can be concluded that the filtration tech-

nique had a significant effect in de-noising the data be-

cause the filtered data of cumulative count possesses the 

same trend as those mentioned in the literature. After the 

noise filtration, AE entropy was computed on the remain-

ing data set and compared with the traditional AE fea-

tures. 

3.3 Comparison of traditional AE analysis with AE en-

tropy 

To investigate the performance of AE entropy, it is 

crucial to understand the damage mechanism and its cor-

responding AE activity. At the onset of loading, AE ac-

tivity is generally higher due to yielding of the material 

as a result of the change in stress state. After the onset of 

loading AE activity is lower, this stage is regarded as the 

damage incubation stage. At the end of this stage, AE 

activity increases significantly as a result of growth and 

coalescence of a micro-crack initiated in the earlier stage. 

These trends have been validated in ref [5] [6] [39]. 

When the growth and coalescence becomes concentrated 

in an area it gives rise to a plastic zone in the material.   

 

 

 

 

Fig 8: (a) Test 1 unfiltered data, (b) Test 1 filtered data, (c) Test 2 unfil-

(a) (c) 

 

(b) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(a) (b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(b) 

) 

(c) 

) 

(a) 

(d) 

 

(g) 

 



  

 

7 

 

tered data, (d) Test 2 filtered data 

 

Fatigue studies using AE are mostly based on the cu-

mulative analysis of energy and count [6] [8] [20] [40]. 

Therefore, the cumulative trend in AE entropy was com-

pared with these features in figure 9 and 10 for test 1 and 

2 respectively. It is clear from figures 9 and 10 that cu-

mulative entropy and cumulative count exhibit the same 

trend during the entire fatigue test. It can be observed in 

figure 9 that at around 23000s, there is a significant jump 

in all the cumulative features. This time is associated 

with the plastic zone formation in the DIC images shown 

in figure 6 (for test 1). Therefore, it can be concluded that 

the significant jump in AE activity is an indicator of plas-

tic zone formation. Figure 9 shows that cumulative fea-

tures (especially count and entropy) begin to increase 

slightly after 15000s and noticeably after around 20000s. 

DIC images in figure 6 do not show any change in sur-

face strain until 21556s. The noticeable increase in cumu-

lative features from around 20000s could be as a result of 

growth and coalescence of a micro-crack, before it mani-

fests into plastic zone formation. Therefore, it can also be 

concluded that AE is more sensitive than DIC for damage 

identification. The merit of the sensitivity of AE over 

other NDT techniques has been shown by other research-

ers [8] [12]. Figure 10 shows a comparison of traditional 

cumulative features with cumulative entropy for test 2. 

Figure 10 shows that there is a significant jump in all the 

cumulative features at around 22500s. No significant 

changes can be observed in the DIC images during this 

time in figure 7, in fact no significant changes are ob-

served in the DIC images until 25265s. At 25265s, DIC 

images in figure 7 show two distinct strain concentration 

areas which becomes clearer at 25446s. The significant 

jump in figure 10 at around 22500s could be attributed to 

plastic zone formation on the other side of the specimen 

which is not covered by the DIC camera. Cumulative 

parameters (especially count and entropy) begin to in-

crease noticeably from around 15000s, this could be at-

tributed to growth and coalescence of a micro-crack.  

It is evident from figures 9 and 10 that there is a no-

ticeable difference in the cumulative trend between 

AE entropy and energy. In both tests, cumulative en-

tropy begins to increase noticeably before the damage 

manifests into plastic zone formation and significantly 

at the onset of plastic zone formation. Whereas, in 

neither of the tests, there is a noticeable increase in 

cumulative energy before plastic zone formation. In 

fact, cumulative energy is sensitive only at the for-

mation of plastic zone and ultimate fracture of the 

specimen.  

The observed difference in trend is due to the nature of 

the respective feature extraction processes. Energy is 

the area under the waveform, plastic zone formation 

and fracture is accompanied by waveforms with sig-

nificantly higher energy than the other stages. The 

sudden burst of events and a few highly energetic 

waveforms at fracture masks the collective cumulative 

trend in energies prior to the plastic zone formation. 

Fig 9: Comparison of cumulative features (Test 1) 

 

 

Fig 10: Comparison of cumulative features (Test 2) 

 

In the case of AE entropy, the spread in the data (indi-

vidual AE events) used to construct the cumulative 

trend is significantly lower than that of cumulative 

energy. For instance, the spread in data points used to 

construct cumulative entropy is 0 to 10 bits, whereas 

for cumulative energy it is 0 to 401×103 eu. Although 

AE events at fracture are associated with high AE en-

tropy, there is no significant jump observed in the cu-

mulative entropy plot. A few high AE entropy events 

at fracture are not able to produce a jump in the cumu-

lative plot due to the lower spread in the data. 

To investigate fatigue damage evolution, a single cu-

mulative feature cannot solely be used, because of the 

varying degree of sensitivity of each cumulative feature 

in different stages of fatigue. As a result, both cumulative 

count and cumulative energy have been used together in 

many fatigue tests. It is evident from figures 9 and 10 

that cumulative count and entropy curves show the same 

trend. The similar increasing trend in cumulative count 

and entropy shows the feasibility and effectiveness of 

cumulative entropy as a damage identification feature. 

Unlike cumulative count, cumulative entropy is inde-

pendent of user defined acquisition settings. This can 

reduce the need for human judgement in measuring the 
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feature of the signal. Therefore, in the future, entropy has 

the potential to replace count in AE monitoring. 

4. Discussion 

The formation of a plastic zone facilitates macro fa-

tigue crack initiation. These fatigue cracks can propagate 

and lead to an ultimate failure of the material. Therefore, 

identifying the formation of a plastic zone is an indica-

tion of a critical stage of damage in a material. The re-

sults show that AE entropy, like the traditional features, 

is sensitive in identifying the onset of plastic zone for-

mation in the material. Although AE entropy has the 

same trend as count and energy, it is independent of ac-

quisition settings (unlike many traditional AE features) 

provided a FPLS setting is used. In order to investigate 

the effect of acquisition settings such as threshold on the 

AE entropy, the filtered signals were analyzed by consid-

ering three distinct threshold settings. Figures 11 and 12 

show the total cumulative AE entropy and count versus 

each threshold setting for test 1 and test 2 respectively. It 

can be observed in these figures that as the threshold 

increases, the total AE count decreases, whereas the en-

tropy remains constant. The threshold independence of 

AE entropy is due to its computation which takes into 

account of all the possible discrete voltage value in each 

waveform. 

 

Fig 11: Comparison of cumulative features 

 

Fig 12: Comparison of cumulative features 

In contrast, computation of the AE count relies only on 

peaks above the threshold. AE entropy has the potential 

to be implemented in commercial data acquisition sys-

tems as it can provide valuable condition monitoring 

indication of damage in structures during operation and 

maintenance, with reduced reliance on human judgement 

to set AE acquisition settings. However, there are some 

aspects to be addressed while performing AE entropy 

computation, particularly the voltage distribution range 

and bin width. 

Firstly, the voltage distribution range (VDR) is an 

important aspect to consider while performing AE 

entropy computation. VDR is the range of voltages 

over which probability distribution is calculated. Ide-

ally, VDR should be set by taking into account the 

highest and lowest voltage value of the highest peak 

amplitude signal in the dataset. However, it is not pos-

sible to predict these values prior to the experiment. 

Therefore, VDR of -100mV to +100mV was chosen 

for these experiments, which is equal to the maximum 

limit of voltage range in a AE data acquisition system 

for transient waveform recording. Insufficient VDR 

can result in an inaccurate computation of AE entropy.  

Figure 13 shows the effect of VDR on the calculat-

ed AE entropy of a waveform captured during the tests. 

It can be observed in graph (a) of this figure that VDR 

of -10 to +10 restricts the probability distribution of 

the voltages from -10mV to +10mV and results in an 

AE entropy of 2.4. It can be observed in graphs (b), (c), 

(d), (e) and (f) that with increasing VDR, the AE en-

tropy also increases. It is also evident that the AE en-

tropy in graph (f) is almost four time that in graph (a), 

although both the graphs correspond to the same 

waveform. This increase in AE entropy with VDR is 

due to the increase in available probability of mass of 

the voltage. Like the effect of VDR on AE entropy, 

the traditional features are also affected by the maxi-

mum limit of the voltage range in the waveform. Fig-

ure 14 shows the waveforms, with a series of maxi-

mum limits of the voltage range, equivalent to each of 

the VDR in figure 13. Each graph in figure 14 con-

tains some of its traditional features. It is evident from 

this figure that with the maximum limit of the voltage 

range, the traditional features of the waveform in-

crease. This can be attributed to the additional voltage 

values at the higher limit of the voltage range. Unlike 

the acquisition setting, the maximum limit of the volt-

age range is not a user input parameter. In other words, 

the traditional features are always calculated from a 

built-in voltage range. Therefore, in every situation the 

traditional features are going to be extracted from the 

same voltage range. If AE entropy is  
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Fig 13: Effect of voltage distribution range on AE entropy:( a) VDR 

-10 to 10, (b) VDR -20 to 20, (c) VDR -40 to 40, (d) VDR -60 to 60, 

(e) VDR -80 to 80 and (f) VDR -100 to 100, 

 

 

Fig 14: An AE waveform with a VDR of (a) -10 to +10, (b) -20 to 

+20, (c) -40 to +40, (d) -60 to +60, (e) -80 to +80 and (f) -100 to 

+100 

 

 

 

 

implemented in the AE data acquisition system, the 

VDR can always be set equal to the built-in maximum 

limit of the voltage range. By doing this, the VDR will 

also be implemented as a built-in range rather than a 

user input parameter. 

 

Secondly, the choice of bin width to generate the dis-

crete probability distribution is also of great importance. 

If the bin width is too large, there will be too many sam-

ples within each bin and the disorderness of the probabil-

ity distribution will be lost. If the bin width is too small, 

there will be too few samples within each bin and the 

disorderness of the probability distribution will be unreli-

able. For ideal AE entropy computation, the bin width 

range should be set close to the AE data acquisition sys-

tems resolution. The AE system used in this experiment 

was a 16 bit AMSY-6 system. For a 10 VDC range, it has 

a resolution of 0.000153 mV. Therefore, a bin width of 

0.000153 was chosen for these tests. 

In addition, it is worth noting that the present investi-

gation was carried out in a controlled experimental envi-

ronment, where the sensors were placed close to the 

damage source. In real condition monitoring of engineer-

ing structures using AE, a damage source may be located 

far away from the AE sensors and the AE signals would 

be subjected to attenuation and dispersion. Attenuation 

and dispersion is likely to affect the AE entropy value (as 

with all other traditional AE features). Moreover, noise 

generated from the grips and internal reflections within 

the test specimen were filtered out in these analysis. In 

real operational conditions, noise sources may be difficult 

to filter out and could bring difficulty in interpreting the 

damage using AE entropy. Further research needs to be 

carried out to investigate the effectiveness of AE entropy 

on complex engineering structures. Firstly, the effect of 

attenuation and dispersion on the calculated AE entropy 

needs to be understood. Secondly, the performance of AE 

entropy in noisy environments needs to be assessed. 

 

5. Conclusion 

The results show the potential of AE entropy to identi-

fy damage in the sample of 316L stainless steel subjected 

to fatigue loading. AE entropy of a signal is derived from 

its discrete amplitude distribution and is independent of 

acquisition settings, such as threshold and timing. A 

similar trend in AE cumulative entropy and AE features, 

such as count and energy, suggests that the traditional 

analysis can be replaced with AE entropy for critical 

damage identification as it is independent of acquisition 

settings and therefore reduces the need for human judge-

ment in measuring the AE signal. The cumulative trend is 

consistent for the two tests performed. Moreover, it can 

be concluded that the sudden increase in AE entropy is 
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generally an indication of critical damage, such as plastic 

zone formation as a result of growth and coalescence of 

micro-cracks, this would provide critical information to 

engineers monitoring a structure.  

There are however, a few important parameters to con-

sider for AE entropy computation such as voltage VDR 

and bin width. Incorrect selection of these parameters 

will result in inaccurate AE entropy and may mask the 

signals generated from the damage mechanism. The in-

fluence of VDR can be avoided by setting it to the built-

in maximum limit of the voltage range of the data ac-

quisition equipment. The influence of bin width can be 

avoided by setting it close to the AE data acquisition 

systems resolution. Before the proposed parameter is 

implemented in the AE data acquisition system, more 

theoretical and experimental studies need to be conducted. 

Some important ones are: the effect of AE entropy due to 

the change of cracking mode; entropy due to the change 

in sample geometry and the effect of dispersion on the 

calculated AE entropy. 
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