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Abstract One of the most important issues in finance is to correctly measure the risk
profile of a portfolio, which is fundamental to take optimal decisions on the capi-
tal allocation. In this paper, we deal with the evaluation of portfolio’s Conditional
Value-at-Risk (CVaR) using a modified Gaussian Copula, where the correlation co-
efficient is replaced by a generalization of it, obtained as the correlation parameter
of a bivariate Generalized Error Distribution (G.E.D.). We present an algorithm with
the aim of verifying the performance of the G.E.D. method over the classical Risk-
Metrics one, resulting in higher performance of the G.E.D. method.

1 Introduction

Value-at-Risk (VaR) has become a standard measurement tool in financial risk man-
agement due to its simplicity. However, it is an unstable and numerically difficult
to use method when the losses do not follow a Gaussian distribution (Ferraty &
Quintela-Del-Rı́o, 2016), which is usually the case in the analysis of financial data.
Conditional VaR (CVaR, see Rockafellar & Uryasev, 2001; Acerbi & Tasche, 2002;
Huang et al., 2010) has been proposed by literature as an alternative to VaR (Artzner
et al., 1999). For a better calculation of the risk, one of the proposals (e.g. Malev-
ergne & Sornette, 2003) is to model the interdependence of the returns by means of
Copula functions (see McNeil et al., 2015). In this context, the problem can be split
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into two separate parts: first, to identify the marginal distributions of the returns of
the single assets; second, to identify the specific copula which is more appropriate
for representing the dependence structure of the returns (see Sklar, 1959).
In Section 2, we introduce the quantitative ingredients of the study, with the main
definitions. The proposed methodological setting for calculating the Conditional
Value-at-Risk of a generic portfolio is presented in Section 3. Finally, in Section
4 some conclusive remarks are given.

2 The Generalized Error Distribution and the G.E.D. Copula

The Generalized Error Distribution (G.E.D.) family was introduced by Subbotin
(1923) and has been employed by various authors with different names and param-
eterizations (see e.g. Box & Tiao, 1973; Chiodi, 1986; Agrò, 1999; Mineo, 2007;
Bottazzi & Secchi, 2011). A parameterization of the G.E.D. density function for a
random variable X is:

f (x; µ,σp, p) =
1

2σp p1/(p)Γ (1+1/p)
exp(− 1

p
|x−µ

σp
|p) for −∞ < x < ∞ (1)

where µ = E(X) is the location parameter, σp = [E|X − µ|p]1/p > 0 is the scale
parameter, p > 0 is the shape parameter and Γ is the Euler Gamma function.
The density of a generic G.E.D. distribution is unimodal, symmetric and, for p >
1, bell-shaped. As particular cases we obtain the Laplace distribution (p = 1), the
Normal (p = 2) and the Uniform (p → ∞); for values of 1 < p < 2 we obtain
leptokurtic densities and for values of p > 2 we obtain platikurtic densities. Thus,
the G.E.D. represents a generalization of a large set of distributions, allowing for a
better description of financial data.
A bivariate copula is a function C : [0,1]2→ [0,1] whose main interest in the field of
probability is that it associates univariate marginal distributions to their joint ones
(Sklar, 1959). We are here interested in the bivariate Gaussian Copula, which is
defined as:

C(u,v|ρ) =
∫

Φ−1(u)

−∞

∫
Φ−1(v)

−∞

1

2π
√
(1−ρ2)

exp{−(r
2−2ρrs+ s2)

2(1−ρ2)
}drds, (2)

where Φ−1 is the inverse of Gaussian distribution function, (u,v) uniform indepen-
dent random variables generated from (X,Y) random variables, and ρ ∈ [−1,1] is a
parameter representing the Pearson’s correlation coefficient associated to the bivari-
ate normal. The G.E.D. Copula for a generic random vector (X ,Y ) is obtained by
replacing the parameter ρ by the Generalized Correlation Coefficient ρp ∈ [−1,1],
introduced by Taguchi (1974) and estimated as follows:

ρp =
codisp(p)(X ,Y )

σp(X)σp(Y )
, with −1≤ ρp ≤ 1, (3)
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where

|codisp(p)(X ,Y )|p = |E[(Y−µY )|X−µX |p−1sign(X−µX )]|·|E[(X−µX )|Y−µY |p−1sign(Y−µY )]|,

σp(X) = [E|X−µX |p]1/p, σp(Y ) = [E|Y −µY |p]1/p

and µX and µY are the expected values of X and Y , respectively. The parameters
µ, p and σp could be estimated e.g. by using the Lpmin method (Giacalone, 1996;
Giacalone & Richiusa, 2006).

3 The methodology

We here discuss theoretically how to compute the CVaR in a G.E.D. framework.
Real world applications on financial data are available upon request.
We start from two sets of consecutive observations of the returns of two assets,
assumed to be empirically distributed according to a G.E.D.:

X = {x1, . . . ,xn}, Y = {y1, . . . ,yn}.

For what concerns the stochastic dependence between X and Y , we propose a G.E.D.
copula model.
The fundamental steps in the algorithm for the computation of the CVaR of a port-
folio consisting of (α,β ) are as follows:

0. we fix a portfolio (α,β ), with α +β = 1;
1. estimation of the parameters µ, p,σp in (1) for the two series of returns X

and Y . In accord to the notation used above, we will denote the parameters as
µX , pX ,σp,X and µY , pY ,σp,Y ;

2. estimation of the ρp parameter of the G.E.D. copula by using formula (3), with
p = α pX +β pY ;

3. generation of couples (x,y), which are the realization of the double stochastic
variable (X ,Y ) having G.E.D. marginals of item 1. and stochastic dependence
described by the G.E.D. copula with ρp of item 2.;

4. construction of the realizations of the returns of portfolio P = αX +βY and of
its empirical distribution;

5. computation of the Value-at-Risk of P at a confidence level (1− c)%;
6. computation of the Conditional Value-at-Risk of P at a confidence level (1−c)%.

The algorithm above is repeated for all the considered portfolios, given by α =
0.01 : 0.01 : 0.99 and β = 1−α .
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4 Conclusions

The present paper is part of market risk calculation methods, whose purpose is to
support risk managers’ decision making processes. Among the different methods
proposed in the literature for calculating Value-at-Risk, we took the well-known
RiskMetrics into account. We introduced the new G.E.D. method and proposed the
G.E.D. Copula as a generalization of the Gaussian Copula. Moreover, we introduced
the Generalized Correlation Coefficient of norm p that, for the p = 2 case, equals
the classic Bravais-Pearson correlation coefficient. We then presented an algorithm
with the aim of verifying the performance of the new method over the classical
RiskMetrics one. The problem of whether CVaR-G.E.D. can constitute a valid gen-
eralization of CVaR-R.M. is still debatable, and an empirical analysis would provide
more insights on this relevant topic.
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