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It is becoming increasingly clear that plants, ranging from across the plant kingdom 

produce anionic host defence peptides (AHDPs) with potent activity against a wide variety of 

human cancers cells. In general, this activity involves membrane partitioning by AHDPs, which 

leads to membranolysis and / or internalization to attack intracellular targets such as DNA. 

Several models have been proposed to describe these events including: the toroidal pore and 

Shai-Matsuzaki-Huang mechanisms but, in general, the mechanisms underpinning the 

membrane interactions and anticancer activity of these peptides are poorly understood. Plant 

AHDPs with anticancer activity can be conveniently discussed with reference to two groups: 

cyclotides, which possess cyclic molecules stabilized by cysteine knot motifs, and other 

ADHPs that adopt extended and α-helical conformations. Here, we review research into the 

anticancer action of these two groups of peptides along with current understanding of the 

mechanisms underpinning this action. 
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Introduction  

How plants protected themselves from microbial infections was long an enigma, given 

that they lack an adaptive immune system, which mediates the defence of humans and other 

vertebrates against these infections [1]. It is now known that to offset the lack of specialized 

mobile immune cells possessed by vertebrates, every cell in a plant has the facility to launch 

an effective immune response, which is mediated by a multi-layered innate immune system 

that comprises self-surveillance, systemic signalling and chromosomal changes acting in 

combination to protect against microbial infection and other threats [2, 3]. One layer of this 

immune response involves the production of an arsenal of defence peptides and proteins, which 

includes: pathogenesis-related (PR)-proteins [4-7], recently redefined as ‘inducible defence-

related proteins [8, 9], and host defence peptides (HDPs), whose primary role is a front-line 

response to microbial infections [10-13]. On a structural basis, these HDPs can be grouped into 

the major families: defensins, cyclotides, 2S albumins, lipid transfer proteins, hevein-like 

proteins knotins, snakins, and glycine-rich proteins [14-21]. Most of these peptides are cationic 

(CHPDs), which facilitates their toxicity to target cells [10-21], but it is becoming increasingly 

clear that plants also produce a number of anionic HDPs (AHDPs) with toxicity to pests, fungi, 

viruses, bacteria and cancer cells [13, 22-28]. Currently, the structural / functional relationships 

underpinning the anticancer and other biological activities of plant AHDPs are poorly 

understood although, in most cases, the molecular architecture of these peptides has been 

elucidated [13, 22, 23, 27, 28]. Based on their structural characteristics, plant AHDPs with 

anticancer activity can be divided into two groups: cyclotides, which possess cyclic molecules 

stabilized by cysteine knot motifs, and other ADHPs that adopt extended and α-helical 

conformations [22]. Here, we review research into the anticancer action of these two groups of 
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peptides along with current understanding of the mechanisms underpinning this action and discus their 

potential to serve as agents in the fight against cancers.  

 

AHDPs that adopt α-helical and extended conformations 

It has previously been shown that HDPs were present in leaf extracts of Cycas revoluta 

from the Cycadaceae family [29] and more recently, Cr-ACP1 (net charge -1), was identified 

in seeds of the plant (Table 1) [30]. The peptide was found to have selective toxicity towards 

human cells from colon carcinoma (HCT15) and epidermoid cancer (Hp2) with IC50 values 

that were 1.5 mM and 0.6 mM respectively. These results suggested that Cr-ACP1 functioned 

as a weak anticancer agent and mechanisms underpinning the action of the peptide against the 

HCT15 and Hp2 cell lines were investigated. It appeared that these mechanisms involved 

intracellular targets, requiring Cr-ACP1 to translocate across the membranes of target cancer 

cells. Consistent with this observation, studies on the antibacterial activity of the peptide 

suggested that the positive charge carried by its sole lysine residue and overall charge 

distribution played a role in facilitating membrane interaction by the peptide. Reinforcing this 

suggestion, theoretical analysis of the peptide showed that it had the potential to adopt α-helical 

structure with a high level of amphiphilicity, indicative of an ability to interact with membranes 

[31, 32]. This molecular architecture is adopted by many other AMPs [13, 24, 25] and in 

particular, buforin IIb, which is an α-helical CAMP that crosses target membranes to bind DNA 

and thereby promote anticancer action via the induction of apoptosis [33]. Cr-ACP1 showed 

similarities to the anticancer action of buforin IIb and was found to have a strong affinity for 

DNA, which appeared to involve the ability of its charged and polar residues to form a stable 

hydrogen bond network with DNA nucleotides (Figure 1). Further studies on Cr-ACP1 led to 

the suggestion that the anticancer action of the peptide utilised anti-proliferative mechanisms 
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involving the binding of Cr-ACP1 to DNA, thereby inducing cell cycle arrest in the G0-G1 

phase and the initiation of apoptotic mechanisms of cell death [30].  

Cn-AMP2 (net charge -1) is an antibacterial peptide that was first identified in green 

coconut water , which is the clear liquid inside young coconuts from Cocos nucifera of 

the Arecaceae and a popular drink in Tropical Asia and Latin America (Table 1) [34]. In a more 

recent study, Cn-AMP2 was shown to have selective toxicity towards cancer cells from human 

glioma cell lines (1321N1 and U87MG) with IC50 values of 1.25 mM and 1.85 mM 

respectively [35]. Further studies on the peptide lead to the suggestion that, similarly to Cr-

ACP1, Cn-AMP2 functioned as a weak anticancer agent, which utilised anti-proliferative 

mechanisms via translocation across the membrane to employ intracellular sites of action [22, 

36, 37]. Strongly supporting this suggestion, Cn-AMP2 demonstrated no membranolytic ability 

towards any of the cells lines studied as can be seen from Figure 2, which clearly shows that 

cells treated with the peptide exhibited no significant morphological differences to control 

cells; no evidence of cell-death, as indicated by a round morphology; and no sign of cell lysis, 

as witnessed by membrane fragmentation or the presence of cellular debris (Figure 2). In 

combination, these data suggested that Cn-AMP2 may be cytostatic towards the 1321N1 and 

U87MG cell lines and, although the targets of their anti-proliferative mechanism were not 

investigated, it was speculated that these mechanisms may involve DNA-binding [35].  

 

The ability of Cn-AMP2 to interact with cancer cell membranes was investigated and 

it was shown that in the presence of lipid mimics of cancer cell membranes, the peptide adopted 

an extended conformation. In this conformation, Cn-AMP2 exhibited a strongly hydrophobic 

region, formed by the C-terminal eight residues of the peptide, YFVFSVGM, which was 

flanked by a short anionic segment, TES [36, 37]. This residue arrangement endows Cn-AMP2 
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with primary amphiphilicity [36, 37], which has been reported for other anticancer peptides 

such as indolicidin [38, 39] and is known to mediate the ability of these peptides to traverse 

membranes [40]. By analogy to indolicidin, it was suggested that the ability of Cn-AMP2 to 

traverse cancer cell membranes may be hydrophobicity driven by a mechanism, involving the 

peptide’s C-terminal region [36, 37]. Most recently, molecular dynamic simulations were 

undertaken, which strongly supported these suggestions and showed that Cn-AMP2 was able 

to translocate phospholipid assemblies that mimicked cancer cell membranes (Figure 3). These 

MD simulations are depicted in Figure 3, which shows that the extended form of Cn-AMP2 is 

able to approach the surface of a target membrane (Figure 3A) and insert into this membrane 

(Figure 3B). This insertion event is mediated by the association of the peptide’s anionic N-

terminal ‘TES’ segment with cationic moieties in the membrane head-group region, such as 

the choline group of DMPC. These electrostatic interactions are complemented by penetration 

of the hydrophobic C-terminal ‘YFVFSVGM’ segment of Cn-AMP2 into the apolar acyl chain 

region of the membrane (Figure 3B). Led by its N-terminal segment, the peptide then crosses 

this acyl chain region (Figure 3C) and exits through the opposing membrane leaflet (Figure 

3D) accompanied by no significant overall perturbation of the bilayer (Figures 3A to 3D). It 

was proposed that Cn-AMP2 uses a similar mechanism to enter the human glioma cell lines, 

1321N1 and U87MG, whereupon the internalized peptide attacks intracellular targets, such as 

DNA, thereby inhibiting the proliferation and inducing the death of these cells (Figure 3E) [36, 

37]. 

 

AHDPs from cyclotides  

A number of AHDPs have been identified within the cyclotides, which are a major 

family of cyclic HDPs [41-43] with anticancer action (Table 2) and a range of other biological 
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activities [41-43], which is generally based on the ability of these peptides to interact with 

target cell membranes [22, 23, 27]. These peptides are listed in various databases and are now 

known to be  ubiquitous in plants [13, 24, 25, 44-46] with most identified in the Rubiaceae,  

Violaceae [47, 48] and Fabaceae families [49-52] (Table 1) whilst others have been recently 

reported in the Cucurbitaceae [48, 53],  Solanaceae [54], Poaceae [55] and Apocynaceae 

families [47].  Kalata B2 (net charge -1) is generally taken as the prototypic member of AHDPs 

in cylotides [23, 27] and was first reported in the early 1970s when it was identified in 

Oldenlandia affinis of the Rubiaceae (Table 1), which is widely dispersed over tropical Africa 

and is also found in tropical Asia [56-58]. The peptide derives its name from the fact that it is 

a component of the uterotonic agent in a medicinal preparation, kalata-kalata [58, 59], which 

is derived from O. affinis and is used in parts of Africa to accelerate child birth [60, 61]. Several 

recent studies reported that kalata B2, along with kalata B13 (net charge -2; Tables 1 and 2), 

which is also derived from O. affinis, possessed potent anticancer activity. It was found that 

both peptides exhibited IC50 values that were ≤  5.0 μM when directed against cell lines of 

lymphoma (U-937 GTB) colorectal cancer (Ht116) and colonadeno carcinoma (HT29) that 

were generally comparable to that of doxorubicin [62, 63], a well-established anticancer drug 

[64]. Other AHDPs from plants of the Rubiaceae, include palicourein (net charge -1), from the 

tropical plant, Palicourea condensate [65], and chaC1 (net charge -1), which was recently 

discovered in Chassalia chartacea [66]. These peptides were found to have potent activity 

against cell lines of cervical cancer (HeLa) and acute lymphoblastic leukaemia (CEM-SS) with 

IC50 values of 1.5 μM and 9.8 μM, respectively [66, 67].  

Several ADHPs  with anticancer activity, named cliotides CT2 and CT3 (net charges 

of -1), were recently reported in the tropical plant, Clitoria ternatea, of the Fabaceae family 

(Table 1), and were shown to be effective against HeLa cells (IC50 = 0.6 μM and 8.0 μM 
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respectively) [50]. More recently, cliotide CT2 was found to have activity against human non-

small lung cancer cells (A549; IC50 = 7.6 μM) and an A549-derived paclitaxel-resistant sub-

line (A549/taxol; IC50 = 7.9 μM). However, in the case of A549/taxol cells this IC50 was 

reduced to 1.62 μM when these cells were exposed to 50:50 ratios of cliotide CT2 and 

paclitaxel [68], which is another well-established anticancer drug [69]. These observations 

indicated a synergistic action between paclitaxel and cliotide CT2 and showed that the peptide 

was able to chemosensitize cancer cells to conventional anticancer drugs [68]. A similar 

chemosensitizing ability has been demonstrated for a number of other cyclotides in 

combination with doxorubicin and it was suggested that this synergistic interaction resulted 

from the ability of cyclotides to disrupt cellular membranes, thereby allowed increased uptake 

of doxorubicin into drug resistant cells [70].  

A number of ADHPs have been identified in plants of the Violaceae family (Table 1), 

including cycloviolacin O24 (net charge -2) from Viola odorata along with varv H and vitri B 

(net charges -1 in both cases) from Viola philippica, which are both common horticultural 

plants [71, 72].  These peptides possessed IC50 values, which ranged between 6.2 μM and 16 

μM and were found to possess activity against cell lines of human gliomablastoma cells (U251) 

and CEM-SS cells [67, 72]. Strong activity against these latter cancer cells was also reported 

for a trio of AHDPs (IC50 values 1.7 μM to 4.5 μM ) named cycloviolacins Y1 (net charge -2), 

Y4 (net charge -1) and Y5 (net charge -1), which were identified in Viola yedoensis (Wild 

Chinese violet), an important herb in Chinese medicine [67]. In contrast, vaby D (net charge -

1) was isolated from Viola abyssinica which grows in extreme habitats and altitudes in the 

Ethiopian Highlands. The peptide was found to have a broad spectrum of anticancer activity 

with IC50 values ranging between 3 μM to 47 μM when directed against a variety of cancers, 

including hepatocellular carcinoma cells (BEL-7402), and breast carcinoma (MDA-MB-231) 
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[42, 73]. More recently, the mechanisms underpinning the activity of the peptide to U-937 GTB 

lymphoma cells was investigated, which suggested that, in addition to targeting the membranes 

of these cells, the peptide may be taken up to inflict damage on DNA and other internal targets 

[74].  

It is generally accepted that the ability of cyclotides to interact with membranes is 

facilitated by the rigid molecular topology possessed by the vast majority of these peptides, 

which is characterized by a cystine knot motif embedded in a macrocyclic backbone (Figure 4) [41-

43]. This topology provides a molecular framework, which includes six backbone loops that 

define hydrophilic and hydrophobic surface regions (Figure 4) [41-43], thereby giving the 

tertiary structure of these molecules amphiphilic characteristics that allow partitioning into 

biological bilayers [75, 76]. However, based on structural differences in their molecular 

framework, cyclotides can be divided into a number of groups [41, 42], including two major 

subfamilies, generally known as the Möbius and bracelet peptides (Figure 4) [15, 77], and a 

much smaller group termed chimeric cyclotides [65]. The Möbius and bracelet subfamilies 

have fundamentally different molecular architectures that are primarily distinguished by the 

presence of a conserved proline residue in cis conformation in loop 5 of the former subfamily, 

causing a 180° twist in the loop, which is not seen in the latter subfamily [15, 77]. Most of the 

cyclotide aHPDs with anticancer activity have been shown to belong to either the Möbius or 

the bracelet subfamilies (Table 2) with typical examples including: kalata B2 [78] and 

cycloviolacin Y4 [79] respectively (Figure 2). However, the molecular architectures of 

chimeric cyclotides include structural characteristics of both the Möbius and bracelet 

subfamilies [65] and include: cycloviolacin Y1 [79] and palicourein [65] (Table 2).  

 The differing topologies of Möbius and bracelet cyclotides lead to differences in their 

modes of membrane interaction, which primarily relates the clustering pattern of apolar 
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residues that form the hydrophobic surface patches possessed by these peptides. These residues 

and patches make the major hydrophobic contribution to the membrane partitioning of 

cyclotides and are mainly centred on loops 5 and 6 of Möbius peptides and loops 2 and 3 of 

bracelet peptides [80], as shown for kalata B2 and cycloviolacin Y4 in Figure 4. However, the 

electrostatic contribution to the membrane partitioning of both subfamilies appears to involve 

hydrophilic patches formed primarily by the presence of positively charged residues in loops 5 

and 6 of these peptides (Figure 4) [80, 81]. Examples of this residue distribution can be seen in 

most cyclotide anticancer AHPDs, including: kalata B2, which has an arginine residue in loop 

6 [78], and cycloviolacin Y5, which has a lysine residue in this loop [67]. Although anionic 

overall, these AHPDs are effectively functioning as CHDPs by utilising their cationic residues 

as major promoters of the electrostatic contribution to their membrane partitioning [27]. 

However, other cyclotide AHPDs with anticancer activity, such as cycloviolacin Y4 and 

cycloviolacin O24, lack cationic residues and the only anionic residue in loops 5 and 6 of these 

peptides is a single aspartic acid residue in loop 5 of cycloviolacin O24 [71, 79]. In these cases, 

it has been proposed that the strongly hydrophobic nature of loops 5 and 6 would most likely 

be the major driving force behind the membrane partitioning of these peptides [67]. Currently, 

the role of negatively charged residues in the membrane interactions of not only cyclotide 

AHDPs but also other members of this peptide family is generally unclear [27]. 

Major investigation into the interactions of cylotide ADHPs with naturally occurring 

cancer cell membranes do not appear to have been yet undertaken and most of the 

understanding in relation to these interactions derives from studies on models and mimics of 

these membranes [62, 75, 76, 81, 82]. However, these studies have shed some light on the role 

of negatively charged residues in cyclotides and have established that an essential requirement 

for the membrane interactions appears to be the possession of a conserved glutamate residue 
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in loop 1 of their molecular framework [83]. This residues participates in a structurally 

important network of hydrogen bonds to the adjacent loop 3  and is depicted in the primary and 

tertiary structures of kalata B2 and cycloviolacin Y4 in Figure 2 [83]. The sole exception to 

this requirement appears to be kalata B12 (net charge-2), which is another of the ADHPs found 

in O. affinis [84] and has an aspartate residue substituted in the otherwise conserved glutamate 

position [83]. As is believed for ADHPs in general [22, 23, 27], their counterparts within the 

cylotides do not appear to require protein receptors to facilitate their membrane interactions 

[85] although the universality of this belief is in question [38, 86]. Most recently, kalata B2 and 

a number of other AHDPs within the cyclotides were found to show a strong preference for 

phosphatidyl ethanolamine (PE) in their membrane interactions, which led to the suggestion 

that PE may serve as a lipid receptor for these peptides [62, 81, 82]. The conserved glutamate 

of kalata B2, and other AHDPs, appeared to play a primary role in their PE-binding 

mechanisms through ionic interactions between the residue’s carboxylate side-chain and the 

ammonium group of the lipid. These interactions were stabilised by non-specific hydrophobic 

associations between hydrophobic patches on the surface of kalata B2 and lipid acyl chains 

forming the apolar bilayer core region [62, 81, 82]. To investigate this suggestion, here, we 

undertook molecular dynamic simulations of kalata B2 interacting with a bilayer constructed 

from DMPE (Figure 5). These simulations predicted that the peptide possessed high affinity 

for these bilayers and bound strongly to the lipid head-group region of the membrane, which 

would support the suggested receptor role for the lipid [62, 81, 82]. These simulations further 

predicted that PE-binding by kalata B2 involved electrostatic and hydrogen-bond interactions 

between residues in loops 2, 3 and 6 of the peptide and phosphate and ammonium moieties 

within the head-group region of the bilayer (Figure 5), which is also in good general agreement 

with previous work [62, 81, 82]. However, our simulations also predicted that the conserved 

glutamate of PE-bound kalata B2 was distal from the membrane surface and was not involved 
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in this binding mechanism (Figure 5), contrasting to previous experimental work [62, 81, 82]. 

One likely explanation for this apparent difference would seem to be that other components 

and / or properties of the model membranes used in these latter studies play a role in stabilizing 

the glutamate-mediated orientation of kalata B2 when binding to the PE head-group and 

clearly, these membrane components and properties are not replicated in the relatively simple 

lipid system used in our molecular dynamic simulations.  

Although it is generally accepted that the anticancer activity of AHDPs from cyclotides 

involves membrane interaction, the mechanisms underpinning these actions are poorly 

understood [15, 41]. In response, there have been a number of studies on kalata B2 [62, 75, 76, 

81, 82], which suggested that the peptide may utilise a variant of the toroidal pore mechanism 

[62, 82], one of the most commonly used mechanisms of membrane perturbation used by HDPs 

[87]. Experimental data, which strongly favoured this suggestion, led to a model for the 

membrane interactions of kalata B2 and other ADHPs, which is shown in Figure 6 [82]. 

According to this model, monomers or oligomers of kalata B2 approach the membrane surface 

(Figure 6A) and specifically bind PE head-groups whilst concomitantly interacting non-

specifically with the lipid’s acyl chains (Figure 6B). It has previously been shown that kalata 

B2 is able to form tetramers and octamers in aqueous solution [88] although more recent studies 

have suggested that these oligomers are unlikely to be the functional units involved in pore 

formation by the peptide [89]. This model then proposes that the progressive aggregation of 

kalata B2 molecules on the membrane surface, either as monomers or loosely packed 

oligomers, imposes a positive curvature strain by increasing the distance between membrane 

lipid head-groups, an effect usually described as membrane thinning. Once the localized 

concentration of kalata B2 molecules on the membrane surface reaches a threshold value, they 

insert into the bilayer whilst remaining in contact with the PE head-group. This action leads to 
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cavitation of the membrane surface and ultimately, the formation of toroidal pores that are lined 

by lipid head-groups and hydrophilic surfaces of the participating cyclotide molecules (Figure 

6C). This process continues until high concentrations of kalata B2 are reached when lipids are 

extracted from the membrane, which results in solubilisation and ultimately, disintegration of 

the bilayer (Figure 6D) [62, 75, 76, 81, 82].  It has been also suggested that ADHPs from 

cyclotides may use other mechanisms of membranolysis [22] and, as described above, more 

recent studies on the anticancer activity of vaby D have suggested that the peptide may be able 

to attack internal targets of cancer cells [74]. This ability would be consistent with use of the 

Shai, Huang and Matsazuki model of membrane perturbation [87], which appears to be used 

by some non-plant AHDPs [27, 90] and includes the toroidal pore mechanism but allows for 

the internalization of peptides via transient pore formation [87].  

 

Discussion 

In this review, over a dozen AHDPs with anticancer activity have been described from 

sources across the plant kingdom, ranging from garden plants such as violets of the Violaceae 

to tropical plants such as palm trees of the Arecaceae (Table 1). In general, these peptides are 

effective against a wide variety of human cancers cells, including some of the more deadly 

forms of the condition such as glioblastoma (Table 2). As to why these AHDPs possess the 

capacity for anticancer activity is unclear as, self-evidently, this capacity has no relevance to 

plant survival [85]. However, it has been suggested that this anticancer activity may result from 

the general ability of these peptides to interact with membranes [86], which appears to have 

evolved to kill microorganisms in line with the role of most HDPs as endogenous 

antimicrobials [39]. This review has shown that the anticancer actions used by plant AHPDs 

are based on membrane interaction, which at least in some cases, appears to involve the use of 
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PE as a lipid receptor (Figure 4). This would appear to be one of the first instances of such use 

by these AHDPs although a similar use of the lipid has been reported for several non-plant 

AHDPs [91-93], including some with anticancer activity such as maximin H5 from amphibians 

[36]. This review has also shown that the membrane partitioning of plant AHDPs with 

anticancer activity leads to membranolysis and / or internalization to attack intracellular targets 

such as DNA and several models have been proposed to describe these events (Figures 2 and 

5). These models include: the toroidal pore and Shai-Matsuzaki-Huang mechanisms but, in 

general, the mechanisms underpinning the membrane interactions and anticancer activity of 

AHPDs from plants are poorly understood. The membrane interactive structures used by these 

peptides are diverse and include extended conformations and α-helical architecture although 

the majority are based on cysteine stabilized scaffolds, which are by far the most common 

structures found in plant HDPs [19]. A few of the AHDPs described here have net charges of 

-2 although most have a net charge of -1, which would seem to suggest that low levels of 

anionicity are required for their membrane interactions and anticancer activity. In relation to 

the roles of specific anionic residues in this activity, it has been established that conserved 

glutamate residues in cyclotides play important structural roles in the membrane interactions 

of these peptides as well as helping to facilitate binding to PE receptors. A structural role has 

also been suggested for aspartate residues in the case of α-helical HDPs such as Cr-ACP1 

where they tend to occupy positions that are i ± 3 or i ± 4 relative to basic residues. It has been 

suggested that this structural positioning may promote helix formation via salt bridging and 

thereby serve as a strategy to stabilise α-helical structure [38]. 

However, in the vast majority of cases, detailed descriptions of the role played by anionic 

residues in the anticancer action of AHDPs from plants is lacking.   
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In their native form, there are a number of issues attached to the use of the AHDPs 

described here as therapeutically viable anticancer agents. In the case of Cr-ACP1 and Cn-

AMP2, the millimolar levels of these peptides required to elicit an anticancer response is 

obviously prohibitive to such use. However, it has been observed that AHDPs such as Cn-

AMP2 that are devoid of cationic residues possess an advantage over CHDPs with anticancer 

action whose possession of lysine and arginine residues makes them highly susceptible to 

degradation by human proteases [94, 95]. This suggests that the intrinsic properties of Cr-ACP1 

and similar AHDPs, such as cycloviolacin Y4 and cycloviolacin O24, which also lack cationic 

residues, may endow them with anticancer mechanisms that are not available to their cationic 

counterparts making them attractive propositions as candidates for therapeutic development. 

For example, these compounds may be effective against cancer cells with multiple drug 

resistance that has rendered CHDPs ineffective when directed against these cells.  

In their native form most AHDPs from cyclotides have anticancer activity in the low 

micromolar range, which is approaching therapeutically desirable levels but many of these 

peptides are non-selective for cancer cells and possess potent haemolytic action, such as kalata 

B2 and cliotide T3 [22]. However, other AHDPs from cyclotides with anticancer action such 

as kalata B13 and vaby D show no evidence of haemolytic action and may therefore be suitable 

for development in the treatment of cancerous conditions [22]. Indeed, vaby D would seem to 

be a good candidate for such development given that the peptide shows by far the broadest 

range of anticancer activity of the cyclotide AHDPs so far tested in this capacity (Table 1). 

Moreover, many AHDPs from this plant family are known but have yet to be tested for 

anticancer activity [22] whilst others are increasingly being identified such as the recently 

reported Viphi H (net charge -1) from Viola philippica of the Violaceae [96]. Indeed, it has 

been predicted the total number of cyclotides in the Rubiaceae alone exceeds 50,000, which 



Published Harris F, et al 2016 Protein Pept Lett. 2016 May 11. [Epub ahead of print] 
PMID: 27165406 
 
 

16 
 

would seem to indicate that there are large numbers of AHDPs within the cyclotides with the 

potential for anticancer activity yet to be identified [47].  

This review has shown that a number of AHDPs have the potential to act as templates 

in the development of novel compounds with the ability to kill a range of cancers. In this 

capacity, as shown by this review, AHDPs from cyclotides are by far the most researched and 

it is becoming increasingly clear that their anticancer potential may be achieved through 

progress in deriving synthetic versions of these peptides [22]. The high plasticity and tolerance 

to substitution of the cyclotide scaffold is now well established and several studies have clearly 

shown that bioactive peptide sequences can be efficiently grafted into these scaffold for a 

variety of therapeutic purposes, including the production of compounds with anticancer 

capacity  [48, 97]. For example, PE shows the potential to serve as a biomarker for many 

malignancies [98] and it has been proposed that derivatives of PE-binding cyclotides may be 

suitable for development as agents in tumour imaging and anticancer therapeutics [75, 76, 81, 

99, 100]. As another example, it may be possible to optimise the membrane-permeabilizing 

ability of cyclotides through scaffold modification to efficiently synergise the action of 

established anticancer drugs, as described above for cliotide CT2 and paclitaxel [68]. Proof-of-

concept for such work was recently demonstrated when a grafted cyclotide, showed activity 

against growth factors involved in angiogenesis [101]; it is well-established that tumor growth 

is usually associated with unregulated angiogenesis [102]. As further proof-of-concept, more 

recently, work, which was patented [103], demonstrated that engineered cyclotides were 

cytotoxic to cancer cells through activation of the p53 tumor suppressor pathway, which is 

commonly inactivated by these cells to promote survival [104].  

In summary, here we have presented the first major review of research into AHDPs 

from plants with anticancer activity. It is clear from this review that although this research is 
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its infancy, these peptides have the potential to serve as therapeutically useful anticancer 

agents. However, to achieve this potential a much greater understanding of factors such as their 

pharmacokinetics and modes of anticancer action needs to be acquired. Nonetheless, given this 

understanding, plant AHDPs may prove to be a major untapped source of answers to the rapidly 

increasing global problem of cancer [105]. 
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Table 1. Plants hosting AHDPs with anticancer activity. 

Family Source plant Peptide  Sequence Refs 

Cycadaceae     

 Cyas revolute Cr-ACP1 AWKLFDDGV [30] 

Arecaceae     

 Cocos nucifera Cn-AMP2 TESYFVFSVGM [106] 

Rubiaceae     

 Oldenlandia affinis Kalata B2 GLPVCGETCFGGTCNT

PGCSCTWPICTRD 

[78] 

  Kalata B13 GLPVCGETCFGGTCNT

PGCACDPWPVCTRD 

[84] 

 Chassalia chartacea  chaC1, GDACGETCFTGICFTA

GCSCNPWPTCTRN 

[66] 

 Palicourea 

condensata 

Palicourein CGETCRVIPVCTYSAAL

GCTCDDRSDGLCKRNG

DPTF 

[65] 

Fabaceae     

 Clitoria ternatea Cliotide T2 GEFLKCGESCVQGECY

TPGCSCDWPICKKN 

[50] 

  Cliotide T3 GLPTCGETCTLGTCYV

PDCSCSWPICMKN 

[50] 

Violaceae     

 Viola abyssinica Vaby D GLPVCGETCFGGTCNT

PGCTCDPWPVCTRN 

[73] 
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 Viola odorata cycloviolacin 

O24 

GLPTCGETCFGGTCNT

PGCTCDPWPVCTHN 

[71].   

 Viola philippica, varv H GLPVCCETCFGGTCNT

PGCSCETWPVCSRN 

[72].   

  vitri B GYPICGESCVGGTCNTP

GCSCSNPVCTTN 

[72].   

 Viola yedoensis  Cycloviolacin 

Y4 

GVPCGESCVFIPCITGVI

GCSCSSNVCYLN 

[79] 

  Cycloviolacin 

Y5 

GIPCAESCVWIPCTVTA

LVGCSCSDKVCYN 

[79] 

  Cycloviolacin 

Y1 

GGTIFDCGETCFLGTCY

TPGCSCGNYGFCYGTN 

[79] 
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Table 2. Major AHDPs with anticancer activity 

Cyclotides Charge Anticancer activity Refs 
Cn-AMP2 -1 Glioma (1321N1 and U87MG) [106] 
Cr-ACP1 -1 Colon carcinoma (HCT15) and epidermoid cancer (Hp2) [30] 
Kalata B2a -1 Lymphoma (U-937 GTB) colorectal cancer (Ht116) and colonadeno carcinoma (HT29) [62, 63] 
Kalata B13 a -2 Lymphoma (U-937 GTB) [63] 
cycloviolacin 
O24a 

-2 Acute lymphoblastic leukaemia (CEM-SS) [67] 

Vaby Da -1 Lung cancer (A549), gastric carcinoma (BGC-823),hepatocellular carcinoma (BEL-7402), prostate cancer 
(DU145), breast carcinoma (MDA-MB-231), gliomablastoma (U251) and lymphoma (U-937 GTB) 

[42, 73] 

Chac1a -1 Cervical cancer (HeLa) [66] 
Cliotide T2a -1 Cervical cancer (HeLa) and lung cancer (A549)  [50, 68] 
Cliotide T3a -1 Cervical cancer (HeLa) [50] 
varv Hb -1 Gliomablastoma (U251) [72]. 
vitri Bb -1 Gliomablastoma (U251) [72]. 
    
Cycloviolacin 
Y4b 

-1 Acute lymphoblastic leukaemia (CEM-SS) [67] 

Cycloviolacin 
Y5b 

-1 Acute lymphoblastic leukaemia (CEM-SS) [67] 

Cycloviolacin 
Y1c 

-2 Acute lymphoblastic leukaemia (CEM-SS) [67] 

Palicoureinc -1 Acute lymphoblastic leukaemia (CEM-SS) [67] 
 

Table 2 shows AHDPs from plants and their target cancer cells. Membership of the Möbius subfamily of cyclotides is denoted by a and membership 
of the bracelet subfamily is indicated by b. Chimeric cyclotides, which include structural characteristics of both the and bracelet subfamilies, are 
denoted by c. Details of the characterisation of these AHDPs is supplied in the associated references. 
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Figure 1. The binding of Cr-ACP1 to DNA 

 

 

Figure 1 was adapted from [30] and shows a binary complex formed between Cr-ACP1 and 

single stranded DNA 5′-CCGGC-3′, modelled to represent the strong affinity for DNA by the 

peptide in experimental work. Lateral chains involved in the formation of this complex are 

labelled with dotted lines indicating hydrogen bonds and their respective distances given in 

angstroms. Based on this model, DNA binding by the peptide was predicted to involve the 

ability of its charged and polar residues to form a stable hydrogen bond network with DNA 

nucleotides. 
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Figure 2. The effects of Cn-AMP2 on the morphology of cell lines   

 

Figure 2 was adapted from [35] and shows cells of the human glioma cell lines, U87MG (Figure 
2A) and 1321N1 (Figure 2C), along with the non-cancerous glial cell line, SVGp12 (Figure 
2E), that had been cultured in the presence of Cn-AMP2 at a peptide concentration of 2 mM. 
Also shown are cells of the same cell lines that had been similarly cultured but in the absence 
of Cn-AMP2 (Figures B, D and F). It can be clearly seen that samples treated with the peptide 
showed no evidence of cell-death, as indicated by a round morphology; and no sign of cell 
lysis, as witnessed by membrane fragmentation or the presence of cellular debris. All images 
are at a ×10 magnification and cell lines were cultured as previously described [35].  
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Figure 3. The passage of Cn-AMP2 across mimics of cancer cell membranes 

 

Figure 3 was adapted from [36] and shows molecular dynamic simulations for the interaction 
of Cn-AMP2 with a model cancer cell membrane. In this simulation, Cn-AMP2 
(TESYFVFSVGM [106]) is in an extended conformation and approaches the surface of the 
membrane (Figure 3A) and inserts (Figure 3B). Insertion of the peptide involves association of 
its anionic N-terminal segment (TES) with positively charged moieties in the head-group 
region of the bilayer such as the choline group of DMPC. Complementing these electrostatic 
interactions, the hydrophobic C-terminal segment of Cn-AMP2 (YFVFSVGM) penetrates the 
apolar core region of the membrane (Figure 3B). Led by its N-terminal region, the peptide then 
traverses this core region (Figure 3C) and emerges through the opposing leaflet to migrate away 
from the membrane surface (Figure 3D) with no significant overall perturbation of the bilayer 
resulting from the passage of Cn-AMP2 (Figures 3A to 3D). Based on the action of the peptide 
against the human glioma cell lines, it was suggested that the emergent Cn-AMP2 attacks 
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intracellular targets with the result that the ability of these cells to proliferate is inhibited 
(Figure 3E).  

Figure 4. Structural characteristics of kalata B2 and cycloviolacin Y4 

 

 
Figure 4 was adapted from [67, 80] and shows the tertiary structures of kalata B2 (Figure 4A) 

and cycloviolacin Y4 (Figure 4C), which are Mobius and bracelet cyclotides, respectively. The 

former group of peptides is distinguished by possession of a cis-proline peptide bond in loop 

5. The core of these structures is the ‘cysteine knot’ motif, which can be seen is formed by 

conserved cysteine residues, which are indicated as I – VI in Figures 4A and 4C, along with 

Figures 4B and 4D, which shows the primary structures of these peptides. In Figures 4B and 

4D, the sequences of the backbone loops between conserved cysteine residues are indicated 

and annotated as L1 to L6. In Figures 4A and C, it can be seen that these backbone loops define 

the general surface topology of kalata B2 and cycloviolacin Y4 but for convenience, only some 

loops are indicated. The topology of these two peptides differs in relation to their hydrophobic 

surface patches, which are centred on L5 and L6 in kalata B2, and on L2 and L3 in 

cycloviolacin Y4. In both cases, hydrophobic patches are shown in blue whilst hydrophilic and 

charged regions are indicated in red.  



Published Harris F, et al 2016 Protein Pept Lett. 2016 May 11. [Epub ahead of print] 
PMID: 27165406 
 
 

32 
 

 

 

Figure 5. The binding of kalata B2 to a PE bilayer 

 

Figure 5 shows a molecular dynamic simulation of kalata B2 interacting with a bilayer formed from 

DMPE. In this simulation, the peptide approaches the membrane surface (Figure 5A) and binds to the 

lipid-head-group regions with high affinity for these bilayers (Figure 5B), which would support the 

suggested receptor role for the lipid [62, 81, 82]. Figure 5C shows a close up of PE-bound kalata B2, 

which predicts that this binding involves electrostatic and hydrogen-bond interactions between 

ammonium moieties within the head-group region of the bilayer and residues in loops 2 (residues F10 

and T13), loop 3 (residues T16 and P17) and loop 6 (residues D29 and P3) of the peptide. These 

simulations also show that the conserved glutamate residues (E7 in loop 2) of PE-bound kalata B2 is 
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distal from the membrane surface (Indicated with an arrow in Figure 5C) and is not involved in this 

binding mechanism , contrasting to previous observations [62, 81, 82].    

 

 

Figure 6. A model for the membrane interaction of kalata B2 

 

Figure 6 was adapted from [82] and shows a model for the membrane interactions of kalata B2 

and other ADHPs. According to this model, monomers or oligomers of these cyclotides 

approach the membrane surface (Figure 6A) and specifically bind PE head-groups whilst 

interacting non-specifically with the lipid’s acyl chains (Figure 6B). The progressive aggregation 
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of kalata B2 molecules on the membrane surface, either as monomers or loosely packed oligomers, 

imposes a positive curvature strain by increasing the distance between membrane lipid head-groups. 

Once the localized concentration of peptides on the membrane surface reaches a threshold 

value, they insert into the bilayer whilst remaining in contact with the PE head-group. This 

action leads to cavitation of the membrane surface and ultimately, the formation of toroidal pores that 

are lined by lipid head-groups and hydrophilic surfaces of the participating cyclotide molecules (Figure 

6C). This process continues until high concentrations of kalata B2 are reached when lipids are extracted 

from the membrane, which results in solubilisation and ultimately, disintegration of the bilayer (Figure 

6D). 

 

 


