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Abstract

In this paper, the mechanism of misperception leading retail investors to investment choices,

which are not the most profitable, is studied in a stochastic dominance framework

from a theoretical perspective and supported by an extensive numerical analysis.

The theoretical contribution of the paper consists in the introduction of a specific definition of

stochastic dominance, to capture the effects of an asymmetric trend-type misperception. Such a

novel conceptualization is consistent with the perspective here adopted, i.e. the misperception

is driven by a positive trend affecting the entire set of possible realizations.

The financial relevance of the theoretical proposal is highlighted through the paradigmatic case of

structured financial products. To this end, we perform a pairwise numerical comparison between

investment products to get insights about the inversion of the order of stochastic dominance,

leading investors to prefer the less profitable instrument. The critical trend, the value where

preferences are reversed, is interpreted as a measure of investors’ misperception and compared

with different levels of the volatility.

Some behavioral finance-type arguments provide insights on the interpretation of the obtained

results.

Keywords: Behavioral finance, stochastic dominance, Monte Carlo simulations, framing effect,

structured financial products, volatility.

JEL Classification: C65; D81; G24.

1 Introduction

Rationality is certainly not the unique route leading to financial decision-making. Psychology and

human judgments must also be taken into account since random outcomes are not always objectively

evaluated, and their realizations can be reinterpreted and misperceived by decision-makers. Often,
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these subjective biases lead to objectively not profitable financial choices.

In this paper, we provide a theoretical analysis of the stylized mechanism of the misperception that

can explain the preferences granted to certain financial products. In a pairwise comparison, such

a device allows analyzing cases of distortions of the risk-return profile, leading to the choice of the

worst product.

By a theoretical perspective, we introduce a decision criterion – based on stochastic dominance – to

analyze the mechanism of misperception. To this end, we appropriately adapt the classical definition

of stochastic dominance to include the misperception of random amounts. This is conceptualized

through the introduction of a positive trend, affecting the entire set of possible realizations of the

worst financial product.

We conjecture that the roots of the popularity of some financial products among retail investors

can be found in the poor understanding of these investments, driven not only by financial illiteracy

but also by psychological factors.1. Indeed, such a popularity appears to be difficult to

explain with investments profitability. In this respect, the perceived trend can be viewed

as a psychological bias determining a misperceived improvement of the performances of the worst

product. The conjecture we address finds its foundations in the main insights of behavioral finance.

In agreement with some previous relevant contributions in financial economics, a volatility issue is

also tackled using numerical analysis. We move from the fact that as the volatility changes, the

magnitude of misperception changes as well.

To sum up, the novelties addressed by this paper are as follows.

From a theoretical point of view, we introduce a new definition of stochastic dominance. Such a

new conceptualization is based on the assumption that misperception can be driven by a distortion

of global trend-type. By a financial perspective, the proposed approach allows showing that, when

purchasing, the retail investor must be put in the position of uniquely understanding the risk-return

characteristics of a financial product. Indeed, financial illiteracy and/or ambiguous framing of a

financial product can lead retail investors to misperception of global trend-type and, consequently,

to not profitable (in terms of stochastic dominance) decisions.

The stylized mechanism of misperception is numerically implemented to analyze the paradigmatic

case of two particular structured financial products. Indeed, some evidence suggests that especially

among retail investors, some types of complex structured products are more popular than simple

ones, although the latter should be preferred. Furthermore, via extensive simulations, we study how

the volatility might influence the retail investor’s choice. In so doing, relevant insights are gained

on the relationship between the magnitude of misperception and riskiness of the financial product.
1There is no room here to focus on the source of such a poor understanding. We just point out that some evidence

on the responsibility of financial institutions in exploiting investors’ psychological biases is well documented. More

details are provided in the last section.
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The importance of such a relationship is confirmed by several remarkable contributions in this field

of research.

Theoretical and numerical results are interpreted in the light of the principles of behavioral finance,

with a a particular reference to framing effect.

The remaining part of the paper is organized as follows: next section contains a brief review of the

reference literature; Section 3 presents the theoretical foundation of the study; Section 4 provides

details on numerical analysis; in Section 5 we discuss the findings on the relationship between

misperception and volatility, and some conclusive remarks are provided.

2 Literature review

A proper contextualization of this paper can be identified in the broad field of the theory of financial

decision making. From a theoretical perspective, particular attention is paid to the criteria for select-

ing a financial asset from a set of available alternatives. As selection criteria, we choose stochastic

dominance because of its generality. Indeed, stochastic dominance is based on the distribution func-

tions of random outcomes and allows to take into account all the characteristics of random variables

(i.e.: fat tails, kurtosis, asymmetry, etc.). This decision criterion has been developed in Fishburn

(1964); Hadar and Russel (1969); Hanoch and Levy (1969); Rothschild and Stiglitz (1970); Scarsini

(1986) and, more recently, Kuosmanen (2004) and Osuna (2013). A survey on stochastic dominance

can be found in Levy (2006) and in the recent monograph by Sriboonchitta et al. (2010), where

several applications are also presented. In addition, it should be stressed that, as the recent paper

by Muller et al.’s (2015) highlights, the theoretical advancements of stochastic dominance are still

at the center of the scientific debate.

Here, we differ from the quoted contributions, because we aim to build a decision criterion which

is specifically tailored on a misperception of global trend type2. We introduce a distortion in the

random amounts and then apply stochastic dominance to distorted quantities, without modifying

the original definition of the decision criterion. This approach provides a very general rule for ana-

lyzing the mechanism of misperception and extends the paper by Castellano and Cerqueti (2013), in

which the restrictive cases of constant trend and lump sum were considered. Such an extension also

allows a deep analysis of the riskiness and its connections with the biases which often characterize

the evaluation of random amounts.

Another area of the literature to which this paper refers to is the general psychological analysis of

decision processes. Some empirical studies show how the presence of psycho-biases can affect the

selection process from a set of available alternatives. In this respect, several paradoxes arise. In
2The definition of stochastic dominance we provide does not aim to describe local convexities of the utility functions

or other properties of the preference rules.
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general, behavioral finance scientists have provided a systematization of the psycho biases and their

impact on the financial decisions (see Fellner et al., 2009, and references therein). One of the most

noticeable ones is that individuals tend to revert their preferences when even identical alternatives

are presented at different times (see e.g. Camerer, 1989, Starmer and Sugden, 1989, Wu, 1994, Hey

and Orme, 1994). Cross et al. (2005) discuss the presence of tensions driving the mechanism of

mispricing in the particular case of the minimal personality of investors. Lamba and Seaman (2008)

deal with a pricing model with heterogeneous agents by introducing into the evaluation scheme also

the sentiment. Such a variable is driven by several psychological factors and can be written as the

average of the states (+1 as the long position and −1 as short position) of all investors. When a

decision involves the evaluation of good and bad performances, irrationality can also be motivated

by the so-called disposition effect, i.e. the tendency showed by investors to sell the

assets experiencing a positive trend in the price and keep the ones whose price has de-

creased. The disposition effect explains the occurrence of a different perception between bad and

good realizations in investors’ mind. In this respect, Friedman and Savage (1948) and Markowitz

(1952) theorize the existence of switches in investors’ mind between risk-aversion and risk-seeking,

in correspondence of some critical outcomes.

Ritter (2003) highlights some specific causes of investors’ irrationality. Among them, one of the most

popular is the so-called framing effect which refers to an ambiguous form of presentation of available

alternatives, so that a distorted framing of alternative proposals can lead to the reversal of prefer-

ences. Kahneman and Tversky (1979) conduct experimental psychological researches and provide

an empirical validation of Friedman, Savage, and Markowitz’s speculations, formalizing one of the

founding principles of prospect theory. In line with prospect theory, Rieger (2011) applies

a behavioral finance argument to deal with financial decisions and design of structured

financial products. The framing effect is acknowledged to be responsible for a significant number

of misperception mechanisms (see e.g. Berger and Smith, 1998, Wang and Fishbeck, 2004, Breuer

and Prest, 2007, Bernard et al., 2011, Rieger, 2012).

These quoted papers are very close to our point of view. In particular, Bernard et al. (2011) pro-

vide a valuable reference for the selection mechanism from a set of structured financial products.

They show that investors have a tendency to overprice the most complex ones and argue that such

a misreading is driven by the optimism with which financial institutions frame the prospectuses

of investments to retail investors. This paper differs from that of Bernard et al. (2011) in many

respects. The most important one is that we abandon the classical mean-variance approach and

develop the analysis in the broader framework of stochastic dominance, providing a methodological

advancement in decision theory.

For the sake of completeness, we remind the reader that is possible to describe the individuals’

subjectivity, violations of reasonable choices and related implications also by adopting a possibilistic

4



approach (Inuiguchi and Ramik, 2000, Popescu and Fulga, 2011). Such a way to proceed is associ-

ated with concepts like ambiguity and vagueness which request the use of fuzzy theory. In any case,

such a perspective is very far from the stochastic approach adopted in this paper.

3 The theoretical framework

In this section, the theoretical contribution of the paper is presented. In particular, the focus is on

the violation of stochastic dominance induced by a mechanism of misperception.

Consider two random variables X and Y , with distribution functions FX and FY respectively. The

following assumption holds true throughout the paper:

Assumption 1. The random variables X and Y have bounded support.

We also assume that X and Y represent two stochastic outcomes, and rational investors take a

financial position after evaluating X and Y . To this end, investors use stochastic dominance criterion

as a decision rule. More specifically, for a given n ∈ N, if X stochastically dominates Y of order n,

i.e.: X >n Y , then the decision maker should prefer X to Y . Tthis does not always occur. The

fact that some investors assess Y better than X may depend on the misreading of the realizations

of X, or Y , or both. As already discussed in Castellano and Cerqueti (2013), the misperception can

be due to an optimistic view of the worst product, induced by a constant trend. Here, we extend

this result and assume that the stylized rule describing the misperception of the worst random

outcome is caused by a general deterministic trend, not necessarily constant, that favorably affects

the realizations of Y .

An optimistic trend can be defined using a bounded function α : R→ [0, +∞). The perturbation of

Y induced by the trend α generates a new random variable Yα. The formal definition of Yα can be

easily derived from Y , by translating the cumulative distribution function FY :

FYα(r) = FY (r − α(r)), ∀ r ∈ R. (1)

It is worth noting that if α is bounded in R, then FYα is a cumulative distribution function. Obviously,

if α ≡ 0 no misperception occurs.

Assumption 2. The decision makers have complete information on FX and FYα .

In particular, Assumption 2 states that investors evaluate the random outcome X correctly and

make an incorrect assessment of the outcome Y . The latter is induced by a psycho-distortion which

takes the form of a deterministic trend.

Remark 1. No mathematical assumptions on the behavior of α with respect to its argument are

required to introduce the concept of optimistic trend. This let the definition of trend be rather gen-

eral. However, a nondecreasing α formalizes the specific cases in which the larger the amount to be

distorted, the bigger the size of the distortion.
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A specific definition of stochastic dominance is introduced to capture the effect of a trend-type

misperception.

Definition 1. Consider n ∈ N, two random outcomes X and Y and a bounded optimistic trend

α : R→ [0, +∞).

The random outcome Y α-dominates of order n X (Y >α,n X, hereafter) if and only if Yα stochas-

tically dominates X of order n ∈ N (Yα >n X), i.e.:




F
(n)
Yα

(r) ≤ F
(n)
X (r), ∀ r ∈ R

and

∃ r∗ ∈ R such that F
(n)
Yα

(r∗) < F
(n)
X (r∗),

(2)

where, for each r ∈ R, the function F
(n)
X is defined recursively as follows:

F
(n)
• (r) =





F•(r), for n = 1;

∫ r

−∞ F
(n−1)
• (s)ds, for n > 1,

(3)

with • = X, Yα.

The concept of α-stochastic dominance can be seen as an asymmetric criterion for evaluating two

random outcomes. Indeed, as the Definition 1 states, only one of the quantities involved in the

comparison is distorted. Since the trend is assumed to be bounded, it is easy to check that Y >α,n X

and X >α,n Y cannot hold simultaneously.

No closed form results for the reversal of stochastic dominance are available if the shape of the

function α is not specified. Despite this, a sufficient condition can be easily and directly derived

from the classical definition of stochastic dominance and Definition 1.

Proposition 1. Fix n ∈ N and assume that X >n Y . Consider a bounded optimistic trend α : R→
[0,+∞). There exists α?

n > 0 such that

lim
r→−∞

α(r) ≥ α?
n ⇒ Y >α,n X. (4)

Proof. Assume that

α(r) ≥ α?
n, ∀ r ∈ R. (5)

By (5) and by the definition of FY , we have that:

F
(n)
Y (r − α(r)) ≤ F

(n)
Y (r − α?

n), ∀ r ∈ R. (6)

Now, first-order stochastic dominance implies stochastic dominance of order greater than 1. So, by

(6), we need to search for α?
1 such that

FY (r − α?
1) ≤ FX(r), ∀ r ∈ R. (7)
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By Assumption 1, the quantities X and Y have bounded support. Therefore, there exist four scalars

r?
1 , r?

2 , r?
3 , r?

4 ∈ R such that:




FX(r) = 0, for r ≤ r?
1 ;

FX(r) ∈ (0, 1), for r?
1 < r < r?

2 ;

FX(r) = 1, for r ≥ r?
2 ,

(8)

and 



FY (r) = 0, for r ≤ r?
3 ;

FY (r) ∈ (0, 1), for r?
3 < r < r?

4 ;

FY (r) = 1, for r ≥ r?
4 .

(9)

By the hypothesis that X >n Y , we have that r?
1 ≥ r?

3 and r?
2 ≥ r?

4 . A sufficient condition to invert

the stochastic dominance relation between X and Y is obtained by translating the function FY in

order to have:

FY (r − α?
1) = 0, for r ≤ r?

2 . (10)

To get (10) it is sufficient to consider α?
1 > r?

2 − r?
3 .

The constant α?
n is the critical trend for stochastic dominance inversion, and can be defined as

α∗n = inf {α ∈ (0,+∞) |Y >α,n X} . (11)

The subscript n indicates that the critical threshold value of α depends on the order of stochastic

dominance to be reversed.

A nice result, particularly suitable for real world applications, provides a link between constant

and critical trend. With a reasonable abuse of notations, we denote the constant trend through a

parameter α ∈ [0, +∞), the misperception of Y as Yα and the cumulative distribution function of

Yα as FYα , so that (1) holds also with a constant trend, playing the role of critical trend introduced

in Proposition 1 and formula (11).

The reversal of preference between X and Y is achieved only when Y is misperceived through a

large enough constant trend α. This is formalized in the next Corollary of Proposition 1.

Corollary 1. Fix n ∈ N and assume that X >n Y . Then Y >α,n X, for each α ≥ α?
n, where α?

n is

defined as in (11).

The following result explains the dependence between critical trends and corresponding orders of

stochastic dominance.

Proposition 2. Consider n1, n2 ∈ N. It results n1 ≤ n2 if and only if α?
n1
≥ α?

n2
.

Proof. n1 ≤ n2, if and only if Y >α,n1 X implies that Y >α,n2 X, for each α ∈ [0,+∞) (see Levy

(2006), Chapter 3). By definition, we have Y >α?
n1

,n1 X. Hence, it results Y >α?
n1

,n2 X, and the

definition of α?
n2

guarantees that α?
n1
≥ α?

n2
.
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4 A numerical application

In this section, we provide a numerical application of the theoretical proposal presented above. We

refer to two stock market-linked products, falling into the category of structured investments. This is

the name given to a broad range of products that, in the majority of cases, are issued by investment

banks or insurance companies and sold to retail investors who appreciate the customization of a

variety of instruments into one product and the frequent presence of a principal guarantee function

which offers downside risk protection of the invested wealth, coupled with upside potential return

in the stock market.

Structured products are very sophisticated tools and often retail investors are not able to clearly

understand the financial risks associated with their complex structures. Besides, packaged retail

investment products are the focus of a heated debate just as far as the rules for the presentation

of their risk-return profile. Recently, Rieger (2012) finds that complexity might be a sophisticated

method to exploit systematic biases in probability estimation of investors to make financial products

look safer and more attractive than they are. Wallmeier (2011) states that the success of some of

the most popular products is mainly due to behavioral biases of investors and advances concerns

related to the complexity of these financial products, often accompanied by the little transparency

of their prospectuses.

For these reasons, structured products are suitable to represent the object of the numerical appli-

cation related to the stylized mechanism of misperception discussed above. At any rate, we like to

emphasize here that our theoretical proposal provides general results, which are independent on the

type of financial instruments considered here.

As in Castellano and Cerqueti (2013) and Bernard et al. (2011), we consider structured investments

that, in the absence of default risk, provide a guaranteed minimum return, so that the final return is

never less than a prespecified floor which is in place throughout the life of the contract. In addition,

capped contracts are taken into account. This implies that, at maturity, the final payoff is given

by a combination of periodic returns (locally capped contracts) or a bonus return (globally capped

contracts), varying according to the performance of the underlying asset, between the issue and

maturity date.

In appearance, although the two types of contract are very similar, they are characterized by different

structures and properties. Indeed, the globally capped contract shows a simple financial structure

that can be easily replicated and priced. Conversely, the locally capped contract is characterized

by a more complex and not replicable structure which generates a path-dependent final payoff and,

consequently, the difficulty of determining its fair price in closed form.

The final payoffs of globally floored-locally capped contracts and globally floored-globally capped
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are given respectively in (12) and (13) (see Boyle and Tse, 1990; Bernard et al., 2011):

YT = Y0

{
(1 + F ) + max

[
0,

nT∑

k=1

min
(

c,
Stk

Stk−1

− 1
)
− F

]}
, (12)

XT = X0

{
(1 + F ) + max

[
0,min

(
C,

ST

S0
− 1

)
− F

]}
, (13)

with T representing the maturity of the contract; n the number of periods in a year; Y0 and X0

the amounts paid at the inception date, t = 0, for each contract; F the global floor (guaranteed

minimum return at maturity); c the local cap (maximum allowed periodical return); C > F the

global cap (maximum allowed return); Stk
∈ [0, T ] the prices of the underlying asset at prespecified

dates tk; S0 and ST the prices of the underlying at inception and maturity date, respectively.

Assuming that the price of the underlying asset follows a lognormal diffusion, these products are

fairly priced in a risk neutral setting by combining Monte Carlo and optimization methods, according

to the algorithm described in Castellano and Cerqueti (2013). Some ideas behind such algorithm

are provided, to assist the reader.

Using a grid search procedure, the fair global and local caps, C and c respectively, are determined

so as to make the price of the two contracts equal to an assigned value, P̂ .

In particular, in a Black-Scholes-Merton’s setting, we take the discounted expected payoff and solve

for the global and local caps which minimize the distance of the risk neutral price from the given

one, assuming all the other parameters as given.

We use the vector of parameters ξ =
[

T X0 = Y0 F r σ δ S0 P̂
]
, for both simple and

complex contracts which share the same underlying, (S with current price S0 = 10), maturity (T = 5

years), initial investment (X0 = Y0 = 1, 000), guaranteed minimum return (F = 0.1), price P̂ = 920,

discount factor r = 0.05, volatility of underlying σ = 0.15 and dividend yield δ = 0.02.3

The complicatted contract is based on a quarterly sum cap (n = 4) and its estimated fair cap is

ĉ = 8.67%, while the estimated fair global cap level, is Ĉ = 30.53%.

Since the products considered here depend on the assumed volatility of the underlying (classical

references to this phenomenon are Avellaneda et al., 1995; Lyons, 1995; and Wilmott, 2000), we

also provide an analysis based on volatility. This allows us to gain some insights on the relationship

between the magnitude of misperception and riskiness of the underlying asset. Moreover, it is possible

to compare the results of our numerical experiments with those obtained by Breuer and Perst (2007)

who, investigating the demand for structured products, showed that the underestimation of volatility

makes these products attractive to retail investors.

Starting with the vector of parameters:

ξ′ =
[

T X0 = Y0 F r ĉ δ S0 Ĉ n
]
,

3The parameters selected for the application correspond to standard market assumptions. However, the results

hold also for different vectors of parameters, ξ.
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we run our experiment for different levels of volatility in the underlying (0% ≤ σ ≤ 100%, with

discretization step equal to 0.1%), to plot the prices of the two contracts.

Using Monte Carlo, each data point is computed performing 10, 000 replications. In Figure 1, the

red line represents the present value, computed at time t = 0, of the guaranteed redemption amount,

calculated as X0 (1 + F ) e−rT = Y0 (1 + F ) e−rT = 856.68.

INSERT FIGURE 1 ABOUT HERE.

Caption of Figure 1: Prices of globally and locally capped contracts as a function of volatility.

Looking at the plot reported in Figure 1, it can be noticed that prices of both contracts are not

monotonic functions of the volatility, and the price of the complex product decreases faster than the

one of the simple one, because of the truncation effects on large positive returns due to local caps.

4.1 Comparison of random outcomes via stochastic dominance

The next step of this application is related to the comparison of the random outcomes of the two

considered contracts, via stochastic dominance criteria. To this end, we simulate the final payoffs

for both contracts so that two distinct prospects, with cumulative distribution functions respectively

given by F̂X and F̂Y , are determined.

We recall that X stochastically dominates Y of order n ∈ N (X >n Y ) if and only if:




F̂
(n)
X (r) ≤ F̂

(n)
Y (r), ∀ r ∈ R

and

∃ r∗ ∈ R such that F̂
(n)
X (r∗) < F̂

(n)
Y (r∗).

(14)

To verify (14) and check whether X dominates Y of order n, we simulate j = 1, . . . ,K (K = 10, 000)

prospects, named X(j) and Y (j), and compute:

Ψ(n)
K =

1
K

K∑

j=1

1
(
D̂

(n)
j (r) ≤ 0, ∀r ∈ R and ∃r∗ : D̂

(n)
j (r∗) < 0

)
(15)

where:

D̂
(n)
j (r) = F̂

(n)

X(j)(r)− F̂
(n)

Y (j)(r) (16)

and 1(·) denotes the indicator function. Then the Law of Large Numbers in strong form is applied:

Γj =





1, if D̂
(n)
j (r) ≤ 0, ∀r ∈ R and ∃r∗ : D̂

(n)
j (r∗) < 0;

0, otherwise.

to derive, with probability one, the average number of times in which X stochastically dominates

Y .
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This procedure is applied for different values of the volatility of the underlying, σ (varying between

0% and 70%, with a discretization step equal to 0.1%). The results referring to first, second and third

order stochastic dominance are summarized in Table 1, which reports (in mean) the percentages of

cases in which the simple contract dominates the complex one. In the first column, the ranges of the

volatility of the underlying are reported. The second column presents the percentage of first-order

stochastic dominance X >1 Y occurrences, while third and fourth columns report second and third-

order stochastic dominance occurrences, respectively. Results are obtained running the procedure

to obtain 10, 000 prospects, for each contract and volatility level.

INSERT TABLE 1 ABOUT HERE.

Caption of Table 1: The relation between volatility ranges and percentage (in mean) of first,

second and third stochastic dominance occurrences.

The comparison of the two distributions for different volatility ranges partially contradicts what

occurs on the retail market and highlights the problem of not profitable (in a stochastic dom-

inance framework) investors’ choices. In particular, even though evidence suggests that the

complex contract, Y, is more popular than the simple one, X, we find that - according to stochastic

dominance criteria - investors should prefer the simple contract, X. More details on this are dis-

cussed in the next section.

Another step of the numerical application is related to the mechanism of misperception, which

describes the process that leads retail investors to select complex products in place of simple ones.

Starting from the theoretical results, we perturb the cumulative distribution function of the contract

Y , to map Y into Yα, in the case of a critical trend α∗ (see Proposition 1), in the attempt of pro-

viding a measure of the magnitude of misperception. First and second-order stochastic dominance

criteria are taken into account. Hence, for each level of volatility, we proceed as follows.

• Given the j = 1, . . . , K prospects, select an integer v and a v-dimensional positive vector,

∆ = (∆(l))l=1,...,v, whose elements are the values to be assigned to the unknown constant

trend, α.

• Perturb Y through ∆ and set the vector Yα =
(
Y

(l)
α

)
l=1,...,v

.

• Obtain X(l), with l = 1, . . . , v.

• Evaluate, for each element lthof the v−dimensional vector ∆, the stochastic dominance criteria

as determined by the perturbation of the complex contract, Y , as above. In particular, in order

to verify the α-stochastic dominance, we compute:

Φ(n)
v =

1
v

v∑

l=1

1
(

α̂D
(n)

l (r) ≤ 0, ∀r ∈ R and ∃ r∗ : α̂D
(n)

l (r∗) < 0
)

(17)
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where:

α̂D
(n)

l (r) = F̂
(n)

Y
(l)

α

(r)− F̂
(n)

X(l)(r). (18)

• Find the minimum value l∗ ∈ {1, . . . , v} such that Y
(l∗)
α >n X(l∗).

INSERT TABLE 2 ABOUT HERE.

Caption of Table 2: The relation between volatility ranges and magnitude in misperception, for

first and second order stochastic dominance occurrences.

Table 2 summarizes all the results related with the magnitude of misperception for different ranges

of volatility, by reporting the values of critical thresholds, α?
n’s. Panel A shows the percentages

of occurrence of Y >α?
1 ,1 X, for different levels of α?

1, while panel B contains the percentages of

occurrence of Y >α?
2 ,2 X, for different levels of α?

2.

5 Analysis of the results and concluding remarks

The first-order stochastic dominance, which is related to investors characterized by strictly increas-

ing utility function (see Levy 2006, Theorem 3.1), does not allow to draw any conclusion, since there

is no evidence of dominance, for all levels of volatility (see Table 1).

On the contrary, results related to second-order stochastic dominance point out that investors char-

acterized by risk-adverse utility functions (Levy, 2006, Theorem 3.2) and being expected utility

maximizer should prefer the simple contract X. This finding is robust in the case of very low and

high volatility ranges. For instance, it can be observed that for σ < 0.033 and σ > 0.164, we have

that X >2 Y in 100% of cases. On the contrary, for σ ∈ (0.033, 0.164) we cannot provide straight-

forward results. However, it is possible to show that, ceteris paribus, locally capped have higher fair

prices than the globally capped contracts, for a small range of volatility (Figure 2). This outcome

supports the argument related with the preference that retail investors should accord – after an

objective evaluation of the products – to simple contracts rather than complex ones.

INSERT FIGURE 2 ABOUT HERE.

Caption of Figure 2: The distance between prices of global and local cap contracts as a function

of volatility.

The numerical experiments based on third-order stochastic dominance provide significant results for

the simple contract since, for each level of volatility, we have that X >3 Y in 100% of cases. It

is worth to recall here that the third-order stochastic dominance implies the attractive feature of
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decreasing absolute risk aversion (a non-negative third derivative of the utility function, see Levy,

2006, Theorem 3.3). This finding ensures that Y cannot stochastically dominate X for any order.

Indeed, the stochastic dominance of a given order n implies the dominance also for orders greater

than n, but X >3 Y excludes that Y can be preferred to X under first and second-order stochastic

dominance.

In light of these results, the popularity of locally capped contracts on globally capped ones seems

to be counterintuitive, since there is no reason to prefer the complex product to the simple one, at

least in a pairwise comparison.

The popularity of complex products can be explained by the mechanism of misperception. In this

respect, Table 2 shows what happens to the relation between simple and complex contract, when

a distorting trend is in operation. We stress that the magnitude of the misperception is inversely

related to the level of α∗ since, when the stochastic dominance is violated for low levels of α∗, in-

vestors are more likely to perceive a biased risk-return profile of the investment.

When the volatility is low, the violation of first-order stochastic dominance occurs for a small thresh-

old, α?
1. For α?

1 = 0.03 and σ < 0.096, the locally capped α-dominates globally capped contract

in the 95% of cases (on average). The higher the volatility level, the greater the value of α?
1 which

is responsible of the inversion in the first-order stochastic dominance for all the cases. Specifically,

moving to α?
1 = 0.18, the complex product α-dominates the simple one in the entire set of cases,

regardless of the volatility level.

Regarding the second-order stochastic dominance, results show that Y >α,2 X in 100% of cases for

α?
2 = 0.03 and σ < 0.135. No evidence of stochastic dominance occurs when σ > 0.2. Moreover,

Y >α,2 X in 100% of cases when α?
2 ≥ 0.06, regardless of volatility levels.

The latter results help to explain why investors prefer complex products. The mechanism of misper-

ception drives to not optimal decisions because the distortion in the entire set of realizations of the

complex product reverses the direction of the stochastic dominance. A result of particular interest

is provided by the analysis of the magnitude of misperception as a function of volatility. Evidence

are very clear in confirming that the magnitude of misperception is higher for low volatility levels.

This is consistent with the empirical findings discussed in several other financial studies. Breuer

and Prest (2007) showed that investors who underestimate the volatility of the underlying are par-

ticularly interested in structured products. Other classical references are Modest and Sundaresan

(1983), Figlewski (1984), MacKinlay and Ramaswamy (1988) and Yadav and Pope (1994). All these

papers stress that the magnitude of distortions is greater in cases of low volatility.

Moving to the interpretation of the obtained results, some remarks on the motivations which might

lead to misperception are necessary.

We proceed from the fact that, in the peculiar case of structured products, the behavior of retail

investors is driven by the confidence towards the financial institution which supplies investment
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products. In this respect, financial institutions are in the position of exploiting the naivety of house-

holds by presenting some financial products in a too optimistic or ambiguous fashion, overweighting

their extremely positive performances. This might push investors to misperception and, hence, not

profitable (in a stochastic dominance framework) decisions. In this respect, we refer the

interested reader to Bernard et al. (2011) where real cases of optimistic prospectuses proposed by

a financial institution on the future performances of globally floored-locally capped contracts are

presented. Other references in support of the conjecture are cited below

Wallmaier (2011), highlights that usually the information provided to investors is focused on payoff

diagrams ad suggests that, for the transparent development of the structured product market, it

is important to improve investors’ information and understanding. To this end, he analyzes the

information requirements to debias investors and proposes a risk-return survey to provide relevant

and comprehensive information on market risk. Rieger (2012), presents results of an experimental

study focusing on probability estimates, in the context of particular classes of structured products,

and concludes that to debias investors it would be optimal to provide historical probabilities for

both the probability to touch a barrier and the probability to end below the barrier, at maturity.

Henderson and Pearson (2011), for some structured products, find that investors would likely have

been better off investing in non-interest bearing accounts. They state that this result is consistent

with the idea that financial institutions hide some aspects of the terms on which their products are

offered. Hens and Rieger (2009, 2012) show that the most popular products derive their success not

from rational choices, but from behavioral factors like framing, loss aversion and misestimation of

probabilities. In particular, the current popularity of some structured products can be explained

with clarity taking into account only the misestimation of probabilities. Thus, they come to the

conclusion that the market of structured products represents a huge business for banks and suggest

to improve the understanding of these financial instruments by customers through the presentation

of probabilistic scenarios4.
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