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Abstract

This work is concerned with the modelling and analysis of the orientation and distance between steel fibers in X-ray Micro-
Tomography (XCT) data. The advantage of combining both orientation and separation in a model is that it helps provide a detailed
understanding of how the steel fibers are arranged, which is easy to compare. The developed models are designed to summarise
the randomness of the orientation distribution of the steel fibers both locally and across an entire volume based on multiscale
entropy. Theoretical modelling, simulation and application to real imaging data are shown here. The theoretical modelling of
multiscale entropy for orientation includes a proof showing the final form of the multiscale taken over a linear range of scales.
A series of image processing operations are also included to overcome interslice connectivity issues to help derive the statistical
descriptions of the orientation distributions of the steel fibers. The results demonstrate that multiscale entropy provides unique
insights into both simulated and real imaging data of steel fiber reinforced concrete.

I. INTRODUCTION

Steel Fiber Reinforced Concrete (SFRC) is a common engineering material in the construction industry. The steel fibers
help to improve the mechanical properties of the material. The orientation of the fibers is important because they help to
strengthen the material, particularly in the direction orthogonal to the fibers. In the extreme case they can help to bridge a
gap if a crack forms. If the fibers are not oriented perpendicular to the direction of the crack then they will not be able to
bridge the gap according to Abrishambaf et al. [1]]. Thus, the aim of the work here, is to provide a quantitative insight into,
how randomly distributed steel fibers or any other randomly oriented structures are located and oriented in volumetric imaging
data. Multiscale Entropy modeling is investigated here to describe the randomness of steel fibers in micro-tomography data of
SFRC. This enables the orientation distribution and distancing of the fibers to be summarized in an effective way.

A number of techniques exist for estimating the orientation distribution of the fibers. The orientation distribution is a
distribution function which can help in understanding how well distributed the fibers are within the volume. The approach
taken in Vicente et al. [2] and Abrishambaf et al. [3] was to look at the distributions of the fibers against the 3 axes in
combination with fiber distribution efficiency factors, one for each axis (e, ey, e.). For each of the efficiency factors, a variety
of scenarios may be considered, such as complete alignment with a given axis (e.g. e, = 2), perpendicular to that axis (e.g.
e; = 0). These are useful as they summarize, for each of the axes, the extensive information in the orientation distribution for
a volume. A software system for interactive visualization and investigation of fiber based materials that combined similar axis
dependent distribution information was described by Weissenbdck et al. [4]].

Another approach taken by Axelsson and Svensson in [5], [6] is via a structure tensor that describes the orientations of the
fibers through out the volume. The tensor can be summarized via a combination of three relative anisotropy terms (c1, ¢z, c3)
calculated from combinations of the three eigenvalues (A1, A2, A3) of the structure tensor. For the case of when the fibers are
well distributed then co will be small, ¢; small and c3 large. This measurement of anisotropy can be understood in terms of
how the eigenvalues are inter-related (since the relative anisotropy terms are derived from the eigenvalues).

Alternatively we may prefer to somehow summarize the distribution of the fibers in terms of how randomly they are
distributed. One way of doing this is with the use of a Scalar Order Parameter (SOP). Hermann et al. [7]], [8] used SOP as a
scalar value, S € [—%, 1] to quantify the amount of variation in the distribution of fibers. The SOP can be calculated via the
second order orientation tensor O which is given by the sum of the outer products of the orientation vectors. The SOP S can
then be calculated from the largest eigenvalue of O (but scaled by 3/2) or the average of the second Legendre polynomial,
(see e.g. Jankun-Kelly and Mehta, [9] and Mottram and Newton [10]) dependent upon the angle o which is the angle between
each of the fibers’ vectors and the director’s vector that describes the mean orientation.

Each of the above techniques rely on the processing of knowledge about the locations of the steel fibers, as might be possible
from image processing operations performed on microtomography data. However fiber orientation estimation has also been
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Fig. 1. Example of a volume rendered real Steel Fiber Reinforced Concrete (SFRC) core (left), result of thresholding (middle left), individual steel fibers
(middle right) and volume rendered result of a corresponding multiscale Entropy estimation process, as described here. The individual steel fibers are obtained
using an iteratively applied Random Sample Consensus process applied to a morphologically thinned version of the segmented steel fibers.

performed using electromagnetic measurement techniques, relying on the magnetic properties of the steel fibers, as shown in
Juan-Garcia et al. [[11]. These techniques are interesting but a high resolution 3D microtomography data set would likely be
considered as a potential source of a gold standard in this type of scenario.

Many of the aforementioned techniques attempt to describe the amount of concentrated directionality in the distribution of
the fibers. This is often referred to as anisotropy. Anisotropy is a popular topic in the medical imaging community to help
understand the connectivity of the brain. Westin et al. [12] derived an eigenvalue based description of the shape of a diffusion
tensor to describe the directionality of water diffusion in Diffusion Tensor Magnetic Resonance Imaging (DTMRI) data. Similar
techniques were applied to more general computer vision problems by Westin and Knuttson, [[13], [14] for symmetry detection
and motion vector field estimation. Anisotropy is also useful for fingerprint authentication. For example Jiang, [15] used the
eigenvectors of the gradient covariance matrix for fingerprint authentication, similar to the structure tensor approach used
previously in computer vision by Bigun and Granlund in 1987 [16] and Knutsson in 1989 [[17]. In particular the magnitude
of the image gradient was used as a measure of anisotropy, which is not so applicable to steel fiber like data as a measure of
anisotropy. Another fingerprint indexing approach by Liu and Yap in 2012 [18] looked at polar complex moments at different
scales. The use of different scales was interesting but the inherent assumption with fingerprints with their technique is that
there must be a direction to infer.

The majority of the techniques described above derive some form of measurement from the eigenvalues of a second order
moment matrix, such as the orientation tensor as used by Hermann et al. [7]], [8], a structure tensor as used by Axelsson and
Svensson [3], [6] or even a covariance like matrix as in Principal Component Analysis (PCA), also used by Axelsson and
Svensson [6]]. As such the eigenvalues describe the variability of a system, with the greatest eigenvalue in the direction of
maximum variability. These approaches implicitly assume a uni-modal distribution. An alternative approach to describing the
statistical variability which does not assume a uni-modal distribution can be based on Shannon’s Entropy H, first proposed in
1948 [19] for application in telecommunications. A comparative illustration of the different properties of standard deviation
versus Shannon’s Entropy can be seen in Fig. [T4]

Shannon’s Entropy is sometimes referred to as useful as a spectral Entropy described by Sharma et al. [20]; similarly for
Renyi’s Entropy [21]. In the same context, there are other forms and uses of Entropy such as approximate Entropy as proposed
by Pincus [22] and sample Entropy described by Richman and Moorman [23]]. Both these techniques have often been used in
the context of analyzing the complexity of time series data. They are often used as a regularity statistic, e.g. by Ho et al. [24].
Both approximate Entropy and sample Entropy have also been used within a multiscale Entropy framework, see Costa et al.
[25] where the multiple scales provide an advantage enabling the randomness or complexity of a signal to be quantified across
a range of scales so that signals can be compared more easily. For example, Ramdani et al. [26] and Fino et al. [27] looked at
posture fluctuations to compare falling in elderly people; artefact detection in electroencephalographic signals is also another
popular topic e.g. Mariani et al. [28]]; analysis of various engineering type problems such as for two phase flow e.g. Gao et
al. [29]; and quantifying human heartbeat complexity and similar has also been another popular topic for the application of
multiscale Entropy e.g. Valencia et al. [30] and Costa and Goldberger [31]. Shannon’s Entropy has also been used in multiscale
formulations by Zhang [32] and also Fogedby [33]], but not for the description and summarisation of orientation information
which is the problem considered here.

The steel fibers are included in steel fiber reinforced concrete to provide improved mechanical properties to the concrete. The
mechanical modeling of composite materials can be done in a number of ways, such as with Finite Element Analysis (FEA)
(e.g. Abbas et al. [34]) or statistically via the Weibull distribution, often used to model tensile strength via weakest link theory,
see e.g. Zhang et al. [35]. Both types of techniques have advantages, but they do not incorporate the orientation distribution
information, an often used descriptor of fiber enhanced materials. FEA provides insight into the mechanical properties of a
material at various levels of detail but statistical techniques are often limited to providing a global summary or at best limited



to sub-volumes. Therefore it is of interest to investigate statistical models that are able to provide a global summary of the
orientation information but also to focus at the imaging point measurement level, i.e. for individual voxels.

The work described here is based on a multiscale Entropy approach. It is used to quantify the randomness of the distribution
of steel fibers in steel fiber reinforced concrete. The randomness is quantified in 3D both in terms of a 3D angle (¢, 6) in section
II-A] and the 3D angle is combined with distance between fibers in section An example multiscale Entropy estimate can
be seen in Fig. || for a real SFRC core sample. Shannon’s Entropy rather than approximate Entropy or sample Entropy is
used here as Shannon’s Entropy quantifies overall randomness rather than irregularity (as for approximate Entropy or sample
Entropy). Irregularity is not appropriate here because regularly spaced fibers could still provide improved mechanical properties
to a material. Rather a measure of uniformity, whether regular or irregular is appropriate here. Also remembering that the use
of multiscale ensures that the properties of the orientation distribution are quantified consistently across scale.

Section [T then follows with a series of experiments and corresponding results concluding with a discussion and conclusions
in section [[V]

II. METHODOLOGY
A. Multiple Scale Discrete Orientation Distribution

Each individual steel fiber can be represented as a vector p in 3D cartesian space i.e. p = (x,v,2)T. Alternatively it can
be represented in a spherical coordinate system with v = (¢, 8, p)*, where ¢ and 6 are the in-plane and inter-plane angles
respectively and 7 is the Euclidean length of the steel fiber vector. These terms can be calculated with ¢ = tan—! (%),
0 = cos’l(z), p = /22 + y2 + 22. For each fiber i in a volume, discretized angle indices n; and m; are calculated with
n; < N and m; < M are whole number indices in the range provided by the selected scale given by N and M. The indices
n; and m; are calculated from the continuous underlying angles 6 and ¢ respectively.

A histogram can be created for a volume containing fibers binned at discretized angle indices f(n,m); containing the counts
for the fibers at a particular combination of angle ranges. The histogram can be used to estimate a probability mass function for
the orientations of the fibers, with P(n,m) = f(n,m)/ Yon 2om f(n,m) so that 3 > P(n,m) = 1. We will assume an
infinite sample size so that P(n,m) = P(n,m). This assumption is considered in more detail in section The discretized
orientation distribution at a particular scale (N, M) can then be summarized with Shannon’s Entropy, i.e.

HNM:ZZP(n,m)h(n,m); (1)

where the self information is given by h(n,m) = —log,(P(n,m)). Extending across multiple scales gives,

Hms:ZZHNM:ZZZZP(mm)h(mm). 2)

N M N M n m
The question we might ask, is, what value will H,,4 take for a volume consisting of fibers distributed over a particular range
of angles, e.g. v, where 0 € [0, q] x 180 and ¢ € [0,r] x 180? Expressing this as Hy,s(g,r); it is shown in appendix [A] that
H,.s(q,r) is approximately logarithmically proportional to ¢ and r, where the Entropy is calculated across a set of scales, with
maximum 9 x N ie. M € [1,9] and N € [1,9]. An example of this can be seen in Fig. 2| Also shown in Fig. [2| are data
points obtained from simulation (see [IT). These data points closely follow the theoretical line for the majority of the curve.
This is interesting because it demonstrates the result of a multiscale operation is an easily understood function and also one
which can be used to indicate the range of angles over which the fibers are distributed. Using similar steps and assumptions,
it is also shown in appendix |A] that the variance of this estimator is given by

o2, = 4log3(MNM) — logy (NM) (4 + 2/1n(2)) + 4/1n?(2). 3)

Through numerical simulation it can be seen that mean H,s and the sample standard deviation o,¢ are of similar value where
H,s/0ms € [0.8,1.8]. The standard error S, = 22 for the estimation of H,,s will however be significantly reduced because
of the numerous fibers in every volume e.g. C > 70. A further useful observation regarding (3) is the independence from the
range of angles ([0, ], [0,7]) that a particular volume might have fibers distributed across.

The use of angle alone is interesting because of the original premise regarding highly randomized fibers contributing to a
material with good mechanical properties (see e.g. ACI Committee [36]). But the microtomography data provides more detailed
information, i.e. local information that can be relied upon to help localize the quantification of the randomness, through another
type of Entropy calculation, as can be seen in the following section.

B. Probability of Angle and Distance Combined

The mechanical properties of a material should improve when fibers are distributed evenly throughout a volume in a highly
randomized way (see e.g. ACI Committee, [36l]). The orientation distribution only describes the angular distribution, not
the spatial distribution. This spatial information is not captured in the preceding model. Furthermore, as noted above, the
microtomography data provides highly detailed, localized information regarding the location of fibers. This information can be



600

400

multiscale entropy

200

0 A - "
0 20 40 60 80 100 120 140 160 188
angle

Fig. 2. Illustration for 2D of the effect of including multiple scales (dashed lines), with a solid gray line for the resulting combination of the multiple scale
lines. Also shown are dots corresponding to simulations which closely follow the theoretically derived expression, (in Appendix @)

used to develop a new, more sophisticated model of fiber distribution; both at the voxel level and also capturing information
about the distribution of the fibers throughout the volume.

The probability of angle and distance combined can be considered. For a particular point x; in the volume and a particular
direction (n,m), at angular scale (N, M) and distance scale o, we have

d o] . 2
P(zjln,m,0) o Y exp (—%) @)

where djs(j]¢) is the distance from point x; to a steel fiber with end points @7 ; and x5 ;. Details on the computation of this
distance can be found in section [[I-D
The probabilities are normalized for each point across all discretized angles. Using Bayes theorem it can then be shown

— P(wj|ni7mi7o-)P(nivmiao-)
> nn omy, P(@jlng, my, o) P(ny, my, o)’
which describes the probability of fibers oriented in direction (n;,m;) at distance scale o influencing the volume at point ;.

Uniform priors are assumed because fibers could potentially point in any direction i.e. P(ng,my, o) = 1 and the denominator
is a marginal distribution P(x;) so that

(&)

P(ni,mi,0|mj)

P(.’I}]|’I’LZ7 mg, U)
Px;)
where P(x;) = >, >, P(x;jng mg, o). This marginal is important in terms of the conventional notion of conditional

probabilities. The normalizing sum or marginal P(x;) also carries important details regarding the proximity and consequently
influence of any fibers, which is preserved to scale the resulting Entropy calculations as will be seen shortly.

(6)

P(ni,mi,a|wj) =

C. Conditional Multiscale Entropy

The influence of fibers pointing in direction (n,m) at varying distances djs to a point x; are important in understanding
whether an individual point is sufficiently influenced in terms of proximity, as well as the complexity of the distribution of
orientations. Therefore the marginal term p(x;) from @ is introduced to weight the Entropy calculation in terms of the distance
of influencing fibers djs for a particular orientation (n,m). The result of this is a conditional Entropy of a point x; being
influenced by fibers pointing in directions (n,m) for a particular scale (N, M, o)

H(N, M, olx;) = E[-log, P(n,m,olz;)|z;]
=— Z Z P(n,m,o,x;)logy P(n,m,o|x;)

= —ZZP(n,m,a\xj)P(wj)logQ P(n,m,olx;) @)

The conditional Entropy at point x; across all scales is then

Hygi(z) = > > > H(N,M,ol|z;) ®)
M

o N

Each H,q(x;) describes the Entropy across multiple scales of orientations (N, M) and distance (¢). This conditional Entropy
will be used shortly (in [[II) to quantify the amount of randomness in the orientation distribution of steel fibers.



[lper-2 |,

L
. X
A

.
.
.

Fig. 3. Illustration of the geometry involved in the calculation of the distance from the line segment, dis. When h1, ho < hmax (left) then djg = d. When
hy or hg > hmax (I‘ight) then dls = min(hl, hg).

D. Fiber Modeling

Steel fibers typically have hooked ends to help improve anchorage in the concrete, see e.g. Abdallah et al. [37]. Sometimes
they may also have a zig-zag form. Furthermore many of the steel fibers will also bend when combined with aggregate (small
stones) in the concrete mix.

The steel fibers are modeled here as line segments, a straight line but terminated at two end points. This provides a convenient
approach for the purposes of modeling. Furthermore, the fiber detection process (see see section does not assume a constant
fiber length. This means that a bent fiber can be approximated with a series of shorter straight line segments.

If a point xq is perpendicular to the line segment with end points x; and x5 then the perpendicular straight line distance
can be used. Otherwise the distance will need to be calculated in another way, as shown in the following lemma.

Lemma. The minimum distance of a point xg to a line segment with end points x1 and xo is defined as

di. = d lfhl S hmax and h2 S hmax;
Is = min(hy, ha) otherwise;

€))

(o—x1) X (To—T2)]2
z2—x1 |2

Weisstein, [38], h1 = ||xo — x1

where d = 1 is the perpendicular distance of x( to a straight line with points x1 and x2 as described by

9, ha = ||@o — @22 and humax = /d? + |21 — x2||%.

Proof. The distance to a line segment from a point &y can be calculated by observing that two right angle triangles are formed
between xg and the closest point on the straight line and the two end points of the line segment x; and x» (forming two
different right angle triangles). The hypotenuses h; and ho for the two triangles are then the distances between two end points,
ie. hy = ||l@g — x1]|2 and he = ||xg — @2||2- A third right angled triangle is also formed, defined as having the points x;, @
and a point on a line running through x( parallel to the line with x; and x5, perpendicular at x; (or equivalently x5) with
hypotenuse hpax = \/d? + ||@1 — :c2||§ If both hypotenuses h; and ho are less than hy,,x then there will be a perpendicular
point within the line segment. If either h; or ho are greater than hp,,x then the right angle triangle formed will have a
perpendicular point that lies outside of the line segment (although still on the straight line). In this case, the perpendicular
distance (to the straight line) will be less than the distance to the closest point on the line segment. This is illustrated in Fig.
[l The minimum distance from @ to the line segment can therefore be calculated with (O) as given. O

E. Fiber Detection

The directionality of steel fibers in volumetric data may be corrupted because of the thickness of the steel fiber in relation to
the inter-plane thickness in the acquired XCT data (inter-slice gap). This can be observed in the 3D rendering and cross section
shown in Fig. @] Techniques such as the one proposed by Fritz et al. [39] used region growing to segment the background
concrete from isolated steel fibers then assumed that individual fibers could be individually isolated. Another technique proposed
by Vicente et al. [2] involved taking a relatively high threshold and then determining fibers based on their connectivity in a
particular direction within a given tolerance by performing a regression like process of the resulting point cloud for the entire set
of segmented points. Other techniques by Eberhardt and Clarke [40]], Salaberger et al. [41]] and Tausif et al. [42]] rely on finding
short straight lines in the 3D image data and then connecting them together, again similar to Vicente et al. [2] in a particular
direction within a given tolerance. The resulting potential ambiguities such as the directionality means simple techniques based
on connectivity are not sufficient for accurate detection of fibers. Random sample consensus (RANSAC), first proposed by
Fischler and Bolles [43]] is used here as a robust clustering model based detection method to robustly and iteratively fit models,
(straight lines in this case) corresponding to steel fibers. The volumetric data is thresholded, morphologically thinned (see e.g.
Gonzalez and Woods [44]) and then RANSAC is applied to find the set of points that best match a straight line. Those points
are then deleted and then the process is repeated until no data points remain. This approach is reasonable and is often used in
computer vision research, see e.g. Davies [45]. An example output can be seen in Fig. [I}

If the imaging data is acquired with a sufficiently high resolution, including little or no inter-slice gap then other techniques
could instead be used such as the one proposed by Salaberger et al. [41]].



Fig. 4. Illustration of effect of inter-plane finite resolution when the dimensions of the steel fibers are small compared to the inter-plane resolution. Left:
cropped image of 3D rendering of isosurfaces (red) together with volume rendering of semi-transparent aggregate material (blue/ green). Right: 2D gray-scale
cropped cross section of same volume also illustrating fibers (0.75Smm diameter) with poor inter-connectivity and a scale is included (mm). Voxel dimensions
given by 0.016522 x Imm? for a core size of 7502 x 100mm?> with 197000 fibers/m*. Data provided by a user study, see section particularly table
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Fig. 5. Histograms for repeated estimation of the mean Entropy for simulated fiber volumes (similar to bootstrapping with replacement sampling). These
results appear to show clustering around centralized mean like values. Standard deviations range from 1.5 to 3.1, all reflecting relatively low deviation from
the mean. These results help to show the repeatability of obtaining a particular value of Entropy using the described processes. Also note the estimation
process includes the fiber detection and Entropy estimation processes.

F. Entropy Estimation

The steel fibers are likely to be quite numerous, thus complicating the fiber detection process. Furthermore accurate estimation
of Entropy H is dependent on accurate estimation of the underlying probability distribution(s), e.g. using “plug-in” Entropy
estimation, see Antos and Kontoyiannis [46]

ﬁMLE = _ZP’“ 10g2 Pk. (10)
k

which requires a large sample size to accurately estimate the probabilities P,. Obviously, this is impractical from a computational
point of view. However the stochastic nature of the fiber detection process provides an opportunity to repeat it over a number
of iterations, which can provide somewhat dependent re-sampling of the fiber volume.

The “plug-in” formula in (I0) for Entropy estimation is also a negatively biased estimator according to Antos and Kontoyian-
nis [46] and Paninski [47], i.e. HyLg — H < 0. Thus making robust inference of the Entropy from a quite densely populated
volume and or low contrast volume potentially erroneous. The good news is that the variance on the Entropy estimation part
of the process is bounded Var(Hyg) < (logC)?/C due to central limit properties [47].

A further potential source of variation is from the fiber detection stage involving the RANSAC algorithm, as described in
the preceding section. The RANSAC algorithm does not always provide a perfect solution and the results returned can be
somewhat validated by re-running the sampling process. Therefore, not only are there multiple fibers from which to estimate
but also the estimation process is repeated multiple times (C = X x 50 for some of the experiments that follow shortly where
X is the number of fibers in a volume). This reduces the resulting weighting of a potentially poor fiber detection process and
also to take advantage of the central limit theorem. Some results of this bootstrap with replacement like process can be seen

in Fig. ]
III. EXPERIMENTS AND RESULTS

The experiments that follow have utilized both simulated data and real XCT data of steel fiber concrete cores. The benefit
of simulating XCT data is because it enables parameters to be precisely controlled such as the orientation distribution and
distancing of the simulated steel fibers, the inter slice thickness, noise levels and it is also possible to have precise knowledge
about the location of the simulated fibers. The fibers were randomly located in the imaging data using

0 =2mu
{ ¢ =cos (20 —1). (I



Fig. 6. Surface renderings of simulated volumes. Each row represents increasing ranges of angles over which fibers were distributed, where 6, ¢ € (0, 10),
(0,40), (0,60), (0,120), or (0,180) where the first row has 6, ¢ € (0, 10), second row 6, ¢ € (0,40) etc. Scale axes are shown with dimensions in mm.

where v and v are sampled from uniform distributions in (0,1). Rejection sampling was used to constrain ¢ and ¢ within a
given range, e.g. to generate fibers in the range 6,¢ € [0,60] then u and v were sampled from the uniform distribution and
the corresponding 6 and ¢ values were kept unless 6 > 60 or ¢ > 60. Fibers were generated in a high resolution volume as
straight lines with 30mm lengths and 1mm diameters. Straight lines were generated and then dilated to create the specified
fiber dimension. Additive white Gaussian noise was added and convolution performed with a simulated point spread function,
assumed here to be Gaussian in form. Downsampling was then performed to a specified low resolution number of voxels, see
Table [l Volume renderings of a range of simulated volumes can be seen in Fig. [6]

The real XCT data are scans of 100mm core samples of steel fiber reinforced concrete square panels that have undergone
various mechanical tests such as flexural strength testing as performed by Ige et al. [48]]. The cores were imaged with a
350kV X-ray source with a Venlo H350 manufactured by Shaw Inspection Systems. The technical details include a 350kV
2-D mini-focus, fan-shaped beam with a tungsten target, linear diode array using a 1x 3672 pixel area in conjunction with a



TABLE I
DETAILS OF SIMULATED FIBERS VOLUMES, ILLUSTRATED IN FIG.@WITH RESULTS SHOWN IN FIGS.E],AND

Downsampled High
0, ¢ # Voxels Resolution # Voxels | # volumes
[0,10] 128x 128 x 128 768 X768 X768 10
[0, 20] 128x128x 128 768 %768 %768 10
[0, 40] 128x128x 128 768768 %768 10
[0, 60] 128x128x 128 768 x 768 768 10
[0, 90] 128x128x 128 768 %768 %768 10
[0,120] | 128x128x128 768768 %768 10
[0,150] | 128x128x128 768 x 768 768 10
[0,180] | 128x128x128 768768 %768 10

50 100 150 200
angle

Fig. 7. Multiscale Entropy calculated for simulated volumes (#400) with simulated fibers (#75) constrained to an upper limit for both the in-plane and
inter-plane angles (6, ¢). Rejection sampling was used to randomly generate within a given interval. The point values are the multiscale Entropy estimates
(#50 for each angle). The means, conditioned on the angle are diamonds and an inverse decay exponential curve of the form Hmax(1 — exp(—angle/T))
was found to have a very good fit to these mean values.

12-bit digital output and a Gadolinium Oxysulphide scintillator. The focal spot is 0.9mm. The scan parameters included 296kV,
current 2.1mA, exposure time of 260ms and each scan was rotated 360° in 450 seconds.

Unless otherwise stated, the angle histograms for n and m are calculated with (N, M) € (3,4,5,6)2 so that the orientation
distribution is discretized into 16 different combinations of scale, i.e. for N = 3, M = 3,4,5,6; for N =4, M = 3,4,5,6,
etc. The multiple scale variance o2 in was given values o2 € {1,100, 10000, 1000000}.

The simulation software was implemented using a number of software tools including C++ with the Insight ToolKit (ITK)
for the volumetric processing framework, the Point Cloud Library (PCL), GNU Octave and for visualization purposes Python
and the Visualization ToolKit (VTK) were used. The developed software will be made available from Chiverton [49] for the
purposes of reproducible research.

A. Fiber Volume Simulations Entropy Estimation Results

The estimation of the Entropy is a random process. It is therefore desirable to look at how the Entropy estimates vary
depending on a given orientation angle. Simulated fiber volumes were generated with the distribution of the fibers for particular
simulations constrained within a particular range of angles, details of which can be seen in Table

Some histograms of the results of Entropy calculations estimated on the simulated volumes can be seen in Fig. [5] This is
an interesting comparison where the simulated maximum angle of deviation orientations of the fibers in the simulated fiber
volumes are plotted against the resulting multiscale Entropy values calculated for those volumes. Clusters can be seen for the
majority of the estimated Entropy values for each fiber orientation distribution. The relatively low standard deviations range
from 1.5 to 3.1 help to show the repeatability of a particular Entropy estimate for a fiber orientation distribution.

The conditional Entropy values for the simulated data was then plotted as discrete data points as a function of angle which
can be seen in Fig. [/] Also shown are the means of those data points for each angle simulation. A spline curve was fitted to
the mean values but an inverse decay exponential curve of the form H,.x(1 — exp(—angle/7)) was also found to have a very
good fit. Exemplar volume renderings of the Entropy estimation volumes can be seen in Fig.

Asymmetric Fiber Distributions: Further simulations were performed to determine the ability of the conditional Entropy to
quantify asymmetry of the distributed fibers. Fibers were simulated with angles 6 € [1,36] x 5 and ¢ € [1, 36] x 5 so that § and
¢ took values between angles 5 and 180 degrees in steps of 5 degrees resulting in 36 x 36 = 1296 sets of simulated fibers from
which the multiscale Entropy was calculated creating a total of 1296 Entropy data points. Results of calculating the conditional
Entropy for these simulated volumes can be seen in Fig. [0} The results of the Entropy estimates on these simulated volumes
containing asymmetric fiber distributions show symmetric estimates of Entropy along the line § = ¢. This demonstrates the
Entropy estimation process is consistent whether, e.g. § = 30 and ¢ = 45 or § = 45 and ¢ = 30. Such asymmetric ranges



Fig. 8. Volume renderings of single runs of the conditional Entropy estimation process for corresponding data volumes shown in Fig.@ In total five estimations
were performed for each simulated volume which included fiber detection and Entropy estimation processes. Entropy color scales are shown along with scale
axes with dimensions in mm. Upper rows show generally lower estimated conditional Entropy values in comparison to lower rows, consistent with the
randomness of the fibers in each of the volumes.

of angles in fibers could potentially create ambiguities for techniques that are dependent on a particular reference direction
or similar such as Scalar Order Parameter (SOP). Indeed, there is no reference direction, director or similar required in the
calculation of the Entropy as described here.

Varying numbers of fibers: It is interesting to observe the performance of the fiber detection process. The number of fibers
in a volume was varied from 190730 fibers/m® to 1907300/m? and fibers were detected using the techniques described here.
The results for this process can be seen in Fig. [T0] It is interesting to note that the number of fibers in the real SFRC described
shortly have a maximum number of 229200 fibers/m?3, which is well under the 1 x 10° fibers/m® point at which the number
of detected fibers starts to be less than the actual number.

Computation times: The computation times for the RANSAC fiber detection stage and multiscale Entropy estimation stage
were computed for simulated volumes consisting of a range of different numbers of fibers. These can be seen in Fig. [TT] The




e TN 11
RN 10
Y i 9 x
g8 ©
7 B
5
6
180 5
)5 45 0 *
0 180 135 90 45
@

Fig. 9. Results of calculating the conditional Entropy for simulated data volumes with anisotropic variations, where the ranges of possible angles that the
fibers were distributed in are 5 < 8 < 180 and 5 < ¢ < 180. The calculated conditional entropies for these anisotropic ranges of angles show a symmetric
distribution of Entropy values around the line # = ¢, indicating a consistent approach to the quantitative summarisation of the orientations of fiber distributions.
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Fig. 10. Results of applying the fiber detection process to 64°mm? data volumes containing a range of different fiber counts (from 190730 fibers/m? to
1907300 fibers/m?). Each fiber is approximately Imm in diameter and each voxel is 0.5mm?3 in size. The solid line represents the ideal, illustrating the number
of fibers are correctly detected up to 1 x 108 fibers/m3.

computation times for the Entropy estimation stage appear to be somewhat constant whilst the RANSAC fiber detection stage
appears to follow a polynomial time curve.

B. User Study of Steel Fiber Reinforced Concrete

Steel Fiber Reinforced Concrete (SFRC) slabs were prepared using 50kg/ m? of steel fibers with varying lengths and diameters
and 10mm or 20mm aggregate (stones). Specific details can be seen in Table |l The SFRC was made into reinforced cuboid
slabs, each of size 6002 x 100mm? with x2 cylindrical samples for each slab. The sample core volumes were 7502 x 100mm?
(from volume of a cylinder). Each of these core samples were then imaged with XCT acquired using the aforementioned
XCT parameters. Core sample voxel sizes were 0.016522 x 1.0mm?® with slice thickness 0.4mm. The conditional Entropy that
combines elements of the distance and orientation of fibers, on a per voxel level were calculated for these XCT imaging data
acquired from the steel fiber concrete cores with various properties.

The results can be seen in Figs.[12]and [T3[a). The results in Fig. [I2] appear to show greater fiber diameter results in increased
conditional Entropy. The results in Fig. [[3]included some comparisons with the multiscale Entropy that includes just orientation
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(] [ ) * * entropy estimates
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0 100 200 300 400 500
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Fig. 11. Computation times for the RANSAC fiber detection stage and multiscale Entropy estimation stage for volumes consisting of a range of different
numbers of fibers.
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Fig. 12. Results of applying Entropy calculations to real steel fiber reinforced concrete where the diameter and length of the fibers for the different cores are
included. These results appear to show that greater Entropy is seen for cores with thicker fibers (greater diameters).

TABLE II
PROPERTIES OF THE REAL STEEL FIBER CONCRETE CORES. RESULTS OF APPLYING THE ENTROPY CALCULATIONS TO XCT SCANS OF THESE CORES CAN
BE SEEN IN FIGs.[I21AND[T3]

length || diameter fibers aggregate slab Peak kN
mm mm /m3 size mm® || count Load
50 1.11 140100 10 3 93
60 0.92 159150 10 3 106
60 0.75 229200 10 3 94
50 1.11 140100 20 3 68
60 0.92 159150 20 3 70
60 0.75 229200 20 3 82

information Hy,s(q, ) in ; Scalar Order Parameter (SOP) as used by Hermann et al. in [7], [8] S € [—%7 1}; and efficiency
factors ey, ey and e, as used by Vicente et al. [2] and Abrishambaf et al. [3]].

The comparative results in Fig. |13| appear to show a greater, consistent distinction between the 10mm aggregate core versus
the 20mm aggregate core, than for the SOP or the efficiency factors. This can be quantified with an overlap calculation

X-Y
=\ Z sty "

Vcores

with corresponding values of being shown in Table The calculated overlaps also show that the entropy based measures
demonstrate greater difference between the 10mm and 20mm based aggregate cores.

User study perspective: From the user study point of view, these results are potentially very useful. Quantitative com-
parisons in the form of scatter plots in Fig. [I3] show that the H,, values possess a marked distinction between the different
aggregate types and what appears to be a higher correlation with the peak load performance of the material in the different
cores. Peak load values in kN can be seen in Table [l details of which were described by Ige et al. [48]. The SOP and
efficiency factors results did not differentiate between aggregate types. The SOP values appear to have some correlation with
the number of fibers, but not the underlying matrix that may otherwise affect the general strength properties of the material.

The 10mm aggregate cores all have fibers with lengths that are over three times the size of the aggregate size. As noted by
Vandewalle [50], this is important because it enables the fibers to bridge any potential gaps and to provide sufficient bonding
in the concrete matrix. However this is not the case for a few of the 20mm aggregate cores, where the S0mm length fibers
(1.11lmm diameter) fall below this length to aggregate size threshold. Another consideration is regarding the diameter of the
steel fibers. A smaller diameter potentially increases the number of fibers for a given weight and therefore the potential for
fibers to be distributed more densely across the matrix thereby improving the mechanical properties of the materials. The
influence of these factors can be seen in the load bearing capacity of concrete panels as described by Ige et al. [48]] where it
can be seen that, for the same cores imaged here, the 10mm aggregate SFRC panels consistently possessed greater maximum

TABLE III
OVERLAP CALCULATIONS FROM @I) FOR THE DIFFERENT ENTROPY, SOP AND EFFICIENCY FACTORS RESULTS FOR THE REAL CORES; SHOWN IN FIG.

| Heot | S | Hums | ex | ey | e
(@] H 2.43 [ 0.78 [ 1.21 [ 0.50 [ 0.42 [ 0.57
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Fig. 13. Results of calculations applied to real steel fiber reinforced concrete. (a) shows conditional Entropy results using probabilities which include the
distance between fibers; (b) are the SOP results; and (c) shows Entropy results using just fiber orientations but no distance information; (d-f) show the
efficiency factors along each dimension of the data; (g-i) show the results of (a-c) but plotted as a function of fibers/m®; The entropy based results (a,c)
appear to consistently show that the 10mm based aggregate fiber concrete cores are more randomly distributed, however the Entropy calculations also appear
to identify greater relative differences between the 20mm and 10mm aggregate cores in comparison to SOP values and the efficiency factors, also quantified
in Table [T

load bearing capacity in comparison to the 20mm aggregate SFRC panels. This was also reflected well with the H,,) results
as shown in Fig. [13]

C. Entropy Comparison

The overlap results shown in Table [[I] and in Fig. [[3]indicate differences between Entropy based descriptions of randomness
and variance based descriptions of fiber distributions (e.g. SOP). So a question we now ask is, what properties of a distribution
are each of the randomness descriptors capturing?

Some further simulations were undertaken in the form of multiple randomly sampled multi-modal mixture models, to help
simulate the kind of scenarios that might be encountered in real world data. Some example randomly generated mixture models
can be seen in Fig. [[4] The mixture model takes the form

Q 2
i 0 —
PO) =3 52 e (_(20‘;)> (13)

where the number of components (), the means and standard deviations of each component p; and o; respectively and the
priors w;, were randomly sampled with the constraint of va w,; = 1. This enabled a large range of distributions (10000)
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Fig. 14. Comparison of three randomly generated Probability Mass Functions (PMF). For (c) the PMF has the highest Entropy, but a lower standard deviation.
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TABLE IV
CROSS-CORRELATION COEFFICIENT CALCULATIONS FOR ENTROPY CALCULATED WITH SINGLE SCALES H x x ; MULTIPLE SCALES (MS), Hy1s; AND
WITH THE STANDARD DEVIATION (Ovyar) . ALSO INDICATED ARE, ACROSS ALL SCALES, THE MAXIMUM FOR EACH OF THE COEFFICIENTS IN BOLD AND
THE MINIMUMS IN ITALICS. THESE RESULTS ARE ALSO SUMMARIZED IN FIG. THESE RESULTS INDICATE THAT Hyjg IS HIGHLY CORRELATED WITH
A NUMBER OF THE TERMS IN THE MIXTURE BASED SAMPLING DISTRIBUTION GIVEN BY (]Bb

max; (1;)
scale Q max;(w;) | —min;(u;) | Eloy] | max;(o;)
2 0.43 0.49 0.61 0.04 0.24
7 0.73 0.77 0.67 0.16 0.46
12 0.76 0.79 0.64 0.25 0.53
17 0.75 0.79 0.61 0.33 0.57
22 0.74 0.77 0.59 0.37 0.59
27 0.73 0.76 0.57 0.41 0.60
32 0.71 0.75 0.56 0.43 0.60
37 0.70 0.73 0.54 0.45 0.60
42 0.69 0.72 0.53 0.46 0.60
47 0.68 0.71 0.52 0.47 0.60
52 0.67 0.71 0.52 0.48 0.60
57 0.66 0.70 0.51 0.49 0.60
62 0.65 0.69 0.50 0.50 0.59
67 0.65 0.69 0.50 0.50 0.59
72 0.64 0.68 0.49 0.50 0.59
77 0.64 0.67 0.48 0.50 0.59
82 0.63 0.67 0.48 0.51 0.59
87 0.62 0.66 0.47 0.51 0.58
92 0.62 0.66 0.47 0.51 0.58
97 0.62 0.65 0.47 0.51 0.58
MS ] 060 | 073 | 055 | 045 | 059
Ovar ]| 040 | 045 | 085 | 003 | o021

to be tested in terms of three randomness descriptors: multiple scale Entropy H,,s, standard deviation o.,, and single scale
Entropy Hxx calculated at a number of scales. For each randomly generated distribution a number of measurements were
made. The correlation coefficient was then calculated between the measurements and the randomness descriptors to determine
what aspects of the generated distributions that the randomness descriptors capture. The measurements were: the number of
mixture components (); the maximum of the priors max;(w;); the difference between the maximum mean and the minimum
mean max; ;) —min; (14;); the mean of the standard deviations E|[c;]; and the maximum of the standard deviations max;(o;).

Table has the cross-correlation coefficients for the single scale entropies Hxx and also for the multiple scale Entropy
H,.s and standard deviation o,,. The results shown in Table m can also be seen, summarized, in Fig. @

These results show that the standard deviation of the angles has the highest cross correlation 0.85 with the difference between
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Fig. 15. Visual comparison of summaries of the cross-correlation coefficients shown in Table m for parameters of the mixture based sampling distribution
in @) The highest cross-correlation is achieved with the standard deviation in relation to the maximum difference between means (0.85). In other cases the
maximum of the single scales Entropy H x x achieves the highest correlation with, e.g. the number of mixtures (Q; the mixture with the greatest weight w;;
and even the greatest standard deviation max;(o;). The multiscale Entropy Hs is also highly correlated with these variables and is not dependent on a
particular scale which makes it the preferred choice for the majority of cases.

the maximum mean and the minimum mean for a set of randomly generated components, i.e. max;(u;) — min(g;). This is
reflected in the examples shown in Fig. [T4] The single scale Entropy cross correlation values can take on a range of different
values for each measurement, demonstrating (undesirable) scale dependency and the need for a multi-scale formulation. The
multiple scale Entropy, however demonstrates higher cross correlation coefficient values for all other measurements (other than
the difference between the means) completely independent of scale. This means that it can be computed without consideration
of a particular scale. In particular, it is interesting to see the high correlation with the number of components present and the
maximum prior, max;(w;). This latter measurement is a strong indicator of whether a distribution is uniform and hence the
amount of randomness in a sample. This is also reflected in the examples in Fig. [T4]

IV. DISCUSSION AND CONCLUSIONS

This work has included an extensive range of simulations of fiber distributions, a theoretical model and an investigation into
the unique benefits of using multiscale Entropy to summarize the orientation distribution and the spatial distribution of fibers
combined into a single model. The work is applied here to steel fibers for the reinforcement of concrete. The summarisation
of the orientation distribution in this way appears to show important applicability in this field. This is because it helps to more
accurately identify differences in the underlying properties of the material which is useful for mechanical applications and
others.

It is also anticipated that a model of this nature could potentially be applicable to a wide range of other areas, principally
where summarisation of the orientation and spatial distribution of fiber like materials is needed. This could include electrospun
nano-fibers that have been used in tissue scaffolds for bone, see Stachewicz et al. [51]], also for ligaments as indicated by
Pauly et al. [52]. There are other fiber based materials including polymer based fibers as looked at by Salaberger et al. [41]]
and paper as shown by Axelsson and Svensson [6]. The work presented here may have some application to these other areas
however some consideration will be needed with regards to applications at a smaller scale. For example, XCT of collagen fibers
can present some difficulties, partly due to the smaller scale which can require additional modeling of partial volume effects
or similar. Another consideration could potentially include the difficulty of accurately segmenting fibers that possess similar
appearance to the surrounding materials in the imaging data which is not the case for steel in XCT. Also, the assumption of
straight fibers may also need to be reconsidered for other applications.

Another aspect not considered here is the mechanical properties of the materials such as elasticity, which is essential when
developing a model that can provide insight into how a particular material forms. An example of this is the formation of
bundles of fibers which has been looked at by e.g. Hall et al. [53]]. Hall et al. combined a variety of different mechanical
properties such as cohesion and elasticity of the materials. On the other hand, an information theoretic model of a material
could potentially include elements of this type of theory which is the topic of on-going research.
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APPENDIX A
PROOF OF APPROXIMATE LOGARITHMIC MULTISCALE ENTROPY

Theorem. For a volume consisting of fibres isotropically distributed in the range 0 € [0, q] x 180 and ¢ € [0,7] x 180 where
q € [0,1] and r € [0,1], the Multiscale Entropy Hps(q,7) across a set of scales M € [1,M] and N € [1,90], each with
M x N bins, is approximately logs (qroftdN) + ﬁ

Proof. At scale (M, N), which has M x N bins, the probabilities Py;n(m,n, g, ) obtained from a volume consisting of fibres
distributed in the range [0, g] x [0, ] for bin (m,n) where 0 < m < M and 0 < n < N, are given by four possibilities. In two
of the four possibilities, the range of the fibre distribution [0, g] and [0, 7] are smaller than the bin size at a particular scale,
ie. ¢ < 4 and r < 4 so that

1 1
ifqgﬁandrgﬁ then

1 for m,n =0;

PMN(m,n,QaT) = { 0 elsewhere. (1

The other two conditions occur when the fibre distribution is spread across multiple bins, i.e. 0 < m < [¢M] and 0 < n <
[7N1, assuming (an approximation) the spread completely fills each of the bins with _3 x ;% as each bin is of size 57 X 3.
Therefore

1 1
if ¢ > i and r > N then (15)
N X g for 0<m < [gM]
Pyn(m,n,q,r) ~ and 0<n<[rN[;

0 elsewhere.

For these four cases, abbreviating the notation, the product of the probability Py;x with the self information h,sn can be
determined in the limit. For the first two cases (¢ < 1/M & r < 1/N), we have Py;nhasn = 0 as the log function grows more
slowly in comparison to the probability, closer to zero. Similarly, for the other two cases we have (¢ > 1/M & r > 1/N):
T3t g (aMrN)  for 0 <m < [qM]
PMNh]WN% and OSHS [T’N}; (16)
0 elsewhere.

The entropy for a single scale (M, N) can then be determined (where ¢ > 1/M & r > 1/N, as otherwise it is equal to zero)

M N
Hyn (g,7) = Z Z Pyunhun a7

m=1n=1
Substituting in the values for the product term from (I6):
[gM][rN]

Hyn(g,r) = Z Z

m=1 n=1
[¢MrN]
qMrN

This is the approximate entropy at a particular scale (M, N). The multiple scale entropy is then calculated with

1 1
Hps ; = s eyl H )
(@7) = a7 VEA; V] sz; mn(4,7)

1
~ AT > logy(¢MrN). (19)
VM VYN

N logy(gMrN) +0

log,(qMrN) =~ log,(¢MrN). (18)

~

Assuming the scales are linearly progressed through the natural numbers to maximums 97 and 91 for scales M and N
respectively, we have

1 m N
Hyns(q,7) ® e Y Y logy (¢MrN) (20)



The right most term can be expanded into factorials
1

Hus(q, ) = logy(qr) + —= {Mlog, (M!) + Mlog, (N} .

MN

Stirling’s approximation, i.e. In(z!) ~ zIln(z) — x can be used

Huns(g,7) = loga(ar) + Logo(M) + logs(9) = 5

resulting in )

Huns(q,7) ~ logy (rgMdN) — M

Corollary. The variance of the mean multiscale entropy estimator can be approximated by

o2, = 4logy (NM) — log, (MNM) (4 + 2/ 1n(2)) + 4/ In*(2).

Proof. The variance of the estimator at a particular scale (M, N) can be defined as
M N )
orn =Y. > Pun x (han = His) .
m=1n=1
. . . . _» 1 .
Using a similar argument as was used for |i and assuming Py;y = N results in
[qM] [rN] 1
2
o =~
MN Z Z qMrN
m=1 n=1

{logy(gMrN) — logy (gMrN) + 0}2
[qM] [rNT]

- Z Z [ 430 {log (MN) +c}2
— = qgMrN 2\ MN

_[aMrNT f, MN 2
- gMrN 082 MN te

MN 2
~ {log2 <./\/U\f> + c} .

X

2y

(22)

(23)

(24)

(25)

(26)

where ¢ = 2/1In(2). Assuming, as before, that the scales are linearly progressed to maximums M and N then the mean

variance across all these scales can be described with

~ 3logz(MN) — 2clogy(MN) — ¢2
LS S
+— log2(MN)
MN =2

The remaining summations are then approximated using the Euler-Maclaurin formula, ignoring the error terms results in

02 = 41og2(MIM) — log, (NIM) (4 + ¢) + 2.

ms

27

(28)
O
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