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Abstract. The model of a ball rolling on an inclined plane is derived
using screw theory and Lie algebra. The plane is supported by a gimbal
and the inclination can be controlled in two orthogonal directions. The
model includes effects due gravity, Coriolis and centripetal torques.
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1 Introduction

The analysis of a ball roll on an inclined plane is a familiar example in dynamics
[4]. What seems to be lacking is a dynamic model of a ball rolling on plane
that can tip. This is curious because there are many internet videos showing a
modified Gough-Stewart platform supporting a touch screen with a ball rolling
on it, its motion controlled by tipping the platform. However, literature on the
subject seems scarce. Either the plane can be inclined in only one direction [1]
or the model is extremely simplified to disregard the Coriolis and centripetal
effects [7].

The availability of inexpensive hardware makes possible the assembly of ex-
periments in control theory at a low cost. Using, for instance, an Arduino micro-
controller, it is possible to create a control system with sensors and actuators.
The experiment addressed in this paper can be assembled using servomotors
originally intended for remote control, a resistive type touch screw and gimbal
made from 3D printed parts.

Two types of control are possible: torque and position. In torque control
the servomotor applies the desired amount of torque to the system. In position
control, the servomotor, itself a closed-loop control system, seeks the desired
position. The availability of inexpensive position servomotors directs the model
development towards the position type. Including torque is, however, straightfor-
ward, but would require more expensive servomotor for a practical application.

In this work we present a dynamic model that can be used in simulation to
develop linear or non-linear control under the following assumptions: 1) the ball
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is free to roll on plane due to its own weight and it rolls without slipping; 2) the
ball never loses contact with the plane; and 3) the motors that the move plane
produces enough torque at all times.

The first assumption requires that no external force other than the ball’s
weight is applied to the system. Further, the plane is never excessively inclined
so the component of the frictional force acting on the plane is always sufficient
to prevent slipping. The controller never generates extreme torque so the ball
is never launched off the plane. However, the torque produced by the motor is
always enough to produce the desired motion.

We begin with a neat description of the dynamics formulated using screw
theory and Lie algebra [8] and work through a complete model using scalar
variables suitable for simulation. Inertial effects due to Coriolis and centripetal
torques are included. Friction is disregard for brevity.

The model is developed in Section 2 starting with the kinematic equations in
Section 2.1. The equation of motion is introduced in Section 2.2. In Section 2.3,
the contact constrains, i.e., the mutual screw actions between the ball and the
plane are presented. The rolling constrains, i.e., the relationship between the
angular and linear speeds on the plane, is imposed in Section 2.1. The final
equations and a remarks on singularity are presented in Section 2.4. In Section 3,
the use of the model is demonstrated both in open loop (path execution) and
closed loop (trajectory tracking).

2 A Lie Theoretic Approach to the Dynamics

A plane is mounted on a gimbal so that the plane can roll and pitch as shown
in Fig. 1. Assume the centre of the plane is fixed, and use this as the origin of a
fixed coordinate frame with the z-axis pointing directly upwards and the x and
y-axes aligned with the gimbal axes when the plane is parallel to the ground,
also called the home position (see Fig.1a).
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Fig. 1: Schematic representation of the gimbal showing the Word and the Plane
reference frames: (a) at home position, (b) after rotating 20◦ about −x, (c) after
rotating another 25◦ about y
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2.1 The Kinematic Equations

The position of the ball will be described by a rigid displacement G (t). This
will be taken with respect to a standard reference position that we will refer to
as the home position (see Fig.1a). The home position we use will be where the
plane is parallel to the ground and the ball contacts the plane at the origin of
our fixed coordinate system. We should really also specify a starting orientation
of the ball, but we assume the orientation of the ball is not measured.

The velocity of the ball is given by a twist, that is, a combination of angular
velocity ~ω and a characteristic linear velocity ~v. This characteristic velocity is
the velocity of a point on the rigid body instantaneously coincident with the
origin. The twist can be represented as a six component vector,

s =

(
~ω
~v

)
=


ωx

ωy

ωz

vx
vy
vz

 , or as a 4× 4 matrix, S =

(
Ω ~v
0 0

)
=


0 −ωz ωy vx
ωz 0 −ωx vy
−ωy ωx 0 vz

0 0 0 0

 .

(1)
So, Ω = ad (~ω) is the 3× 3 anti-symmetric matrix obtained from ~ω. In terms of
the rigid displacement specifying the pose of the ball, the twist is given by the
kinematic equation,

d

dt
G (t) = S G (t) . (2)

The gimbal controlling the plane also has kinematics, however, we will assume
it has no dynamics. That is we will assume that the motors driving the gimbal
are powerful enough that the moment caused by the ball is a small or even
negligible disturbance. So, the normal n̂ to the plane will be controlled by the
angle of the gimbal’s motors,

n̂ = R̂ (φ) Rı̂ (θ) k̂ (3)

where the rotation matrices can be expanded to give,

n̂ =

 cosφ 0 sinφ
0 1 0

− sinφ 0 cosφ

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

0
0
1

 =

sinφ cos θ
− sin θ

cosφ cos θ

 . (4)

The ball makes contact with the plane at point
(
x y 0

)T
in a coordinate

frame attached to the plane. In Fig.1b and 1c this coordinate frame is denoted by
a prime after the corresponding axes. It is these coordinates that can be measured
using a resistive touchscreen. In the global coordinate frame, the contact point
is given by

~p = R̂ (φ) Rı̂ (θ)

xy
0

 =

x cosφ+ y sinφ sin θ
y cos θ

y cosφ sin θ − x sinφ

 . (5)



4 L.P. Laus and J.M. Selig

The centre of the ball is at
(
x y r

)T
where r is the ball radius and, in the

global coordinate frame,

~c = R̂ (φ) Rı̂ (θ)

xy
r

 =

sinφ (r cos θ + y sin θ) + x cosφ
y cos θ − r sin θ

cosφ (r cos θ + y sin θ)− x sinφ

 . (6)

Plane Motion The plane rotates about the origin in two different directions
controlled by the gimbal. So, there is no characteristic linear velocity. The first3

rotation is about y-axis and can be describe by twist

s1 = φ̇

(
̂
~0

)
= φ̇


0
1
0
0
0
0

 and ṡ1 = φ̈


0
1
0
0
0
0

 (7)

is the time derivative of s1.
The second rotation is about an axis which, in the home position, would be

coincident with x-axis and it is affected by the first rotation, so, it is given by
R̂ (φ) ı̂ . This motion is describe by twist

s2 = θ̇

(
R̂ (φ) ı̂

~0

)
= θ̇


cosφ

0
− sinφ

0
0
0

 and ṡ2 = θ̈


cosφ

0
− sinφ

0
0
0

− θ̇ φ̇


sinφ
0

cosφ
0
0
0

 (8)

is the time derivative of s2.

Rolling Constraints The constraint that demands that the ball rolls on the
plane without slipping implies that the ball is instantaneously rotating about a
line through the contact point between the ball and the plane.

As a basis for the direction of the twists we can use the x and y-directions,
but rotated with the plane,

ω̂3 = R̂ (φ) Rı̂ (θ) ̂ =

sin θ sinφ
cos θ

sin θ cosφ

 and ω̂4 = R̂ (φ) Rı̂ (θ) ı̂ =

 cosφ
0

− sinφ

 .

(9)
Note that both are unit vectors. Since the ball rolls without slipping, the angular
speeds, i.e., the magnitude of ~ω3 and ~ω4, are related to the linear speeds in
each direction. For the ball to translate in the positive x-direction it needs to

3This choice is arbitrary.
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roll around an axis parallel to y-axis with angular speed ẋ/r, and in the y-
direction it must roll around an axis parallel to x-axis with angular speed −ẏ/r,
i.e., effectively the instantaneous axis is parallel to −x-axis. The angular speed
normal to plane is γ̇.

The velocity twist of the ball relative to the plane is then,

s′ =
ẋ

r
s3 −

ẏ

r
s4 + γ̇ s5, (10)

with

s3 =

(
ω̂3

~p× ω̂3

)
, s4 =

(
ω̂4

~p× ω̂4.

)
and s5 =

(
n̂

~p× n̂.

)
(11)

where ~p is the contact point and n̂ is normal to the plane. (see Section 2.1).
Notice that, when these quantities are substituted into the equation (21) we

will have to differentiate s′ and this will involve the derivatives of the gimbal
angles θ and φ. That is,

d

dt

(
ẋ

r
s3

)
=
ẍ

r


sinφ sin θ

cos θ
cosφ sin θ
x cos θ sinφ
−x sin θ

x cosφ cos θ

+
ẋ

r



φ̇ cosφ sin θ + θ̇ cos θ sinφ

−θ̇ sin θ

θ̇ cosφ cos θ − φ̇ sinφ sin θ

ẋ cos θ sinφ+ φ̇ x cosφ cos θ − θ̇ x sinφ sin θ

−ẋ sin θ − θ̇ x cos θ

ẋ cosφ cos θ − φ̇ x cos θ sinφ− θ̇ x cosφ sin θ


,

(12)
and

d

dt

(
ẏ

r
s4

)
=
ÿ

r


cosφ

0
− sinφ

−y cos θ sinφ
y sin θ

−y cosφ cos θ

+
ẏ

r



−φ̇ sinφ
0

−φ̇ cosφ

θ̇ y sinφ sin θ − φ̇ y cosφ cos θ − ẏ cos θ sinφ

ẏ sin θ + θ̇ y cos θ

φ̇ y cos θ sinφ− ẏ cosφ cos θ + θ̇ y cosφ sin θ

.
(13)

The time derivative of γ̇ s5 is obtained in the same way.
The total velocity twist that describes the ball motion is

s = s1 + s2 + s′. (14)

2.2 Equation of Motion

The momentum of a rigid body can be expressed as a six-component vector
called a co-twist [8]. This is a combination of the angular and linear momenta of
the body and is given by multiplying the body’s twist by its inertia matrix. The
rate of change of momentum gives the wrench applied to the body, we have,

d

dt
(N s) = G −R. (15)
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Here G is the wrench due to gravity and R the reaction wrench caused by the
contact between the ball and the plane. The matrix N is the 6×6 inertia matrix
of the body. In general this matrix has the shape,

N =

(
I mC

mCT mI3

)
(16)

where I is the usual 3× 3 inertia matrix of the body, m its mass and C the anti-
symmetric matrix corresponding to the position vector of its centre of mass. For
a ball of mass m and radius r in the home position described above the inertia
matrix will be,

N0 =



7mr2

5 0 0 0 −mr 0

0 7mr2

5 0 mr 0 0

0 0 2mr2

5 0 0 0
0 mr 0 m 0 0
−mr 0 0 0 m 0

0 0 0 0 0 m


. (17)

Notice here that the ball’s centre of mass is a distance r above the contact point
with the plane. The inertia matrix changes as the body moves, in general if the
body is subject to displacement G the 6× 6 inertia matrix will change from N0

in its original position to,

N = Ad (G)
−T

N0 Ad (G)
−1
, (18)

where Ad (G) denotes the adjoint representation of the group of rigid body
displacements. In partitioned form we have,

Ad (G) =

(
R 0
T R R

)
(19)

with R = R̂ (φ) Rı̂ (θ) the 3 × 3 rotation matrix of the displacement and T
the 3 × 3 anti-symmetric matrix corresponding to the translational part of the
displacement, T = ad (~p). Hence we get,

Ad (G)
−1

=

(
RT 0
−RT T RT

)
and Ad (G)−T =

(
R T R
0 R

)
(20)

Evaluating the derivatives gives the equation of motion as [8],

N ṡ + {s, N s} = G −R. (21)

2.3 Contact Constraints

If we assume that the ball remains in contact with the plane the forces perpen-
dicular to the plane must cancel. That is the applied wrench, G−R must consist
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of forces parallel to the plane. This allows us to find the reaction wrench R. First
the gravity wrench is given by,

G = −mg

(
~c× k̂
k̂

)
, (22)

where ~c is the position vector of the centre of mass of the ball. Now the reaction
wrench is given in general by,

R = λ

(
~c× n̂
n̂

)
, (23)

with λ the intensity of the wrench. Usually we think of the reaction wrench as
passing through the point of contact between the ball and plane, but any point
on the line of action of the force will do here. For the wrench, the last three
components specify the direction of the force while the first three components
give the moment of the force. In the direction of the normal to the plane n̂ we
have

−mg cos θ cosφ− λ = 0 (24)

So λ = −mg cos θ cosφ and so the wrench on the right-hand side of the equa-
tion (21) can be written,

G −R = −mg

(
~c× k̂
k̂

)
+mg cos θ cosφ

(
~c× n̂
n̂

)
= mg

(
~c× ~u
~u

)
, (25)

where

~u =

 cosφ sinφ cos2 θ
− cosφ cos θ sin θ
cos2 φ cos2 θ − 1

 . (26)

2.4 Model

Using the twist in equation (14), its time derivative and the inertia matrix it is
possible to obtain the left-hand side of equation (21). This contains some very
lengthy terms. Compact equations can be obtained pairing both sides equa-
tion (21) with s3, s4 and s5. This has the effect of projecting the wrenches on
these particular directions. Therefore, three of the possible equations are:

mr
5

7 r cos θ + 5 y sin θ 0
5x sin θ 7 r
−2 r sin θ 0

(φ̈
θ̈

)
+ mr

5

7 0 0
0 −7 0
0 0 2 r

ẍÿ
γ̈

+

+mr

 −x 0
y sin2 θ + r cos θ sin θ y

0 0

(φ̇2
θ̇2

)
+

+mr
5

10 y cos θ − 12 r sin θ 0 12 sin θ 0 0 −2 r
0 12 sin θ 0 2 r cos θ 0 0

−2 r cos θ 0 2 cos θ 0 2 0




φ̇ θ̇

φ̇ ẋ

φ̇ ẏ

φ̇ γ̇

θ̇ ẋ

θ̇ γ̇


= mr g

 sinφ
cosφ sin θ

0



(27)
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where the common factor mr can be cancelled.
Equation (27) gives three scalar equations that relate the two input (or con-

trol) variables φ and θ with the tree output (or controlled) variables x, y and γ,
or more exactly their second time derivatives.

The first two terms of equation (27) relate the gimbal angular acceleration
with the acceleration of the ball on the plane. For the purpose of controlling the
ball, it is interesting to note that θ̈ cannot influence ẍ, but φ̈ can influence ÿ
if θ 6= 0. The third term is the centripetal effect and the fourth is the Coriolis
effect. Recall that the angular speeds about the contact point are expressed in
terms of the linear velocity of the ball, so, the Coriolis term includes ẋ and ẏ.
The right-hand side of equation (27) is the projection of the ball’s weight on the
plane in x and y-directions.

Equation (27) can be used to simulate the ball’s motion on the plane given
the functions φ (t) and θ (t) and their first two time derivatives. It can also be
used in feed-back linearisation control that synthesizes φ and θ to control the
position on the plane. In this case, the controller is singular if

7 r cos θ + 5 y sin θ = 0 (28)

this can happen in two cases: when y = 0 and cos θ = 0 (which is unlikely since
the system is expected to operate with small values of θ and φ); and if

tan θ = −7 r

5 y
(29)

which, again, is unlikely in practice because it demands a high value for θ or y.
Assuming, for instance, that the plane extends from its centre twenty times the
radius of the ball and the ball reaches the edge; θ should be approximately 4◦ to
get near the singularity and this is a large slope for such a system. Nevertheless,
the singularity requires special attention since the controller performance will be
affected.

Equation (29) implies φ̈ cannot influence ẍ if the distance between the contact
point and the y-axis measured perpendicular to s3 is equal to 7 r/5. In this case,
the ball’s mass and inertia counter balance the acceleration φ̈.

3 Simulation

Assume that a 1 cm-radius ball is at rest on the plane when t = 0 and the contact
point is 10 cm away from the plane’s origin in −y-direction (x (0) = 0, ẋ (0) = 0,
y (0) = −10 cm and ẏ (0) = 0). The gimbal axes move in a sinusoidal manner
with amplitude 0.01 rad, 1 rad/s frequency and a phase difference of π/2 rad, thus

φ = 0.01 cos t, φ̇ = −0.01 sin t, φ̈ = −0.01 cos t,

θ = −0.01 sin t, θ̇ = −0.01 cos t, θ̈ = 0.01 sin t. (30)
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Initially, the gimbal is at a position similar to Fig. 1b, but inclined at only
0.01 rad. The ball’s mass is unimportant. Applying the above functions and
initial condition in equation (27) leads to second order system of equations in
x and y. Numerically integrating these equations produces the desired result.
Fig. 27 shows the first 10 s.

Equation (27) can also be used to simulate a system under control. Several
control structures can be employed to synthesise suitable values for φ̈ and θ̈ in
order to follow a desire trajectory. One of the simplest structures is a PD control
given by (

φ̈

θ̈

)
= kv

((
ẋd
ẏd

)
−
(
ẋ
ẏ

))
+ kp

((
xd
yd

)
−
(
x
y

))
(31)

where xd and yd are the desire position on the plane, ẋd and ẏd are the desire
speed and kv and kp are the controller constants (scalar or 2 × 2 matrices).
No attempt to control the angular speed perpendicular to plane, γ̇, were made.
Fig. 2b illustrates the path followed by the ball attempting to track a path given
by

xd = 5 cos (0.3 t) , yd = −5 sin (0.3 t) (32)

which is a 10 cm-diameter circle and should be completed in approximately 21
seconds. The constants were set to kv = 100 rad/sm and kp = 0.1 rad/s2 m. The
maximum angular speed and inclination were 0.1547 rad/s and 0.03 rad, respec-
tively. In practical applications, if these values exceed the actuator operational
limits, the constants will need to be adjusted.
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Fig. 2: Model simulation: (a) contact point on plane along 10 s of simulation and
(b) simulation of circular path using PD controller

More sophisticated control schemes are possible. In didactic applications,
the right-hand side of equation (27), that correspond to effect of gravity, is
the principal component since the ball and plane dimension should be small.
Thus, a gravity compensator would seem to be appropriate. Non-linear control
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techniques [5], normally employed in Robotics [3, 9], may be useful. Methods
that inject passivity into the system may also be applicable [2, 6].

4 Conclusion

A complete model for a ball rolling on a tipping plane has been developed using
screw theory and Lie algebra. Other approaches, like Lagrange multipliers, can
be proven problematic since the constrains in this case are non-holonomic. The
model includes inertia, gravity, centripetal and Coriolis effects. This reveals an
interesting singularity that prevents the production of acceleration in x-direction.

The model, represented by equation ((27)), can be applied as a case study
in non-linear control theory. It can be employed in controller synthesis and val-
idation and also to determine the operational parameters of actuators.

In future work some more practical considerations can be included such as
axes misalignment, constant offsets, and so forth. Also, a torque model that
includes the inertia of the gimbal could be devised.
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