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Abstract

This work argues that directional statistics are important in Robotics. That is, statistics on general
manifolds. Historically the subject began with statistics on circles and spheres, hence the title. It is still a
relatively new discipline, see [4] for an overview. In order to make the case a specific example is studied:
Finding the rigid transformation undergone by a camera from a knowledge of the images of a number
of points. This very simple, perhaps naive, example allows us to study differnet models for error in the
observations and estimators for the rigid transformation.

1 Introduction

A large number of important problems in Robotics, both in Robot vision and kinematics, seem to come
down to finding a rigid body transformation given some data describing its effects on points or lines and so
forth.

The most obvious examples are in robot vision where a common problem is to compute the motion
of the camera given a number of point correspondences in successive images. For mobile robots we need
to find the position and orientation of the robot given data from a number of different sensors, perhaps
a camera or a sonar range-finder or several other possible sensors. An interesting problem for industrial
robots is the so-called sensor calibration problem (this is not related to camera calibration familiar in robot
vision). Here the robot has a camera attached to its end-effector, by moving the end-effector through known
motions we capture successive images. From this information we must find the rigid change of coordinates
which relates the robot’s tool coordinates to the coordinate system of the camera.

In many cases the geometrical problem is quite simple if the data is accurate. In reality the data comes
from measurements and all measurements are subject to noise. The real question that these geometrical
problems pose is thus: What is the best estimate of the rigid transformation given noisy data?

Many workers have proposed solutions to various problems over the years, however, these solutions
do not take into account the geometry of the group of rigid transformations. For example, it is fairly
common find least squares solutions for the matrix elements subject to the constraints that the matrix is a
group element. The difficulty here is that there are many ways to embed the group of proper rigid motions
into Euclidean spaces of various dimensions. The results are different for different embeddings, this is
clear because the group does not have a bi-invariant Euclidean metric so none of the embeddings can be
isometric.

A more natural approach would be to work on the group of rigid body motions itself. This would ensure
that results would have physical (coordinate-free) meaning. There are however, many difficult technical
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problems to overcome.,

In this work we study some of these difficulties by looking at a representative problem. In this problem
a calibrated camera observers a set of points whose positions are known. The idea is to infer the position
and orientation (the configuration or pose) of the camera from the observed positions of the points.

After describing this problem in a little more detail several different models for the errors in the data
are studied. Next some different estimators for the pose are derived, for example the different error models
will give different maximum likelihood estimators.

Here we will assume that we know the position in space of a number of points by, by, ..., b,. Now the
camera is subjected to a rigid transformation X ! or equivalently the points are subject to a transformation
X. After the transformation the points are observed by the camera, but the camera can only observe a line
Joining its centre of projection to a point. We denote the corresponding lines observed by the camera by
Ly, Ly, . ..,L,. If these lines were observed with no error then the transformed point X (b;}) would lie on the
line L;. Of course there will be errors, so this will not be true in general.

2 Error Models

In this section we will look at several different possible models for errors. These different models are
distinguished mainly by the assumptions made as to were the errors occur. That is, whether the errors occur
in the image plane of the vision system or in space in the coordinates of the observed points. In order to
make reasonable comparisons, however, we must consider the error distributions on the same space. A
reasonable, space to use is the projective space of lines through the centre of projection of the camera, PR,
Hence, in the following we will map the probability distributions to this space.

We can use spherical polar coordinates for the space of lines,

x rsinBcosd
y | = | rsinBsing
z rcosH

We restrict the range of 0 to 0 < 0 < 7/2, so that each un-directed line only has one set of coordinates

(except for the z-axis, 8 = 0, ¢ = any). See figure 1.
We will also need the Jacobian of this change of coordinates,

sinOcos¢ rcosBcos¢d —rsinBsing
dxdydz =|sin®sing rcos®sing rsinBcosd |drdode = rsin0drdodo
cosf —rsin® 0

2.1 Image-plane Gaussian

This seems to be the most commonly used model in computer vision, see [2] for example. Essentially, this
model assume that all the errors occur in the vision system, the motion was precise but errors were made
detecting the points in the image. The distribution is represented by a probability density function of the
form:

g;(Xj;Xo, K) = C] exp {(X[ == X())TK(XI T Xo)}

Here the image-plane coordinates are,

_(x\ _ (xf/z\ _ [ ftanBcos¢
= yi)  \yf/z)  \ ftan@sin¢
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centre of projection

Figure 1: Spherical Polar Coordinates

xg is the mode of the distribution and X is a symmetric matrix, usually called the covariance matrix. The
length f specifies the distance from the image-plane to the centre of projection at the origin. Notice that C;
has been written for the normalisation constant here. We will not be concerned with these constants in this
article and will simply write them as C; in the following.

In the spherical polar coordinates this distribution becomes,

£1(8,¢:0, B, K) = C1 f* exp { (x1 —x0)T K (x; —X0) } sec*6tan

_ (xp\ _ [ ftanacosp
o= (yg) - (ftan(xsinﬁ)

For the simple case where (x; — xo)TK(x; —Xp) = — ((x; —x0)%+ (y1 —yo)z) /202, the result becomes,

where,

2
21(8,0;0,B,6) = C1 f2 exp {%(secze +sec? o — 25€cesecacosw)}sec29tan9
Here, cosy = cosBcoso+sinBsinccos(¢p — B), that is y is the angle between a general line and the line
through the mode of the distribution, see figure 2.

In the language of directional statistics this is an example of a wrapped distribution. A distribution on
the tangent plane of a manifold is mapped to a distribution on the manifold itself, see [4, §13.2]. Actually,
rather than using the exponential map to wrap the distribution onto PR? we are using the camera projection.
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Figure 2: The Angle between Two Lines

2.2 Object-Space Gaussian

In this section suppose that the camera is fixed and the points it is observing are fixed to body that is not
completely rigid. In this case it would be reasonable to assume that the positions of the points in space obey
a 3-D Gaussian with a probability density function of the form,

80(%,%,2:%0,0,20,0) = Crexp { —((x—x0)* + (y — y0)* + (2 — 20)*) /26° }

To find the density function for lines implied by the above, we integrate this function along the lines.
This procedure is reminiscent of Radon transform. In the language of directional statistics this procedure is
known as the projection of a distribution, (4, pp. 178-179].

' D
8o(0,9:x0,50,20) = | gor"sinBdr

To perform the integral we need to convert the above to polar coordinates,
+oo
g'; (91¢;x0’y0,Z0,0) =C; sinﬂf r2€(r2+f’(2r2rrncosw)/20 dr

where we assume that the mode of the distribution has the polar coordinates,

X0 rosinccos b
yo | = | rosinosin3
20 rgCcos o
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and cosy = cosBcos o+ sinBsinocos(¢ —B). Now we can substitute R = (r —ry)/(+/26) and obtain the
result,

2 2
2,(8,0;0,B,0) = vV21G0> exp {—E:% sinzw} (1 +2% cos® ) sin@

As above, the angle v is the angle between the particular line and the direction to the mode of the
Gaussian distribution.

When the mode of the Gaussian distribution coincides with the centre of projection it is clear that we
should expect a uniform distribution on the space of lines PR?. This is indeed the case, remembering that,
in these coordinates the distribution function for the uniform distribution is proportional to sin8. Of course
this is not a very practical situation since, if a point were located at the centre of projection we would not
be able to see it with our camera.

For a Gaussian with a more general covariance matrix the integral becomes impossible to perform in
terms of elementary functions. However, good approximations do exist.

2.3 The Watson Distribution

This is a distribution defined on spheres, it has anti-podal symmetry and hence can be considered as a
distribution function on PR2, the space of lines through the origin in R3.
The Watson distribution is defined by the density function,

W (x; 4, %) = Czexp { (1" x)?}
here 44 is the modal direction and K is the concentration parameter. Both g and x are intended to be unit
vectors here. In spherical coordinates we can write,
x = (sinBcos,sinBsing,cosO)”

m (sinocos B, sinosin B, cos )T

In these coordinates the density function becomes,
W(6,¢;0,B,%) = C3exp (kcos® y) sin®

where, as in the section above, cosy = cos8cosa. + sin®sinacos(¢ — B), and y gives the angle between
the line under consideration and the modal direction.

Notice that this is very similar to the projected normal distribution we met above. If we set the distribu-
tion parameter K, to k = (73 /c?) then for small  the two distributions functions become almost identical
(remember that sinzw =1—cos? ). However, as we saw above this is the case where the distribution
function approximates a uniform distribution, so this observation is not particularly useful in practice where
we expect large concentration k or small variance G2.

Clearly there are many different possible distributions for lines through the origin. The question is
which is the best one to choose? Of course the answer will depend on the problem at hand. However,
when no other information is available the Watson distribution is probably the best one to choose. There
are several reasons for this, it is by far the simplest to work with and it shares many properties with the
Gaussian distribution in Euclidean space.
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3 Estimators

It is well known that for regression problems in Euclidean space the least-squares estimator is the maximum
likelihood estimator exactly when the data points are assumed to obey Gaussian distributions with common
covariance. Here the situation if far less clear.

Some results are known, for example suppose we try to estimate the rotation which takes a set of points
on the sphere to a set of measured points on the sphere. If we assume that the measured points obey a Fisher
distribution then the maximum likelihood estimator is the same as the least squares estimator, see [7].

In general, all the methods considered below work in the following manner; a function is defined on
the group space, either a residual or a log-likelihood function. Then the group element that minimises this
function must be found. An advantage here is that since the manifold we are working on is a group space we
can use the Lie algebra elements as (left-invariant) vector fields on the manifold. So if we find the derivative
of the function with respect to an arbitrary element of the Lie algebra and set this to zero we get conditions
for the function to be stationary. Notice that this completely avoids the need for Lagrange multipliers.

Suppose X is an element of the group of rigid body motions SE(3), The effect of such a group element
on a point in R? is given by a rotation and a translation,

X(b) = Rb+t

Here, R is a 3 x 3 rotation matrix and t a 3-dimensional translation vector. Usually we work in a represen-
tation of the group, for example, the 4-dimensional representation where,

R t
(3 1)
(abusing notation slightly). The advantage of this representation is that we can represent the action of the
group on peints by matrix multiplication,

- R t b Rb+t
o= 1) ()= ("")
where we have embedded the 3-vector b into R*, b7 = (b7, 1), this is sometimes called the homogeneous
representation.
Let F(X) is a function defined on the group. To differentiate this function with respect to a Lie algebra
element § we move the along the vector field defined by S, this will give a function value, F(e5X). In the
usual way we then subtract the original function value, divide by the parameter £ and proceed to the limit

t— 0.
IsF (X) = lim (F(eX) — F(g)) /t = —F(°X) = F'(X)SX

For more details on this technique see [6]. In general we will use a linear representation of the group and
hence the Lie algebra element S must come from the corresponding representation of the Lie algebra.

3.1 Least Squares

Returning to our model problem. Suppose we transform the known points and then compute the distances
between the transformed points and the corresponding measured lines. Now we seek the transformation
which minimises the sum of the squares of these distances.
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I(r-b)xwl

Figure 3: Shortest Distance Between a Point and a Line

The square of the distance between a point b and a line is given by,
d*=(u—bxw) (u—bxw)

Here, w is a unit vector in the direction of the line and u is the moment of the line, u = r x w with r and
point on the line. See figure 3. The sum of the squares of the distances between the points and their lines

can be written as, T i
D(X) = (LXb;)" (Lixb;)

13

The lines are represented here by 3 x 4 matrices with the partitioned form,
L=(W u)

with W the anti-symmetric matrix such that Wx = w x x for any vector x. Now we can minimise this over
the group by differentiating along an arbitrary left invariant vector field S,

9sD(X) =2, (LiXb;)" (LiSXb;)

see above. Setting this equal to zero for arbitrary S produces the equations,

2. (W Wi(Rb; +t) + W w;) x (Rb;+1) =0
i
and
> (W Wi(Rb;+€) + W) =0

4



3 ESTIMATORS 8

The estimate is the rotation R and translation t which solves these equations. Certainly, if there are no
errors in the data this estimator will give the rigid transformation precisely.

It is difficult to see how these equations could be solved symbolically. There are a few simplification
which may help, for example, since all the lines will pass through the camera’s centre of projection, we
can take this point as the origin and then all the w;s will vanish. We can make the equations a bit neater by
writing p; = Rb; 4 t and using the fact that W;p; = w; x p; and various vector identities to get:

> (pi- wi)(pi X wi) =0 )

and
zw, (pixw;)=0 (2)

However, this does not seem to help us untangle the rotational from the translational part of the problem.

Since we have not assumed a distribution for the errors here there are several questions we could legit-
imately ask. For example, for which error distribution does this give the maximum likelihood estimator?
Also, what are the statistics of this estimator? That is, given a distribution for the lines, how is the estimate
distributed on the space of rigid body transformations? This last question can be asked for the maximum
likelihood estimators derived below.

3.2 Maximum Likelihood for Lines

Here assume that the errors are distributed according to a Watson distribution with known concentration
parameter K. The data we have consists of pairs, points b; and the corresponding directions w;. The log-
likelihood of the data is thus,

K(X) =% (Rb;+t)"w;w! (Rb; +1t)/|Rb; +t|* +nlnC;
i

Again this can be considered as a function of the group of rigid transformations. Hence, to minimise it we
must differentiate with respect to arbitrary Lie algebra element and set the result to zero.

To facilitate this let us write, p, Rb; 4t as above and p; for the unit vector in this direction, p; = p;i/|pi|-
Now since we can write p; = (p? p;)~ 1/2p‘, we can calculate that,

N 1
dsP; = o ((P?Pi)lz. = (PiP?))aSPi
4
The term dsp; is given by,
w
dspi =w x pi+v= (P ,B) (v)
where w and v are the first three and second three components of an arbitrary Lie algebra element written in
the adjoint representation—a 6-dimensional representation. The 3 x 3 identity matrix is I3 and P; represents

the 3 x 3 anti-symmetric matrix corresponding to p;, P;x = p; x x for any vector x.
Putting all of this together we have,

aSK(X ﬁszpz Wiwy I ]P ((pr Pi) (Pipz )) (PIT’]3) (f)
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Setting this to zero for arbitrary w and v gives two vector equations,
1
> 5 (pi-wi){pixwi) =0 3)
F |pil

and i
Zw(m-wz‘)(m X (w;xp;))=0 (4)

3.3 Maximum Likelihood in the Image-plane

In this section we look at the usual case where the errors are given by Gaussians in the image plane. The
log-likelihood function can be written as,

N(X) = 325 3. (pr(e) —px(wy)

where the projection map pr is given by,

m\r) = (5%)

Z

As usual we must differentiate this and set the result to zero, in the previous two examples we could
perform the differentiation with respect to an arbitrary Lie algebra element and produce a pair of 3-vector
equations. In this case this does not seem to be possible. Hence, rather than use an arbitrary Lie algebra
element we can take a basis for the Lie algebra, necessarily consisting of six-algebra independent elements.

Let use write,

x;
pi=Rbi+t= | y
Zi

X 9s(x)z—xds(z)
3 AP i
spr y? T\ 2s0dedsla)

Zi z

So that,

Now as our six basis vectors for the Lie algebra we take the infinitessimal rotations about the coordinate
axes and the infinitessimal translations parallel to the coordinate axes. The six equations for maximum
liklihood are then,

5% (pr(e) —pr(wf))T (y;f"z?) =0, 3L (pr(mi) —pr(wi))T ((1]) =0,

(pr(pr) s pr(Wf))T (x"z +Z‘2)

Xi¥i

%L (Pr(Pi) —pr(wr:))T (_y J ) =0, Efﬁ(pr(pi) —pr(Wf))T G‘ ) =

Xi i

0,

2

EAEEN

0, %L (pelp) —pr(Wf))T ((1))



4 CONCLUDING REMARKS 10

4 Concluding Remarks

In the above we have assumed that the parameters (covariance or concentration) of the distributions are
known. It is more usual to use the data to estimate these quantities also. To do this we need to know
explicitly how the normalisation constant of the distribution C; here, depend on the parameters. Then we
can differentiate the log-likelihood with respect to the parameters, this is not always straightforward since
the the normalisation constant is usually some hypergeometric function of the parameter.

As mentioned above,we need to solve the equations we have derived to find our best estimate. This
will usually involve some numerical technique. Several approaches to this exist in the literature see for
example [3]. However, one technique which suggests itself from the work above is steepest decent. In the
first two cases we were able to compute the gradient of the function to be minimised, recall that,

dF(S) =dgF

Now it is relatively straightforward to find the Lie algebra element S which maximises —dF and then we
can move a small amount in the group by multiplying our current estimate by the group element &% for
some small step length 8.

An alternative approach might be to turn this into a dynamical system. That is we consider F(X) as
a potential energy function then assume a kinetic energy function by choosing an inertia tensor and we
would probably want some damping in the system too. Now we simply use standard numerical techniques
to integrate the equations of motion.

Itis “well known” that many of these estimators produce biased results. However, there is a real diffi-
culty in understanding what bias means in this context. Classically an estimator is unbiased if the mean of
its results coincides with the actual value we are trying to estimate. In the problems we are considering the
object we are trying to estimate is an element of a Lie group and there does not seem to be a natural way to
extend the idea of a mean value to this space. However, there is work on extending some of these ideas to
more general spaces. In [5] the idea of mean points for distributions on Riemannian manifolds are defined
and an intrinsic definition of unbiased estimators in such situations is given. Notice that it seem reasonable
to require that any result we compute should be independent of the coordinate frame chosen.

We have not mentioned Bayesian estimators so far. As usual to use a Bayesian estimator we need a prior
distribution. In this case the prior distribution will be a distribution on the group space. In modern Bayesian
theory much is made of maximum entropy priors, these distributions can be thought of as representing ones
state of knowledge or ignorance before the experiment is performed. Unfortunately there does not seem to
be a good definition of entropy for general manifolds. In particular the group space for the group of rigid
body motions is a non-compact manifold. On the circle there is a definition of entropy and with suitable
assumptions the maximum entropy distributions turn out to the the von Mises distribution, see [4, p.42].

So for Bayesian estimation, several reasons we are led to the problem of trying to understand distribu-
tions on the group of rigid body transformation. As far as the author is aware there is almost no previous
literature on this. However, some obvious examples suggest themselves. First of all, if we choose an origin
for our coordinates we can split the group into the semi-direct product of rotations about the origin with the
translations, SE(3) = SO(3)<R®. Now we can choose a product measure, that is a distribution on the rota-
tion and one on the translations. An obvious choice for the translations might be a Gaussian. The rotation
group SO(3) is know to have a group space isomorphic to the projective space PR® and hence we might
choose a Watson distribution here. Another approach, which does not need a origin to be chosen beforehand
is the following. Suppose we have a potential function defined on the group space, for example imagine a
rigid body suspended by a number of springs. In a simplified model of this situation it can be shown that
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the potential energy has a single minimum. Now suppose we take the exponential of the negative of the
potential. This function can be integrated of the group in principle and hence a normalising constant will
exist to make this into a probability distribution on the group. The result will be reminiscent of the Bingham
distributions for spheres. Note that the stable equilibrium of the rigid body and springs becomes the mode
of the distribution.

In camera self-calibration the task is to find the parameters of the vision system from sets of point cor-
respondences. The set of camera parameters can be conveniently expressed as element of the Lie group
SL(3). In other problems, there is no unique solution, even when the data is precise. Rather these problems
are incompletely specified. An example would be trying to find a rigid motion given sets of point corre-
spondences between successive images. The problem is that, if we don’t know how far the points are from
the camera we cannot distinguish between a small rotation of nearby points and a larger rotation of more
distant points. A common way around this difficulty is to assume that the points are all a unit distance from
the camera’s centre of projection. A better way of thinking about this is to quotient out the ambiguity. That
is, take the space of rigid body transformations quotient by the equivalence relation which identifies two
transformations if they produce the same data. Now we have a well defined problem on the quotient space.

In summary, we should keep an open mind about which Lie group we are using and generally consider
the problem of estimation on general Lie groups and their quotients.
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