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Abstract: This paper reviews numerical methods used to simulate desiccation cracks in clayey soils.
It examines five numerical approaches: Finite Element (FEM), Lattice Boltzmann (LBM), Discrete
Element (DEM), Cellular Automaton (CAM), and Phase Field (PFM) Methods. The paper presents a
simplified description of the methods, including their basic numerical formulations. Several factors
such as the multiphase nature of soils, heterogeneity, nonlinearities, coupling, scales of analysis,
and computational aspects are discussed. The review highlights the characteristics, strengths, and
limitations of each method. FEM shows a good capacity to deal with the thermo-hydromechanical
behavior of clays when drying that complement well with the ability of DEM to deal with particle
interactions as well as LBM, PFM, and CAM to deal with complex crack patterns. The article
concludes by reviewing the integration of multiple numerical methods to enhance the simulation of
desiccation cracks in clayey soils and proposing what is the best option to continue improving the
study of this problem.
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1. Introduction

After more than a century of research from experimental [1–17], theoretical [18–22],
and numerical points of view [23–29], desiccation cracks in clayey soils is still an open
research field due to their complexity. It has two very different components, desiccation,
which is the loss of water due to water evaporation, and cracking, a failure produced when
reaching the strength of the soil. The first is a thermo-hydromechanical (THM) problem [30]
and the second is a fracture mechanics (FM) problem [31]. This topic is important because
when clayey soil desiccates and cracks, its properties change, becoming more permeable
and less strong against loads.

Simulating desiccation cracks in clayey soils is a complex task due to several reasons.
Firstly, clayey soils are multiphase media composed of soil particles, and pores that

contain only air, only water, or water and air, depending on if the condition is dry, sat-
urated, or unsaturated. Secondly, clayey soils exhibit coupled nonlinear THM behavior.
As moisture content decreases, the soil undergoes significant volume changes due to the
suction generated in the soil matrix, resulting in shrinkage first and cracking when the soil
strength is reached. This nonlinear behavior requires advanced constitutive models and
numerical techniques to accurately capture the soil’s response to environmental contour
conditions [32]. The coupling of multiple physical processes, including fluid flow, heat
transfer, and deformation is accounted for by incorporating temperature-dependent and
moisture-dependent properties. Additionally, constitutive relationships are employed to
couple moisture content and mechanical behavior. Thermal expansion coefficients and ther-
mal conductivity should be considered as functions of mechanical strain/stress to account
for the coupling between temperature and deformation. Thirdly, the behavior of desiccation
cracks is influenced by various factors such as soil composition, mineralogy, pore structure,
and initial moisture content. The inherent variability and uncertainties associated with
these factors make it difficult to predict crack formation and propagation accurately [33–35].
Fourthly, simulating desiccation cracks often requires considering different scenarios, from

Geotechnics 2023, 3, 808–828. https://doi.org/10.3390/geotechnics3030044 https://www.mdpi.com/journal/geotechnics

https://doi.org/10.3390/geotechnics3030044
https://doi.org/10.3390/geotechnics3030044
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/geotechnics
https://www.mdpi.com
https://orcid.org/0000-0002-1296-2245
https://doi.org/10.3390/geotechnics3030044
https://www.mdpi.com/journal/geotechnics
https://www.mdpi.com/article/10.3390/geotechnics3030044?type=check_update&version=2


Geotechnics 2023, 3 809

laboratory specimens to field-scale applications. Accounting for scale effects and capturing
the heterogeneity of soil properties is crucial for realistic simulations [36]. Finally, simulat-
ing desiccation cracks in clayey soils requires computationally intensive simulations due to
the need to solve complex nonlinear coupled equations and handle large deformation and
long-term drying processes.

This problem involves several interconnected physical processes in a portion of a
multiphase soil system that is in mechanical equilibrium. The shrinkage that takes place as
moisture is lost is governed by the principle of balance, known as Richards’ equation, and
the generalized Darcy’s law. At the same time, there will be a distribution of temperature
governed by the heat balance equation and Fourier’s law. Mechanical deformation arises
from shrinkage, exhibiting elastic and plastic behavior described by the THM constitutive
model [30].

In the pores of the soil, there are physical processes that occur during the desiccation
and cracking. The air dissolution in water is governed by Henry’s law, and the diffusion of
air in water is governed by Fick’s law, with water molecules moving from areas of high
moisture content to low moisture content. Additionally, heat transfer occurs under effects
such as Soret’s thermal diffusion of water vapors in the air because of pressure gradients
produced by temperature gradients [37–39], vapor effusion, and Stefan’s flow [40]. Fortu-
nately, in many cases, they can be neglected and continue capturing the main mechanisms
that govern the desiccation and cracking processes. Thus, they are not necessarily needed
in a formulation and a numerical model.

At the beginning of the desiccation, the soil is a saturated fluid slurry, but with time,
the condition turns to compacted unsaturated soil. For this reason, the degree of saturation
must be included in the formulation and simulation by using, for example, a simplified Van
Genuchten’s formula [41] or more complex variations that include the effect of temperature.
To accurately model the mechanical behavior of clayey soils during desiccation, THM
constitutive equations are necessary. These equations define the relationship between stress
and strain and capture the material’s response when suction and temperature change.
The simplest stress–strain relationship is the generalized isotropic linear elastic model
commonly known as Hooke’s law, which characterizes stress–strain behavior in the linear
elastic range. Even if the soil’s mechanical behavior is considered elastic, the equation must
include the effect of the temperature and suction to couple the thermal, hydraulic, and
mechanical processes. More sophisticated models are nonlinear, viscoelastic, or plasticity,
such as bilinear, Mohr–Coulomb models, and many others.

To simulate the initiation and propagation of cracks, Griffith’s criterion (tensile strength
controls the initiation of the cracks) or linear elastic fracture mechanics (LEFM) equations
are commonly used due to their simplicity. LEFM principles and its rules determine
the critical crack length and assess crack propagation. Incorporating LEFM principles
allows for the analysis of crack formation and growth during desiccation. The numerical
simulation of crack propagation is in particular a very challenging problem in the context
of the Finite Element Method (FEM). For this reason, several approaches to simulate
the cracking process have been proposed apart from the FEM. Lattice Boltzmann (LBM),
Discrete Element (DEM), Cellular Automaton (CAM), and Phase Field (PFM) methods are
all alternatives to the FEM that can be used to effectively simulate the desiccation cracks in
clayey soils and cracks in other problems.

These numerical techniques enable the solution of complex equations and the simu-
lation of desiccation cracks in clayey soils. Boundary conditions, initial conditions, and
appropriate numerical algorithms also play a crucial role in accurately capturing the behav-
ior of desiccation cracks. Figure 1 shows a laboratory test made on a cylindrical sample
to study the problem of desiccation cracks in clayey soils under controlled conditions. A
whole cycle of drying, wetting, flooding, drying, and cracking demonstrated that flooding
produces more cracks and wetting modifies suction profiles. Even when this problem
is usually studied as a desiccation problem, the first semi-cycle in Figure 1, wetting and
flooding are part of the problem and significantly affect the cracking process. Today, the



Geotechnics 2023, 3 810

research community is working mainly on semi-cycles of desiccation. To fully understand
this problem, the whole cycle must be understood.
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Figure 1. Drying, wetting, flooding, and drying 36-day tests on cylindrical clays sample, 80 cm in
diameter and 10 cm high, in an environmental chamber. From Dr. Hector U. Levatti—Ph.D. [34].

In Section 2, physical and non-physical methods are reviewed, then, in Section 3, the
integration of these methods is reviewed and commented on. Finally, in Section 4, the
combination of FEM and CAM is presented as a promising alternative to tackle desiccation
cracks in clayey soils.

2. Methods to Simulate Desiccation Cracks in Clayey Soils

In the attempt of simulating desiccation cracks in soils, researchers have used physical-
based approaches and non-physical-based approaches. In this section, five of the most
effective methods to resolve this problem are commented on in terms of the main char-
acteristics, strengths, and limitations. The strengths of these methods are presented in
Table 1.

2.1. The Finite Element Method (FEM)

FEM [23,24,26,32,34] and its variant Extended Finite Element Method (XFEM) [42]
have been extensively used for simulating desiccation cracks in clayey soils at a macroscale
level and can also be applied at micro- and mesoscale levels. Researchers have employed
FEM to study moisture diffusion, shrinkage, and cracking behavior during drying.

FEM resolves classic transient continuum mechanics’ partial differential equations
that describe the phenomenon. FEM has been successful in capturing the complex behavior
of desiccation cracks since it can deal with complex geometries and heterogeneity. It can
map the distribution of stress in the soil mass locating the areas of concentration of stresses
that produce cracks. FEM deals well with coupling the thermo-hydromechanical physical
processes that the problem includes. The accuracy of this method relies on the appropriate
implementation of constitutive models and boundary conditions.

During the desiccation process, the three phases of the soil interact in general
thermally, hydraulically, and mechanically. Once the contour conditions in suction,
temperature, and displacements are set, and if the soil–structure and soil–atmosphere in-
teractions are neglected, the main equations that define the THM problem of desiccation
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in clayey soils are the governing equations and constitutive equations from continuum
mechanics, respectively.

Table 1. Methods that effectively tackle challenges when simulating desiccation cracks in clayey soils,
and the scale levels they work into. The methods are classified into non-physical-based (nPb) and
physical-based (Pb) methods into columns for every scale level.

Common Challenges Non-Physical-Based (nPb)
Physical-Based (Pb)

Scale Level

Microscale Mesoscale Macroscale

nPb Pb nPb Pb nPb Pb

Heterogeneity DEM CAM FEM CAM FEM CAM FEM

Multiphase medium DEM CAM PFM CAM PFM CAM FEM

Coupled nonlinear THM problem DEM CAM PFM CAM LBM PFM CAM FEM

Effect of the soil composition, mineralogy, pore structure,
initial moisture content DEM CAM PFM CAM LBM PFM CAM FEM

Dealing efficiently with computationally intensive methods
at large-scale simulations CAM CAM CAM

Large deformations DEM CAM PFM CAM LBM PFM CAM FEM

Capture shrinkage and cracking using advanced
constitutive equations DEM CAM PFM CAM LBM PFM CAM FEM

Complex crack patterns CAM CAM CAM

The limitations FEM has shown are mesh dependency, making it challenging to capture
intricate crack patterns. Additionally, it has shown difficulties in accurately predicting
crack propagation without explicit crack geometry modeling. FEM and the other methods
presented here neglect soil–structure and soil–atmosphere interaction (Figure 2), which
can significantly influence crack formation and behavior. Finally, calibrating constitutive
models to accurately represent soil behavior is always a challenge when using FEM and any
other numerical approximation. These limitations drive the need for specialized techniques
and alternative numerical methods to overcome these challenges and improve the accuracy
of simulations.
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of the cracks.

In the next section, the formulation for the desiccation cracks problem using FEM is
presented. All the details of this formulation, including numerical examples, can be found
in [32].
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2.1.1. Equilibrium Equation (Cauchy Equation of Motion)

If no dynamic effects are considered, the equilibrium equation of the soil matrix is
as follows:

∇·σ+ ρg = 0 (1)

Equation (1) is an elliptic partial differential equation where σ is the total stress tensor,
and ρ is the average density of the multiphase medium (soil, water, or air). The vector g is
the gravity vector.

2.1.2. Balance Equation (Continuity Equation also Known as Richards’ Equation)

Equation (2) is a parabolic partial differential equation that represents the balance of
water in the pores of the soil. In an unsaturated porous medium (the general case that
includes the saturated case, Sr = 1, and the dry case, Sr = 0), the water mass balance
equation is written as follows:

∇·(ρwq) +
∂

∂t
(ρwnSr) = 0 (2)

In Equation (2), ρw is the water density, q is Darcy’s velocity vector, t is time, n is the
porosity of the soil, and Sr is the degree of saturation of water in the soil pores.

2.1.3. Conservation of Energy Equation (First Law of Thermodynamics)

If thermal effects are considered, the first law of thermodynamics establishes the need for
the heat transfer equation in the soil. Equation (3) is a parabolic partial differential equation:

∇·
(

Kθ∇θ
)
+ qθ − ρsc

dθ

dt
= 0 (3)

In Equation (3), ρs is the density of the soil, c is the specific heat capacity, θ is the
temperature, qθ is the heat transfer rate, and Kθ is the thermal conductivity (could be scalar
for isotropic permeability or tensorial for anisotropic permeability).

2.1.4. Stress–Strain Thermos-Mechanical Constitutive Law

For the most general case of unsaturated soils, the effective stress tensor (σ’) is:

σ’ = σ− ua1 + χ(ua − uw)1 (4)

In Equation (4), σ is the total stress tensor. The air and water pressure are, respectively,
ua and uw , χ is a parameter that depends on the degree of saturation, the stress history and
the soil’s fabric and 1 ≡ δij are the identity tensor.

In this formulation, the matrix suction and the net mean stress define the effective
stress tensor σ’ through Equation (4):

The net stress σnet and the suction s are:

σnet = σ− ua1 (5)

s = ua − uw (6)

The general strain–stress relation must be written in differential form, because of the
nonlinearity of the material behavior.

dσ = D(ε, θ, s)dε (7)

For the most general THM case, D is a tangent matrix in function of the strain, ε,
temperature, θ, and suction, s. Equation (7) establishes the coupling between temperature,
suction, and mechanical effects.
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The deformations are calculated by the addition of a component due to the net stress
plus a component due to the suction plus a component due to temperature. Equation (8)
considers, then, the additive deformation hypothesis:

dε = dεnet + dεs + dεθ = C(K,G)dσnet + h(Ks)ds + t
(
Kθ
)

dθ (8)

In Equation (8), the parameter K is the volumetric modulus and G is the shear modulus
of the soil matrix; the parameter Ks is the volumetric modulus due to changes in suction;
the parameter Kθ is the volumetric modulus due to temperature changes. These parameters
must be established depending on the constitutive model chosen (linear elastic, non-linear
elastic, viscoelastic, plastic, etc.); the factor C is a fourth-order compliance tensor and h, t
are second-order tensors.

The net stress increments can be obtained from (8):

dσnet = C−1
(

dε− h(Ks)ds− t
(
Kθ
)

dθ
)
= D

(
dε− h(Ks)ds− t

(
Kθ
)

dθ
)

(9)

In Equation (9), D = C−1 is the tangent stiffness tensor.

2.1.5. Generalized Darcy’s Law for Unsaturated Soils and Permeability Tensor

The generalized Darcy’s law for unsaturated soils is:

q = −K(Sr)·(∇s− gρw) (10)

In Equation (10), q is the velocity of Darcy’s vector; ∇s is the gradient of the suction;
K(Sr, n, θ) is a permeability tensor that changes with water saturation degree, Sr, porosity,
n, and temperature, θ; g is the gravity vector and ρw is the water density. The permeability
tensor, K, can be isotropic or anisotropic.

2.1.6. Water Retention Curve

The van Genuchten function [13] is usually adopted in this formulation to relate
changes between the degree of saturation and the suction, s:

Sr =

[
1 +

(
s

P0· fn

) 1
1−λ

]−λ

fn = exp[−η(n− n0)] (11)

where, λ is a material parameter and P0 is the air entry value for the initial porosity n0,
adopted as the reference value. Function fn considers the changes of porosity during
desiccation and its effect in the water retention curve using a parameter, η. For non-
deformable soils, fn = 1, because porosity is constant.

2.1.7. Fourier’s Law

This is the constitutive law for the thermal problem.

qθ = −Kθ∇θ (12)

In Equation (12), qθ is the heat transfer rate and Kθ is the thermal conductivity.

2.1.8. Hydro-Mechanical Formulation to Resolve Desiccation Cracks in Clayey Soils

As it was stated in previous sections, desiccation cracks in clayey soils are in general
a THM problem. However, since the experimental programs are made under controlled
conditions, it is usually chosen to work under isothermal conditions to simplify the study
of the process [32,34]. Under these assumptions, the numerical simulations can be HM
since the temperature will remain constant during the whole process. Under HM condi-
tions, the problem is resolved by FEM resulting in the system of Equation (13) in what is
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known as a u-p formulation. This assumption simplifies the problem considerably since
Equations (3) and (12) are not needed and Equations (7)–(9) are less complex.

[
0 0
0 H

]¯
u
¯
p

+

[
KT QT
P S

] d
¯
u

dt
d
¯
p

dt

 =

[ dfu

dt
fp

]
(13)

In Equation (13), u are the displacements and p is the suction.
The factors in Equation (13) are:

Permeability Matrix : H =
∫
Ω

(
∇Np

)TK(Sr)∇NpdΩ (14)

Stiffness Matrix : KT =
∫
Ω

BTDBdΩ (15)

Coupling Matrix : QT =
∫
Ω

1
3Ks

t
BTDmNpdΩ (16)

Coupling Matrix : P =
∫
Ω

(
Np
)TSrmTBdΩ (17)

Compressibility Matrix : S =
∫
Ω

(
Np
)Tn ∂Sr

∂uw
NpdΩ +

∫
Ω

(
Np
)T nSr

Kw NpdΩ (18)

Vector of Nodal Forces : ∂fu

∂t =
∫
Ω

Nuρ ∂g
∂t dΩ +

∫
Ω

Nu
∂
¯
t

∂t dΩ (19)

Vector of Nodal Flow : fp =
∫
Ω

ρw(∇Np
)TK(Sr)gdΩ−

∫
Γ

(
Np
)TqwdΓ (20)

2.2. Lattice Boltzmann Method (LBM)

LBM was introduced to simulate fluid flow for the first time in 1986 [43]. It was used
to study fluid flow and fluid–solid interaction in [44,45]. LBM was used for dealing with
several other problems like melting and solidification [46], gas transport into rocks [47],
hydraulics fracturing [48], multiphase flow through micro- and macropores [49], fracture
and flow [50], and finally, drying [51] and desiccation cracks [52].

LBM enables the consideration of pore-scale processes during drying. The fluid
domain is discretized into a lattice structure, with each lattice node representing a small
volume or pore. Instead of solving the governing equations at a continuum level, LBM
simulates the behavior of individual fluid particles, represented by lattice cells or lattice
Boltzmann particles, that move and interact within the lattice. By explicitly representing
the individual fluid particles and their interactions, LBM allows for the consideration
of various pore-scale processes during dryings, such as capillary effects, evaporation,
fluid–solid interactions, and convective flows.

LBM employs a simplified kinetic model to describe the motion of fluid particles.
These particles propagate along discrete lattice directions and undergo collisions with
neighboring particles, leading to the redistribution of mass, momentum, and energy.
The particle interactions at the pore scale directly influence the macroscopic behavior of
the fluid.

LBM provides a means to couple pore-scale simulations with larger-scale models, such
as FEM, to capture the interactions between the microscopic and macroscopic phenomena.
This enables the integration of pore-scale information into continuum-based simulations
and improves the accuracy of predictions at larger scales.

LBM provides insights into the fundamental mechanisms of crack formation, but its
computational cost can be relatively high due to the need for fine spatial resolution. LBM
can solve physical equations of balance and equilibrium. LBM is based on the Boltzmann
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equation that is derived from the principles of the conservation of mass, momentum, and
energy, hence, a physical-based model.

The limitations of the LBM are that the accurate representation of soil behavior in LBM
requires proper material characterization, which can be challenging due to the complexity
of clayey soil slurry behavior during desiccation. Modeling crack propagation may need
additional techniques, as the inherent lattice structure of LBM may not directly capture the
process. Additionally, LBM primarily focuses on fluid flow, potentially overlooking some
soil mechanics aspects when the soil acquires consistency, such as the mechanical behavior
of the soil matrix, which influences crack initiation and propagation.

2.2.1. Formulation of LBM

LBM can be considered as a variant of the Finite Difference Method [53] since it
generates a grid (lattice) where the fluid flow is simulated. However, its roots are statistical
rather than deterministic [54].

The method calculates the probability of fictitious particles, that compose the material
being modeled, being located at a particular point on a lattice as a function of time. It is
executed by performing two algorithms. Algorithm 1 models the streaming of particles
traveling from one lattice node to connected neighbors. Algorithm 2 mimics their collision
(Figure 3). The response of the particles to collision and the lattice used determine the
model behavior.
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2.2.2. A Multi-Material Multiple-Relaxation-Time LBM

LBM models the statistical mechanics of many particles under collision [49,50]. In the
formulation presented in [50], the objective of the method is to simulate the evolution of a

single-particle-distribution function of statistical mechanics, f
(
→
p ,
→
ξ , t
)

. Where,
→
p is the

position of the particle,
→
ξ is the velocity of the particle, and t is time. The function, f , is the

probability of finding a particle at the position,
→
p , velocity,

→
ξ , at time, t.

In this method, the mass and momentum conservation equations for an isotropic
material can be written as Equations (21) and (22):

∂tρ+∇·
→
j = 0 (21)

∂t
→
j +∇(P + τ) +∇2(ζJB + νJD) = 0 (22)

where, ρ is the ghost density;
→
j is the momentum in the three directions of the space; JB

and JD are the bulk and deviatoric components of the momentum tensor; P is the mean
stress and τ is the deviatoric stress. ν and ζ bulk and shear coefficients of viscosity.
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In three dimensions, the stress is defined as in Equations (23) and (24):

σ =

σxx τxy τxz
τxy σyy τyz
τxz τyz σzz

 (23)

P = σxx + σyy + σzz (24)

In LBM, the connection between the probability distribution function, f , of particles
and the conservation equations (mass and momentum) is established through the streaming
and collision steps.

Streaming step: After collision, the particles’ f are streamed to neighboring lattice
nodes according to their velocities. This step ensures the propagation of information
through the fluid domain. By streaming particles, the macroscopic properties, such as
density and velocity, are advected throughout the simulation domain.

Collision step: In this step, particles collide with each other locally, leading to the
redistribution of particle velocities. The collision process obeys conservation laws, such as
mass and momentum conservation. During collision, the equilibrium of f is determined
based on local fluid properties, like density and velocity, at a given lattice point. The equi-
librium of f represents the f that the system would tend toward if no collisions occurred.
The key point is that the macroscopic properties of the fluid, such as density and velocity,
are related to the moments (summations) of the f . The zeroth moment corresponds to the
particle density (mass conservation), and the first moment corresponds to the momentum
density (momentum conservation). By tracking and updating the function f through the
collision and streaming steps, the LBM indirectly solves the conservation equations.

2.3. Phase Field Method (PFM)

PFM appeared in 1992 and it was used as an effective tool for simulating desiccation
cracks in clayey soils from micro- to mesoscale levels. PFM describes the evolution of a
system with multiple phases and has been applied to represent the degree of saturation or
water content in the soil [55–58].

PFM provides a continuous representation of crack formation and propagation, en-
abling the study of complex crack patterns. However, the computational cost associated
with PFM is high. PFM is a mathematical framework that can be used to solve physical
equations of balance and equilibrium, so, it is a physical-based method.

The limitations of PFM are the difficulty in accurately calibrating the model parameters
to represent the specific behavior of clayey soils. The constitutive relations and material
properties used in the PFM may need to be carefully tuned to capture the unique charac-
teristics of clayey soils, such as their complex moisture retention and swelling-shrinkage
behavior. Additionally, the PFM tends to smooth out crack features due to its diffuse
interface representation of cracks, potentially overlooking small-scale crack details. The
cracks change the contour conditions of the problem; since the method treats the cracks
with continuous functions, the method cannot update the contour conditions.

2.3.1. General Phase Field for Fracture Model

In this section, the formulation for the desiccation problem from [55] is resumed
to their basic elements. The necessary variational approach for cracks was proposed
initially by the authors of [59], the phase field implementation is due to [60] and an
overview can be found in [61]. In this method, crack surfaces are represented by a surface
density function in terms of an auxiliary phase field. Such an approach is known to
be thermodynamically consistent and recent works have illustrated its potential to be
predictive for a wide range of fracture problems. Phase field for fracture models have
succeeded in capturing complex crack patterns, including branching and coalescence in
two and three dimensions [62–66].
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In Figure 4, the solid Ω is a three-dimensional continuum where the main unknown
variables are the displacement field, u, and the phase field, d. The contour conditions are
the usual Dirichlet boundary ∂Ωu and Neumann boundary ∂Ωt conditions.
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Figure 4. (a) An intact solid body with Dirichlet boundary ∂Ωu and Neumann boundary ∂Ωt. (b) A
solid body with a crack represented by the crack set Γ. (c) A solid body with a crack represented by
the crack-density function γ (d).

The formulation is presented for infinitesimal deformations in Equation (25):

ε(∇u) =
1
2

(
∇u +∇uT

)
(25)

The total energy in the system is equal to the summation of the external and internal
energy as shown in Equation (26):

ψtotal = −ψexternal|Ω,∂Ω + ψinternal|Ω (26)

In a mechanical process, the internal energy is given by Equation (27):

ψinternal =
∫

Ω
ψelastic(ε)dV (27)

where the elastic energy density is given by Equation (28):

ψelastic(ε) =
1
2

λetr(ε)2 + µeε : ε (28)

where λe and µe are the Lame’s elastic constants. Once a crack is produced in the crack set
Γ, the total energy can be expressed as in Equation (29):

ψtotal = −ψexternal|Ω,∂Ω,Γ +
(

ψinternal|Ω − ψ f racture|Γ

)
+ ψ f racture|Γ (29)

ψ f racture|Γ is the energy associated with the fracture at Γ, which is in function of the
fracture toughness ζc as expressed in Equation (30):

ψ f racture|Γ :=
∫

Γ
ζcdA (30)

The method requires an explicit surface tracking algorithm and a method to handle
the discontinuities. The surface integral is approximated by a volume integral in Equation
(31):

ψ f racture|Γ ≈ ψ̃internal|Ω

∫
Ω

ζcγdV (31)

ψ̃internal|Ω is the approximation to the energy released during the cracking process and
γ is the crack-density function.
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For the definition of the crack-density function, γ, Allen–Cahn approximation to the
crack surface is used, assuming a smooth transition from d = 1 along the crack set to d = 0
away from the crack set.

γ(d,∇d; l) :=
1

c0l

(
w(d) + l2‖∇d‖2

)
with c0 = 4

∫ 1

0

√
w(s)ds (32)

In Equation (32), w(d) ∈ C2([0, 1]) is the local dissipation function and l is a regular-
ization parameter carrying units of length.

The system can be resolved by minimizing the total energy, Equation (33):

minu,d

(
−ψ̃external|Ω,∂Ω + ψ̃internal|Ω − ψ̃ f racture|Ω

)
subjected to

.
d ≥ 0 (33)

2.3.2. Govern and Constitutive Equations

The continuum mechanics problem is expressed by the equation of equilibrium and
the contour conditions, Equations (34)–(37):

−∇·~σ+ b = 0, in Ω (34)

−∇·ξ + Mw′(d) + g′(d)ψA
elastic = 0, in Ω (35)

~
σ·n = τ, on Ω (36)

ξ·n = 0, on Ω (37)

The constitutive laws are, Equations (38) and (39):

~
σ = g′(d)

ψ
〈A〉
elastic
δ∇u

+
δψ
〈I〉
elastic

δ∇u
(38)

ξ = Mκ∇d + g(d)
ψ
〈A〉
elastic
δ∇d

+
δψ
〈I〉
elastic

δ∇d
(39)

where
~
σ is the degraded stress tensor, ξ is the thermodynamic conjugate to ∇d, κ = 2l2 is

the interfacial coefficient, and M = ζc
c0l is often referred to the mobility in keeping with

general Allen–Cahn phase field models.

2.4. Discrete Element Method (DEM)

DEM has been used to simulate the behavior of granular materials and clayey soils.
DEM considers individual particles and their interactions, enabling the simulation of crack
formation during drying. DEM has proven effective in capturing the deformation and
interaction between soil particles during drying, but its applicability to large-scale problems
can be limited due to high computational costs [67–70].

While the DEM can accurately simulate the behavior of granular materials, it does
not solve the macroscopic equations of balance and equilibrium. Instead, it focuses on
capturing the microscale interactions between individual particles and their resulting
collective behavior.

The limitations of the DEM method are that, firstly, DEM requires a substantial number
of discrete particles to accurately represent the soil structure, making it computationally
demanding for large-scale simulations.

Additionally, the accurate characterization of material properties, such as particle-
particle interactions, contact forces, and soil–water interaction, can be challenging in clayey
soils. The calibration of DEM parameters specific to clayey soils is often complex and
time-consuming.
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Furthermore, DEM struggles to capture intricate crack patterns and accurately predict
crack propagation due to its discrete nature. The method may also overlook important
factors, such as the influence of soil matrix behavior and complex moisture redistribution
phenomena, which are crucial in desiccation crack simulations.

Thus, while DEM offers valuable insights into the microscale behavior of soil particles,
its limitations need careful consideration and validation when simulating desiccation cracks
in clayey soils.

DEM Overview

In DEM, the soil is discretized by rigid particles that interact. For example, in [67],
the contact behavior is modeled by a system consisting of springs, dashpots, and sliders
(Figure 5). The motion of each particle i is governed by the following force and moment
balance in Equations (40) and (41):

..
→
ui =

→
Fi
mi

+
→
g (40)

..
→
ωi =

→
Mi
Ii

(41)

where
..
→
ui and

..
→
ωi are the translational and rotational accelerations of a particle i, respectively;

mi is the total mass of the particle i;
→
g is the acceleration of gravity; Ii is the moment of

inertia of the particle i; finally, the force (
→
Fi) and moment (

→
Mi) acting on particle I can be

calculated as follows:

→
Fi =

N

∑
c=1

→
Fc

n
+

N

∑
c=1

→
Fc

s
+

N

∑
c=1

→
Dc

n
+

N

∑
c=1

→
Dc

s
(42)

→
Mi =

N

∑
c=1

→
Fc

s→
lc +

N

∑
c=1

→
Dc

s→
lc (43)
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In Equations (42) and (43),
→
Fc

n
and

→
Fc

s
are the normal and shear contact forces at

contact c;
→
Dc

n
and

→
Dc

s
are the normal and shear dashpot forces or damping forces; N is the

total number of particle i contacts;
→
lc is the vector from the center of particle i to contact c;

and mi is the mass corresponding with the particle i.
By having particles that represent the soil and particles that represent water, this

model [67] can reproduce the desiccation process of a thin layer of clay capturing the
characteristic curling behavior during drying.
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2.5. Cellular Automaton Method (CAM)

CAM (singular: Cellular Automaton or plural: Cellular Automata) has been employed
to simulate the growth and pattern formation of cracks in rocks/clays and is able to
work from micro- to macroscale levels [71–74]. This method uses a grid of cells with
different states to represent the crack initiation, propagation, and interaction. CAM offers a
simplified representation of crack evolution and is computationally efficient, allowing for
the simulation of large-scale crack patterns. The method can simulate heterogeneity in the
soil; however, it may lack accuracy in capturing the mechanical behavior of the soil. CAM
represents the soil as a 2D or 3D grid of cells and uses rules to simulate the drying process
and the resulting stress distribution. The model calculates the evolution of the system over
time based on these rules and the initial conditions specified.

This method is what is called a mechanistic method that does not necessarily use
physical-based equations to establish its rules. Thus, one limitation of CAM is the challenge
of accurately representing the complex behavior of clayey soils within the simplified cellu-
lar automata framework. CAM relies on predefined rules and assumptions, which may
not fully capture the intricacies of crack formation and propagation in clayey soils. Addi-
tionally, the model’s grid-based nature may result in limited spatial resolution, potentially
overlooking fine-scale details of crack patterns.

These limitations underscore the need for cautious interpretation and validation of
results when applying CAM to simulate desiccation cracks in clayey soils, as well as the
potential for combining CAM with other methods to address these shortcomings.

2.5.1. Formulation of CAM

As an example of formulation, the rock discontinuous automaton (RDCA) from [71] is
resumed in this section. RDCA includes:

(1) Strong discontinuity;
(2) Tracking a moving crack;
(3) Cellular automaton updating rule;
(4) Yield criteria and crack growth laws.

In Figure 6, this method generates a grid of cells to discretize the continuum. In this
example, the grids are squares but the grids can have other shapes (triangles, hexagons, etc.).
The elements of the grid are of three types: normal elements (white), elements intersected
by a crack (yellow), and elements containing a crack tip (light blue).
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Strong discontinuity

To capture the discontinuous displacement field produced by cracks, Equation (44)
was selected [75]:
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uh(x) = ∑
i∈N

Ni(x)ui + ∑
j∈Ndis

Nj(x)H(ξ(x))aj + ∑
k∈Nasy1

Nk(x)

(
m f
∑

α=1
F1

α (x)bα1
k

)

+ ∑
k∈Nasy2

Nk(x)

(
m f
∑

α=1
F2

α (x)bα2
k

) (44)

where N represents the total nodal number of the element; Ndis is the total nodal number
on an element intersected completely by a crack; Nasy1 and Nasy2 are the sets of nodes
associated with crack tips 1 and 2 in their influence domain, respectively; Ni, Nj and Nk are
the shape functions of the associated node; ui is the nodal displacements (standard degrees
of freedom); and aj, bα1

k and bα2
k are the vectors of the additional degrees of nodal freedom

for modeling crack faces and the two crack tips, respectively.
H(ξ(x)) is the Heaviside enrichment function to model the strong discontinuity. It is

defined as in Equation (45):

H(ξ) = sing(ξ) =
{

1 ∀ξ > 0
−1 ∀ξ < 0

(45)

where ξ is the value of the level set function.

Tracking a moving crack

To track the moving crack, the level set method is used considering the domain Ω is
divided into two non-overlapping subdomains, Ω1 and Ω2, that share an interphase Γ as
seen in Figure 7a. The level set function φ(x) is defined [76] as in Equation (46):

φ(x) =


> 0 x ∈ Ω1
= 0 x ∈ Γ
< 0 x ∈ Ω2

(46)
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where 𝜉 is the value of the level set function. 

Tracking a moving crack 

To track the moving crack, the level set method is used considering the domain Ω is 

divided into two non-overlapping subdomains, Ω1 and Ω2, that share an interphase Γ as 

seen in Figure 7a. The level set function 𝜙(𝑥) is defined [76] as in Equation (46): 

𝜙(𝑥) = {
  > 0    𝑥 ∈ Ω1

= 0   𝑥 ∈ Γ
< 0   𝑥 ∈ Ω2

 (46) 

 

 

(a) (b) 

Figure 7. (a) Definition of the level set function; (b) Boundary value problem with a crack. 

An option for the level set function can be simply defined in terms of the signed dis-

tance function: 

𝜙(𝑥) = 𝜉(𝑥) = {
   𝑑   𝑥 ∈ Ω1

−𝑑   𝑥 ∈ Ω2
 (47) 

where d is the normal distance from a point x to the interphase Γ. 

Cellular automaton updating rule 

In terms of the Cellular Automaton updating rule for continuous problems, they can 

be elastic, elasto-plastic, elasto-visco plastic, etc. [77]. Discontinuities introduce more com-

plexity. In this method, a cell has nodes 𝑁𝑖, related cell elements and neighbor cell nodes. 

For every cell, the equilibrium equation is 

𝐾𝑖𝑗∆𝑢𝑗 = ∆𝐹𝑖 (48) 

Figure 7. (a) Definition of the level set function; (b) Boundary value problem with a crack.

An option for the level set function can be simply defined in terms of the signed
distance function:

φ(x) = ξ(x) =
{

d x ∈ Ω1
−d x ∈ Ω2

(47)

where d is the normal distance from a point x to the interphase Γ.

Cellular automaton updating rule

In terms of the Cellular Automaton updating rule for continuous problems, they
can be elastic, elasto-plastic, elasto-visco plastic, etc. [77]. Discontinuities introduce more
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complexity. In this method, a cell has nodes Ni, related cell elements and neighbor cell
nodes. For every cell, the equilibrium equation is

Kij∆uj = ∆Fi (48)

In Equation (48), Kij is the local stiffness on the cell node, ∆uj is the incremental degree
of freedom, and ∆Fi is the nodal force. The dimension of Kij, ∆uj, and ∆Fi are dependent
on the cell type, i.e., a normal cell or a discontinuous cell. When a cell is intersected by a
crack, the cell should be enriched by an enrichment function. The increment nodal force
can be obtained from the equation{

∆Fk
i

}
=
[

Bj
im

]
{∆um} (49)

In Equation (49), Bj
im is the cell element stiffness. For different element types, such as

normal elements, elements with intersecting cracks or elements with crack tips, the cell
element stiffness differs.

Yield criteria and crack growth laws

Different yield criteria can be implemented in this method, Mohr–Coulomb, Drucker–
Prager, etc., so, this is suitable for rocks and soils.

For the crack growth, several laws can be used, including maximum circumferential
stress, maximum tangential stress, minimum strain energy criteria, etc.

For example, the maximum circumferential stress criterion will be

θc = 2tan−1

1
4

 KI
KI I
− sign(KI I)

√
8 +

(
KI
KI I

)2
 (50)

In Equation (50), θc is measured with respect to a local polar coordinate system with
its origin at the crack tip and is aligned with the direction of the existing crack.

2.5.2. Governing Equations and Local Stiffness Matrix

The problem is solved in the domain Ω and the boudary Γ = Γt ∪ Γu ∪ Γc as can be
seen in Figure 7b.

∇·σ+ b = 0, in Ω (51)

σ·n = 0, on Γc (52)

σ·n = t, on Γt (53)

u = u, on Γu (54)

σ = C : ε (55)

ε = ∇u (56)

In Equations (51)–(56), σ is the Cauchy stress tensor; u is the displacement; b is the
body force per unit volume; n is the unit outward normal; t and u are the prescribed
traction and displacement, respectively; ε is the strain tensor; and C is the Hooke tensor.

3. Integration of Methods to Improve Simulations and Analysis

All the methods in the previous section share limitations that encompass difficulties in
accurately characterizing material properties and behavior, representing complex interac-
tions between soil particles, cracks, and fluid flow, and addressing computational demands,
particularly for large-scale simulations. Challenges also arise in capturing intricate crack
patterns, accurately predicting crack propagation, and incorporating the mechanical be-
havior of the soil matrix. Furthermore, simulating soil–structure and soil–atmosphere
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interactions, moisture redistribution, and the microstructure of clayey soils can be chal-
lenging. The limitations underscore the need for careful consideration of method selection,
calibration of constitutive models, and the exploration of techniques to overcome these
challenges and enhance the accuracy and reliability of desiccation crack simulations in
clayey soils.

Researchers have explored the combination of multiple numerical methods to simulate
the process of desiccation cracks in clayey soils. By combining different methods, they aim
to leverage the strengths of each approach to overcome individual limitations and improve
the overall accuracy and reliability of the simulations.

For example, the coupling of Scaled Boundary Finite Element Method (SBFEM) with
adaptive Phase Field Modeling (PFM) was published in 2019 [78]. This method can model
materials that show quasi-brittle fracture properties and reduces the computational effort
required by the phase field model. The FEM provides an accurate representation of soil
deformation and handles the crack zone by densifying the mesh in the area, while the PFM
handles the evolution and propagation of cracks. For hydraulic fracture propagation in
rocks, a hydromechanical coupled LBM-DEM model was published in 2018 [79]. This is an
interesting combination of physical-based and non-physical based models.

The FEM was coupled with CAM to simulate residual stress of dual-phase steel
subjected to laser treatments in a work in 2021 [80]. CAM simulated the microstructure
orientation that was after the input for a thermos-mechanical finite element model. This
model was able to capture the anisotropy of the material, the dual-phase ferrite–martensite,
the temperature sensitivity, and the strain rate influence in the thermos-mechanical behavior.
In 2007, three techniques were used to study wave propagation problems. LBM, FEM, and
CAM [81] were used in different parts of the geometry of the problem to take advantage of
the power of every method.

Hybrid approaches allow for the simultaneous modeling of soil deformation and crack
propagation, considering the discrete behavior of soil particles or the fluid flow within the
soil matrix. This combination enables capturing both the macroscale behavior of the soil
structure and the microscale interactions between particles or fluid.

Additionally, researchers have explored the integration of different methods us-
ing a multi-scale double threshold segmentation algorithm [82], methods like free-mesh
smoothed particle hydrodynamics method (SPH) [83] and particle discretization scheme
finite element method (PDS-FEM) [52]. This involves coupling methods such as FEM, DEM,
or LBM at different length scales to capture the behavior of the soil from the microscale to
the macroscale. This allows for a more comprehensive understanding of desiccation crack
formation and evolution.

While the combination of multiple methods shows promise, it is still an active area of
research, and the specific combinations and approaches vary depending on the research
objectives and available computational resources.

FEM and CAM are the only methods able to work from micro- to macroscale levels
being computationally efficient for large-scale simulation. In the opinion of the author
of this paper, FEM is the best method to simulate the desiccation process taking into
consideration the complexities of the soil behavior and is a physical-based method.

4. Finite Element and Cellular Automaton Method (FEM-CAM)

After the study of the state of the art, the author arrives to the conclusion that since the
problem of desiccation cracks in clayey soils is a multiphysics and multiphase problem (soil
matrix + water and air in the pores), it can be resolved using FEM for the THM process and
CAM for the cracking problem by developing a FEM-CAM method. The method proposed
in this section (for future research) is based on the one proposed by the authors of [80] to
simulate residual stress by combining FEM and CAM.
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Integration of FEM with CAM to Simulate Desiccation Cracks in Clayey Soils

CAM models the soil as a grid of cells, and each cell can be in different states repre-
senting soil moisture content, stress, or cracking. The mathematical formulation of the
desiccation crack problem using CAM involves expressing the evolution of moisture con-
tent, suction, temperature, and stress, in the soil domain that can be calculated by a THM
or HM model resolved by FEM.

In Figure 8, a simplified flow chart shows the coupling between FEM and CAM to solve
the desiccation cracks problem. To start the resolution of the problem, the soil domain must
be defined by including the geometry, contour conditions, loads, and material properties.
FEM is used to discretize the soil domain and then this mesh is used to define the CAM
grid and then define the initial conditions. As it was shown in the previous examples of the
review, CAM first produces a grid representation of the soil and can establish heterogeneity.
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A cracking criterion is defined based on stress thresholds or stress gradients. The
criterion determines when a cell transitions from an intact state to a cracked state. For
example, a simple criterion could be the crack initiate when the tensile strength is reached
in any cell. Once a cell transitions to a cracked state, crack propagation rules determine how
cracks propagate to neighboring cells. This can be based on stress redistribution or local
crack propagation rules. The direction and extent of crack propagation can be influenced
by factors such as stress concentration, crack coalescence, and crack branching.
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One the CAM model is updated with the new cracks, the moisture content, suction,
stress, temperature, and cracking states are updated at each time step using FEM. The
specific equations and constitutive relationships used will depend on the chosen modeling
approach and the characteristics of the soil being studied.

Finally, a direct, iterative, or embedded strategy is necessary to couple FEM with
CAM. The degree of convergence of every time step will depend on the accuracy needed to
resolve specific problems. The final step in the method will be the postprocessing of the
results in terms of stresses, strains, humidity, temperature, etc., and should show the final
configuration of cracks in the soil.

5. Conclusions

Modeling and simulating desiccation cracks in clayey include cycles of drying, wetting,
flooding, and re-drying (Figure 1) that will complicate the formulation and implementation
of numerical models in the future even more.

The five methods reviewed in this paper include the Finite Element (FEM), Lattice
Boltzmann (LBM), Phase Field (PFM), Discrete Element (DEM), and Cellular Automaton
(CAM) Methods, whereby each one has their strengths and limitations when applied to
this problem.

FEM captures very well and with consistency the THM desiccation process at a
macroscale level and can be applied to micro- and mesoscale levels also. Being based on the
continuum mechanics equations makes the method reliable but limited when dealing with
complex crack patterns due to the need for complex remeshing that are computationally
highly demanding. For example, Ref. [32] presents the simulation of the initiation and
propagation of only one crack in 2D, showing a good agreement with laboratory results in
terms of water loss and shrinkage. LBM is a good method to simulate the flow of the initial
slurry of clayey soil at a mesoscale level but not so well for deformation in connection
with the complex THM behavior of clayey soils when it becomes a compacted unsaturated
medium. However, Ref. [50] demonstrated the ability of simulating multiple cracks in
2D. PFM is good to simulate micro- and mesoscale continuous cracks, but not so good
to capture the THM nature of the process in the soil mass. Again, Ref. [55] has shown
the ability to simulate multiple cracks in 2D. DEM is good at simulating the behavior of
particles interacting at a microscale level but not so good at capturing the THM nature of
the soil behavior and is not a physical-based model. However, Ref. [67] demonstrated that
this method can simulate the curling process when clays dry. CAM is good for simulating
complex crack patterns at micro-, meso- and macroscale levels, but limited in dealing
with the THM desiccation process, which is what makes it ideal to work in combination
with FEM. In [71], the ability of this method to simulate cracks in concrete, which can be
extrapolated to clays, is demonstrated.

The limitations of these methods working separately, such as introducing heterogene-
ity, difficulties in accurately characterizing material properties, capturing intricate crack
patterns, considering complex soil–fluid, soil–structure, soil–atmosphere interactions, and
being computationally highly demanding, highlight the need for further research.

Since the desiccation cracks in clayey soils is a problem well divided into two coupled
processes, desiccation and cracking, and considering that FEM simulates the desiccation
well, and other methods simulate the cracking process well, their combination seems to be
the best option. Then, to address these limitations and improve the simulations, researchers
started to explore the combination of different methods. By integrating the strengths of
multiple approaches, such as coupling FEM with DEM or LBM, or combining FEM with
PFM, it becomes possible to overcome individual limitations and obtain more accurate and
reliable simulations. Furthermore, a multi-scale approach, integrating methods at different
length scales, allows for a comprehensive understanding of desiccation crack formation
and evolution.

The combination of FEM and CAM, presented in Section 4, is a promising alternative
since FEM and CAM can capture the process from micro- to macroscale levels and CAM
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is particularly efficient when computationally intense calculations are needed for large-
scale crack pattern simulations. In addition, since they both have the same governing
equations and can share the mesh, it seems that they can efficiently work together to
resolve desiccation cracks in clayey soils. It is of course difficult to know which method or
combination of methods will be the best option to tackle the desiccation crack problem in
clayey soils in the coming years, but the aim of this paper is to identify the most promising
alternatives based on the research performed up until today.
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