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Abstract Cytomegalovirus (CMV) is the commonest cause of congenital infection and

particularly so among infants born to HIV-infected women. Studies of congenital CMV infection

(cCMVi) pathogenesis are complicated by the presence of multiple infecting maternal CMV strains,

especially in HIV-positive women, and the large, recombinant CMV genome. Using newly

developed tools to reconstruct CMV haplotypes, we demonstrate anatomic CMV

compartmentalization in five HIV-infected mothers and identify the possibility of congenitally

transmitted genotypes in three of their infants. A single CMV strain was transmitted in each

congenitally infected case, and all were closely related to those that predominate in the cognate

maternal cervix. Compared to non-transmitted strains, these congenitally transmitted CMV strains

showed statistically significant similarities in 19 genes associated with tissue tropism and

immunomodulation. In all infants, incident superinfections with distinct strains from breast milk

were captured during follow-up. The results represent potentially important new insights into the

virologic determinants of early CMV infection.

Introduction
Human cytomegalovirus (CMV) is the commonest infectious cause of congenitally acquired disability

(Morton and Nance, 2006). Between 0.2% and 2% of all live births have congenital CMV infection

(cCMVi), and of these, an estimated 15–20% develop permanent sequelae ranging from sensorineu-

ral hearing loss to severe neurocognitive impairment (Boppana et al., 2013; Dollard et al., 2007).

Maternal coinfection with HIV, even when mitigated by antiretroviral treatment, is associated with
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higher CMV viral loads in plasma, saliva, cervix, and breast milk, and a greater risk of both congenital

and postnatal CMV transmission (Gantt et al., 2016a; Gantt et al., 2016b; Slyker et al., 2017;

Richardson et al., 2016). Numerous studies have highlighted the negative health impacts of CMV

on both HIV-infected and HIV-exposed uninfected (HEU) infants and children (Garcia-Knight et al.,

2017; Gompels et al., 2012; Hsiao et al., 2013).

Primary maternal CMV infection during pregnancy confers a 30–40% risk of transmission to the

foetus (Kenneson and Cannon, 2007). Pre-existing maternal CMV immunity appears to reduce the

risk of cCMVi, though it is clearly imperfect (Britt, 2017). Over two-thirds of infants with cCMVi are

born to seropositive women, which constitute 88.4% of women in the Kenyan community from

whom these study participants were drawn (Maingi and Nyamache, 2014). Moreover, the overall

risk of cCMVi is directly proportional to the maternal seroprevalence in a population (de Vries et al.,

2013). Increasing evidence points to the importance of maternal CMV reinfection with new antigenic

strains during pregnancy as a major risk factor for non-primary cCMVi (Britt, 2017; Boppana et al.,

1999). Evidence that household children may be a source of maternal reinfection provides additional

support for this hypothesis (Boucoiran et al., 2018; Barbosa et al., 2018).

The CMV genome is the largest of the human herpesviruses. Regions of extensive sequence vari-

ability, together with high levels of recombination between different strains, result in high diversity

for a DNA virus (Lassalle et al., 2016; Pokalyuk et al., 2017; Sackman et al., 2018). Individuals are

often infected with multiple CMV strains. We have recently demonstrated that separate CMV haplo-

types can be resolved from high-throughput sequencing data (Cudini et al., 2019). This advance, by

enabling tracking of individual genomes within mixed CMV infections, has already revealed the

impact of mutation, recombination, and selection in shaping the course of infection (Cudini et al.,

2019). Here we apply these methods to CMV genomes sequenced from samples from five HIV-

infected Kenyan women and their infants that were collected between 1993 and 1998 originally for

studies of maternal–infant HIV transmission (Richardson et al., 2016). By reconstructing genome-

wide haplotypes from these longitudinal samples, we are able to examine the diversity of CMV shed

by HIV-infected women and the specific genotypes that are transmitted in congenital and postnatal

infections, and to reconstruct the likely chronology with which specific CMV variants were transmit-

ted from mothers to infants.

Results

Participant characteristics, sampling, and depth of sequencing
Details of the study cohort, follow-up, sample collection, and HIV and CMV infection status and

transmission have been previously described (Drake et al., 2012; Roxby et al., 2014; Slyker et al.,

2014). Sufficient residual sample was available from the five families analysed here. To maximize the

chance of recovering near full genomes, we selected samples reported in the original publication

(Roxby et al., 2014) to have >103 copies/ml, as this is the limit at which we generally can generate

whole genomes from blood. Of the five mother–infant pairs analysed, four infants were HEU (infants

22, 123, 41, 14), and one was HIV infected (infant 12).

CMV viral loads and sequencing
Cervical, breast milk, and infant blood CMV viral loads; mother blood plasma HIV viral loads; and

time of sample collection for the five mother–infant pairs studied are shown in Figure 1. The per-

centage of genome coverage and mean read depths are shown in Table 1. While breast milk sam-

ples had greater than 70% coverage at depths of 10� or more, the cervical and infant samples were

generally of lower depth, likely due to degradation of DNA due to the age and handling of the sam-

ples; genome coverage and mean de-duplicated read depth were directly related to actual CMV

genome copy number present in the input material (Figure 1—figure supplement 1). For all subse-

quent analysis, we removed samples with genome coverage of less than 20%. Fourteen of the

remaining 20 cervical and baby samples had genome coverage above 70% and read depths of

greater than 10� (Table 1).
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CMV genome sequence relatedness and diversity
We used multidimensional scaling to cluster CMV genomic sequences by nucleotide similarity (Fig-

ure 2), as use of phylogenetic trees is problematic due to the high levels of CMV recombination.

Sequences from families 12, 14, and 41 all clustered by family. Families 22 and 123 clustered in two

distinct spaces, suggesting infection with more than one strain. In all five cases, the first sample from

each infant (indicated by an arrow) clustered most closely with that of its mother, indicating the likeli-

hood of recent maternal–infant transmission.

To further investigate the possibility of mixed infections, we calculated the within-sample nucleo-

tide diversity, a metric that we have shown previously can be used as a proxy for the likelihood of

mixed strain infections (Cudini et al., 2019). It has previously been reported that a nucleotide diver-

sity of 0.005 or above is likely to indicate a mixed infection (Cudini et al., 2019). Figure 2—figure

supplement 1 shows that almost all the breast milk samples were highly diverse and therefore likely

to contain multiple virus strains, a finding consistent with previous analyses of breast milk from HIV-

infected women (Suárez et al., 2019). In contrast, the cervical and infant samples, with the excep-

tion of one cervical sample from family 12, showed lower diversity. We used subsampling to demon-

strate that computed nucleotide diversities are robust down to sequencing depths of >10

(Figure 2—figure supplement 2). Low diversity was also observed in cervical and blood spots with

higher coverage and read depths (Table 1).

Reconstruction of individual haplotypes reveals CMV
compartmentalization
To resolve the individual viral sequences (haplotypes) within each sample, we used our previously

described method HaROLD (Pang et al., 2020a). Figure 3 shows that haplotypes for each sample
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Figure 1. Cytomegalovirus (CMV) viral loads of longitudinal samples for each family from breast milk (red), baby blood spots (green), and cervix (blue),

and HIV viral loads from mother’s blood plasma. Vertical line indicates date of delivery. Horizontal line indicates minimum threshold of detection. Red

circles indicate the samples that were submitted for whole-genome sequencing.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Scatter plots showing relationship between input viral load and (A) mean read depth and (B) genome coverage, respectively.

Pang, Slyker, et al. eLife 2020;9:e63199. DOI: https://doi.org/10.7554/eLife.63199 3 of 19

Research article Genetics and Genomics Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.63199


Table 1. Sequencing characteristics for samples from each family.

% OTR, % of on target read; % Genome, % of genome coverage; % Dup, % of duplicated reads.

Samples with genome coverages too low to be included in any analysis are shaded in grey. Cervical

or baby samples with good coverage and read depth are highlighted in yellow.

Sample % OTR % Genome % Dup Mean depth Viral load

Family 12

Breast milk 2W 26.41 99 29.49 224.45 1,235,136.63

Breast milk 6W 68.99 99 13.84 578.56 14,926,741

Breast milk 14W 76.4 99 5.02 683.04 7,309,960

Breast milk 6M 77.47 99 8.07 730.04 10,876,521

Breast milk 12M 77.81 99 7.68 779.72 6,135,712.5

Cervix 38W pregnant 14.73 99 47.56 325.97 95,842

Baby delivery 1.35 76 82.27 31.86 27,393.9395

Baby 6W 0.02 2 81.79 0.29 4067.86694

Baby 10W 0.1 12 77.77 2.63 1959.9679

Baby 9M 1.1 78 79.41 28.53 2501.75195

Family 14

Breast milk 2W 13.54 98 65.41 101.66 232,442.219

Breast milk 6W 60.32 98 49.85 656.47 20,485,190

Breast milk 14W 11.15 97 65.77 80.09 345,851.781

Cervix 38W pregnant 0.22 63 56.04 4.34 1377

Baby 6W 1.4 91 69.35 21.35 55,400.7148

Baby 14W 3.33 96 78.59 113.92 3960.64233

Baby 6M 0.34 66 74.11 11.42 154.414169

Baby 12M 0.02 7 75.97 0.75 3054.47485

Family 22

Breast milk 2W 6.08 96 34.22 54.34 55,000.2891

Breast milk 6W 43.18 98 44.57 352.49 107,861.141

Breast milk 14W 6.4 97 44.41 38.3 56,883.9805

Cervix 34W pregnant 0.16 46 54.95 2.97 1125

Cervix 38W pregnant 0.16 67 47.91 4.14 1377

Baby 2W 0.01 1 46.34 0.03 1703.49292

Baby 6W 0.08 1 43.61 0.03 22,082.6465

Baby 14W 2.29 92 79.42 46.53 10,962.7197

Baby 6M 0.3 33 79.36 5.98 2124.86548

Baby 9M 0.22 25 79.33 5.01 82,937.5

Family 41

Breast milk 2W 43.33 98 60.89 224.53 7,163,743

Breast milk 6W 37.05 98 61.89 289.61 323,325.531

Breast milk 14W 48.15 98 68.02 438.05 2,697,832.75

Cervix 38W pregnant 0.61 91 47.53 12.6 122

Baby 14W 0.12 32 74.47 4.67 1848.62402

Family 123

Breast milk 2W 16.11 98 60.11 117.25 518,071.875

Breast milk 6W 16.96 98 64.77 107.35 262,400.719

Breast milk 14W 13.95 98 64.01 122.08 518,071.875

Breast milk 6M 15.81 98 63.07 101.92 678,250.313

Table 1 continued on next page
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Table 1 continued

Sample % OTR % Genome % Dup Mean depth Viral load

Cervix 34W pregnant 2.45 97 49.46 41.91 7931

Cervix 38W pregnant 1.36 96 49.61 28.07 4326

Baby delivery 0.21 84 10.93 6.1 939.190735

Baby 10W 2.19 91 78.64 43.96 93,297.3047

Baby 6M 0.13 20 77.67 3.1 5428.83545

Baby 12M 1.36 85 80.13 40.56 6205.88281
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Figure 2. Multidimensional scaling showing clustering of consensus genome sequences for each sample by family. Arrows indicate that the first baby

blood spot clusters with their own maternal sequences in all cases.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Within sample nucleotide diversity shown by family (colour) and sample type (symbol).

Figure supplement 2. Effect of down-sampling on estimated diversity.
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tended to cluster by family group albeit with clear evidence of distinct clusters even within a family,

for example family 22.

The presence of mixed infections within a single family was supported by data showing that a

subset of the sequence haplotypes within each family had pairwise distances as great as those

between unrelated GenBank sequences (Figure 3—figure supplement 1). Within-family phyloge-

netic analysis (Figure 3—figure supplement 2) shows distinct clusters of the phylogenetically related

sequence haplotypes recovered from breast milk, cervix, and baby, likely to represent variants form-

ing distinct viral strains (Figure 3—figure supplement 2). Based on the distribution of pairwise dis-

tances (see Materials and methods, Figure 3—figure supplement 3), we clustered similar

haplotypes together into strains henceforth termed genotypes, so that all members of a cluster have

a pairwise evolutionary distance with all other members less than 0.017, resulting in 26 clusters

that we refer to as genotypes. In no cases did haplotypes from different families fulfil our clustering

criterion confirming that haplotypes were not shared between unrelated families.

For ease of reference, genotypes were coloured differently, with the genotype predominating in

the first cervical sample of each family coloured red (Figure 3—figure supplement 2). Other geno-

types were coloured by their phylogenetic and pairwise distances from this genotype (Figure 3—
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Figure 3. Multidimensional scaling showing clustering of haplotype sequences by family. Colours indicate the families; shapes indicate the types of

sample.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Pairwise differences between haplotypes within a family.

Figure supplement 2. Maximum-likelihood phylogenetic tree to show haplotypes clusters (genotypes).

Figure supplement 3. Distribution of pairwise evolutionary distances for haplotypes within families.
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figure supplement 2). From our data, we identified at total of 26 genotypes with between 3 and 9

genotypes for each family (Figure 3—figure supplement 2).

To elucidate the relationship between maternal and infant genotypes, we plotted the abundance

of each within a sample over time (Figure 4). All five mothers were infected with multiple genotypes

in breast milk. In many cases, genotypes within a single maternal sample were as genetically distant

as unrelated database sequences, suggesting the presence of multiple distinct CMV strains (Fig-

ure 3—figure supplement 2, Figure 4). Relative genotype abundances present in breast milk

changed over time. One unique genotype appeared in the breast milk of mother 22 at 6 weeks, dis-

appearing from a subsequent sample (Figure 4). This genotype was genetically distinct not only

from other genotypes in family 22 but also from genotypes in all other families, reducing the likeli-

hood that it was a contaminant and may therefore have represented a new reinfection or reactiva-

tion of pre-existing latent infection. All cervical samples showed a single dominant genotype

(Figure 4), including mother 12, whose sample was more diverse and found to contain low levels of

other genotypes. Overall, the data point to compartmentalization of CMV populations between cer-

vix and breast milk.
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Figure 4. Abundance of haplotypes within each sample plotted for breast milk (BM), cervix (CV), and blood spots (BS). The timing of sampling is shown

along the x axis. For ease of reference, the genotype containing the most abundant haplotype present in the cervix is coloured red for each family.

Thereafter sequences that are genetically closest to the red genotype (Figure 3—figure supplement 2) are coloured magenta. Genotypes that are as

distant from the cervical genotype as unrelated GenBank sequences are coloured shades of green, blue, and purple. Single variants are coloured in

shades of the nearest genotype.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Boxplot showing number of haplotypes reconstructed in relation to read depth.
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Transmission bottlenecks
CMV genomes from individual infant blood spots also showed lower diversity (Figure 2—figure sup-

plement 1), and predominance of one genotype (Figure 4), including samples with good sequence

read depth, for example Baby12 DEL and 9M; Baby14 6W, 14W, and 6M; Baby22 14W; and

Baby123 10W and 12M (Table 1), indicating the likelihood of a bottleneck in mother-to-child trans-

mission. Two infants (families 12 and 123, Figure 1) who tested positive at birth were first infected

with the genotype present in the greatest abundance in the cervix (Figure 4 and Figure 3—figure

supplement 2). The same pattern was found in a third infant (family 22) whose first sample at 2

weeks of age tested positive (Figure 2, Figure 3—figure supplement 2, and Figure 4). Interest-

ingly, all three of these congenitally infected infants were subsequently re-infected with distinct gen-

otypes present in breast milk (Figure 4). Two infants with initially two (family 14) and three (family

41) negative tests from birth onwards, first became positive at 6 and 10 weeks, respectively. The

genotypes detected in the blood spots from both of these infants were present in breast milk and

differed from the most abundant genotype in cervix (Figure 4).

Subsampling to control for the impact of read depths
To determine the degree to which results were affected by the quality of sequence, we subsampled

reads of different samples to show that sample diversity calculations are robust at read depths of �5

(Figure 2—figure supplement 2); eight of the 18 blood spots and four of seven cervical samples

had mean read depth of �10 (Table 1) and all except one were of low diversity (Figure 2—figure

supplement 1). To determine the extent to which read depth affected haplotype frequencies, the

12 month breast milk sample from mother 12, which had a mean read depth of 779.72 and five hap-

lotypes (Figure 3—figure supplement 2), was subsampled down to mean read depth of <4 (Fig-

ure 4—figure supplement 1). All of the haplotypes in this sample were present for read depths of

22 or more, with three haplotypes identified even at the lowest read depth. Nine of 10 cervical and

blood spot samples from four families with read depths of >20 (Table 1) had either single genotypes

or multiple closely related variants (Figure 4), supporting previous conclusions around compartmen-

talization and transmission bottlenecks (Renzette et al., 2011).

Genotype compartmentalization
Given the observation of multiple haplotypes in each of the mother–baby pairs, we can ask whether

certain genotypes are more likely than others to be found in different compartments and whether

there are common characteristics of the genotypes observed in similar compartments in different

individuals. In order to address this question, we considered all possible subsets of between two

and five genotypes where each genotype was derived from a different mother–baby pair. We then

used fixation index (FST) to compare the genetic similarities of all of the genotypes in this set relative

to the remaining genotypes. p-Values and false discovery rates (FDRs) for each pair were calculated

using non-parametric bootstrapping. In order to compare various subsets, we computed a confi-

dence-weighted sum of FST (cwsFST) values for each subset. The distribution of cwsFST values is

shown in Figure 5—figure supplement 1. As can be seen, there are a large number of subsets with

significant cwsFST values, far in excess of what is observed for scrambled sequences (black line).

The sum weighted FST value for the subset of five genotypes that predominated in the cervical

samples was not significantly different from other subsets, suggesting overall that genotypes that

predominated in the cervix of these women were less closely related than most other comparisons

(Figure 5—figure supplement 1, black arrow). Intriguingly, however, the subset of cervical geno-

types from mother–baby pairs 12, 22, and 123 had a sum weighted FST with a value greater than

99.6% of the other subsets (Figure 5—figure supplement 1, blue arrow), indicating a strong signal

of inter-patient viral convergence. These genotypes were from the three mother–baby pairs with

proven congenital infection based on first detection of CMV in the baby at �2 weeks of age, and in

whom the baby’s genotype was identical to that predominating in cervix. In contrast, the predomi-

nant cervical genotypes from mothers 14 and 41 showed low levels of relatedness (Figure 5—figure

supplement 1, red arrow). The infant strains from 14 and 41 were most closely related to those from

their mothers’ breast milk (Figure 3—figure supplement 2 and Figure 4).

The FST analysis identified 19 genes as likely to be contributing to the genetic similarity between

congenitally transmitted genotypes from mothers 12, 22, and 123 (FDR < 0.05) (Figure 5). The
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comparison between these congenitally transmitted and other genotypes generally yielded the

same genes when the pairwise difference was varied to cluster haplotypes into more or fewer geno-

types (Figure 5—figure supplement 2), suggesting that this finding is not an artefact of decisions

about haplotype clustering.

Discussion
We used next-generation sequencing and haplotype reconstruction of individual CMV genomes,

obtained from samples of HIV-infected women and their infants, to identify mixed infections,

compartmentalization, and distinct viral-genotype associations with transmission of CMV from

mother-to-infant. Breast milk CMV showed high nucleotide diversity and, as has been previously

reported (Suárez et al., 2019), contained a mixture of viral genotypes, some of which were as

genetically distant from each other as unrelated GenBank sequences and can therefore be consid-

ered distinct viral strains. Cervical samples were of low nucleotide diversity and dominated by a sin-

gle viral genotype that was, with one exception, present in lower abundance in breast milk. Our

data fit with most but not all (Puchhammer-Stöckl et al., 2006) previous reports of CMV within-host

compartmentalization based on genotyping of subgenomic fragments (Hage et al., 2017;

Kadambari et al., 2017; Ross et al., 2011; Renzette et al., 2013). We found little evidence for

widespread new superinfecting or reactivating viruses in these mothers. In line with the findings

from the immunosuppressed RhCMV monkey model of congenital infection, cCMVi (Vera Cruz

et al., 2020) genotypes (strains) comprised families of closely related haplotypes. However, unlike

the finding for congenitally transmitted gB and gL RhCMV variants, even where we found transmis-

sion of one genotype, maternal and infant haplotypes were not completely identical either in early,

potentially congenital CMV infections or in postnatally transmitted viruses from breast milk. Neither

were haplotypes sampled at different times from maternal breast milk conserved, suggesting a

!"#$%&'"()(*+,$'

!"!"!"

!"!"!

Figure 5. The magnitude of fixation index (FST) values plotted for each gene (x axis). p-Values, adjusted with false discovery rate, are shown in red for

p<0.01, grey for p>0.05, and turquoise for p=0.01–0.05.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Distribution of confidence-weighted sums of FST (cwsFST) values for all subsets of two (cyan), three (purple), four (green), and five

(magenta) genotypes from different mother–baby pairs.

Figure supplement 2. Heatmap showing genes identified as significant in FST analysis are robust to changes in the number of clusters.
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measure of de novo mutation in this patient group, in line with the previous findings

(Sackman et al., 2018).

Our method of reconstructing viral haplotypes in serial samples provides insights into the natural

history of CMV infection. While all mothers had mixtures of genotypes in breast milk, the propor-

tions changed over time for some (families 22 and 41) and remained more stable in others. Whether

expanding genotypes in mothers 22 and 41 had been recently acquired is not known but would be

consistent with incident reinfection. In contrast, all infants were initially infected with a single geno-

type (Figure 4), supporting a bottleneck to CMV transmission (Cudini et al., 2019; Vera Cruz et al.,

2020; Stanton et al., 2010). Apparent reinfection by viruses present in breast milk occurred in all

four infants with multiple samples (Figure 4). We posit that the appearance of a new strain in an

infant sampled from birth can confidently be interpreted as a newly acquired exogenous virus rather

than reactivation of a previously undetected one. In all cases, the reinfecting strains were genetically

distant from and replaced the previously dominant strain (Figure 4). Taken together with the rise

and fall of infant CMV viral loads over time (Figure 1), this pattern is consistent with immunity

against the infants’ first CMV strain not being protective against reinfection with antigenically distinct

strains, a concept that can be further tested. Of note, reinfection with the closely related strains also

appears to occur readily with both human CMV and animal models (Boucoiran et al., 2018;

Hansen et al., 2010). Repeated reinfection with distinct strains may explain the high genetic variabil-

ity observed between sequential samples in early sequencing studies of CMV genomes from

congenitally infected infants (Pokalyuk et al., 2017; Renzette et al., 2013).

Those infants who tested positive at <3 weeks from birth were congenitally infected by

definition (Boppana et al., 1999). In contrast, we cannot formally rule out cCMVi in the two others

who were classified as having postnatal infection, since sensitivity of PCR detection of CMV DNA in

newborn blood spots is only approximately 84% (Wang et al., 2015), and newborn saliva or urine

were not available. However, this is unlikely given that only a small minority of infants have cCMVi,

even among those born to HIV-infected women. Furthermore, it is striking that genotypes in babies

with proven cCMVi were highly similar to maternal cervical genotypes, while those with negative

tests for the first 6 weeks of life were not, and the strains detected later in the blood of these two

infants were most similar to those in their mothers’ breast milk.

While it has previously been noted that a severe genetic bottleneck occurs during CMV transmis-

sion from mother to foetus or infant (Sackman et al., 2018; Renzette et al., 2013; Mayer et al.,

2017), it remains unknown whether CMV transmitted/founder virus populations share genotypic fea-

tures that confer a fitness advantage for establishing an initial infection, such as seen in HIV

(Joseph et al., 2015). Notwithstanding the apparent dominance of one genotype in each of the cer-

vical samples, our analysis did not show evidence for inter-patient convergence of cervical genotypes

per se. Rather the three cervical genotypes that were detected in babies 12, 22, and 123, who were

infected at birth showed a higher level of genetic similarity than over 99.6% of other subset compari-

sons and much greater than would be expected by chance (black line) (Figure 5—figure supple-

ment 1). Nineteen genes (Figure 5, Table 2) had particularly high (p<0.01) similarity scores. Twelve

of the 19 genes with the highest similarity scores (Figure 5) are part of the highly diverse RL11 gene

family. Uniquely, RL11 genes form an island of linkage within the otherwise highly recombinant CMV

genome (Lassalle et al., 2016). Phylogeny of primate CMV RL11 complexes recapitulates the evolu-

tionary history of the cognate host, suggesting it to be a potential driver of CMV co-evolution and

speciation (Lassalle et al., 2016). It is intriguing that RL11 family proteins influence tissue tropism

(Stanton et al., 2010) or are immunomodulatory (Stanton et al., 2010; Cortese et al., 2012;

Van Damme and Van Loock, 2014; Pérez-Carmona et al., 2018; Bruno et al., 2016;

Gabaev et al., 2014). Together with its functional properties (Table 2) and extreme diversity

(Lassalle et al., 2016), the possibility that within-species CMV RL11 gene-family variation may also

influence within-host viral adaption to different compartments and/or transplacental transmission

presents a tractable hypothesis that can now be tested. cCMVi is thought to occur primarily through

maternal viremia followed by replication in placental cytotrophoblasts resulting in spread to the foe-

tus (Pereira et al., 2017). The three mothers who transmitted their viruses congenitally had higher

cervical viral loads than mothers whose babies become infected postpartum (Figure 1). Analysis of

data from the whole cohort of mothers confirmed that women who transmitted CMV in utero had

mean cervical CMV vial loads at 38 weeks that were 0.83 log10 copies/ml (SD = 1.0, p=0.02) higher

than women who did not transmit CMV in utero (data not shown) (Roxby et al., 2014). We therefore
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speculate that virus sampled in the cervix is representative of CMV populations that infect and cross

the placenta and that a possible explanation for our findings is that the properties that promote rep-

lication to higher titres in genital tissue may also predispose to transplacental infection.

Other genes with high similarity (FST) scores include US27, which codes for a G-protein-coupled

receptor homologue that modulates signalling of the CXCR4 chemokine and may have a role during

viral entry and egress (Frank et al., 2019), and US26 whose function is unknown. Less marked but

still significantly different from non-congenitally transmitted strains, UL40 protein (Heatley et al.,

2013) modulates natural killer (NK) cell function. NK cells are the most abundant lymphocytes in pla-

cental tissue (Pereira et al., 2017), while UL50 is also immunomodulatory (Lee et al., 2018;

DeRussy et al., 2016). Finally, UL74, coding for glycoprotein O, which is highly significantly similar

in all bar one comparisons (Figure 5—figure supplement 2), is part of the glycoprotein complex

that is critical for tropism and entry into both fibroblasts and epithelial cells (Wu et al., 2017). Of

interest, gB and gL, which showed considerable diversity in the congenital RhCMV model, were, as

might be expected, not represented among the genes sharing significant genetic similarity in our

analysis. One possibility that would unite our findings and those of the congenital RhCMV model is

that CMV transmission bottlenecks are agnostic of variation in genes not implicated in transmission.

Being born to HIV-infected women is a major risk factor for cCMVi as well as long-term CMV-

related complications, whether or not the child acquires HIV (Garcia-Knight et al., 2017;

Gompels et al., 2012). We show here that, irrespective of the route of first infection, HEU children

frequently acquire repeated infections with different CMV viruses within the first year of life. Prelimi-

nary evidence suggests that breast milk of HIV-uninfected women may have lower CMV viral loads

and carry fewer strains (Arcangeletti et al., 2015). If this is true, the possibility that HEU, as well as

HIV-infected, infants are exposed to greater numbers of CMV strains during infancy when compared

with HIV-uninfected infants may provide an explanation for their worse clinical outcomes, a hypothe-

sis that can now be tested in prospective studies. Similarly, these methods promise to be invaluable

Table 2. Open reading frames (ORFs) identified by fixation index (FST) as being significantly more similar in strains transmitted

prenatally.

LD: Found to contain one of 33 hotspots of genetic linkage disequilibrium (Lassalle et al., 2016).

ORF LD Function

UL10 Y Putative membrane glycoprotein. Immunosuppressive, Impairs T cell function (Bruno et al., 2016)

UL11 Y Membrane glycoprotein. Modulates T cell signalling/function (Gabaev et al., 2014; Arcangeletti et al., 2015)

UL13 Unknown function

UL4 Y Putative membrane glycoprotein (Van Damme and Van Loock, 2014)

UL5 Putative membrane glycoprotein (Van Damme and Van Loock, 2014)

UL6 Y Putative membrane glycoprotein (Van Damme and Van Loock, 2014)

UL7 Y Membrane glycoprotein. Modulates chemo- and/or cytokine-signalling function (Pérez-Carmona et al., 2018)

UL8 Y Transmembrane glycoprotein. Inhibits proinflammatory cytokines (Pérez-Carmona et al., 2018)

US26 Unknown function

US27 Y Membrane glycoprotein. Activates CXCR4 signalling to increase human cytomegalovirus replication (Frank et al., 2019)

UL150A Fibroblast and epithelial cell entry (Houldcroft et al., 2016)

UL2 Putative membrane glycoprotein (Van Damme and Van Loock, 2014)

RL11 Y Membrane glycoprotein. Binds IgG Fc domain involved in immune regulation (Van Damme and Van Loock, 2014)

UL147 a-Chemokine homologue (Katoh and Standley, 2013; Paradis and Schliep, 2019)

UL40 Control of NK recognition (Heatley et al., 2013)

RL13 Y Glycoprotein, repression of replication, binds IgG domain immune regulation (Stanton et al., 2010; Cortese et al., 2012)

RL10 Membrane glycoprotein

UL57 Ss DNA binding protein (Van Damme and Van Loock, 2014)

UL50 Nuclear Egress complex. Reduces interferon-mediated antiviral effect (DeRussy et al., 2016)
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for studying the role of maternal CMV reinfection during pregnancy, a question of central impor-

tance in the field (Britt, 2017).

This study potentially provides several new insights into the pathogenesis of CMV infection. How-

ever, the study is limited by the small number of subjects, the fact that all women were HIV-1

infected and the lack of samples and data to absolutely confirm the route of CMV acquisition by

these infants. Because we were only able to analyse maternal breast milk, cervical samples, and

infant blood, and only intermittently, it is possible that some transmitted viral variants were not cap-

tured. Some, particularly cervical and blood spot samples, had low CMV viral loads and, as a result,

suboptimal genome coverage. Mapping data confirmed that in these cases, sequence loss was ran-

dom, excluding the possibility of systematic bias. To further address this potential bias, we sub-

sampled samples with good coverage to identify read-depth thresholds above which the diversity

estimation is robust and haplotype frequency to 5% and above is preserved (Figure 2—figure sup-

plement 2 and Figure 4—figure supplement 1). Analysis of only those samples with read depths

above the identified thresholds supported our overall conclusions. The quality of the sequence and

the numbers of samples allowed for conclusions to be drawn at gene level only and precluded

robust identification of putative motifs or single-nucleotide polymorphisms associated with biologi-

cal differences.

In summary, by reconstructing the individual CMV haplotypes, we found evidence for mixed CMV

infection in HIV-infected women, and compartmentalization of viral strains between cervical and

breast milk. Infants appeared usually to acquire one virus genotype initially, indicating a transmission

bottleneck, though subsequent reinfection with a second virus from maternal breast milk was com-

mon. We also found that viruses transmitted congenitally resembled the virus genotypes that were

present at highest abundance in cervix, and shared genetic features that distinguished them from

CMV strains predominating in breast milk and in the cervices of women whose infants were appar-

ently first infected post-partum. These data provide new testable insights into the pathogenesis of

CMV transmission from mothers to their infants, as well as tools to unravel the importance of viral

diversity for reinfection and congenital transmission, questions that are central to the development

of a vaccine to prevent the global burden of disease due to CMV.

Materials and methods
Samples were approved for research by the Institutional Review Board of the University of Washing-

ton and the Ethics and Research Committee of Kenyatta National Hospital IRB NCT00530777 and

sequenced under the ULCP Biobank REC approval. Approval for use of anonymized residual diag-

nostic specimens was obtained through the University College London/University College London

Hospitals (UCL/UCLH) Pathogen Biobank National Research Ethics Service Committee London Ful-

ham (Research Ethics Committee reference: 12/LO/1089). Informed patient consent was not

required.

Patient specimens
Mother–child pairs were selected from a randomized, placebo-controlled trial to determine the

impact of twice-daily valacyclovir (500 mg) on breast milk HIV RNA viral load in HIV-1/HSV-2 co-

infected women (NCT 00530777). Trial design, participant characteristics, and follow-up have been

reported elsewhere (Drake et al., 2012; Roxby et al., 2014; Slyker et al., 2014) and the University

of Washington Institutional Review Board and Kenyatta National Hospital Research and Ethics Com-

mittee approved the research. Women received short course antiretrovirals for prevention of

mother-to-child HIV transmission, but no women or infants received combination antiretroviral ther-

apy, as the study was conducted before recommendations for universal treatment. All women were

HIV-1, HSV-2, and CMV co-infected. For this CMV genomics study, we selected five mother–infant

pairs from the placebo arm, who had well-defined timing of infant CMV infection. All infants were

HIV exposed, and one was HIV infected. Women had cervical swabs and blood specimens collected

at 34 and 38 weeks gestation. Maternal blood and infant dried blood spots were collected delivery,

then postpartum at 2, 6, 10, 14, 24, 36, and 52 weeks. Breast milk was collected at all times after

delivery. Blood plasma, cervical swabs, and breast milk supernatant (whey) were cryopreserved at –

80˚C for the study of HIV and other co-infections.
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DNA extraction and CMV DNA measurement
Viral nucleic acids were extracted from blood plasma, dried blood spots, breast milk supernatant,

and cervical swabs as previously described using the Qiagen UltraSens Viral Nucleic Acid extraction

kit (Roxby et al., 2014). Quantitative real-time PCR was used to measure CMV DNA levels in these

specimens (Roxby et al., 2014).

Sure-select sequencing
Hybridization and library preparation were performed as previously described (Houldcroft et al.,

2016). Briefly, extracted DNA was sheared by acoustic sonication (Covaris e220, Covaris Inc). DNA

fragments underwent end-repair, A’-tailing, and (Illumina) adaptor ligation. DNA libraries were

hybridized with biotinylated 120-mer custom RNA baits designed using all available CMV full

genomes in GenBank for 16–24 hr at 65˚C and subsequently bound to MyOne Streptavidin T1 Dyna-

beads (ThermoFisher Scientific). Following washing, libraries were amplified (18 cycles) to generate

sufficient input material for Illumina sequencing. Paired-end sequencing was performed on an Illu-

mina MiSeq using the 500 cycle v2 Reagent Kit (Illumina, MS-102–2003). Samples were sequenced in

four different batches by family group.

Reads generated were quality checked and mapped to the Merlin reference sequence followed

by removal of duplicates using the CLC Genomics Workbench ver. 10.1. Consensus sequence was

extracted with a minimum coverage of 2�. All consensus sequences along with other GenBank refer-

ence sequences were aligned using MAFFT 7.212 (Katoh and Standley, 2013) and refined by man-

ual editing.

Clustering
Pairwise distances between sequences were calculated using the dist.dna function from R package

Ape v.5.3 (Paradis and Schliep, 2019). Sequences were clustered using multidimensional scaling as

implemented by the cmdscale function from R package Stats v.3.6 (Team, 2012).

Nucleotide diversity
Nucleotide diversity was calculated by fitting the observed variant frequency spectrum to the mix-

ture of two distributions, one representing sequencing errors (represented by a Beta distribution)

and the other representing true diversity (represented by a four-dimensional Dirichlet distribution

plus delta function, the latter representing invariant sites). The parameters for these two distributions

were optimized by maximizing the log likelihood. This framework allows all of the sequencing data

to be used and does not require pre-filtering the data to remove sites with low read depth or few

variants resulting in the favourable robustness to read depth, as shown in Figure 2—figure supple-

ment 2. Software is available for download at GitHub Repository, https://github.com/ucl-pathge-

nomics/NucleotideDiversity (copy archived at swh:1:rev:

20814eda934c539608b30e8fe21ead282046fa8b; Pang et al., 2020b).

Haplotype reconstruction
Haplotype reconstruction was accomplished using HaROLD with default settings (Pang et al.,

2020a). Details of this procedure are described in the associated publications. In brief, HaROLD

employs a two-step process. The first step is based on the assumption that there are a limited num-

ber of haplotypes that are the same for all of the samples from a given mother/child data set, so

that the differences in the frequencies of polymorphisms represent different mixtures of these haplo-

types. HaROLD creates a set of haplotypes from each data set by selecting the set of haplotypes

whose linear combinations optimally accounts for the observed variant frequencies. The number of

haplotypes is chosen to maximize the log likelihood of the observed frequencies. The second step

involves relaxing the assumption of constant haplotypes, with each sample treated individually. For

each sample, reads are assigned probabilistically to the various haplotypes generated by the first

step. These haplotype sequences and frequencies are then adjusted based on the assigned reads.

The reads are then re-assigned to these adjusted haplotypes, and the procedure is repeated until

convergence. During this process, haplotypes can be merged if that decreases the Akaike informa-

tion criterion (Akaike, 1973). This procedure results in a set of haplotypes for each sample, loosely

based on the haplotypes derived from the first step.

Pang, Slyker, et al. eLife 2020;9:e63199. DOI: https://doi.org/10.7554/eLife.63199 13 of 19

Research article Genetics and Genomics Microbiology and Infectious Disease

https://github.com/ucl-pathgenomics/NucleotideDiversity
https://github.com/ucl-pathgenomics/NucleotideDiversity
https://archive.softwareheritage.org/swh:1:dir:862287126c9f66d3e322c66df295a9bcb0c5e9fa;origin=https://github.com/ucl-pathgenomics/NucleotideDiversity;visit=swh:1:snp:2f102ac4434d0508d4f5d406ffaa4a22dfba7203;anchor=swh:1:rev:20814eda934c539608b30e8fe21ead282046fa8b/
https://archive.softwareheritage.org/swh:1:dir:862287126c9f66d3e322c66df295a9bcb0c5e9fa;origin=https://github.com/ucl-pathgenomics/NucleotideDiversity;visit=swh:1:snp:2f102ac4434d0508d4f5d406ffaa4a22dfba7203;anchor=swh:1:rev:20814eda934c539608b30e8fe21ead282046fa8b/
https://doi.org/10.7554/eLife.63199


Haplotype trees
Maximum-likelihood trees of the haplotypes from each family were computed using RaxML v8.2.10,

implementing the GTR model, with 1000 bootstrap replicates (Stamatakis, 2014).

Haplotype clustering
The haplotypes for each mother/baby data set were divided into genotypes. We calculated the pair-

wise evolutionary distance (the sum of distances on the evolutionary tree between the haplotypes

and their latest common ancestor) for all pairs of haplotypes in each family. As shown in Figure 3—

figure supplement 3, the observed distribution of such pairwise distances fits the sum of a gamma

distribution (69.3%, alpha = 19.5, beta = 0.0015) and an exponential distribution (30.7%,

mean = 0.01), indicative of two classes of relationships – pairs of sequences that are highly similar,

modelled by the exponential, representing small accumulated variations, and pairs that are more dis-

tinct, represented by the gamma distribution. We chose the crossing point of these two distribu-

tions, at a cut-off distance of 0.017, as differentiating small variations from larger differences

(Figure 3—figure supplement 3). We then grouped the haplotypes into clusters so that all members

of a cluster have a pairwise evolutionary distance with all other members less than 0.017, resulting in

26 clusters that we refer to as genotypes. We used these groups to assign colours to the different

haplotype clusters (genotypes) in Figure 4 and Figure 3—figure supplement 2.

We used FST to identify sequence characteristics associated with sets of genotypes. Consensus

sequences were constructed for each genotype. FST values, representing the genetic difference

between a subset of genotypes and the other genotypes, were calculated for each gene. p-Values

and corresponding FDRs were estimated by non-parametric bootstrapping, through scrambling the

bases at each position amongst the clusters. The results are shown for the 26 genotypes obtained

with a cut-off distance of 0.017; changing this cut-off resulted in increased or decreased numbers of

genotypes, but yielded similar results, especially for the more confident identifications (Figure 5—

figure supplement 2).

Evaluating the similarity between subsets of genotypes
We use FST values to identify similarities between individual genes from subsets of genotypes com-

pared with the other genotypes. In order to compare the magnitude of the similarities of different

subsets, we would like to take the sum of the FST values for all genes where the similarities are real

and not the result of random associations. As we cannot definitively identify these genes, we instead

consider the sum of the FST values for all genes weighted by our confidence that the FST value is sig-

nificant, represented as one minus the FDR.

Data availability
Sequence reads have been deposited in NCBI Sequence Read Archive under BioProject ID

PRJNA605798.

All software used are available for download at GitHub Repository, https://github.com/ucl-path-

genomics/NucleotideDiversity and https://github.com/ucl-pathgenomics/HAROLD.
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