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ABSTRACT Cyber security significantly relies on the dynamic communities in social networks. The
location-based social network (LBSN) is a new type of social system that has sprung up recently that. It turns
traditional social networks into heterogeneous networks by incorporating location information, which is used
as the medium between the real world and the online social networks, thus bringing new challenges to the
community discovery problems. This paper proposes a LBSN homogeneous networkmodel (LSHNM) based
on the user social relations and temp-spatial behaviors to calculate the user similarity relations in multi-
dimensional features and construct LBSN isomorphism network topology, which can be used to improve
cyber security practices. After that non-negative matrix decomposition (NMF) is used to find communities
from above isomorphism network topology. The experimental results show that the LSHNM can find more
satisfactory community structures.

INDEX TERMS Location-based service, social network, homogeneous social network, community discov-
ery, cyber security.

I. INTRODUCTION
The Location-Based social network (LBSN) is a new type
of social system that has sprung up recently. It connects the
real world and online social network closely by integrating
location information into traditional social network, and pro-
vides users a brand new social service. The research methods
in traditional social network are no longer meet the current
demands under the impact of the new forms of social data.
Hence, researchers are beginning to delve deeper into LBSN.
Community discovery is one of the basic research problems
on social network. How to use user social, temporal, spatial
and behavioral information contained in new forms of social
data to make comprehensive analysis of user characteristics
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and find potential user communities is an extremely valuable
problem. For this reason, this paper considers the constitute
form of communities in LBSN frommany aspects and defines
them as: the users in same community are closely connected,
and the geographic distance of their access areas are close,
and their behavior patterns are consistent. It is beneficial
to excavate user groups with similar social relations, temp-
spatial distribution and behavioral patterns by detecting com-
munities on LBSN, which could provide support for many
applications with economic significance and social signifi-
cance such as friend recommendation, direct-marketing and
behavior prediction [1]–[3].

The LBSN is a heterogeneous network composed of two
different types of vertices, user and location [1], [4], [5]. As a
result, the community discovery algorithms in traditional
social network cannot be applied directly to LBSN. There are
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three main solutions to the problem of community discov-
ery in LBSN. Wang et al. [6] proposed an edge clustering
algorithm which disconnected social links of users in LBSN
and makes them as an attribute of user vertex. After that,
the clustering can be achieved by measuring the similarity
between user check-in edges. Another popular solution is
to use LDA (Latent Dirichlet Allocation) model to detect-
ing communities in LBSN. Joseph et al. [7] applied LDA
model in LBSN. In their paper, the users were regarded as
the documents and the categories of check-in locations were
regarded as the words that constitute the documents. After
solving LDA model, clusters are obtained according to the
topic distribution. Based on the above research, Li et al. [4]
spent more effort on figuring out the major factors of com-
munity formation in LBSN. He established a more complex
LDA model to discover multi-dimension user communities
of LBSN by taking into account both social relations and
behavioral patterns. Brown et al. [8] came up with another
classic clustering idea. They re-annotated the users’ social
topology by using the information that friends visit the same
location. Consequently, location information can be used as
weight integrating into social topology. High weight rep-
resented the important role of location in the formation of
users’ friendship. Therefore, it was possible to use the dif-
ference of weights to find user communities with similar
social relations and location. Lim et al. [9] considered the
influence of time factor on the formation of user community
in LBSN. Therefore, they added time constraints to users’
common check-in behaviors and created new connections
between users from three perspectives: social relationships,
location and time [10]–[13]. After that, LBSN communities
were discovered based on above new connections by using
traditional community discovery algorithms.

Furthermore, the existing solutions to the community dis-
covery in LBSN are facing various problems: 1. The edge
clustering algorithm will consume a lot of computer memory
and spend a lot of computing time; 2. The clustering algo-
rithm based on LDAmodel requires many parameters and the
selection of these parameters is difficult; 3. The homogeneous
network model with traditional clustering algorithm often
fails to excavate the hidden community relations between
users without social connections and creates some isolated
nodes.

This paper studies the community discovery technology
in LBSN from the perspective of heterogeneous network.
It is required to find reasonable community structure that
users in same community should have strong social relation-
ships, similar geographical distribution in same time slice
and similar behavior patterns. Hence, this paper proposes
a LBSN homogeneous network model (LSHNM) based on
users’ social, temp-spatial and behavioural information [14].

II. PROPOSED SOLUTIONS AND FRAMEWORK
In order to solve community discovery problem in LBSN,
one intuitive idea is to re-factor the LBSN heterogeneous
network. More specifically, it first deletes location vertices

FIGURE 1. Community discovery framework of LBSN.

and all edges from original LBSN topology, and then creates
new links between users based on user characteristics in
LBSN community, finally community discovery algorithm
can be directly applied to above new network topology. The
overall framework is shown in Figure 1. According to the
Figure 1, the first step is to analyze and clean the acquired
LBSN data which is provided to other modules as data source.
The next step is to quantify the similarity between users
in LBSN from three characteristics: social relations, temp-
spatial distribution and behavioural patterns. Then, LBSN
homogeneous network topology is built based on above
three characteristics similarity. Finally, high-speed and stable
community discovery algorithm will be used to find multi-
attribute community in LBSN with the help of above new
topology. The combination of all above steps constitutes the
LSHNM which is proposed in this paper.

A. USER CHARACTERISTIC ANALYSIS
With the emergence of LBSN, a large number of new forms
of social data have been generated. In these social networks,
the user community is no longer just satisfied the close
bonding in social relations but also the similarity of user
characteristics shown in the new data. According to the above
social data, this paper focus on analyzing user characteristics
from the aspects of social relationship-geographic space and
interests.

1) SOCIAL RELATIONSHIPS
In most traditional social networks, the community discovery
algorithms are based on social relations, that is, the user’s
friend relationship. Thus, the traditional user communities
are made up of close friends. In other words, friendship is an
important feature of community formation in social networks.

2) TIME
In addition to the above social relation characteristics, users
in LBSN have some time characteristics which related
to their check-in behaviors. Due to the sparseness of the
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FIGURE 2. User check-in time distribution diagram (28ts).

FIGURE 3. The distance distribution map of the check-in location from
the check-in center.

check-in data, this paper divides the day into {0− 6, 6− 12,
12− 18, 18− 24} time slices, and 7 days per week. Figure 2
shows the LBSN users total check-ins in 4 × 7 time slices.
According to above figures, it is found that user check-
in behavior has strong time regularity. The number of user
check-ins vary from time to time, and the check-in character-
istic during the working day is almost the same, while it is
slightly different in weekends.

3) GEOGRAPHIC SPACE
Noulas et al. [15] do some research on continuous check-
in behavior in LBSN which shows that 80% of continuous
check-in behaviors occur within a distance of 10 kilome-
tres. In addition, this paper also makes an analysis on the
distance between all check-in locations of users and their
central check-in points, the statistical results are shown as
Figure 3.
The above figure indicates that most users tend to stay

in a small region of the city. Moreover, this paper ran-
domly selects two users from Four square New York data
set and visualizes their check-in Figure 4 with the help of
Google map. From the observation of the above images,
the user’s check-in behavior has a strong geographical pref-
erence, and different users have different frequently-visited
areas.

4) INTERESTS
The check-in data in LBSN could not only show the time,
geographic space characteristics of users, but also find their
interests from check-in category data. For example, Figure 5

FIGURE 4. User A and B check-in distribution map.

FIGURE 5. All users check-in number distribution under different
categories.

FIGURE 6. User A check-in number distribution.

shows the statistical analysis of the check-in number of users
in the entire data set under each category. As can be seen
from the above figure, the user’s interests are different and
the number of check-ins in category ‘‘Food’’ and category
‘‘Nightlife sport’’ accounts for the most. In order to highlight
the differences of users’ interests more clearly, this paper
also randomly selects two users from data set and counts
their check-in categories. The specific statistical results are
shown in Figure 6 and 7: In combination with the user’s
social relations and rules of time, geographic space and inter-
ests contained in user check-ins, this paper proposes social
relation, check-in temp-spatial distribution and behavioral
pattern characteristics of user in LBSN community. Social
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FIGURE 7. User B check-in number distribution.

relations characteristic refers to the connection features in the
social topology, and check-in temp-spatial distribution char-
acteristic indicates the geographical location distribution of
the user’s check-in within the same time slice and behavioral
pattern characteristic means the category distribution of the
user’s check-in location within the same time slice. It makes
sense because the user behaviours are stable in working day.

B. USER SIMILARITY CALCULATION
In this paper, the similarities of users in social relations,
temp-spatial distribution and behavioral patterns are calcu-
lated by using social relation data and check-in data from
LBSN. The detailed calculation scheme are described as
follows.

1) SOCIAL SIMILARITY
The vertices with high correlation in the network usually have
following two features: (1) There aremany paths between two
related vertices. (2) The length of paths between two related
vertices are relatively shorter. Based on the above features,
this paper propose two social similarity calculation methods
which are fast Katz and random walk algorithms.

2) THE BASIC CONCEPT OF KATZ
This calculation method is an amplification of shortest dis-
tance [16]. It not only considers the shortest path between
two nodes in the network, but also considers the number of
different length paths. At the same time, this method adds βl
which is the power of a decay factor and path length to control
the contribution of different length paths to social similarity.
In general, the path length between two points is inversely
proportional to the weight of social similarity. The specific
calculation formula is as

Sims(x, y) =
n∑
i=1

β i · |paths<i>(x,y)| (1)

in which paths<l>(x,y) is the path set with path length l between
vertex x and y. β is a constant decay factor less than 1,
is usually is 0.05 or 0.005, and n denotes the given max path
length.

FIGURE 8. All users check-in number distribution under different
categories.

3) THE CALCULATION OF KATZ
According to the definition of Eq.(1), the main goal of Katz
algorithm is to find the number of different length paths
between any two nodes in the network, and then set different
weights to calculate similarity between users based on differ-
ent path length. In order to achieve the above goal, a fast Katz
algorithm based on spanning tree is proposed.

Fast Katz algorithm does not cycle calculate the number
of different length paths between any two nodes directly.
Instead, from each node, this algorithm use depth search
algorithm to traverse all the nodes it can reach with different
hop counts and generate a tree structure. Figure 8 is a simple
example of the fast Katz algorithm.

Starting from node A in the above figure, the nodes that it
can reach after one hop are B,C,D, so B,C,D appear in the
first layer of the tree. Then proceed from B, C, D to find
the nodes that node A can reach through 2 hops and put it
into the second layer of the tree. Follow above steps until
algorithm have created a complete tree. After completing the
spanning tree construction of the node A, the number of paths
of all different lengths between node A and other nodes in
the figure can be obtained by simply traversing each layer
of the tree. Finally, by adding weight to each path found
by the algorithm, the social similarity between node A and
other nodes can be quickly calculated. The concrete algorithm
framework is shown as in Algorithm 1

Function ‘‘createAdlist’’ is used to build the adjacency list
for each node, but it is not described in detail here. Function
‘‘Generate_tree’’ is used to build a spanning tree based on the
given node v and its concrete algorithm framework is shown
as follows

The basic concept of random walk. In addition to the two
features mentioned in Section 2.1, there is a third feature for
nodes with high correlation—-The paths between two related
vertices less pass through big degree vertices. The nodes with
large degree are popular nodes in the network, which connect
a great quantity of other nodes, so the path through such
nodes will contribute less to social similarity. However, most
current measurement methods [17], such as shortest distance,
common neighbor, Jaccard’s coefficient, Adamic/Adar and
Katz, have not fully consider above features especially the
third feature. Therefore, Fouss et al. [18] proposed a random
walk algorithm based on Markov chain to solve the above
problems, and achieved good experimental results.

According to above research results, this paper proposes
a user similarity calculation method based on random walk.
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Algorithm 1 Fast Katz Algorithm
Input : Node-set V , edge-set E , decay factor β
Output: Social similarity between users

1 Build the adjacency list for each node;
2 foreach node v of the V do CreateAdlist(V ,E);

3 Build an empty similarity dictionary similarity = {};

4 Build an empty tree structure tree = {};

5 Build a spanning tree based on the given node v;
6 for v ∈ V do
7 tree[v] = Generate_tree(v);
8 end
9 T raversing each layer of the node v spanning tree and
overlaying the similarity weights between v and nodes
in each layer;

10 for v ∈ V do
11 for level l ∈ tree[v] do
12 weight = β level ; for level l ∈ tree[v] do
13 similarity[v][node] = Ssocial(v, node);
14 end
15 end
16 end
17 Return similarity for each v ∈ V ;

This method gives a transfer probability to each vertex in the
network of reaching its neighbour node. The value of this
probability is equal to the reciprocal of degree of the vertex.
Then, each vertex will travel to other vertices according to
this probability. If two vertices meet the above three char-
acteristics, the probability of mutual visits between them is
higher, namely, the social similarity between the two vertices
is higher. The calculation formula of the access probability
between vertices is shown as

Prob(x|y) =
n∑
l=1

Chain(x,y)l (2)

where Chain(x,y)l is the access probability of the lth path
which is started with vertex x and end with vertex y. n
represents the total number of paths between x and y. The
calculation method of Chain(x,y)l is shown as

Chain(x,y)l = 5k
i=1pnodei (3)

where pnodei is the transfer probability of vertex i which is
the ith vertex in the path that is started with vertex x and end
with vertex y. k represents the total number of vertices in this
path. The calculation method of pnodei is shown as

pnodei =
1

degreei
(4)

in which degreei is the degree of vertex i. Since the access
probability between two vertices is not symmetrical, the sim-
ilarity calculation formula between vertices is as follows:

Sims =
√
prob(x|y)+ prob(y|x) (5)

Algorithm 2 Generate_tree Algorithm
Input : Node v, adjacency list node_neighbors[v]
Output: the spanning tree of v

1 Create empty tree structure
node = v, level = 1, tree = {};

2 Create depth search access token visit = {};

3 Define the depth search function dfs(node, level);

4 If the search depth has reached the upper limit, the call
is ended and upper limit here is the maximum path
length;

5 if level ≥ limit then
6 return v;
7 end

8 Set the current node access flag as
visited[node] = True;

9 Traverse the node’s adjacency list and find the unvisited
node for recursive access;

10 for n ∈ node_neighbors[node] do
11 if visited[n] == False then
12 tree[level].append(n);
13 dfs(n, level++);
14 visited[n] = False;
15 end
16 end

17 Call the depth search algorithm dfs(v);

18 return tree v;

The calculation of random walk. Similar to fast Katz algo-
rithm, this algorithm also need to find all paths between any
two vertices in the graph. However, the random walk algo-
rithm does not need to count the number of paths but needs to
calculate the access probability of each path between nodes.
Therefore, a slight modification of the fast Katz algorithm
can achieve the above goal. In simple terms, each layer of a
node spanning tree stores not only the reachable nodes ID
but also the path access probability to reach these nodes.
Moreover, the concrete algorithm framework is similar to fast
Katz algorithm, which will not be described in detail.

Parameter setting. The social relationship topology in
LBSN is an unweighted and undirected graph. Therefore,
the path number involved in fast Katz and randomwalk social
similarity calculation algorithms increases as the path length
increases, which results in a large amount of computational
resource loss and the production of meaningless results. This
paper adopts the ‘‘three-degree influence criterion’’ proposed
by Christakis et al. [19] in 2011 to only consider the strong
connections within three degrees of the social topology. In
addition, the value of decay factor β in fast Katz algorithm
is 0.05.

4) TEMP-SPATIAL DISTRIBUTION SIMILARITY
Considering the temporal and spatial factors analyzed above,
the goal of this section is to calculate the temp-spatial
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FIGURE 9. Statistical graph of average check-in density of grid under
different check-in scales.

distribution similarity between LBSN users, namely, the dis-
tribution similarity of the locations that users visited in same
time slices. In order to achieve above goal, this paper proposes
adaptive density clique algorithm and temp-spatial distribu-
tion map convolution algorithm (TSDMC).

The basic concept of adaptive density clique. According
to the geospatial analysis of users’ check-ins in chapter 2,
it is found that users’ check-in locations are significantly
clustered and they have frequently visited areas. There-
fore, the temp-spatial distribution similarity of users can be
roughly expressed by comparing the distance between the fre-
quently visited areas of users in the same time slice. In order
to mine above areas, this paper uses adaptive density clique
algorithm to cluster the user’s check-in locations.

The adaptive clique algorithm is an improvement of the
clique algorithm [20]. It also belongs to a grid-based clus-
tering algorithm and is mainly used for the discovery of
high-density clusters. The algorithm does not need to specify
the number of communities in advance, and only requires
two parameters, grid step size and density threshold. The
grid step size is mainly used for the grid division of the
target space, while the density threshold is used to distin-
guish the high-density grids. Furthermore, the user check-
in density refers to the ratio between the user total check-
in number and the number of grids with check-ins, and
high density refers to the check-in density that exceeds the
check-in density of current check-in quantity scales. Since
the number of check-in for each user is different, the density
threshold should also be different for each user. Aiming at
the difference of density threshold among users, this paper
proposes an adaptive density threshold method. This method
firstly counts the average check-in density of users under
different check-in quantity scales, and then uses a straight
line to fit the average density change with the number of
check-ins. Finally, the adaptive clique algorithm can directly
determine the user density threshold based on the fitting
line and the number of user check-ins. The result is shown
in Figure 9. By using the adaptive density clique algorithm
to obtain the users’ frequently visited areas under each time
slice, an appropriate similarity metric is needed to compare
the temp-spatial distribution similarity between users. There-
fore, this paper proposes a suitable temp-spatial distribution

FIGURE 10. Clustering process.

similarity measurement methodwhich is based on themethod
proposed in literature [21].

Sims(x, y) =
1
T

T∑
t=1

ρxtρyt

Mt · Nt

Mt∑
m=1

Nt∑
n=1

dis(lxm, lyn) (6)

In the above equation, Mt and Nt represent the number of
frequently visited areas by user x and y under time slice t , and
ρxt and ρyt represent the ratio of the number of check-ins from
user x and y in the tth time slice and the total number check-
ins from them in all time slices. lxm and lyn represent the
coordinates of the center point of the area. dis represents the
spherical distance between the center points of the two areas
and T refers to the total time slices. The physical meaning of
the Eq.(6) is the average distance between frequently visited
areas within T time slices, and is used to represent the temp-
spatial distribution similarity between users.

The calculation of adaptive density clique. First, this algo-
rithm divides the study area such as New York City into sev-
eral grids. Second, mapping all check-in locations of a single
user to the grids and calculating check-in density per grid.
Finally, clustering can be achieved by merging adjacent areas
with high check-in density. The diagram of clustering process
is shown in Figure 10, where the dark square represents the
area with high check-in density. Since this paper needs to
calculate the temp-spatial distribution similarity of users, it is
necessary to divide users’ check-ins by time and calculate
the similarity of the check-in location distribution of users
in each time slice. However, the user data obtained by the
project team is relatively sparse. If time division is carried out,
it may not be possible to cluster the user’s check-in at a certain
time slice. Therefore, this paper clustering user’s check-in at
all time slices first, and then allocate the clustering results to
each time slice.

After using the adaptive density clique algorithm to obtain
the center points of all users’ frequently visited areas,
the temp-spatial distribution similarity between users can be
calculated according to Eq.(6).

The basic concept of temp-spatial distribution map convo-
lution algorithm. Although the adaptive density clique algo-
rithm can calculate the similarity of temp-spatial distribu-
tion among users, the use of the center point to represent
the user’s frequently visited area is slightly rough, and may
not fully express the temp-spatial distribution of the user’s
check-in. Therefore, this paper proposes another temp-spatial
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FIGURE 11. Check-in temp-spatial distribution diagram.

distribution similarity calculation method: Temp-Spatial Dis-
tribution Map Convolution algorithm (TSDMC).

The main idea of the TSDMC algorithm is to project user’s
check-ins of one time slice into a grey-scale geographicalmap
which is already divided into grids. After above conversion,
the check-in location distribution of one user in same time
slice can be represented by a grey-scale map. Then, this
paper take the idea of convolution which is widely used in
convolution neural network to extract local statistical features
of this grey-scale map. Finally, by using Euclidian distance
to compare similarity of above local statistical features from
each user, the similarity of user’s temp-spatial distribution is
also obtained. The geographical map is shown in Figure 11.

The final temp-spatial distribution similarity calculation
formula is shown as

Simspatio(x, y) =
1

n · T

T∑
t=1

n∑
i=1

m∑
r=1

(fmapxi [r]− fmap
y
i [r])

2

(7)

in which fmapxi [r] is the value of the r th feature in ith feature
map of vertex x. n is the number of feature maps.m represents
the number of features in a feature map. T indicates the
number of time slices.

The calculation of temp-spatial distribution map convolu-
tion algorithm. The concrete algorithm framework is shown
as follows, where the convolve2d function is the convolution
calculation function in the scipy package of Python [22]:

This paper uses different sizes convolution cores to carry
out convolution operations for each user under different time
slices, and obtain their feature maps. Finally, the similarity of
temp-spatial distribution among users is calculated according
to Eq.(7). However, it is a very time-consuming process to
calculate the similarity of featuremaps by Euclidean distance.
In order to solve the above difficulties, this paper proposes
a matrix based algorithm for calculating Euclidean distance
between any two users. The specific calculation process is
shown as follows.

Suppose there are two groups of vectors a and b, and
two three-dimensional vectors in each group. For example,
the group a is composed of a1, a2, and the group b is com-
posed of b1, b2, as shown in the following

a =
(
a11 a12 a13
a21 a22 a23

)
, b =

b11 b12
b12 b22
b13 b23

 (8)

Algorithm 3 TSDMC Algorithm
Input : User’s check-in data under time slice

t = {c1, c2, . . . , cM }, grid number n,
convolution kernel size k

Output: Feature map (fmap)

1 Initialize the map and divide the study area into n× n
grids.;

2 for m← 1 to M do
3 r = calcRegion(cm);
4 img[r]++;
5 end

6 Convert the number of check-ins in each grid to the
check-in ratio;

7 for r ← 1 to n× n do
8 img[r] = img[r]/sum(img);
9 end

10 fmap = convolve2d(img, k);

11 return feature map fmap;

In order to calculate the Euclidean distance between any two
vectors of groups a and b, the square sum of elements in
each row of the group a is first calculated and a square sum
matrix is formed by extending square sum results horizon-
tally, as shown

Asq =
(
a211 + a

2
12 + a

2
13 a211 + a

2
12 + a

2
13

a221 + a
2
22 + a

2
23 a221 + a

2
22 + a

2
23

)
(9)

The sum of elements in each column of the b group is then
summed up and expanded vertically according to the number
of columns to form a square sum matrix as

Bsq =
(
b211 + b

2
12 + b

2
13 b211 + b

2
12 + b

2
13

b221 + b
2
22 + b

2
23 b221 + b

2
22 + b

2
23

)
(10)

Finally, the Euclidean distance is Asq+ Bsq− 2ab.
Because of the above calculation method, the multi-layer

cycle in the original algorithm is replaced by the matrix
operation, so the calculation time can be greatly reduced by
the acceleration of matrix operation. In addition, his paper
regards a as the matrix of all users’ fmaps, and regards b as
transpose of a.
Parameter setting. In the above two algorithms, the size and

the number of grids should be carefully selected. There are
no strict rules for the selection of grid size. The smaller the
grid is, the more accurate the results are. But it also leads to
increase time complexity. Chao et al. [23] set the grid size
to 5km × 5km in the grid division of New York City. Based
on reference and above analysis, in order to obtain more
accurate experimental results, this paper decides to sacrifice
some computation time and set grid size to 1km × 1km.
In addition, the selection of grid number is constrained by
the scope of study region and the size of grid (n = 46 in
this paper). As for TSDMC algorithm, there are also no strict
rules in selecting convolution kernel size. However, different
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convolution kernel size would extract different local statis-
tical features of images. So, this paper choose 1km × 1km,
2km × 2km, . . . , 5km × 5km these five different kernel size
to carry out five repeated experiments. The final result is the
mean of above five experimental results. As for the selection
of values in the convolution kernel, all 1 is used which can
get the local accumulation characteristics of images.

5) BEHAVIORAL PATTERN SIMILARITY
Behavioral pattern similarity refers to the similarity of users’
check-in category vectors in the same time slice. However,
due to the sparsity of the check-in data, the number of users’
check-ins in each time slice is relatively small. Therefore,
this paper aims to alleviate the sparsity by combing some
similar approximation categories such as airport and airport
lounge. In the end, this paper uses the cosine similarity and
generalized Jaccard similarity to calculate the similarity of
the user’s check-in categories in the same time slice.

Cosine similarity. This method is to measure the simi-
larity between two vectors by calculating the cosine value
of the angle they formed. The closer the cosine value is to 1,
the smaller the angle between them is, and the more similar
they are. Based on the above concepts, this paper proposes a
behavioral pattern similarity based on cosine similarity. The
specific formula is shown below

Simb(x, y) =
T∑
t=1

Vecx · Vecy
‖Vecx‖ + ‖Vecy‖

(11)

where Vecx ,Vecy are two 140 dimensional vectors, which
represent the ratio user x and user y checked in 140 different
categories at same time slice. T indicates the number of time
slices.

Generalized Jaccard similarity. This method is also called
Tanimoto coefficient [24], which is mainly used to calculate
the similarity between sets. Compared with the narrow sense
of Jaccard, the value of elements in generalized Jaccard sim-
ilarity can be real number. So it is often used to calculate text
similarity. The calculation formula is as follows

Simb(x, y) =
T∑
t=1

Vecx · Vecy
‖Vecx‖2 + ‖Vecy‖2 − 2Vecx · Vecy

(12)

in which the meaning of Vecx ,Vecy and T is same as Eq.(12)
and the · denotes the vector inner production.

6) COMBINATION OF COMPUTATIONAL METHODS
In above three sections, two user similarity calculation meth-
ods are proposed for each user characteristic. Although each
calculation method has the same goal, its idea and calculation
process are different. Therefore, this paper intends to produce
2×2×2 = 8 user similarity calculationmethod combinations
under three characteristics and determine the best combina-
tion bymany contrast experiments. The specific experimental
results refer to the next Section.

FIGURE 12. Unified graph construction algorithm schematic.

III. HOMOGENEOUS NETWORK CONSTRUCTION AND
COMMUNITY DISCOVERY
A. HOMOGENEOUS NETWORK CONSTRUCTION
This chapter intends to reconstruct the original network by
creating virtual links based on the similarity of social rela-
tions, temp-spatial distribution and behavioral patterns, thus
forming the LBSN homogeneous network topology. In order
to make each link of LBSN homogeneous network topology
better reflect the similarity of users in the above three aspects,
a unified graph construction algorithm is proposed.

Unified graph construction algorithm uses SVD(Singularly
Valuable Decomposition) [25] to find main feature that can
represent the relationship between above three similarity
measurement results in new feature space. Figure 12 is a
simple example.

Firstly, the similarity calculation results of a random
user u1 in the LBSN is represented in a similarity matrix,
and each column of above matrix is sorted in descending
order, and the highest similarity value ranks first. As shown
in Figure 12, the user u1 has the highest similarity with user
u2 and lowest similarity with user u4 in social similarity.
Then, the SVD decomposition is performed on the sorted
similarity matrix, leaving the leftmost singular value vector,
that is, the main feature vector in the new feature space.
Finally, this algorithm selects k users that are most similar
to user u1 in social relationships, temp-spatial distribution,
and behavior patterns based on the values of the main feature
vector. As shown in Figure 12, when k = 2, the unified
graph construction algorithm will keep user u2 and user u3
and generate new links between u1 and above users. The
algorithm framework is described in Algorithm 4: Fast Katz
Algorithm.

By using above unified graph construction algorithm,
the new topology structure of each user in LBSN is generated.
Thus, a LBSN homogeneous network based on new topology
links is constructed.

B. COMMUNITY DISCOVERY
This subsection intends to explore the community structure
of LBSN homogeneous network constructed in the previous
section by using traditional community discovery algorithm.
NMF (Nonnegative Matrix Factorization) [26] is a widely
used community discovery algorithm, which not only has
strong interpretability but also can find overlapping com-
munities structure. For this reason, this paper users NMF
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Algorithm 4 Fast Katz Algorithm
Input : The similarity measurement results Simsocial ,

Simspatial , Simbehavior of user u1 in LBSN.
Number of remaining neighbors k .

Output: k new neighbor topology links of u1

1 Create an N × 3 user matrix A. Where N represents the
total number of users in LBSN except u1 is the number
of similarity measurement features. A[i][j] indicates the
value of feature j between u1 and ui.;

2 For each column in A, it is sorted by values. The highest
similarity value is Rank1, and so on. If the same value
is encountered, the same Rank value is given. After
above processing, the similarity value in each column is
replaced by the Rank value, but does not change the
original sequence of A.;

3 Implements SVD decomposition on matrix A = U6V T :
Where U is a m×m unitary matrix,6 is a semi-positive
m× n diagonal matrix, V is a n× n unitary matrix.;

4 Take out the first column U1 from U. It is the main
feature in new feature space which represents the
comprehensive similarity comparison results between
u1 and other users based on Simsocial , Simspatial and
Simbehavior . The larger the value in U1, the more similar
to u1 in above three features. Next, sorting the value of
U1 from largest to smallest, and retain top-k values.
Finally, take out the user id corresponding to the top-k
values, and generate new topology links of u1.;

5 Output k new topology links of u1.

algorithm to explore community structure in LBSN homo-
geneous network.

The idea of non-negative matrix decomposition is to
project the original data into a new feature space, and recon-
struct the original data with the projection result and spa-
tial information. Given a non-negative matrix Xm×n, and
decomposes it into two low-rank non-negative matrices
W = [Wic] × R

(m×k)
+ and H = [Hjc] × R

(n×k)
+ (k � n,m) to

make their product as close to original matrix X as possible,
namely, X ≈ WH . Formally, the NMF algorithm can be
considered as the following optimization problem

minD(X ,WH ) s.t. W ≥ 0,H ≥ 0 (13)

where the loss function D(A,B) is used to measure the dif-
ference between A and B. The squared error function and
KL divergence are two commonly used loss functions. In this
paper, square loss function is used, and it’s specific formula
is as

DLSE (X ,WH ) = ‖X −WH‖2F (14)

The data matrix X used here is the adjacency matrix of
LBSN homogeneous network. If there is an edge between
vertex i and vertex j in the network, then Xij = 1,

FIGURE 13. Internal experimental results (c = 5, ρ = 0.1).

otherwise Xij = 0. After determine data matrix X and loss
function, this paper use iterative method to solve Eq.(13). The
specific solution steps are shown below: (1) Build Lagrange
function

l = ‖X −WH‖2 − ∂W − βH

= tr[(X −WH )(X −WH )T ]− ∂W − βH

= tr(XXT − 2WHXT +WHHTW T )− ∂W − βH (15)

(2) Take the derivative with respect toW and H

∂l
∂W
= −2HT T + 2WHHT

− α (16)

∂l
∂H
= −2W TX + 2W TWH − β (17)

(3) αWir = 0 and βHrj = 0 according to the KKT conditions
and restrictions (W ≥ 0,H ≥ 0), and

[−2HT T + 2WHHT ]irWir − αWir = 0 (18)

[−2W TX + 2W TWH ]rjHrj − βHrj = 0 (19)

where r is the number of communities. Fix other variables
and update W according to

Wij← Wir
(XHT )ir
(HHT )rj

(20)

Fix other variables and update H according to Eq.(19)

Hrj← Hrj
(W TX )rj
(W TWH )rj

(21)

The maximum number of iterations or convergence thresh-
olds is set up in above iterative method to get membership
matrixW . Each row of the matrixW represents the probabil-
ity that the node belongs to the community.

IV. EXPERIMENTS AND RESULT ANALYSIS
A. EXPERIMENTAL DATA AND EVALUATION INDEXES
This experiment selects the New York City data collected
by the project team during 2013, including user social rela-
tion data and user check-in data. After simple data cleaning,
some abnormal data and outliers are filtered. Finally, It gets
6,141 users, 16,947 locations, 739,589 check-in records and
116,778 social edges. In this work, we made all experiments
on a Macbook Pro with 2.8GHz Intel Core i7 CPU and
8GRAM.
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In this paper, the quality of community discovery is evalu-
ated from three aspects: social relations, temp-spatial distri-
bution and behavioral patterns. Social closeness, using classic
overlapping modularity [27] to evaluate the results of over-
lapping community discovery, the specific formula is shown
below

Q =
1
2m

∑
c

∑
i,j∈c

[Ai,j −
kikj
2m

]
1

OiOj
(22)

where m is the number of social edges in one community. A
is the adjacent matrix and ki, kj represent the degree of vertex
i and vertex j. Oi,Oj represent the probability of vertex i and
vertex j that belong to this community.
Temp-spatial distribution closeness, using entropy method

to measure dispersion degree of users’ check-in locations
in the same community at same time slice. The specific
calculation formula is as follows

Q = −
T∑
t=1

M∑
j=1

|Cj|
TC

N∑
n=1

Wcj,zn

|Cj|
log

Wcj,zn

|Cj|
(23)

where T is the number of time slices and M is the number
of communities. TC represents the total check-in numbers
and |Cj| indicates the number of check-ins in j community.
N is the number of grids in New York City and W(Cj,Zn)
represents the check-in number in grid Zn of community Cj.

Smaller Spatial H represents a large number of check-in
locations of users in same community and same time slice
is gathered in a small number of areas.

Behavioral pattern closeness which uses the same calcula-
tion method as temp-spatial distribution. But the user check-
in grid is replaced by user check-in location category. The
specific formula is as follows

BhaviorH = −
T∑
t=1

M∑
j=1

|Cj|
TC

N∑
n=1

Wcj,Catn

|Cj|
log

Wcj,Catn

|Cj|
(24)

whereW (Cj,Catn) represents the total check-ins of category
Catn in community Cj.

B. RESULTS AND ANALYSIS
The proposed LSHNM needs to set 4 parameters, they are the
combination of similarity calculation methods, the number of
remaining neighbors k in unified graph algorithm, the number
of community c, and the threshold ρ of community mem-
bership. In addition, the first two parameters only exist in
LSHNM. Therefore, the experiment first needs to find the
best value of the above two parameters in different situations
through the internal experiment, and then the superiority of
the LSHNM is proved by the contrast of the external experi-
ments with other algorithms.

FIGURE 14. Social closeness contrast result.
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FIGURE 15. Temp-spatial distribution closeness contrast result.

Internal experiments. Figure 13 is the result of an internal
experiment with whose community number is 5 and commu-
nity membership threshold is 0.1.

The above figure is composed of three subgraphs, repre-
senting the experimental results under the three evaluation
indexes, and each subgraph is composed of eight curves
which represent the experimental results of the eight user
similarity calculation method combinations vary with the
change of the number of remaining neighbors k . According
to the above three kinds of evaluation indexes, ‘‘method_221,
k = 5’’ (the circle point in the diagram) has obtained a
relatively better experimental results. ‘‘method_221’’ rep-
resents the combination of second method of calculating
social similarity, namely, random walk algorithm, and sec-
ond similarity calculation method in temp-spatial distribution
similarity, namely, TSDMC algorithm and the first calcu-
lation method of behavior pattern similarity, that is, cosine
similarity algorithm. However, because of too many internal
experiments, this paper does not analyse the experimental
results of other situations in detail, but gives the final results
directly, as shown in Table 1.

In above table, c represents the number of communities,
and ρ represents the threshold of community membership. k
the number of remaining neighbors, and the number string
represents different combinations of similarity computation
methods. The results in the above table show the two combi-
nations ‘‘221’’ and ‘‘121’’ get better performance under three

TABLE 1. Comparison of experimental results.

evaluation indexes, and we select combination ‘‘221’’ and
k = 17 in the next experiments to do comparisons with other
typical LBSN community discovery algorithms.

External experiments. The comparison algorithm selected
by the experiment is derived from four LBSN clustering
algorithms in literature [4], [6], [8], respectively, edge-cluster,
loc-focus method1, loc-focus method2 and LDA. Figure 14
shows the algorithm experimental comparison results of the
social closeness with different membership threshold.

The user community membership matrix is obtained due
to the community discovery algorithm adopted in this paper.
Therefore, it is possible to control the overlap degree of
the community by setting the threshold value of commu-
nity membership. The lower the threshold sets, the greater
the overlap gets. As can be seen from the above 5 images,
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FIGURE 16. Behavioral pattern closeness contrast result.

the effect of the LSHNM algorithm in this paper is much
higher than the edge-cluster and LDA algorithm in the social
closeness evaluation standard, but it is inferior to the loc-
focus method 1 and loc-focus method2 algorithm under the
low degree of membership threshold. This is because the loc-
focus series algorithms give weights directly on social edges
and delete low weight edges which will result in generat-
ing more isolated nodes. Hence, this two algorithms focus
more on social relationships and find smaller user commu-
nities. However, with the increase of membership threshold,
the number of nodes in each community is reduced, so the
communities discovered by the LSHNM have only a small
number of core nodes. While the core nodes in the same com-
munity have strong correlations under social relationships,
temp-spatial distribution, and behavioral patterns, which will
weak the focus of different algorithms. So the LSHNM algo-
rithm can also achieve the matching community discovery
effect of the loc-focus series algorithm in high community
membership threshold. Figure 15 shows the algorithm exper-
imental comparison results of the temp-spatial distribution
closeness with different membership threshold.

According to Figure 15, LSHNM algorithm has significant
advantages on temp-spatial distribution closeness evaluation
standard over four kinds of comparison algorithms, and with
the increase of membership threshold the effect is gradually

enhanced. Moreover, the experimental results of the edge-
cluster algorithm fluctuates violently and the stability is poor.
This is because the implementation of the edge-cluster algo-
rithm uses the K-means clustering algorithm. The K-means
algorithm randomly selects k points as the cluster center
points at the beginning of the algorithm. If the selected center
point is a noise point or an outlier, it will have a great impact
on subsequent algorithm steps. Therefore, the K-means algo-
rithm is very sensitive to the selection of the initial center
points of the clusters, which results in a large fluctuation of
the experimental results. Figure 15 (a-e) are the algorithm
experimental comparison results of the behavioral pattern
closeness with different membership threshold:

According to the above five figures, LSHNMalgorithm has
significant advantages on behavioral pattern closeness evalu-
ation standard over four kinds of comparison algorithms, and
with the increase of membership threshold the effect is grad-
ually enhanced. The results of the edge-cluster algorithm still
fluctuate drastically, and the reason has been explained in the
above experiments. Finally, this experiment also compares
the operating efficiency of each algorithm. The following
table is the experimental result

It can be seen from the above table that the LSHNM
model and loc-focus series algorithms have high operating
efficiency and are suitable for application in large-scale social
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TABLE 2. Comparison of experimental results.

networks. However, the performance of other algorithms is
far inferior to the above two algorithms, especially edge-
cluster algorithm. This is because the edge-cluster algorithm
needs to continuously compare the similarities of any two
edges in the network. However, the number of edges in the
network is very large, far exceeding the number of nodes,
which causes the algorithm time complexity to rise sharply.

The results of LSHNM algorithm on the social relation
closeness experiment are lower than that of loc-focus series
algorithms under the low community membership threshold,
as shown in Figure 16, but it can also achieve the matching
community discovery effect of the loc-focus series algorithms
with the increase of the community membership threshold.
And the LSHNM algorithm is superior to the above algo-
rithms in the experimental results of temp-spatial distribution
closeness and behavioral pattern closeness. Comparing the
experimental results of the LSHNM algorithm and the edge-
cluster algorithm, the performance of the edge-cluster algo-
rithm is not as good as that of the LSHNM algorithm under
all evaluation indicators. In addition, edge-cluster algorithm
has poor stability and high time complexity. As for LDA
algorithm, it does not have any outstanding performance.
According to the above three comparison experiments, this
paper shows that the LSHNM algorithm can find satisfied
community structure in LBSN.

V. CONCLUSION
This paper focus on community discovery problem in LBSN
from user social relations, temp-spatial distribution and
behavioral patterns characteristics. Based on the massive new
form of social data, an effective method LSHNM is proposed
which reconstruct LBSN topology by integrating above user
characteristics and find suitable communities. After above
experimental comparison, LSHNM has a great advantage
over other algorithms. In the future, the user’s trajectory data
can be analyzed in detail to find more realistic communities.
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