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Abstract 
The aim of this study is to develop new data analysis techniques and new 

measurement methodologies for skin hydration and solvent penetration measurements 

by using Opto-Thermal Transient Emission Radiometry (OTTER), AquaFlux and 

capacitive contact imaging based on Fingerprint sensor, three novel technologies 

developed by our research group.  

 

This research work is divided into three aspects: the theoretical work, the 

experimental work and the portable opto-thermal radiometry hardware design work. 

In the theoretical work, a) an effective image retrieval method based on Gabor 

wavelet transform has been developed, the results show that it is particularly useful 

for retrieving the grayscale capacitive skin images; b) an algorithm based on Grey 

Level Co-occurrence Matrix (GLCM) has been developed to analyze the grayscale 

capacitive skin images; c) a comparison study of Gabor wavelet transform, Grey level 

co-occurrence matrix (GLCM) and Principal Component Analysis (PCA) has been 

conducted in order to understand the performance of each algorithm, and to find out 

which algorithm is suitable for what type of images. In the opto-thermal radiometry 

hardware design work, a new, low cost, portable opto-thermal radiometry instrument, 

based on a broadband Infrared emitter and a room temperature PbS detector, has been 

designed and developed. The results show that it can work on any unprepared sample 

surfaces. In the experimental work, various in-vivo and in-vitro measurements were 

performed in order to study skin hydration and solvent penetration through skin and 

membranes. The results show that, combined with tape stripping, capacitive skin 

imaging can be a powerful tool for skin hydration, skin texture and solvent 

penetration measurements. The effect of three different parameters of Fingerprint 

sensor and its detection depth are also studied. The outcomes of this work have 

provided a better understanding for skin hydration and solvent penetration 

measurements and have generated several publications. 
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Chapter 1   Introduction and Skin Review 
 

Human skin is a uniquely engineered organ that acts as a barrier to protect the body 

from the external environment, and also functions to regulate heat and water loss from 

the body. According to British Skin Foundation, there are eight million people living 

with skin diseases in UK, some skin diseases are manageable, others are severe 

enough to kill. Skin diseases have a major impact on quality of life (QoL).  Skin 

cosmetics are also a big industry. According to the Cosmetic, Toiletry & Perfumery 

Association, UK cosmetic market is worth more than £8b in 2011, and there are more 

than 4000 cosmetic companies in EU. The skin research plays a key role in cosmetic 

industry, as well as skin health.  

 

Our research group, originally founded by Prof R E Imhof, has more than 25 years of 

experiences in skin research, and has developed several skin measurement 

technologies, such as Opto-Thermal Transient Emission Radiometry (OTTER), 

AquaFlux and capacitive contact imaging based on Fingerprint sensor. The overview 

of the three technologies can be found in chapter 2. The aim of this research project is 

to build on existing research work of the group, and to developed new data analysis 

techniques and new measurement methodologies for skin measurements using 

OTTER, AquaFlux and capacitive contact imaging technologies.  

 

This research work is divided into three themes, namely, the theoretical work, the 

experimental work, and the opto-thermal radiometry hardware design work.  For the 

theoretical work, the aim is to develop new mathematical algorithms to analyze 

capacitive skin images. The details are described in chapter 3, 4 and 7.  

 

For the opto-thermal radiometry hardware design work, the aim is to design a novel, 

low cost, portable opto-thermal radiometry instrument for skin measurements, using 

modulated broadband Infrared emitter and a room temperature PbS (lead sulphide) 

detector. The details are described in chapter 5. 

 

For the experimental work, the aim is to develop new skin measurement 

methodologies and to have a better understanding of capacitive imaging 



                                                                                                                       Chapter 1. Introduction and Skin Review 

2 

measurements. The details are described in chapter 6. 

 

This chapter provides a general introduction and review of skin histology, skin 

hydration measurements, and organization of the thesis. 

 

1.1 Skin Histology  
 

The skin is the heaviest single organ of the body, accounting for about 16% of total 

body weight. Skin is a barrier to provide protections against environmental hazards, 

such as radiological and microbial attacks, physical and chemical. It also works as a 

sensor to transmit environmental information such as pain, cool to the nerve centre 

and depot to store excess food as fat for future use [1]. For an average 70 kg human 

being, the surface area is about 1 8 2. m . A typical square centimetre covers 10 hair 

follicles, 12 nerves, 15 sebaceous glands, 100 sweat glands, 3 blood vessels with 92 

cm total length, 360 cm of nerves and 3 106!  cells.  

 

Human skin may be subdivided into three mutually dependent layers: the fatty 

subcutaneous layer (hypodermis), the overlying dermis, and the epidermis, the 

outermost layer of the skin (Figure 1.1, from [2]). Human skin displays two main 

types. Hairy skin encloses hair follicles and sebaceous glands, but there no 

encapsulated sense organs. Glabrous skin of the palms and the soles constructs a thick 

epidermis with a compact stratum corneum, but the integument lacks hair follicles and 

the dermis supports encapsulated sense organs. Ridges groove hairless skin into 

individually unique configurations termed dermatoglyphics. Besides providing 

identification, for example, fingerprints, dermatoglyphics may aid diagnosis or they 

may indicate that a patient has an increased tendency to develop certain diseases. 

 

1.1.1 The Epidermis 
 

The epidermis (Figure 1.2, from [2]) which is a stratified epithelium containing one 

layer of proliferative cells and several layers of differentiated cells is the most 

superficial layer of human skin [3]. The cells of the epidermis are produced from the 

basal layer and migrate to the exterior, undergoing keratinisation to form the 
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outermost layer, the stratum corneum. It varies in thickness from 0.8 mm on the palm 

to 0.06 mm on the eyelids. The epidermis can be subdivided into five layers: 

 

 Figure 1.1   Structure of Human Skin, from Van De Graaff KM, Fox SI. [2] 

 

(1) The stratum basale (stratum germinativum).  

 

The stratum basale is characterized by intense mitotic activity and is responsible, in 

conjunction with the initial portion of the next layer, for constant renewal of 

epidermal cells. The cell division occurs in this layer. New keratinocytes which move 

upwards pushing the older above towards the surface of the skin are generated by the 

basal keratinocytes. 

(2) The stratum spinosum.  
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The cells begin to flatten and their nuclei shrink in this layer. The epidermis of areas 

subject to continuous friction and pressure (such as the sole of the feet) has a thicker 

stratum spinosum with more abundant tonofibrils and desmosomes.  

 

(3) The stratum granulosum (granular layer).  

 

It is characterized by 3-5 layers of flattened polygonal cells containing centrally 

located nuclei and cytoplasm. Its shape is membrane-coating granule, ovoid or rodlike. 

The cells generate keratohyalin granules in this layer. 

 

 
Figure 1.2 Structure of Epidermis, from Van De Graaff KM, Fox SI [2] 

 

 (4) The stratum lucidum.  

It is a thin translucent layer and is generated in the palm of the hand and the sole of 

the foot, an anatomically distinct, poorly staining hyaline zone. 
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Figure 1.3 The “brick and mortar” structure of the stratum corneum [4]. 

 

(5) The stratum corneum (The horny layer).  

It is the most superficial layer of the skin and comprises 10 to 15 layers of dead cells 

with approximately 10-20 µm  thickness. The structure of the stratum corneum may be 

represented as a brick and mortar model which provides two micro pathways for the 

trans-epidermal drug diffusion (Figure 1.3 [4]). When the cells arrive at the SC, they 

are fully keratinized and dead. 

 

The Epidermis contains three less abundant cell types: Melanocytes, the Langerhans 

Cells, and the Merkel Cells. 

 

1.1.2    The Dermis 
 

The dermis shown in Figure 1.4 [2] is the second layer of the skin. The connective 

tissue that supports the epidermis and binds it to the subjacent layer forms the dermis. 

The thickness of the dermis varies depending upon the region of the body, reaching its 
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maximum of 3 mm on the soles of the feet [5]. The epidermis can be subdivided into 

two anatomical regions [6]: 

 

(1) The papillary dermis. 

It is the thinner outermost portion of the dermis and constitutes approximately 10% of 

the 1-4 mm thick dermis. 

(2) The reticular dermis. 

It can extend up to about 25% by stretching the collagen fibers. Meanwhile, it can be 

squeezed due to the capacity to displace the ground substance laterally. 

 

 
Figure 1.4    Structure of dermis [2] 

 

The dermis is composed of two layers. One is the immediately sub epidermal 

papillary layer, and another is the deeper, more massive and denser the reticular layer. 

The dermis has a rich network of blood vessels which regulates temperature and 

pressure, delivers nutrients to the skin and removes waste products, mobilizes defence 

forces, and contributes to skin colour. The dermis also contains some epidermal 

derivatives, the hair follicles, sweat and sebaceous glands. A rich supply of nerves is 

found in the dermis, and the effector nerves to the skin are postganglionic fibres of the 

ganglia of the par vertebral chain.  
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1.1.3 The Subcutaneous Tissue 
 

The subcutaneous fat (hypodermis, sub cutis) spreads all over the body. The size of 

this layer varies throughout the body and from person to person. The sub cutis 

provides a thermal barrier and a mechanical cushion; it is a site of synthesis and depot 

of readily available high-energy chemicals [7]. It carries the major blood vessels and 

nerves to the skin and may contain sensory pressure organs [4]. The information of 

human subcutaneous fat is useful for assessing health risks due to obesity and for 

monitoring athletes’ health status, body shapes and weight for various sports 

competitions such as gymnastics and wrestling [8]. 

 

1.1.4   Skin Functions 
 

The skin performs many varied functions; the following presents a brief digest of its 

biological role [3]. 

 

1. To contain body fluids and tissues --the mechanical function. 

2. To protect from potentially harmful external stimuli--the protective or barrier 

function: (a) micro-organisms; (b) chemicals; (c) radiation; (d) heat; (e) electrical 

barrier; or (f) mechanical shock. 

3. To receive external stimuli, i.e., to mediate sensation: (a) tactile (pressure); (b) 

pain; or (c) heat. 

4. To regulate body temperature. 

5. To synthesize and to metabolize compounds. 

6. To dispose of chemical wastes. 

7. To provide identification by skin variations. 

8. To attract the opposite sex. 

9. To regulate blood pressure. 
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1.2 Skin Hydration 
 
A water profile in skin calculated from Energy Dispersive Spectrometry Spectra [9] is 

shown in Figure 1.5 [9]. The water in skin and its relationship to the skin function will 

be introduced in the following section. 

 

1.2.1 Skin Hydration 
 

The relationship between relative humidity and water contents of the stratum corneum 

is shown in Figure 1.6 [10]. According to Takenouchi M, at 0% relative Humidity 

(RH), stratum corneum still holds about 0.05 g/g water. 

 

 
 

Figure 1.5 Calculated Water profile across human skin. Vertical scale is percent water expressed as 

grams of water per total grams (water plus dry mass) of tissue. SC stands for Stratum 

Corneum, GR stands for Stratum Granulosum, SP stands for Stratum Spinosum, and B 

stand for Stratum Basale [9]. 
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1.2.2 Water concentration profile and TEWL 
 

Stratum corneum is dry at its surface because of the dry external environment and wet 

at its base where it is contact with the deeper fully hydrated part of the epidermis [11]. 

Therefore, a concentration gradient which results in a continuing diffusion of water 

from within the body through the skin to the environment, trans-epidermal water loss 

(TEWL) will generate within the stratum corneum. The TEWL for normal skin is 

about 4~8 g/m2 per h [12]. 

 

 
 
Figure 1.6   Concentration of water in stratum corneum in equilibrium with air at 30 ºC as a function 

of relative humidity [10]. 

 

1.2.3 The water in stratum corneum 
 
In the stratum corneum, there are three types of water: tightly bound water, loosely 

bound water and free water. The experiments from [13] show that the hydration and 

dehydration rates of free water are lower than that of bound water. This suggests that 

free water is located primarily intracellular, with the cell envelope the major barrier to 

its loss, while the bound water is primarily intercellular or on the cell surface. 
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1.3 Organization of the thesis 
 

Chapter 2 describes the conceptions and principles of OTTER, Aqua Flux and 

Fingerprint sensor, and their functions. 

 

Chapter 3 presents an effective content-based image retrieving technique for different 

types of skin images. In this chapter, texture feature is used for retrieving images, and 

2D Gabor wavelet transform, which is an important and promising method, is used for 

texture feature description and extraction. After applying 2D Gabor wavelet transform 

to images, the means and variances are calculated as texture features of the images for 

image retrieval. 

 

Chapter 4 describes the grey level co-occurrence matrix (GLCM) technique for 

analyzing capacitive skin images. It first describes the theory of GLCM, then shows 

the GLCM results of capacitive skin images, finally, discusses how to select the 

optimum distance through analyzing the influence of distance change to the feature 

vectors. 

 

Chapter 5 describes the design work of the new portable opto-thermal radiometry 

instrument which can work at room temperature. It first introduces the principle of 

infrared emitters and PbS detector, then introduces and explains their drive circuits, 

and finally shows the test results. 

 

Chapter 6 describes five different experiments: the first one is tape stripping 

measurements by using AquaFlux and Fingerprint Sensor, the second one is in-vivo 

solvent penetration study by using capacitive Fingerprint Sensors and OTTER, the 

third one is measuring the Fingerprint Sensor detection depth, the fourth one is to 

study the effects of the three configuration parameters of the Fingerprint sensors on 

image quality and the last one is the measurements of 6 different solvents penetrating 

through the silicone membrane. 

 

In chapter 7, three different algorithms, namely Principal Component Analysis (PCA), 

Grey level co-occurrence matrix (GLCM) and Gabor wavelet transform are compared 
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for image retrieval, in order to understand the pros and cons of each algorithm, and to 

find out which algorithm is suitable for what types of images. 

 

Chapter 8 concludes this thesis and looks at possible and additional work that will be 

carried out in the future. 
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Chapter 2 OTTER, AquaFlux and Fingerprint Sensor 

Overview 

 

Over the past few years, many different measurement techniques have been applied in 

the research of skin hydration and solvent penetration, including electrical 

measurements, evaporimetry, infrared spectrometry, ultrasound, magnetic resonance 

imaging and photo thermal imaging etc. Each technique has its own strength and 

weakness [14]. Opto-thermal Transient Emission Radiometry (OTTER), AquaFlux 

and capacitive contact imaging based Fingerprint sensor are three novel and 

promising skin measurement techniques developed in our research group. This thesis 

presents the research work on skin hydration and solvent penetration measurements 

by using Opto-Thermal Transient Emission Radiometry (OTTER), AquaFlux and 

capacitive contact imaging based on Fingerprint sensor. 

 

This chapter will present the conceptions and principles of OTTER, AquaFlux and 

Fingerprint sensor, and their functions. 

 

2.1 OTTER 

Opto-thermal transient emission radiometry (OTTER) [14-17], shown in Figure 2.1, is 

an infrared remote sensing technique based on photo-thermal radiometry (PTR) or 

Opto-thermal radiometry (OTR). Comparing with other skin hydration measurement 

instruments, OTTER has many advantages, such as, non-contact, non-invasive, work 

on arbitrary surfaces, in-sensitive to colour and small movements. 

 



                                     Chapter 2   OTTER, AquaFlux and Fingerprint sensor Overview 

 13 

 

Figure 2.1 OTTER [15] 

 

Figure 2.2 shows a schematic diagram of the OTTER. A Q-switched pulsed laser as 

the excitation source is used to heat up the sample surface and then generate a heat 

radiation. Heat radiation, whose wavelength region is in the mid-infrared !5-15!m, is 

focused by an aluminum ellipsoidal mirror from the sample onto a high speed, liquid 

nitrogen cooled Mercury Cadmium Telluride (MCT) detector, whose signal is 

captured by a digital oscilloscope. A PC, linked to the digital oscilloscope through a 

high-speed PCI (Peripheral Component Interconnect) interface, is used for signal 

averaging, data storage, display and analysis. The shape of measured signal is 

dependent on sample’s optical and thermal properties, the thickness of the sample and 

its layer structure. 
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Scope 

Er: YAG     2.94!m 

Nd: YAG    1064nm 
                     532nm 
                     355nm 
                     266nm 

OPO Laser 400nm - 4!m 

Sample 

P2 P3 

MCT Detector 
Ellipsoid Mirror 

Filter 5 ~14!m 

Laser 
M1 P1 

Forward Emission 

Backward Emission 

Transient 
Recorder  Pre-amplifier 

PC 

 

Figure 2.2 Schematic Diagram of OTTER. P1, P2, P3 are prisms, and M1 is a mirror [15]. 

 

In Opto-Thermal physical process, OTTER measurements can be modeled as three 

sequential physical processes as follows: 

(1) The near-surface region of the sample is heated by absorption of the incident laser 

energy. This establishes an initial temperature field at time 0=t . 

(2) The absorbed energy diffuses within the sample and causes the temperature 

distribution to change with time (transient temperature field). 

(3) Due to the changes of the transient temperature field, the thermal radiation from 

the sample surface changes. This heat radiation can be detected, recorded and 

analyzed as an opto-thermal signal. 
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Therefore, Opto-thermal signals can be modeled in three steps: (1) the initial 

temperature field; (2) the transient temperature distribution; (3) the infrared heat 

radiation. The main sample properties involved in these three steps: (1) the absorption 

coefficient for the laser radiation! ; (2) the thermal diffusivity D; (3) the absorption 

coefficient for the emitted thermal radiation ! . 

 

When laser radiation is incident on a sample surface, some radiation will penetrate 

into sample as it is absorbed. The initial temperature field can be expressed as: 

                    ( ) ze
C
Ez !

"
!

# $= 00,                               (2.1) 

where ( )0,z!  is the temperature at 0=t  of sample at position z , with 0=z  at 

the surface of the sample and increasing toward the inside of the sample. C  is the 

sample’s specific heat, !  is the sample’s density and 0E  is the energy density 

absorbed from the excitation pulse [18,19]. 
 
The temperature re-distribution after the initial disturbance follows the diffusion law, 

which can conveniently be expressed in Green's function form as: 

! z, t( ) =
Q z ', t( )
!C0

!

"0
t
" G z, z ';t, t '( )dz 'dt  

                  = ! z ', 0( )0

!

" G z, z ';t, t '( )dz '                         (2.2) 

where G z, z ';t, t '( )  is Green's function describing the temperature change in position 

z  at time t  due to a Dirac-Delta heat disturbance at position z '  and time 't . 

Therefore the transient temperature field ( )tz,!  can be found by integration of the 

heat source and Green's function in the semi-space of the sample. 
 
The opto-thermal signal comes from the transient thermal radiation, which is caused 

by the time-dependent temperature field ( )tz,!  above. The calculation of 

Opto-thermal signal is given by [18, 19]: 
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( ) ( ) ( ) ( )dztzeztS
z

dzz
,0

0
!"#

"$=
%&

$                        (2.3) 

where the parameter ( )em!"" =  includes factors that depend on the blackbody 

emission curve, detector sensitivity, focusing and alignment, but is independent of the 

properties of the sample. 

 

By substituting Eq. (2.1) and (2.2) into Eq. (2.3), and using semi-opaque limit, i.e. 

! >>! , or ! >>! , we have 

( ) !
" "!

ˆ
/

1 /ˆ terfceAtS t=                              (2.4) 

where !̂  is either !  or ! , 
D2ˆ ˆ
1

!
"! = , 

C
EA
!
"# ˆ0

1 =  is the amplitude of the signal 

and ( ) ( )xerfxerfc !=1  is the complementary error function, 

erf x( ) = 2
!

e!y
2

dy
0

x
"  is error function. The least-squares fitting of all signals of 

OTTER measurements in this thesis is done by using Eq. (2.4). 

 

OTTER has demonstrated the capability for measuring skin hydration, skin pigments, 

skin thickness and transdermal drug delivery [14, 17, and 19]. However, Skin 

measurement is not the only application of OTTER measurements. OTTER can also 

be used as a non-destructive evaluation technology for many industrial applications, 

such as [18]: 

 

(1) Measurement of thermal properties of materials. 

(2) Measurement of optical properties of materials. 

(3) Measurement of paint thickness. 

(4) Measurement of thermal resistance of materials. 

(5) Material characterization. 

(6) Flaw detection and characterization. 
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2.2 AquaFlux 

AquaFlux [20-22], shown in Figure 2.3, is a novel condenser-based, closed chamber 

technology for measuring water vapour flux density from arbitrary surfaces, including 

in-vivo measurements of trans-epidermal water loss (TEWL), skin surface water loss 

(SSWL) and perspiration. It uses a cylindrical measurement chamber, with one end 

open and attached to the sample surface, and another end closed and cooled down to 

below the water freezing point. 

 

 
Figure 2.3 AquaFlux [20] 

 

Figure 2.4 shows a simple cutout diagram of the AquaFlux condenser-chamber. When 

the chamber is brought in contact with the skin surface, the chamber is sealed and it 

can protect the diffusion zone within it from ambient air movement. The natural 

convection and other bulk air movements are brought down because of the internal 

dimensions of the chamber being very small. In fluid dynamics terms, this requires 

the Rayleigh Number to be below the critical value for its geometry. Under these 

conditions, passive diffusion remains the only transport mechanism for the water 

vapour entering the chamber. The condenser controls the absolute humidity in the 

measurement chamber independently of ambient conditions. It is similar to a vapour 

sink by forming ice on its surface, thus creating a zone of low humidity in its 
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immediate vicinity. By contrast, the test surface acts as a vapour source, creating a 

zone of higher humidity in its immediate vicinity. This humidity difference causes  

 

Figure 2.4 a simple cutout diagram of the AquaFlux condenser-chamber [20] 

 

water vapour to migrate from source to sink by passive diffusion and creates a 

diffusion vapour density gradient, from which the flux density can be measured. The 

process of calculation is introduced as follows [21]: 

 

Since the size of sample is normally much greater than the measurement orifice, the 

measurement principles are discussed under one dimension, and the Cartesian 

coordinate system is used, shown as Figure 2.5. 

 

Figure 2.5 Geometry of 1-D AquaFlux modeling [21] 
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As mentioned above, the internal space of the measurement chamber is small enough 

to suffocate natural convection and other bulk air movement. Therefore, diffusion is 

the only transport mechanism available, so bulk air movement is ignored, and thus, 

the migration of the water molecules in the chamber can be calculated using Fick’s 

first law of diffusion: 

z
HDJ VA !

!
"=                            (2.5) 

where J  is the water vapour flux density from the sample surface, VAD  is the 

molecular diffusion coefficient for water vapour in air ( smDVA /1042.2 25!"=  at 

room temperature 20oC), and H is the water vapour humidity. 

 

Similarly, the temperature transfer is expressed as: 

z
KQ A !

!
"=

#                            (2.6) 

where Q  is the heat flux density, AK  is the thermal conductivity of air, and !  is 

the temperature distribution in the chamber. 

 

Immediately after the vapour enters the chamber from the sample, it will be removed 

by the condenser. The steady-state vapour distribution is established. The steady-state 

solution is characterized by the constant water vapour humidity gradient 
z
H
!

!  in the 

chamber, whence the water vapour flux density from the sample surface. Therefore, 

( ) ( )
zL
LHzH

DJ
C

C
VA !

!
=                       (2.7) 

In the AquaFlux measurements, the water vapour humidity ( )zH  is calculated using 

the following equations. 

( ) ( )zVEzH !"#=                            (2.8) 

where !  is the fractional RH value, ( )!"VE  is the equilibrium vapour density at 

temperature ! , and z!  is the temperature at position z. 
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Then Eq. (2.8) can be rewritten as: 

( ) ( )[ ]CVECzVEz
C

VA

zL
DJ !"#!"# $
$

=                  (2.9) 

where z!  and C!  are the fractional RH values at z and at the condenser 

respectively, !  and C!  are the temperatures at z and at the condenser respectively, 

and ( )zVE !"  and ( )CVE !"  are the equilibrium vapour densities at z and at the 

condenser respectively. 

 

Due to the thermodynamic equilibrium between the vapour phase near the condenser 

and the solid phase at the condenser (ice), 1=C!  at the condenser. The Eq. (2.9) can 

be simplified as: 

( ) ( )[ ]CVEzVEz
C

VA

zL
DJ !"!"# $
$

=                    (2.10) 

Some extreme cases of the above equation are important for the AquaFlux 

measurements. When sLz = , Eq. (2.9) is rewritten as: 

( ) ( )[ ]CVESVES
SC

VA

LL
DJ !"!"# $
$

=                  (2.11) 

where S!  and S!  are the temperature and the fractional RH value at the RHT 

sensor respectively, and above equation allows the flux density to be determined from 

measurements of SS !" ,  and C! . 

 

When 0=z , Eq. (2.10) becomes: 

( ) ( )[ ]CVEVE
C

VA

L
DJ !"!"# $= 00                      (2.12) 

where 0!  and 0!  are the temperature and the fractional RH value at the sample 

surface. 
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The above equation specifies the microclimate immediately above the sample surface. 

With J  calculated from Eq. (2.11), the fractional RH value at the sample surface can 

be calculated. 

 

Comparing with other water vapour flux density measurement instruments, such as 

Tewameter (Courage + Khazaka Electronic GmbH, Germany), Delfin VapoMeter 

(Delfin Technologies, Finland) and Evaporimeter (Cortex Technology ApS, 

Denmark), AquaFlux has many advantages, for example, high sensitivity, low noise, 

super reliability, excellent calibration ability and comparability, and above all, the 

measurement results are independent of external environment. AquaFlux can be used 

in the following areas [21-23]: 

(1) Skin barrier function, skin recovery, skin disease etc., based on TEWL 

(Trans-Epidermal Water Loss) measurements. 

(2) Membrane penetration and permeation. 

(3) Material absorption/ desorption.  

 

2.3 Capacitive Contact Imaging Based on Fingerprint sensor  

The water content within human skin is very important for its cosmetic properties and 

its barrier functions; however, to measure it is very difficult. There are some 

disadvantages of the commercial skin hydration measurement devices, such as, poor 

repeatability, reproducibility and difficult to calibrate. To address these issues, a novel 

hand-held probe for in-vivo skin hydration imaging using capacitive Fingerprint 

sensors has been developed by the research group. It is based on capacitance 

measurement principle of capacitors. 

 

Commonly, a capacitor is used to store (hold) the electrical charge. A capacitor is 

constructed of two conductive parallel plates separated by a non-conductive medium 
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or the dielectric region. Assuming that the parallel plates are charged with Q+  and 

Q!  and that the voltage between the plates is V , the capacitance can be shown as: 

V
QC =                                   (2.13) 

 

The unit of measurement used for measuring capacitance is farad, where 1 farad is 

equal to 1 coulomb per volt [24]. 

 

The capacitor stores energy which is equal to the energy required to charge it and thus 

electrical energy is not dissipated. 

 

If a small element of charge ( )dq  is moved across the two plates against the 

potential difference CqV /= ; it will require the amount of energydW : 

dq
C
qdW =                                 (2.14) 

 

This energy fluctuates depending on the interference of the dielectric medium.  

 

Fingerprint sensors [25, 26] are based on the capacitance fringing field measurement 

principle. The parallel plates of capacitor are split to a coplanar position; the fringing 

electric field will continue to create a field between the two plates, see Figure 2.6. 

 

 

 

Figure 2.6 Two parallel capacitor plates are moved into coplanar position with fringing electric fields. 

Reproduced from [24] 
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Each set of a parallel plate is regarded as a cell and each cell in turn contains a 

feedback capacitance known as a sensor plate. After a side--by--side array of 

alternating charged and sensor conductor plates are created, the alternating plates 

form the two plates of the capacitor. Meanwhile, any interference in between the 

plates causes the dielectric fields to change between the conductor plates. One set of 

conductor plates makes a single cell whose size is larger than the width of one ridge on 

the skin. The print image is created when the sensor detects variance in dielectric 

constants between the two. 

 

Each set of the conductor plates (or cells) contains their own electrical circuit which 

the electrical circuit creates an inverting operational amplifier that alters the voltage 

being supplied thus making them tiny groups of semiconductor chips. The altered 

voltage is connected to the inverting terminal input and the non--inverting terminal 

input is relative to a reference voltage supply and a feedback loop. This feedback loop 

is in turn connected to the amplifier output which includes two conductor plates. 

 

Fingerprint sensor is non-invasive, quick, simple to use, imaging based and is based 

on latest fingerprint sensor technologies and using well researched mathematical 

imaging processing algorithms. Compared with thermal sensors, capacitor technology 

offers better image quality with a wider range of operating conditions. It can measure 

any part of the body, and generate 300256!  pixels black and white skin capacitance 

images with a mm µµ 5050 ! special resolution. In each image, each pixel is 

represented by an 8 bit grayscale value, 0~255, with 0 represents white (i.e. dry skin - 

low capacitance) and 255 represents black (i.e. wet skin- high capacitance). 

 

The prototype of capacitive contact imaging based on Fingerprint sensor shown in 

Figure 2.7 has many functions [25, 26]: 
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(1) By processing those capacitive skin images using a dedicated software 

programme with purposely designed mathematical algorithms, we can produce 

skin hydration images, skin micro relief images and skin 3D surface profile 

images. 

(2) It can also be used for study soft materials. 

(3) It can also be used to study solvent membrane penetrations. Apart from water, 

Fingerprint sensor is also sensitive to many the solvents using in 

pharmaceutical studies.  

 

 

Figure 2.7 The prototype of capacitive contact imaging based on Fingerprint sensor 

 

2.4 Conclusions  

In summary, OTTER is an infrared remote sensing technique for the Non-Destructive 

Examination (NDE) of sample surfaces, through their optical and thermal properties. 

AquaFlux is a novel technology for measuring water vapour flux density from 
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arbitrary surfaces and capacitive contact imaging based on Fingerprint sensor is a 

novel fringing field capacitive imaging technique, which can be used both for water 

measurements, as well as solvent measurements. It is a potentially very useful tool for 

studying solvent penetrations through membranes or skin. 
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Chapter 3 Content-based Image Retrieval Using 2D Gabor Wavelet 

Texture Feature 

 

Skin imaging plays a key role in many research areas, such as dermatology, clinical 

analysis, pharmacology and cosmetic science. In our research, many different imaging 

technologies have been used, including standard digital camera, Dermilte 

Dermoscopy, Proscope HR microscope and capacitive contact imaging based on 

Fingerprint sensors [27-30]. As more and more skin images are added to databases 

and there is clearly a need for effective and efficient image retrieval systems. 

Content-based image retrieval (CBIR) [31] is a useful technology to retrieve stored 

images from the database by supplying query images. In a typical CBIR, images are 

retrieved based on color, shape, and texture, etc. In this chapter, texture feature is used 

for retrieving images, and 2D Gabor wavelet transform, which is an important and 

promising method, is used for texture feature description and extraction. The results 

show that the 2D Gabor wavelet texture features can work efficiently on human face 

images, skin medical images and skin capacitive images generated by capacitive 

Fingerprint sensor. 

 

!"# $%&'(%&)*+'),'-.'/01)*'203&4&('(*056,)*7'

 

In image processing, texture generally refers to the structures consisting of large 

numbers of texture elements or models similar to each other; it is a key component for 

human visual perception and plays an important role in image-related applications. 

Meanwhile, texture features have been researched in the content-based image retrieval, 

image classification and segmentation. Gray-level co-occurrence matrix [32], Tamura 

texture feature [33], and Gabor wavelet texture feature [34, 35] are the conventional 
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methods used to describe texture feature. Compared with other techniques, Gabor 

wavelet texture feature is computationally simpler, and image analysis using Gabor 

wavelet transform is similar to perception in the human visual system [36]. Gabor 

wavelet transform has been used in optical character recognition, iris recognition and 

fingerprint recognition. This chapter describes an image retrieval technique based on 

Gabor wavelet texture feature. 

 

3.1.1 Wavelet Transform 

 

It is well know that the Fourier transform has been the most commonly used tool for 

analyzing frequency properties of a given signal. However, this transformation is a 

global transformation, with some limitations, namely, after transformation, the 

information about time is lost and it is hard to tell where a certain frequency occurs. 

To solve this problem, the wavelet transform [37, 38] which is a kind of 

time-frequency analysis techniques was developed by the geophysicist Jean Morlet in 

1981. Wavelet transform could extract both the time (spatial) and frequency 

information from a given signal, and the tunable kernel size results in different 

time-frequency resolution pairs. For example, bigger kernel size has higher resolution 

in frequency domain but lower resolution in time domain, and is used for lower 

frequency analysis. Smaller kernel size (in time domain) has higher resolution in time 

domain but lower resolution in frequency domain, and is used for higher frequency 

analysis. This great property makes wavelet transform useful for many image 

processing tasks. In other words, the image can be seen under the lens with a 

magni!cation given by the scale of a wavelet. This great character also makes wavelet 

transform suitable for applications such as image edge detection, filter design, and 

some kinds of image object recognition, etc. 

 

Wavelets, as the name suggests, are ‘little waves’. If a single real valued 

function )()( 2 RLt !" , namely, )(t!  must satisfy the admissibility condition:  
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where )(!" denotes the Fourier transform of )(t! and ( )RL2  represents the space 

of finite- energy (also known as square – integral) functions. 

 

Then the function )(t! is called the basic wavelet or mother wavelet. 

 

Once one has a mother wavelet, one can then generate wavelets by the operations of 

dilation and translation as follow:   

)()( 2/1

, s
tt ss

!
""

!

#
=

#

 
Rs !", 0>s

                                         (3.2)
 

where s  is dilation parameter and !  is translation parameter. 

 

 

3.1.2 Gabor Wavelet Transform 

 

Gabor wavelet transform is a wavelet transform and among the different kinds of 

wavelet transforms, the Gabor wavelet transform has some impressive mathematical 

and biological properties and has been used frequently in image processing research. J. 

G. Daugman found that simple cells in the visual cortex of mammalian brains can be 

modeled by Gabor functions, see figure 3.1 [35]. Gabor wavelet transform can extract 

the relevant textural feature at different scales and directions in the frequency domain 

[39]. It is widely used to extract texture features from images for image retrieval and 

has been shown to be very efficient [40- 44]. 
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Figure 3.1Top row: illustrations of empirical 2-D receptive field profiles measured by J. P. Jones and 

L. A. Palmer (personal communication) in simple cells of the cat visual cortex. Middle row: best-fitting 

2-D Gabor elementary function for each neuron, described by (IO). Bottom row: residual error of the 

fit, indistinguishable from random error in the Chi- squared sense for 97 percent of the cells studied 

[35].  

 

Gabor wavelet transform has a good joint resolution in both spatial and frequency 

domain. It is well known that there is always uncertainty [45] between the time and 

the frequency resolution, namely, when the time duration gets larger, the bandwidth 

becomes smaller. Among various wavelet bases, the Gabor function is proved to 

achieve the lower bound optimally the optimal in the sense of minimizing the joint 

two-dimensional uncertainty in space and frequency. 

 

The typical 2D Gabor function can be expressed as the product of Gaussian function 

and sinusoidal function [44, 46]: 
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where ! x  and ! y  are the Gaussian variance, which describe the spreads of the 

Gaussian function, j is the imaginary part of complex number, f is the frequency of 

the sinusoidal function. Using Eq. 1 as the mother function, we can generate a set of 

child functions, called Gabor wavelets. 
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where Kn /!" = , n = 0, 1, …, K-1, and K  is the total number of the directions 

which specifies the orientation of a Gabor function; m = 0, 1, …, S-1, and S is the 

number of scales which specifies the amplitude of a Gabor function. If we use ( hl UU , ) 

to denote the lower and upper center frequency of the sinusoidal function, we have 
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Figure 3.2 shows typical 2D Gabor wavelet profile with different directions and 

scales. 
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(A)  Gaussian function            Sinusoidal function            Gabor function 

 

 1 2 3 4 5 6 
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(B) Top view of 2D Gabor wavelet profiles at 6 different directions (columns) and 4 scales (rows). 

 

Figure 3.2 2D Gabor wavelet profile with different directions and scales (A) shows profiles of 

Gaussian function, sinusoidal function and the corresponding wavelet function; (B) shows the 2D 

Gabor wavelet profiles at 6 different directions and 4 different scales. 

 

Image feature extraction based on 2D Gabor wavelet transform is introduced as 

follows [44, 47]: 

 

A: Transform the colour images into gray images. 
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B: Process the image by applying the Gabor wavelet transform. 

 

Gabor wavelet transform can be considered as a wavelet transform whose mother 

wavelet is Gabor function. For a given image ),( yxI  with NM !  pixels, its Gabor 

wavelet transform is defined as follows: 

11
),(),(),( 1111 yxmnmn ddyyxxgyxIyxW !!"= #              (3.6) 

where * represents the complex conjugate. 

 

In this chapter, lU  and hU  used are 0.05 and 0.4, the total number of directions (K) 

and scales (S) and have chosen to be 6=K  and 4=S , respectively, which is 

resulting 4x6=24 Gabor wavelet filters to filter the images. The values of scales (S) 

and directions (K) in Gabor wavelet transform not only affect the accuracy of retrieval, 

they also affect the computational time of program. More discussions on the choices 

of S and K, as well as lU  and hU , can be found in section 3.2.2 and 3.2.3 later in 

this chapter.  

 

C: Find the mean and standard deviation as a texture feature. 

 

An array of magnitudes, which represent the energy content at different scales and 

directions of the image, can be obtained after applying Gabor wavelet filters on the 

image with different directions and different scale, 

!!=
x y

mn yxWnmE ),(),(                  (3.7) 

The mean mnµ  and the standard deviation mn!  of the magnitude of the transform 

coefficients are used to indicate the region for classification and retrieval purposes: 
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D: Get the feature vector F. 

 

A feature vector F is created using mnµ  and mn!  as the feature components. In this 

paper, scales S and directions K are set to 4 and 6, so the feature vector defined as 

follows: 

[ ]3535010000 ... !µµ!µ=f                      (3.9) 

Figure 3.3 is the flowchart of Gabor filter feature extraction. S and n specify which 

Gabor filter is selected. 

 

 

Figure 3.3 The flowchart of Gabor feature extraction. 
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E: Similarity Measure. 

 

Distance measurement and correlation measurement are the two main image 

similarity measurements. In this chapter, distance measurement is used only. The 

distance between the query images i and the target image j in the database is defined 

by: 

),(),( jidjid
m n

mn!!=                                (3.10)  
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=                     (3.11) 

( )mnµ!  and ( )mn!" , which are used to normalize the individual feature components, 

are the standard deviations of the respective features over the entire database. 

 

 

3.2 Results and Discussions 

All the skin images used in this study were taken by using standard digital camera and 

capacitance based Fingerprint sensor, except the skin cancer and skin disease images, 

which were from Skin Cancer page of About.com [48]. Standard digital camera used 

is SONY DSC--W55 model, which has a 7.2 Mega Pixels with 3X optical zoom. A 

Matlab programmer has been developed to implement the Gabor wavelet transform 

for analyzing the skin images, and a Matlab Graphic User Interface (GUI) was also 

developed to simplify the operations. As the first step to evaluate the algorithm, a 

database containing fifty-six images are used in this study, the database images are in 

JPEG format, including six different digital colour human face images, four different 

digital colour skin cancer images, four different digital colour skin disease images and 

the rest of them are skin texture grey capacitive images which were captured from 

Fingerprint sensor [48]. Figure 3.4 shows some sample images from the database. 
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Faces 

 

Skin cancers              Skin diseases 

 

Capacitive skin images 

Figure 3.4 Sample images from the database 

 

3.2.1. Image query results 

Figure 3.5 shows the GUI for preliminary results on image retrieval using Gabor 

texture features. In all the four retrieval results shown, the upper left image in the first 

row is the query image and the others in the second row are the results of retrieved 

images from the image database. The best three retrieved images are shown for 

illustration. The retrieved images are ranked in descending order according to the 

similarity of their Gabor texture features to those of the query image, i.e. the most 

similar, the second similar, and the third similar images. In this study, for reasons of 

simplicity, the query images are also from the database, and therefore the most similar 

result should always be the image itself. 
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In Figure 3.5 (a)-(g), the query images are grey capacitive skin images captured from 

finger, eye, face, forehead, neck, volar forearm and palm. The black spots are the 

areas that water is actively coming out of skin. As it can be seen, the three most 

similar images are all similar finger, eye, face, forehead, neck, volar forearm and palm 

grey capacitive images captured from Fingerprint sensor. Figure 3.5 (h) shows the 

retrieval result for a query image using a human face. Human face pictures in the 

database are with two different expressions – smile and non-smile. The most similar 

image is the same one. The second most similar image is the same person without 

smile and the third image is that another person without smile. It shows that this 

method has certain reference value for human face recognition. It might be also useful 

for facial expression recognition. Figure 3.5 (i) and (j) are the output of skin disease 

classification. The query image in Figure 3.5 (i) is a skin cancer picture of melanoma. 

From the illustration, the three most similar images are all skin cancer images. The 

query image in Figure 3.5 (j) is a skin disease picture of leucoderma. From the 

illustration, the three most similar images are all leucoderma images. The results show 

that Gabor wavelet transform could also be potentially used for skin disease 

diagnostics. Users could take a skin image, search the skin disease database, find out 

what possible type of skin disease it might resemble, and seek doctors for early 

diagnoses. 
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(a) 

 
(b) 
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(c) 

 

(d) 
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(e) 

 

(f) 
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(g) 

 
(h) 
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(i) 

 

(j) 

Figure 3.5Image retrieval results using Gabor texture features 
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3.2.2. The effects of scales (S) and directions (K) 

 

The values of scales (S) and directions (K) in Gabor wavelet transform not only affect 

the accuracy of retrieval, they also affect the computational time of program. Figure 

3.6(a) and (b) show typical retrieval errors and Figure 3.6 (c) shows the relationships 

between computational time and the production of scales and directions ( )KS! . If any 

of the best three results is not the right type of images, such as Figure 3.6 (a) or (b), 

we classify it as a retrieval error, and then we can plot the relationships between 

retrieval errors and KS ! , also shown in Figure 3.6 (c). Generally speaking, the 

higher the values of KS ! , the lower the retrieval errors, but the longer the 

computational time; the lower the values of KS ! , the shorter the computational time, 

but the higher the retrieval errors. The key is to find the optimum value of KS ! that 

has highest accuracy, but the lowest possible computational time. From this study, it 

is found that setting scales and directions to 4 and 6 is a reasonable choice. 
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Figure 3.6 (a) and (b) are image retrieval errors, (c) is computational times and retrieval errors 

against the production of scales and directions KS ! . 

 

 

3.2.3. The effects of lU  and hU  

Although the values of lower and higher center frequency lU  and hU  do not affect 

the computational time, they do affect the retrieval accuracy. In general, the values of 

lU  and hU are set to 0.05 and 0.4 because the lowest frequency of image is 0 and the 

highest frequency of image calculated from Nyquist sampling theorem [49] is 0.5. 

According to the visual characteristics of the human eye, the frequency range from 
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0.05 to 0.4 can be completely reflected people's perception of texture features [50]. 

However, the retrieval results using these standard values shown in Figure 3.7 (a) are 

unsatisfactory because the query image in Figure 3.7 (a) is the neck grey capacitive 

image, but the third most similar image is the face grey capacitive image. By 

changing the value of lU  and hU to 0.2 and 0.3 and the results shown in Figure 3.7 (b) 

become much better. From Figure 3.7, it can be concluded that the values of lU  and 

hU  might need to be adjusted differently to different type of images in order to have 

better retrieval accuracy. 

  

(a)                              (b) 

Figure3.7 Image retrieval results using Gabor texture features. 

 

3.2.4. Further discussions 

 

In practical applications, there are many factors which will affect the accuracy of 

retrieval, for example, the same face image with different orientations, the same skin 

area with different location, the same skin with different lighting and at different days 

etc. In human face recognition, changing of people's face, such as, wearing glasses, 

eye closed, different hairstyles, will also increase the retrieval difficulty, which results 

in retrieval accuracy decreasing. In chapter 7, a detailed study which involves 
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retrieving human face images with different orientations will be presented. 

 

3.3 Conclusions 

In summary, an effective image retrieval method based on Gabor wavelet transform 

has been developed, and the effects of the parameters used in Gabor wavelet 

transform, e.g. the scales, directions, lower and higher center frequency, have been 

discussed. Experimental results show that Gabor wavelet transform can be used for 

retrieving different types of images, namely digital colour face images, digital colour 

skin cancer, skin disease images, and grayscale skin capacitive images. This suggests 

that using the Gabor wavelets to extract texture features could be potentially useful 

for human face recognition, facial expression recognition, skin cancer and disease 

diagnostics etc. The results also show that Gabor wavelet transform is particularly 

effective for retrieving grayscale skin capacitive images of the different parts of 

human body, which are very similar in texture.  
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Chapter 4 In-Vivo Skin Capacitive Imaging Analysis by using Grey 

Level Co-occurrence Matrix (GLCM) 

Skin capacitive contact imaging based Fingerprint sensors has shown potentials in 

skin hydration imaging, skin texture analysis, skin 3D surface profiles, and skin micro 

relief measurements [51- 55]. It is based on capacitance measurement principles, and 

the measurement results depend on the sample’s dielectric constants. Our latest 

studies showed that apart from water, capacitive Fingerprint sensors are also sensitive 

to many solvents, due to their high dielectric constants. This makes the technique very 

useful for skin hydration, solvent penetrations, as well as in-vivo trans-dermal drug 

delivery studies [56, 57]. The aim of this chapter is to develop a new mathematical 

algorithm based on Grey level co-occurrence matrix (GLCM) to analyze the 

capacitive skin images, in order to extract information on skin texture and solvent 

penetrations. This chapter will first introduce the theoretical background of GLCM 

and then show some analysis results. 

 

4.1 The Theory of Grey Level Co-occurrence Matrix (GLCM) 

 

Grey level co-occurrence matrix (GLCM), proposed by Haralick in the 1970s [58- 60], 

is an image processing technique that has been widely used for measuring of texture 

in images. It first generates a grey level co-occurrence matrix that is defined as the 

distribution of co-occurring values at a given offset over a given image, and then 

calculates a set of textual features (usually called Haralick features) from the matrix 

that can reflect the image texture. There are 14 different textual features, but only 4 

are independent [61], namely angular second moment (ASM), entropy (ENT), 

contrast (CON) and correlation (COR). 
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4.1.1 Grey Level Co-occurrence Matrix 

Grey Level Co-occurrence Matrix (GLCM) [62- 65] provides a mature and effective 

statistical method for analyzing texture. It reflects the comprehensive information of 

the direction, adjacent interval and amplitude variations for image grey-level. For a 

given image I, the corresponding GLCM can be calculated by:  

( ) !!
= = "
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n

x

m
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%          （4.1） 

where ),,,( !djiP  in GLCM describes the probability with which two pixels 

separated by a particular displacement distance d  and a specified angle !  occur on 

the image, one with grey-level i and the other with grey-level j. The following 

example is used to illustrate the process of calculation. 

 

A 4 by 4 section I of an image having five grey-level intensities is showed below 

(vectors and matrices are indicated in bold). 
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If an image contains G grey-levels from 0 to G-1, then the GLCM can be written as a 

G ! G matrix. Consider I, a 55! matrix is formed and sequential numbers along the 

left (reference) and top (neighbor) are used to indicate them. A generalized GLCM for 

that image is shown in figure 4.1. The # (i, j) stands for number of times gray tones i 

and j have been neighbors satisfying the condition stated by displacement vector d. In 

this chapter, the distance d is considered as 1 i.e. only adjacent pixels are considered. 
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Gray 

tone 

    0     1     2     3     4 

   0 #(0,0)   #(0,1)   #(0,2)   #(0,3)   #(0,4) 

   1   #(1,0)   #(1,1)   #(1,2)   #(1,3)   #(1,4) 

   2   #(2,0)   #(2,1)   #(2,2)   #(2,3)   #(2,4) 

   3   #(3,0)   #(3,1)   #(3,2)   #(3,3)   #(3,4) 

   4   #(4,0)   #(4,1)   #(4,2)   #(4,3)   #(4,4) 

 

Figure 4.1 General form of GLCM 

 

For example, when angle ! is considered as 0º i.e. along the positive x-axis from left 

to right, 0 (reference) adjacent to 0 (neighbor) in I occurs 0 times, hence we put 0 at 

position (0, 0) of G, 1 adjacent to 0 occurs 1 times (rows 3) hence (1, 0) contains 1. 

This procedure is repeated for all pairs of intensities starting in the upper left corner 

and proceeding to the lower right: 
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The texture calculation requires a symmetrical matrix. In order to get the GLCM into 

this form, the calculation should be moved along the –ve x-axis, i.e. we had looked 

from right to left, and then the matrix formed would have been the transpose 

matrix TG . After adding transpose to the original, a symmetrical matrix, namely 

TGGS +=  is generated: 
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Before GLCM is used to extract the features, it should be normalized by dividing each 

element by the sum of all elements to form 0S . 

 

The '0'  in the subscript indicates angle =! 0º. There are another three directions: 

vertical ( =! 90º), right diagonal ( =! 45º) and left diagonal ( =! 135º) generating 

matrices 9045 ,SS  and 135S  which also can be computed: 
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4.1.2 Textural Features and Their Significance 

 

Four different GLCM feature vectors, i.e. angular second moment (ASM), entropy 

(ENT), contrast (CON) and correlation (COR) are selected to describe the skin texture, 

see Eq.(4.2) to Eq.(4.5) for their definitions: 

 

       ASM = {P̂ i, j,d,!( )
j=0

G!1

"
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" }2         （4.2） 

Where P̂ i, j,d,!( )  represents normalizedP i, j,d,!( ) , and G is the total number of 

grey-levels. 
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The angular second moment (ASM) [59, 66] is the squared sum of all the elements of 

GLCM, also called energy. ASM measures the texture uniformity, it can also reflect 

the thickness of skin micro relief lines, i.e. the thicker the micro relief lines, the higher 

ASM value, and the thinner the micro relief lines, the lower the ASM value [67]. 

 

The term entropy has originated in thermodynamics. In image processing, the entropy 

(ENT) [58, 59, 68] is a statistical measure of the disorder of an image, reflects the 

randomness of grayscale distribution. Its value achieves the largest when all elements 

in GLCM are as equal as possible and the smallest when some values are high and 

others low. The more dense the texture is, the more scattered the grayscale 

distribution, and the more small elements GLCM has. Hence the entropy value is 

higher. 

 

The contrast (CON) [69- 71] is a measure of the amount of the local grey level 

variations in an image, which is the moment of inertia of the matrix around its main 

diagonal. Values on the GLCM main diagonal imply no contrast, and contrast value 

increases away from the main diagonal. The larger amount of the local grey level 

variations the image has, the higher the values for the GLCM elements which are 

further away from the main diagonal, so, creating a weight that increases as distance 

from the diagonal increases. Therefore, the contrast value is higher. 

 

The correlation (COR) [69- 71] is a measure of grey level linear-dependencies in an 

image. This also reflects the degree of the rows (or columns) of the GLCM relative to 
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each other. For example, when the number of the textures in the horizontal direction is 

more than other directions, the value of the correlation feature is higher along this 

direction compared to the values for others. 

 

4.1.3 Preprocessing Images 

 

In this chapter, through using histogram equalization to increase image grayscale 

dynamic range, the contrast and sharpness of the image are improved and the detailed 

features of the image has also been better highlighted, which make subsequent 

processing easier, faster, more accurate and reliable. The principle of the histogram 

equalization is introduced as follows [72]: 

 

In the image, let the variable r denote the intensities of an image to be processed and 

the range of r is from 0 to L-1, with r= 0 representing black and r= L-1 representing 

white. Let ( )rPr  represent the probability density function (PDF) of the intensity 

levels in a given image where the subscript is used for discriminating that the PDF 

belongs to input or the output images. The output intensity level s can be obtained 

through performing the following transformation on the input levels: 

s = ( ) ( ) ( )
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Wherew is a dummy variable of integration. 

 

The discrete form for the equation (4.6) is: 
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where MN is the total number of pixels in the image.  
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Through using equation (4.7) namely, mapping each pixel in the input image with 

intensity kr  into a corresponding pixel with level ks  in the output image, the input 

image is obtained. The transformation ( )krT  in this equation is called a histogram 

equalization or histogram linearization transformation. 

 

4.1.4 Experimental Procedures 

In this research, four sets of experiments are performed. The first experiment involves 

two healthy male volunteers whose age ranges are 20-30 years old and 40-50 years 

old respectively. The capacitive images are taken from their foreheads, eyes and 

cheeks, and each site is repeated six times. 

 

The second experiment is solvent penetration through in-vivo skin combined with 

tape stripping. In this experiment, two solvents are used: undiluted dimethyl sulfoxide 

(DMSO) and undiluted ethylene glycol (EG), due to their relatively high dielectric 

constants compared with dry skin, as shown in Table 4.1. DMSO and EG are also 

chosen because they are commonly used in many cosmetic products.  

 

Three different skin sites on the volar forearm of a healthy female volunteer (Asian, 

aged 29 and a mass of 56 kg) are selected, with one skin site is for DMSO, one for EG, 

and one is used as a control site. Before performing measurements, the volunteer was 

acclimatized for 20min, and each skin site was wiped clean with EtOH/water (95 %) 

solution. And then a small amount of solvent (～0.1 mL) is applied for 5min on each 

test skin site. After the test site is wiped dry, tape stripping is performed. Fingerprint 

sensor measurements are performed both before and after the solvent applications, 

and after each stripping. Tape stripping is repeated for twelve times. 
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Materials Skin Water DMSO Ethylene Glycol 

Dielectric Constant 7 80.4 47.2 37 

Table 4.1 Dielectric Constants of the solvents and skin 

 

The third experiment is using Fingerprint Sensor to study the permeation ability of 

solvent. Six different solvents were selected for this test (Table 4.2). 

. 

Solvent Dielectric constant 

Water 80 

Ethanol 24.55 

Butanol 18 

Heptanol 11.75 

Decanol 8.1 

Propylene Glycol 32.1 

Table 4.2 The dielectric constants for the used solvents 

 

A piece of membrane is fixed on the Fingerprint Sensor and a regular hexagonal 

sleeve is put on top of the membrane. After the sleeve is filled with solvents, 

measurements started for about 1000 seconds. Six different solvents were studied: 

butanol, decanol, heptanol, propylene glycol (PG), water and ethanol. 
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The fourth experiment is using Fingerprint Sensor to study the skin immersive 

hydration. Two different skin sites on the volar forearm of a healthy female volunteer 

(Asian, aged 31 and a mass of 56 kg) are selected, with one skin site is used as a test 

site and one is used as a control site. The skin test site is hydrated by soaking in room 

temperature water for 30 min. After the soaking, the test site is carefully wiped dry. 

The measurements are performed both before soaking and periodically after at both 

sites at 5min, 10min, 15 min, 20min and 30min. 

 

4.2 Results and Discussions 

4.2.1 Experiment 1 – Different Skin Sites 

 

Figure 4.2 shows the grey capacitive images on the skin sites of forehead, cheek and 

eye, from two male volunteer with different ages. Each skin site is repeated 6 times. 

Figure 4.3 shows the corresponding feature vector values, changing with age on the 

skin sites of forehead, cheek and eye. 

 

The results show that the ASM values of the volunteer whose age range is 40-50 years 

old are bigger than the values of the volunteer whose age range is 20-30 years old, 

indicating the skin textures of the volunteer whose age range is 40-50 years old are 

coarser and thicker than another’s. The results also show that the entropy values 

indicate the reverse trend between the two different volunteers, which indicates that 

the skin textures of older volunteer are sparser than the younger’s. The contrast and 

correlations values show little changes between the two different volunteers. 
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Forehead 

Volunteer 1 

 

Volunteer 2 

 

 

Cheek 

Volunteer 1 

 

Volunteer 2 

 

 

Eye 

Volunteer 1 

 

Volunteer 2 

 

 

Figure 4.2 The capacitive images on the forehead, cheek and eye from two male volunteers with 

different ages, volunteer 1 (age from 20-30) and volunteer 2 (age from 40-50). 
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(a) (b) 

  

                  (c)                                    (d) 

Figure 4.3 The corresponding graph of the feature vectors of images of Figure2, (a) The graph of ASM; 

(b) The graph of ENT; (c) The graph of CON; (d) The graph of COR. The error bars show the standard 

deviation of each site, which was repeated six times. 

 

 

 

4.2.2 Experiment 2 – Skin Solvent Penetration with Tape Stripping 

Figure 4.5 shows the corresponding GLCM feature vector results of the Figure 4.4 

images. The fluctuation of the data largely reflects the noise, measurement error and 

bio-variability; however, if we use the control skin site as a reference, we can 

compare the trend of two test skin sites.  
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A 

 

Before   After (DMSO)  strip 1     strip 2     strip 3     strip 4     strip 5 

 

     strip 6     strip 7    strip 8     strip 9    strip 10   strip 11    strip 12 
B 

 

Before   after (EG)    strip 1      strip 2     strip 3     strip 4    strip 5 

 

strip 6     strip 7     strip 8     strip 9   strip 10    strip 11    strip 12 
C 

 

Before       After     strip 1    strip 2     strip 3    strip 4     strip 5 

 

strip 6      strip 7     strip 8    strip 9    strip 10   strip 11    strip 12 

 

Figure4.4 The capacitive images of (A) the DMSO skin site, (B) the ethylene glycol site, and (C) the 

control site, before and after solvent application and subsequently during tape stripping 
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In the angular second moment results, the two test skin sites fluctuated along the 

control site, indicating there is no difference. The overall downward trend on three 

different skin sites is likely due to the texture on three different skin sites, shown in 

Figure 4.4, becoming thinner and thinner with the increasing number of tape 

stripping. 

 

Figure 4.4 shows the capacitive images of three skin sites of on the volar forearm of a 

healthy female volunteer during the solvent penetration measurements. The results 

show that the capacitive images can clearly differentiate the solvents, e.g. DMSO and 

EG, from the skin. The results also show that DMSO penetrates more and deeper than 

EG. 

In the entropy results, the two test skin sites fluctuated along the control site, a 

slightly more than the angular second moment results, but again, no significant 

difference. The overall upward trend on three different skin sites is likely because of 

the texture on three different skin sites, shown in Figure 4.4, becoming denser with 

the increasing number of tape stripping.  

 

It is quite different for the contrast results. The control site increased first then 

gradually decreased. The changes of the contrast values of the skin sites applied 

DMSO and EG are far greater than the variation range of the control site, especially in 

the beginning. The EG site dropped significantly immediate after the EG application, 

then gradually increased to the similar level as the control site. This suggests that with 

the increasing number of the tape stripping, the amount of EG in skin is decreasing, 

until it is almost exactly the same as the control site. For DMSO site, it also decreased 

sharply after the DMSO application, indicates the presence of DMSO in skin, but it 

did not recover back to the control site level, this indicates that DMSO has penetrated 

much deeper and probably caused more damage than EG. A similar reverse trend can 

also be observed in the correlation results.  
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( a )                                 ( b ) 

  

                    ( c )                                 ( d ) 

Figure 4.5 The trend graph of feature vectors on three different skin sites  (a) The trend graph of 

ASM on three different skin sites  (b) The trend graph of ENT on three different skin sites  (c) The 

trend graph of CON on three different skin sites  (d) The trend graph of COR on three different skin 

sites 

 

Combined with the first experiment, it is concluded that the angular second moment 

values and the entropy values reflect more about the skin texture, rather than topically 

applied solvents, whilst the contrast values and the correlation values reflect more 

about the topically applied solvents. These results also show that GLCM could be 

potentially a powerful tool for skin aging studies and skin solvent penetration studies; 

we could use GLCM to quantify the skin texture and skin aging. Through proper 

calibrations, it is also possible to use GLCM to quantify the solvent absorption within 

skin, and the solvent penetration through skin. 
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4.2.3 Experiment 3 – Membrane Solvent Penetrations  

A. Butanol 

 
   (80s)        (160s)     (200s)      (240s)      (440s)      (640s)      (800s)      (1000s) 

B. Decanol 

    
      (80s)      (160s)      (200s)      (240s)      (440s)      (640s)      (800s)      (1000s) 

C. Heptanol 

    
     (80s)       (160s)      (200s)      (240s)      (440s)      (640s)      (800s)      (1000s) 

D. PG 

    
     (80s)       (160s)       (200s)     (240s)      (440s)       (640s)       (800s)     (1000s) 

E. Water 

    
     (80s)       (160s)      (200s)      (240s)       (440s)      (640s)      (800s)      (1000s) 

F. Ethanol 

    
      (80s)       (160s)      (200s)      (240s)      (440s)      (640s)      (800s)      (1000s) 

Figure 4.6 The capacitive images of membrane solvent penetrations at different times after application. 
(A) butanol, (B )decanol, (C) heptanol, (D) PG, (E) water and (F) ethanol. 
 

Figure 4.6 shows the capacitive images of butanol, decanol, heptanol, PG, water and 

ethanol membrane penetrations at different times. The results show that the capacitive 
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images can clearly reflect the rate and the equilibrium of penetration of different 

solvents. 

 

   

(a)                                  (b) 

   
(c)                                (d) 

Figure 4.7 The corresponding graph of the feature vectors of images of Figure4.6. (a) The ASM of 6 

different solvents  (b) The ENT of 6 different solvents  (c) The CON of 6 different solvents  (d) The 

COR of 6 different solvents 

 

Figure 4.7 shows the corresponding GLCM feature vector results of the Figure 4.6 

images. The angular second moment (ASM) values of decanol, heptanol and PG show 

a slow downward trend; this is likely because the 3 different solvents shown in Figure 

4.6 penetrated very slowly. The ASM values of ethanol and water dropped 

significantly immediately after the solvents application, then stabilized. This is likely 

because the two different solvents shown in Figure 4.6 penetrated very fast initially, 

and quickly they reached steady state. Whilst the penetration of butanol is somewhere 
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between the two groups. The entropy values of the solvents, as well as the correlation 

values, also tell a similar story. 

 

The contrast values of ethanol shows a quick different profile than other solvent; this 

is likely due to the non-uniform penetration of ethanol, which is clearly visible in 

Figure 4.6.  

 

4.2.4 Experiment 4 –Skin Immersive Hydration 

A 

 

   Before     After      5min      10min      15min     20min     30min 

B 

 

   Before     After      5min      10min      15min     20min     30min 

 

Figure 4.8 The capacitive images of (A) the control skin site and (B) soaked skin site 

 

Figure 4.8 shows the capacitive images of the control skin site and test skin site. The 

results show that the capacitive images can clearly reflect the water content of skin 

and the evaporation rate of water content in the skin. 
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(a)                                  (b) 

  

                (c)                                     (d) 

Figure 4.9 The trend graph of feature vectors on two different skin sites: (a) the ASM on two different 

skin sites, (b) the ENT on two different skin sites, (c) the CON on two different skin sites and (d) the 

COR on two different skin sites. 

 

Figure 4.9 shows the corresponding GLCM feature vector results of the Figure 4.8 

images. The angular second moment values on control site did not change very much 

as expected. The skin test site value dropped significantly immediately after soaking, 

then increased significantly immediately to the similar level as before, this is likely 

because of the texture of hydration skin became finer with the increased skin water 

content, and then as the water content of the skin recovered and the textures are also 

recovered. It is interesting to point out that although this particular volunteer's skin 

can pick a lot of extra water through soaking, it lost the water very quickly, only 5min, 

which might indicate a poor water holding capability. The other feature values also 

tell a similar story. 
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4.2.5 The effects of GLCM displacement distance 

In this study, for the reason of simplicity, the GLCM displacement distance parameter 

d value is set to 1. However, when the distance values change, the feature vectors will 

also change. This section will discuss how to select the optimum distance through 

analyzing the influence of distance change to the feature vectors. This study is applied 

on six different grey capacitive images captured form forehead, cheek, eye and arm 

shown in Figure 4.10. Because the increase of the distance value between two pixels 

will cause the loss of information, so the value of distance should not be too big. In 

this study, the range of distance is chosen from 1 to 16.  

 

 

        Eye         face       forehead 1   forehead 2      arm 1       arm 2 

 

Figure 4.10 Sample images from different skin sites 

 

Figure 4.11 shows the changes of the four different feature vectors with different 

distance values. As it can be seen, the values of the four different feature vectors 

appear a clearly upward or downward trend when the distance value changed from 1 

to 10, and became stable when the distance values changed from 10 to 14. According 

to the above analysis, it can be concluded that the optimum range of the distance 

value is from 10 to 14 because the values of four different feature vectors are stable 

and reflect a very clear difference for six different tested images within this interval. 

Therefore in the future we can use GLCM with optimized displacement distances. 
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(a)                                   (b) 

  
                   (c)                                    (d) 

 

Figure 4.11 The trend graph of feature vectors with different distance values (a) The ASM with 

different distance values (b) The ENT with different distance values (c) The CON with different 

distance values (d) The COR with different distance values 

 

4.3 Conclusions 

 

In summary, a new mathematical algorithm based on Grey Level Co-occurrence 

Matrix (GLCM) has been developed for analyzing grayscale capacitive skin images. 

Four different GLCM feature vectors, which are angular second moment, entropy, 

contrast and correlation, are used in the study. The effects of GLCM displacement 

distance parameter on feature vectors are discussed. The results show that GLCM can 
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separate the skin texture information from solvent penetration information in the same 

skin image, which make it a potentially useful tool for studying skin texture as well as 

skin solvent penetrations. Comparing with other skin texture analysis techniques, such 

as physical measurements, photographs, and silicone molds [73], GLCM can extract 

more texture information based on different feature vectors [74]. Combining with tape 

stripping, GLCM can also generate solvent concentration profiles at different depths 

within stratum corneum, which is very important in trans-dermal drug delivery 

studies. 
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Chapter 5 Portable Opto-Thermal Radiometry with Infrared 

Emitter and PbS Detector 

 

The OTTER technology described in chapter 2 has been a powerful tool for skin 

measurements. But it is still a bench-top technology, due to the size of the laser, 

power supply, liquid nitrogen cooled MCT detector, and external cooling water 

system etc., which limit its usages only within the laboratory. The aim of this chapter 

is to further improve the OTTER technology, by design and develop a portable 

opto-thermal radiometry instrument which can work outside the laboratory and at 

room temperature. Figure 5.1 shows the initial design schematic diagram. 

 

 
Figure 5.1 The initial design schematic diagram of the portable opto-thermal radiometry instrument. 

 

It uses a modulated broadband Infrared Emitter to heat up the sample surface, and a 

PbS (lead sulphide) detector to detect the corresponding blackbody radiation from the 

sample. PbS detector can detect a range of different wavelengths signals, and hence 

can generate the spectra of materials.  

 

This chapter will first introduce its design principle and then present the experimental 

results. 
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5.1.1Infrared radiation 

An important characteristic of electromagnetic radiation is wavelength. The 

Electromagnetic radiation can be classified according to wavelength. There are 

several categories of the radiation, for example, infrared, visible, or microwave.  

 

 

 

Figure 5.2 Electromagnetic spectrum [78] 
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Figure 5.2 shows that Infrared radiation is the electromagnetic waves in the 

wavelength region longer than the visible light wavelengths, lying from 0.75 um  to 

1000 um . The Infrared radiation [75-77] can be classified into one of several 

categories according to the different wavelength region, for example, the near infrared 

(from 0.75 um  to 3um ), the middle infrared (from 3 um to 6um ), and the far 

infrared (from 6 um to 15um ). Also, even longer wavelength regions are sometimes 

referred to as ultra far infrared, but this is not a universally accepted term. 

 

Infrared radiation has the following characteristics: (1) invisible to human eyes (2) 

small energy (3) long wavelength (4) emitted from all kinds of objects. 

 

5.1.2 Infrared Emitter 

Semiconductor-based infrared emitters [79] are classified as incoherent and coherent 

sources. Incoherent sources which have the ability to modulate the infrared radiation 

quickly and to look cold as well as hot relative to the background (negative 

luminescence) are mainly based on diode structures. They also have greater power 

efficiency. Coherent sources or lasers produce a very high spectral intensity of 

infrared over a small spectral bandwidth. Electrically pumped lasers, optically 

pumped lasers and quantum cascade lasers are three main lasers for the coherent 

sources. Infrared Emitter which is used in this chapter belongs to incoherent sources. 

 

The structure of an infrared emitter is similar to the diode. Figure 5.3 indicates that 

electrons are injected into the p-type side and holes are injected into the n-type side. 

Some of these carriers recombine radioactively leading to infrared emission. 
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Figure 5.3 Operation of an infrared Emitter a) schematic diagram b) band diagram [80] 

 

 

5.1.3PbS detector 

Infrared detectors are classified into thermal types and quantum types. Thermal 

detectors perform by the temperature rise induced in an active element by the 

absorption of incident radiation. Thermal detectors do not require cooling, but have 

disadvantages that response time is slow and detection capability is low. In contrast, 

even though quantum detectors’ photo sensitivity is dependent on wavelength, they 

offer better detection performance and a faster response speed. In general, quantum 

detectors must be cooled for accurate measurement, except for detectors used in the 

near infrared region. Types of infrared detectors [81-84] are shown in Table 5.1. 
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Table 5.1 Types of infrared detectors and their characteristics [85] 

 

 

There are three main characteristics of infrared detector, namely, photo sensitivity, 

noise equivalent power (NEP) and D*: 

 

(1) Photo sensitivity (Responsivity) 

Photo sensitivity (Responsivity) is the output voltage (or output current) per watt of 

incident energy when noise is not a consideration. 

PA
SR =                               (5.1) 

Where S is the signal output, P is the incident energy and A is detector active area. 

 

(2) Noise equivalent power: NEP 

This is the quantity of incident light equal to the intrinsic noise level of a detector. In 

other words, this is the quantity of incident light when the signal-to-noise ratio (S/N) 

is 1. 

fNS
PANEP

!"
=

/
                        (5.2) 

whereN is the noise output and f! is the noise bandwidth. 
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(3) Detectivity: D* (D-star) 

!D is the photo sensitivity per unit active area of a detector, which makes it easier to 

compare the characteristics of different detectors. In many detectors, NEP is 

proportional to the square root of the detector active area, so D* is defined by the 

following equation. 

NEP
A

AP
fNS

D =
!

"!
=

/*    (5.3) 

Under normal circumstances, the D* of a detector irradiated by a blackbody source is 

expressed in the format of D* (A, B, C), for example, as D* (500 °K, 1000 Hz, 1 Hz), 

where 500 °K is the blackbody source temperature, 1000 Hz is the chopping 

frequency and 1 Hz is the noise equivalent bandwidth. It can be said that a larger 

value of D* indicates a better detector element. 

 

When selecting infrared detectors for testing, it is also important to consider other 

characteristics, for example, spectral response which defines the sensitivity of a 

detector to radiation at a various wavelengths wavelength, response time, cooling 

method, number of elements (single element, one-dimensional array, two-dimensional 

array, etc.) 

 

A PbS detector from CalSensors (Camarillo, CA, USA) is used in this study. The PbS 

detector is a photoconductive detector which is a semiconductor with holmic contacts 

to form a two-port electrical device. The resistance is reduced when infrared radiation 

enters the detecting elements. Compared with other detectors in the same wavelength 

region, the PbS detector has superior features, such as higher detection capability and 

faster response speed. Although PbS detector performs at room temperature, the dark 

resistance, photo sensitivity and response characteristics will change depending on the 

temperature. Therefore, care is required to ensure the best results. 
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5.2.1 The Drive Circuit for Infrared Emitters 

The emission source is composed of a PIRE plus high-speed infrared emitter with 

integrated drive electronics. The components have been designed as a system to 

provide maximum output over a range of pulsing speeds. The Infrared Emitter has 

been designed to optimize both heat-up and cool-down performance of the filament, 

producing typical pulsing speeds of 180Hz at 50% modulation depth. The associated 

drive electronics are matched to the emitter to provide the optimal drive waveform 

over a range of frequencies and ensure peak output temperatures at all frequencies. 

Together these components provide a convenient source of pulsed infrared energy 

which can be used to improve the performance of infrared detection systems. The key 

features of this Infrared Emitter are: 

1) Fast pulse rates, up to 180Hz with 50% modulation depth; 

2) Adjustable pulse rates with 0 to 5V control circuitry; 

3) Compact, reduced footprint solution; 

4) Broadband output with 88% emissivity; 

5) Low overall system cost; 

6) Typ. MTTF of >26,000 hrs at max rated power. 

and another parameters of it are shown in table 5.2: 

 

 
Table 5.2 the data sheet of the Infrared Emitter [86] 
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The Figure 5.4 shows the drive circuit for this Infrared Emitter. The LM7805 is a 

voltage regulator chip, which can change 12 volt voltage into 5 volt. The C1, C2, C3 

and C4 are power supply decoupling capacitors. This drive circuit can generate the 

pulse signal of 100Hz. 

 

 

Figure 5.4 the drive circuit for Infrared Emitter 

 

5.2.2 The Drive Circuit for PbS detector 

 

A high sensitivity PbS single channel detector AP-15 [87] is used in this chapter. The 

key features of this detector are: 

1) Highest sensitivity detector operating across 1-5 micron region; 

2) Provides high signal to noise performance for wide measurement dynamic range; 

3) Fastest response speed for mid-IR applications; 

4) High reliability for long life; 

5) Consistent repeatable results minimize testing. 

 

The main parameters of the detector are shown in Table 5.3: 
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1 Specifications apply at a bias voltage of 50V/mm across a detector and 1Mohm load resistor (in series) or 

25v/mm directly across the detector 

2 Specifications apply at max cooling with a heat sink at +25℃. Typical cooler at max cooling: AT1 -0.8V@2.0A, 

AT2S- 1.9V@ 1.4A 

3 Max rated element temperature is 65 ℃. 

Table 5.3 the data sheet of the PbS detector [88] 

 

The thermal emission decay signal associated with the time dependent temperature 

field comes from the transient thermal radiation. According to Baltes [89], 

Kirchhoff’s law can be used to non-equilibrium emissions, provided that the 

absorption also includes the stimulated emission as negative absorption. In this 

situation, Kirchhoff’s law can be represented as: 

BBW=
!
" '                       (5.4) 

where '!  is the emission coefficient defined as the radiant power per in the unit 

wavelength interval emitted into unit solid angle form a unit volume. BBW  is 

described by Planck’s formula and represents the spectral emissive power of a 

blackbody: 

1

12),( 5

2

!

=
"

"
"

KT
hcBB

e

hcTW                     (5.5) 

If the temperature deviations are much smaller than the initial temperature T  , BBW  

can be represented as a Taylor series and BBW!  expressed as: 
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Eq. (5.6) and Eq. (5.7) can be used to calculate the total hemispherical power emitted 

by a unit surface element per unit wavelength interval. Using numerical integration, 

the total hemispherical power within the 1-3.3 mµ spectral intervals for 1K 

temperature variation at room temperature (293K) emitted by 1 2m  blackbody is: 
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Where h is Plank’s constant, c is speed of light in vacuum. 

 

The detector area which is chosen in this chapter is 1 2mm  and if we ignore losses, 

the radiant power P which reaches the infrared detector is 81015.1 !" W . Using the 

responsivity data form table 5.2 we can calculate the signal amplitude from the 

detector: 

VsponsivityPU 0092.0Re =!=                          (5.9) 

 

The above equation shows that the value given by the detector is too small for direct 

digitization. In this case, a preamplifier is needed. 

 

Figure 5.5 shows the schematic diagram of the preamplifier employed. The improved 

design is based on a proven design developed by Berg et al (2000) [90, 91]. It consists 

of two stages. The first stage uses an AD797 which is a very low noise, low distortion 
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operational amplifier. The amplification factor of this stage has to be as high as 

possible, so that the noise added by the following stage becomes negligible. An 

amplification factor of 101 had been set for this stage and the bandwidth is 1.5MHz. 

C22 in this stage is used to filter the high frequency noise. The second stage uses an 

OPA37 to provide a further amplification factor of 11 and a low impedance unity gain 

output buffer to prevent overloading of the AD797. Overall, the amplification factor 

of the preamplifier is 1100. 

 

 

Figure 5.5 the drive circuit for PbS detector 

 

5.3 Results and Discussions 

Figure 5.6 shows the PCB modules of the modulated Infrared Emitter and PbS 

detector, as well as the measurement setup. In this experiment, various of material 

have been tested, such as hand, forearm, thumb, white paper, aluminum, dry 

cardboard and wood etc. Figure 5.7 shows the measurement signal when no objects 

are placed in front of the Infrared Emitter and PbS detector. Figure 5.8 shows the 

signal when the PbS detector is facing directly to the Infrared Emitter. Figure 5.9 
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shows the signals of different materials when the amplification factor of the 

preamplifier is 100. 

       

(a)                                  (b) 

 

(c) 

Figure 5.6 The portable opto-thermal radiometry with a modulated Infrared Emitter and a room 

temperature PbS detector, (a) the PCB module of the modulated Infrared Emitter, (b) the PCB module 

of PbS detector, (c) the measurement setup using hand as a sample. 
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                              Time [seconds] 

Figure 5.7 The signal when no objects are placed in front of the Infrared Emitter and PbS detector 

 

Figure 5.8 The signal when the PbS detector is facing directly to the Infrared Emitter. 
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(A)  

 

(B) 

 

 

(C) 

 

(D) 

 

(E) 

 

(F) 

 

(G) 

 

 

Figure 5.9 The measurement signals when the amplification factors are 100.  (A) back of hand; (B) 

forearm; (C) thumb; (D) white paper; (E) aluminum; (F) dry cardboard; (G) wood. 
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Figure 5.10 shows the synchronized test results of different materials over one period 

of time when the amplification factor of the preamplifier is 1100. The results show 

that different materials have different peak amplitudes. Figure 5.11 shows the 

corresponding peak to peak values of the signals. The results show that aluminum has 

the biggest peak value within the seven different materials, whilst skin, particularly 

thumb skin, has the lowest peak values. The peak amplitude detected by the 

oscilloscope is proportional to reflection, refraction and the blackbody radiation. 

When the infrared radiation from Infrared Emitter reaches sample surface, some of 

the radiation will be reflected, some will be refracted and some will be absorbed, 

which in turn increase the sample surface temperature, and hence increase the 

blackbody radiation. Some of the refracted radiation in the sample will also be 

reflected at the internal sample and eventually go back into air. Through analyzing the 

shape of the infrared radiation from the sample, we can study the sample’s optical and 

thermal properties, the thickness of the sample and its layer structure.  

 

Comparing with OTTER, this new portable instrument is much smaller and cheaper. 

It can measure the differences of different samples, but it can’t differentiate emitted 

infrared radiation from the reflected from sample surface and refracted radiation from 

inside sample. The peak amplitude value is dominantly determined by the optical 

reflection. In the future work, by using optical gratings or filters, it is possible to 

distinguish the infrared emission signal from reflected and refracted signals. 
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Figure 5.10 The synchronized signals of different materials when the amplification factors are 1100. 

 

 

Figure5.11 The peak to peak values of measurement signals of the different materials. 
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In summary, a new portable opto-thermal radiometry instrument has been designed 

and developed. It centres on a modulated broadband Infrared Emitter and a room 

temperature PbS detector. The drive circuit for the Infrared Emitter and the 

pre-amplifier circuit for PbS detector have been designed, and the corresponding PCB 

modules are developed. Different materials, such as the back of hand, forearm, thumb, 

white paper, aluminum, dry cardboard and wood etc. have been used for test 

measurements. The test results show that the peak to peak values of signals detected 

by PbS detector of the different materials are significantly different. The different 

peak to peak values reflect the different infrared reflection and infrared radiation 

intensity of different materials. More studies are needed, in order to have better 

understanding of the signals and extract infrared emission information from the 

different materials. 
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Chapter 6 Skin Hydration and Solvent Penetration Experiments  

The aims of this chapter are to develop new measurement methodologies to study the 

skin hydration and solvent penetrations by using OTTER, AquaFlux and capacitive 

contact imaging based on Fingerprint sensors, and to have a better understanding of 

capacitive imaging measurements. Five different experiments are performed in this 

chapter. The results show the capacitive contact imaging based on Fingerprint sensors 

is a powerful tool for studying skin hydration and skin solvent penetrations. 

Combining with AquaFlux and OTTER we can also get extra information on skin 

barrier functions. 

 

6.1 Tape Stripping Measurements by Using AquaFlux and 

Fingerprint Sensor 

The purpose of this experiment is to investigate how the skin hydration and TEWL 

(trans-epidermal water loss) change at different depth of skin. The skin hydration is 

measured by using capacitive contact imaging based on Fingerprint sensor and TEWL 

is measured by AquaFlux. The different skin depth is achieved by using traditional 

tape stripping, where each tape strip removes a several layers of skin cells.  

 

In this measurement, two skin sites marked as control site and stripping site were 

chosen on the left volar forearm near the elbow. The tape stripping was only 

performed on the stripping site, with control site as a reference. The ambient 

temperature was 23.0oC and relative humidity (RH) is 49%. The hydration 

measurements and the TEWL measurements were performed before and after the tape 

stripping, with totally 14 strips applied. Each tape strip removes about 1 mµ  

thickness of skin, so 14 strips removes about 14 mµ  thickness of skin. This is still 
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well within stratum corneum, which is about 20 mµ  in thickness on volar forearm.  

 

  

       Before                                          strip 1                                     strip 2                              strip 4 

    

        Strip 6                                       strip 8                                      strip 10                               strip 12 

             

        Strip 14 

Figure 6.1: Capacitive skin images of control site before and after tape stripping. 

 

Figure 6.1 shows the images of the control site, before and after tape stripping. The 

results show that the capacitive images of the control site did not change very much 

during the measurements. 
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       Before                                 strip 1                         strip 2                             strip 4 

 

      strip 6                                   strip 8                               strip 10                       strip 12 

 

      strip 14 

Figure 6.2 Capacitive skin images of the stripping site before and after tape stripping. 

 

Figure 6.2 shows the capacitive images of the stripping site, before and after the tape 

stripping. Major changes start after 10th tape strip. 

 

Figure 6.3 show the corresponding grayscale values of the capacitive images shown in 

Figure 6.1 and 6.2. The grayscale values on control site did not change very much as 

expected. The grayscale values on stripping site increased slowly at beginning and 

then increased significantly after the tenth strip.  
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Figure 6.3 The grayscale values before and after tape stripping. 
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Figure 6.4: TEWL values before and after tape stripping. 

 

Figure 6.4 show the corresponding TEWL values on two different skin sites measured 

by AquaFlux. Again, the TEWL values on control site did not change very much as 

expected. The TEWL values on stripping site increased slowly at the beginning and 

then increased significantly after the tenth strip. It is interesting to point out that both 

Figure 6.3 and 6.4 agree with other very well, which suggests that stratum corneum is 

dry outside and wet inside, and the skin barrier function is not on the stratum corneum 

surface, but at the inside of stratum corneum, somewhere around 10 mµ  in depth. 
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6.2 Skin Solvent Penetration with Tape Stripping 

 

The purposes of this experiment are to investigate the potential of combining OTTER 

and capacitive contacting imaging based on Fingerprint Sensors for solvent 

penetration measurements, and to investigate the solvent concentration depth profiles.  

 

Three different skin sites on left volar forearm are chosen for study, two as test sites 

and one as control site. Two solvents, DMSO (dimethyl sulfoxide) and EG (ethylene 

glycol) are used in this study. First, a small amount of solvent is applied to the left 

volar forearm for 5 minutes. After the skin surface is wiped dry, tape stripping is 

performed, with totally 12 strips. OTTER and capacitive contact imaging 

measurements are performed both before and after the solvent applications, and after 

each tape strip. Two different wavelengths (9.5 mµ  and 13.1 mµ ) are chosen for each 

measurement of OTTER.  

  

Before                               After (DMSO)                        Strip 1                      Strip 2 

 

Strip 3                                     Strip 7                               Strip 10                  Strip 12 

Figure 6.5 Capacitive skin images before and after DMSO applications, and subsequently during tape 

stripping. 
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Figure 6.5 shows the grayscale capacitive skin images of the skin test site before and 

after DMSO application, and subsequently during tape stripping. The increased 

darkness after DMSO application reflects the DMSO concentration in skin, which 

then gradually decreased as tape stripping number increased. This suggests DMSO 

concentration level decreases as depth increases. DMSO residue is still visible after 

10 strips. However, the increase of darkness after 10th tape strip is due to increase of 

water content, as Fingerprint sensor can not differentiate between water and DMSO.  

 

 

Before                                     After (EG)                       Strip 1                         Strip 2 

 

Strip 3                                 Strip 7                             Strip 10                      Strip 12 

 

Figure 6.6 Capacitive skin images before and after EG applications, and subsequently during tape 

stripping. 

 

Figure 6.6 shows the grayscale skin images before and after EG applications, and 

subsequently during tape stripping. Again, the increased darkness after EG application 

reflect the EG concentration level in stratum corneum. Compared to Figure 6.5, this 

figure indicates EG penetrates less and shallower than DMSO, as DMSO residue is 
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still visible after 10 strips (~10 mµ ), whilst EG residue disappears after 5 strips 

(~5 mµ ). 

 

 

Before                                After                                 Strip 1                    Strip 2 

 

     Strip 3                                 Strip 7                            Strip 10                     Strip 12 

Figure 6.7 Fingerprint skin images for the control sites 
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Figure 6.8 Grayscale values from Fingerprint sensor before and after DMSO / EG application and 

subsequent tape stripping 
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Figure 6.7 shows the images of the control site, before and subsequently after tape 

stripping. The gradually increased darkness reflects the increase of water content 

during tape stripping, and major increase is about after 10th tape strip. Figure 6.8 

shows the corresponding grayscale values of the images shown in Figure 6.5, 6.6 and 

6.7. The results also confirm that DMSO penetrated more and deeper into stratum 

corneum that EG.  
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 Figure 6.9 Concentration results from OTTER (9.5 mµ ) before and after DMSO / EG application and 

subsequent tape stripping 
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 Figure 6.10 Concentration results from OTTER (13.1 mµ ) before and after DMSO / EG application 

and subsequent tape stripping 
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Figure 6.9 shows the OTTER results from three different skin sites at 9.5 mµ  

detection wavelength, which reflects more about the solvent content in skin. Figure 

6.10 shows the OTTER results from three different sites at 13.1 mµ  detection 

wavelength, which clearly reflect more about the water content in skin. 
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Figure 6.11 The correlations between Fingerprint sensor and OTTER 

 

Figure 6.11 shows the correlations between capacitive contact imaging based on 

Fingerprint sensors and OTTER. The results indicate that there are some correlations 
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between grayscale results and OTTER results. The reason that fitted curves are not 

going through the origin (0, 0) is because that the fingerprint sensor is not calibrated; 

our next task is to calibrate technology so that we can get the absolute solvent 

quantity results. 

 

6.3 Measuring the Detection Depth of Fingerprint Sensor  

The purpose of this experiment is to measure the detection depth of Fingerprint 

Sensor. 

     
Position(0.01mm)      Position(1.27mm)     Position(5.77mm)    Position(8.17mm)  Position(10.87mm) 

    

 Position (11.57mm)  Position (12.57mm) Position(12.67mm) Position(12.72mm) Position(12.80mm) 

  
Position(13.04mm) Position(13.33mm) 

Figure 6.12 Capacitive cheese images at different distances from the Fingerprint sensor surface. 

 

A piece of sliced cheddar cheese (Tesco supermarket, cmcm 33 !  in area, and mm3  in 

thickness) and Fingerprint Sensor are fixed on a micro-positioner. At first, the piece 

of cheese is in good contact with the Fingerprint Sensor surface, then use micro-

positioner to gradually pull the cheese away from the Fingerprint Sensor surface, and 
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images were recorded at each position.  

 

Figure 6.12 shows the images at different distances from the Fingerprint sensor 

surface. It can be seen visually from this figure that the image quality becomes worse 

at position  (12.67mm ). The little black dots after position (12.67mm ) are due to 

cheese residue left on the Fingerprint sensor surface at the beginning of the 

measurements. 

 

 
 

Figure 6.13 Grayscale values at different distances from the Fingerprint sensor surface 

 

Figure 6.13 shows the corresponding grayscale values from Fingerprint sensor at 

different positions. From the above two figures, it suggests that position (12.67mm ) 

is likely to be the position that cheese is just above to leave the sensor surface, and 

position (12.72mm ) is likely the position that cheese is just out of the sensor detection 

range, the distance between the two position is about 50 mµ , which agrees well with 

the expected detection depth (50 mµ ) according to the sensor pixel geometry. 
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6.4 The effect of Discharge time, Discharge current, and Gain 

The purpose of this experiment is to investigate the effects of the Fingerprint sensor’s 

three parameters, namely, discharge time, discharge current and gain. 

 

     

12-3-8              13-3-8              14-3-8                    15-3-8               16-3-8                

Water: 0             water: 0            water: 0                    water: 0           water: 0             

Background: 111 Background: 149 Background: 154 Background: 170 Background: 221 

     

17-3-8                 18-3-8                   19-3-8                   20-3-8           21-3-8                       

Water: 0              Water: 0             Water: 0                  Water: 0        Water: 0 

Background: 237 Background: 246 Background: 255 Background: 255 Background: 255 

   

22-3-8                   23-3-8                   24-3-8                         

Water: 0                   Water: 0             water: 0              

Background: 0     Background: 255   Background: 0     

 

Figure 6.14 Images of water at different discharge times, with discharge current =3, and gain =8. 
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At first, a drop of water is added on the surface of the Fingerprint sensor. Then, the 

images are recorded at different values of the discharge time, discharge current and 

gain. 

 

Figure 6.14 shows the images with different discharge times. For example, in 12-3-8, 

12 is the discharge time’s value, 3 is the discharge current’s value and 8 is the gain’s 

value. Below each image are the grayscale values for water and background. When 

the discharge time’s value is 22, water is most clear in the picture and the contrast 

between water and background is best, so the results show that discharge time 22 

gives the best image. 

 

 

 

12-4-11             13-4-11             14-4-11              15-4-11            16-4-11 

Water: 0             Water: 0           Water: 0            Water: 0          Water: 0 

Background: 164 Background: 189 Background: 221 Background: 240 Background: 255 

 

17-4-11           18-4-11 

Water: 36           Water: 43 

Background: 255 Background: 255 

Figure 6.15 Images of water at different discharge times. 

 

Figure 6.15 shows the images with changing discharge time. For example, in 12-4-11, 

12 is the discharge time’s value, 4 is the discharge current’s value and 11 is the 
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discharge gain’s value. Below each image are the grayscale values for water and 

background. The results show that discharge time 18 gives the best image. 

 

Figure 6.16 shows the images with changing discharge time. For example, in 12-4-10, 

12 is the discharge time’s value, 4 is the discharge current’s value and 10 is the gain’s 

value. Below each image are the grayscale values for water and background. The 

results show that discharge time 15 gives the best image. 

 

 

12-4-10              13-4-10            14-4-10              15-4-10            16-4-10 

Water: 80        Water: 96     Water: 107    Water: 116      Water: 130 

Background: 224 Background: 240 Background: 255Background:255Background: 255 

 

17-4-10                 18-4-10 

Water: 145       Water: 153 

Background: 255 Background: 255 

 

Figure 6.16 Images of water at different discharge times. 

 

From the three different experiments indicated above, it can be concluded that 

discharge time 22 gives the best image. 
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Figure 6.17 shows the images at different discharge currents. For example, in 22-2-8, 

22 is the discharge time’s value, 2 is the discharge current’s value and 8 is the gain’s 

value. Below each image are the grayscale values for water and background. The 

results show that discharge current 3 gives the best image. 

 

 

22-2-8            22-3-8                    22-4-8 

Water: 0          water: 0                water: 0 

Background: 233   Background: 255   Background: 255 

Figure 6.17 Image by changing the discharge current’s value 

 

 

   22-3-10                    22-3-11                22-3-12           22-3-13       22-3-14 

Water: 120              water: 44             water: 0            water: 0       water: 0    

Background: 255 Background: 255 Background: 255 Background: 255 Background: 255       

 

 

   22-3-15 

Water: 0 

Background: 255       

Figure 6.18 Image by changing the discharge gain’s value 
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Figure 6.18 shows the images with changing gain. For example, in 22-3-10, 22 is the 

discharge time’s value, 3 is the discharge current’s value and 10 is the gain’s value. 

Below each image are the grayscale values for water and background. The results 

show that gain 11 gives the best image. 

 

Figure 6.19 shows the images with changing discharge gain. For example, in 15-4-8, 

15 is the discharge time’s value, 4 is the discharge current’s value and 8 is the gain’s 

value. Below each image are the grayscale values for water and background. The 

results show that discharge gain 11 gives the best image. 

 

 

           15-4-8                15-4-9          15-4-10                15-4-11             15-4-12      

Water: 0      Water: 227     Water: 115     Water: 21       Water: 0      

Background: 208 Background: 255 Background: 255 Background: 245 Background: 193 

 

    15-4-13                15-4-14              15-4-15        

Water: 0        Water: 0        Water: 0        

Background: 161 Background: 146 Background: 123 

 

Figure 6.19 Image by changing the discharge gain’s value 

 

From the three different experiments indicated above, it can be concluded that the 

gain 11 gives the best image. 
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6.5  Solvent Penetrating Through The Membrane 

The purpose of this experiment is to evaluate the suitability of using capacitive 

contact imaging based on Fingerprint Sensors to study the permeation of selected 

solvents through silicone membranes. Six different solvents with different dielectric 

constants were selected for this test (Table 6.1) 

 
Solvent Dielectric constant 

Water 80 

Ethanol 24.55 

Butanol 18 

Heptanol 11.75 

Decanol 8.1 

Propylene Glycol 32.1 

Table 6.1 the dielectric constants for the used solvents. 

 

A piece of silicone membrane (100 mµ  in thickness) is fixed on the Fingerprint 

Sensor surface and a regular hexagonal steel sleeve was put on the top of membrane. 

At first, a small quantity of butanol is dropped into the chamber of the sleeve; when 

the sleeve is full, the measurement started and continued for about 1000 sec. The 

same process is repeated for decanol, heptanol, PG., water and ethanol. 

 

Figure 6.20 shows the capacitive images after butanol application. It can be seen 

visually from this figure that butanol starts to penetrate through the membrane at 

about 440s.  

 

Figure 6.21 shows the capacitive images after decanol application. It can be seen 

visually from this figure that decanol has not penetrated through the membrane. 
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     (80s)                               (240s)                        (440s)                       (640s) 

 

      (800s)                                (920s)                       (1000s)       

Figure 6.20 Capacitive images after butanol application. 

 

 

       (80s)                               (240s)                           (440s)                           (640s) 

 

      (800s)                             (920s)                          (1000s)                

Figure 6.21 Capacitive images after decanol application. 
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Figure 6.22 shows the capacitive images after heptanol application. The same as the 

decanol showed above, the penetration ability of heptanol through the membrane is 

also very limited. It has not penetrated the membrane during the experimental time. 

 

 

 

       (80s)                              (240s)                               (440s)                         (640s) 

 

        (800s)                              (920s)                        (1000s) 

Figure 6.22 Capacitive images after heptanol application. 

 

Figure 6.23 shows the capacitive images after PG application. It can be seen visually 

from this figure that PG starts to penetrate through the membrane at about 240s. 
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      (80s)                                  (240s)                           (440s)                        (640s) 

 

      (800s)                                 (920s)                         (1000s) 

                            Figure 6.23 Capacitive images after PG application. 

 

Figure 6.24 shows the capacitive images after water application. It can be seen 

visually from this figure that water starts to penetrate through the membrane very 

quickly and has strong penetration ability. 
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      (80s)                                    (88s)                             (120s)                         (160s) 

 

       (200s)                              (240s)                             (280s)                        (320s) 

 

       (520s)                                (800s)                         (1000s) 

Figure 6.24 Capacitive images before and after water application. 

 

 

Figure 6.25 shows the capacitive images after ethanol application. It can be seen 

visually from this figure that ethanol starts to penetrate through the membrane at 

about 160s and has strong penetration ability, too. 
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      (80s)             (160s)               (200s)              (240s)                

 

 

       (280s)            (360s)              (440s)              (640s) 

 

       (800s)            (920s)              (1000s) 

 

Figure 6.25 Capacitive images after ethanol application. 
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Figure 6.26 Grayscale values for Fingerprint images before and after butanol application 
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Figure 6.27 Grayscale values for Fingerprint images before and after decanol application 

 

Figure 6.26 and 6.27 show the grayscale values for the capacitive images after butanol 

and decanol applications. 
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Figure 6.25 Grayscale values for Fingerprint images before and after heptanol application 
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Figure 6.26 Grayscale values for Fingerprint images before and after PG application 

 

Figure 6.25 and 6.26 show the grayscale values for the capacitive images after 

heptanol and PG applications. 
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Figure 6.27 Grayscale values for Fingerprint images before and after water application 
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Figure 6.28 Grayscale values for Fingerprint images before and after ethanol application 

 

Figure 6.27 and 6.28 show the grayscale values for the capacitive images after water 

and ethanol applications. 
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6.6 Conclusion 

In summary, five experiments are performed in order to develop new methodologies 

for skin hydration and solvent penetration measurements by using OTTER, AquaFlux 

and capacitive contact imaging based on Fingerprint sensors, as well as to have better 

understanding of capacitive contact imaging measurements. The results show that the 

combination of AquaFlux and capacitive contact imaging is very useful for studying 

the skin hydration and TEWL changed at different skin depth through tape stripping. 

The results also show that the combination of OTTER and capacitive contact imaging 

is very useful for studying the solvent penetration through skin, and again, through 

tape stripping, solvent concentration depth profiles within skin can be obtained. The 

first two experiments have demonstrated that capacitive contact imaging could be a 

powerful tool for skin hydration and solvent penetration measurements, due to its 

imaging capabilities. Although there are other imaging techniques, such as stimulated 

Raman scattering microscopy [92], can be used for solvent penetration, our capacitive 

contact imaging is much cheaper, smaller and easier to operate. In order to have a 

better understanding of the capacitive contact imaging measurements, the detection 

depth of Fingerprint sensors, and effects of Fingerprint sensors’ configuration 

parameters, namely, discharge time, discharge current and gain, were also studied, 

and the best values were chosen for the measurements. Finally, solvent penetration 

through silicone membrane was studied, six solvents with different dielectric 

constants were used, and the results demonstrated that capacitive contact imaging can 

be effectively used for this kind of measurements. 
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Chapter 7 The Comparison of Three Algorithms for Image Retrieval 

 

In chapter 3, an effective image retrieval algorithm based on Gabor wavelet transform 

has been developed for retrieving skin images, particularly for grayscale capacitive 

skin images. It is also found that the Grey level co-occurrence matrix (GLCM) 

algorithm, described in chapter 4, can also be used for image retrieval purposes. The 

aim of this chapter is conduct a comparison study, in order to compare these two 

algorithms with other existing algorithms, such as Principal Component Analysis 

(PCA), in order to understand better the performance of each algorithm, the pros and 

cons of each algorithm, and to find out which algorithm is suitable for what types of 

images. This chapter will first introduce the background of Principal Component 

Analysis (PCA), and then show the comparison results. 

 

7.1 The theory of Principal Component Analysis (PCA) 

The following introduces the principles of Principal Component Analysis (PCA), 

Grey level co-occurrence matrix (GLCM) and Gabor wavelet transform. 

 

7.1.1 The Principal Component Analysis (PCA) 

 

The Principal Component Analysis (PCA) [93-97] is a common and effective method 

based on the covariance matrix of variable to process, compress and extract the 

information. It provides a roadmap for how to reduce a complex data set to a lower 

dimension and has been abundantly applied in face recognition. 
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The basic principle of this method is: it uses the K-L transformation to extract the 

main ingredient of face images, which constitutes the eigenfaces space, and then 

projects the test images and training images to this space and gets two different 

groups of projection coefficients. Finally, it recognizes the image by comparing their 

projection coefficients. The detailed implementation steps are as follows [98, 99]:  

1. Assuming that the training database consists of k samples, each sample size is 

nm! , and then the training sample matrix is represented as: 

                   T
kxxxx ),...,,( 21=                            (7.1) 

where the ix  is a one-dimensional sample whose number of rows is nm!  and 

the number of columns is 1. 

 

2. Define the sample average vector 

                   !
=

=
k

i
ixk 1

1
"                                  (7.2) 

3. Calculate the difference between each sample and the sample average vector 

                   !"= ii xd          ki ,...,2,1=                (7.3) 

4. Compute the covariance matrix 

                   TT
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i
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=

 

                   ),...,,( 21 kdddA =                             (7.4) 

5. Compute the eigenvector iV  and eigenvalue i! of the covariance matrix, select p 

feature values which are greater than 1 and their corresponding eigenvectors to 

constitute the eigenfaces space 

                   ),...,,( 21 puuuw =                             (7.5) 

where ),...,2,1(1 piAVu i
i

i ==
!

  

6. Project the difference between each sample and the sample average vector to the 

eigenfaces space 
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                   ),...2,1( kidw i
T

i ==!                         (7.6) 

7. Project the difference between the test sample !  and the sample average vector 

to the eigenfaces space 

                   )( !"#=$# Tw                              (7.7) 

8. Calculate the Euclidean distance i!  between i!  and !"  

                   
22 !"#"= ii$ ),...,2,1( ki =                   (7.8) 

 

7.1.2 The principals of Grey level co-occurrence matrix (GLCM) and Gabor wavelet 

transform 

 

The principals of Grey level co-occurrence matrix (GLCM) and Gabor wavelet 

transform have been given the detailed introduction in chapter 3 and 4. After 

extracting the feature vectors, according to 7.1.1, using the Euclidean distance to 

measure the similarity.  

7.2 Results and Discussions 

As the first step to evaluate the algorithms, a database containing sixty images are 

used in this study, the database images are in JPEG format, including thirteen 

different digital colour human face images, four different digital colour skin cancer 

images, four different digital colour skin disease images and the rest of them are skin 

greyscale capacitive images which were captured from Fingerprint sensor [48]. Figure 

7.1 shows some sample images from the database. 
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Faces 

 

Skin cancers                         Skin diseases 

 

Capacitive skin images 

Figure 7.1 Sample images from the database 

 

Figure 7.2 shows the GUI (graphical user interface) for preliminary results on image 

retrieval using the PCA, GLCM and Gabor wavelet transform. In the GUI window, 

the upper left image in the first row is the query image and the others in the second 

row are the results of retrieved images from the image database. The best three 

retrieved images are shown for illustration. The retrieved images are ranked in 

descending order according to the similarity of their feature vectors to those of the 

query image, i.e. the most similar, the second similar, and the third similar images. In 

this study, for reasons of simplicity, the query images are also from the database, and 

therefore the most similar result should always be the image itself. Time 1 represents 

the total time used to calculate the feature vectors of all the images in the database and 

Time 2 shows the computing time used to calculate the similarity of the feature 

vectors of all the images in the database to the feature vectors of the query image. 
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(a) 

 

(b) 

 

(c) 

Figure 7.2 Capacitive skin image retrieval results using PCA, GLCM and Gabor wavelet transform. 
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Figure 7.2 shows the retrieval results of three different algorithms for grayscale 

capacitive skin images which were captured from the Fingerprint sensor. The query 

images are grayscale capacitive skin images captured from finger, eye, face, forehead, 

neck, volar forearm and palm. Because of space limitation, this chapter only lists the 

retrieval results of grayscale capacitive skin images of eye, palm and forehead. Other 

retrieval results are available in the Appendix 1. Clearly, in this case, all three 

algorithms can correctly retrieve grayscale capacitive skin images from eye, palm and 

forehead, despite the similarity of these images. If the successful retrieval rate is 

defined by correctly retrieving the most and the second similar images, then the 

performance of three algorithms can be compared. There are totally 33 grey 

capacitive skin images in the database, and the number of successful retrieval image 

completed by PCA, GLCM and Gabor wavelet transform are 17, 25 and 31, 

respectively. Therefore, although results show that the three different algorithms 

could be used for the retrieval of the different parts of the human body skin, Gabor 

wavelet transform has the highest retrieval accuracy rate for capacitive skin images. 

 

Figure 7.3 and Figure 7.4 are the results of skin cancer/disease image retrieval. The 

query images in Figure 7.3 are all skin cancer images. From the results, most of the 

three retrieved images are skin cancer images. The query images in Figure 7.4 are 

skin disease images of leucoderma. From the results, except the retrieval result of 

PCA, the three most similar images are all leucoderma images. According to the 

retrieval success rate defined as above, there are eight skin disease images in the 

database, and the number of successful retrieval image completed by PCA, GLCM 

and Gabor wavelet transform are 3, 6 and 5, respectively. The results show that the 

three different algorithms could be potentially used for skin disease diagnostics, but 

GLCM is the most accurate for retrieving of skin cancer/diseases images. 
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(a) 

 

(b) 

 

(c) 

Figure 7.3 Skin cancer image retrieval results using PCA, GLCM and Gabor wavelet transform. 
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(a) 

 

(b) 

 

(c) 

Figure 7.4Skin disease image retrieval results using PCA, GLCM and Gabor wavelet transform. 
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(a) 

 

(b) 

 

(C) 

Figure 7.5 Face image retrieval results using PCA, GLCM and Gabor wavelet transform. 
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(a) 

 

(b) 

 

(C) 

Figure 7.6 Face image retrieval results using PCA, GLCM and Gabor wavelet transform. 
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Figure 7.5 shows the retrieval results for query images using human faces with 

different expressions. Human face images in the database are with three different 

facial expressions: smile, non-smile and surprised. From the retrieval results, the three 

most similar images are the same person with different facial expressions. By 

calculating the successful retrieval rate, it can be concluded that PCA is the most 

accurate for human faces with different expressions retrieval.  

 

Figure 7.6 shows the retrieval results for query images using human faces with 

different orientations, i.e. left facing, front facing, right facing. From the retrieval 

results, the three most similar images are all the same person with different 

orientations. There are 10 human face images with different orientations in the 

database, the number of successful retrieval image completed by PCA, GLCM and 

Gabor wavelet transform are 4, 3 and 6, respectively. In this case, Gabor wavelet 

transform has the best retrieval accuracy rate. The results show that all the three 

different algorithms have certain reference value for human face recognitions. 

 

Table 7.1 and 7.2 compare the Time 1 and Time 2 of using three different algorithms 

to retrieve different grayscale capacitive skin images captured from face, finger, neck 

and volar forearm. Time 1 represents the total time used to calculate the feature 

vectors of all the images in the database and Time 2 represents the computing time 

used to calculate the similarity of the feature vectors of all the images in the database 

to the feature vectors of the query image. In table 7.1, the results show that GLCM is 

the fastest for calculating the feature vectors of database images, whilst Gabor 

wavelet transform is the slowest. In table 7.2, the results show that PCA is the fastest 

for retrieving images, and Gabor wavelet transform is the slowest. For more image 

retrieval results, see Appendix 1. 
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 PCA GLCM Gabor Wavelet Transform 

Face 2594 1406 132953 

Finger 2594 1406 134765 

Neck 2594 1406 136734 

Volar forearm 2594 1406 133328 

Table 7.1 Time 1 (ms) - the total time used to calculate the feature vectors of all the images in the 

database 

 

 PCA GLCM Gabor Wavelet Transform 

Face 16 47 3094 

Finger 15 31 3031 

Neck 16 46 3078 

Volar forearm 15 31 3140 

Table 7.2 Time 2 (ms) - the computing time used to calculate the similarity of the feature vectors 

of all the images in the database and the feature vectors of the query image. 

 

7.3 Conclusions 

In summary, a comparison study of three different algorithms, e.g. Principal 

Component Analysis (PCA), Grey level co-occurrence matrix (GLCM) and Gabor 

wavelet transform, on image retrieval has been conducted. Four different types of 

images, face images, skin cancer images, skin disease images, and capacitive skin 

images, are used in the study. The results show that different algorithms have 

different performances. In the term of computing time, Gabor wavelet transform is the 

slowest in both database calculation and image retrieval. GLCM is the fastest for 

database calculation, and PCA is the fastest for image retrieval. In the term of 

successful retrieval rate, Gabor wavelet transform is the highest for retrieving 

capacitive skin images, GLCM is the highest for retrieving skin cancer / disease 

images, PCA is the highest for retrieving facial images with different expressions, and 
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Gabor wavelet transform is the highest for retrieving facial images with different 

orientations. Table 7.3 shows a quick summary of the performance of each algorithm. 

 

 

 Time 1 Time 2 Image 

type 1 

Image 

type 2 

Image 

type 3 

Image 

type 4 

Image 

type 5 

Gabor 

wavelet 

transform 

 

Slow 

 

Slow 

 

Average 

 

Best  

 

Best 

 

Average 

 

Average 

GLCM Fast Fast Worst Worst Average Best Best 

PCA Medium Medium Best  Average Worst Worst Worst 

Table 7.3 The performance of each algorithm. Time 1 represents the total time used to calculate 

the feature vectors of all the images in the database, Time 2 represents the computing time used to 

calculate the similarity of the feature vectors of all the images in the database and the feature 

vectors of the query image, i.e. retrieval time. Image type 1 to image type 5 are human face 

images with different expressions, human face images with different orientations, grey capacitive 

skin images of skin textures of the different parts of human body, skin diseases and cancer images. 
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Chapter 8 Conclusions and Future Works 

8.1 Conclusions 

This thesis is concentrated on skin hydration and solvent penetration measurements 

by Opto-thermal Radiometry, AquaFlux and capacitive contact imaging based on 

Fingerprint Sensors. A variety of theoretical and experimental investigations have 

been performed, conclusions are as following: 

 

In the theoretical investigation, three different mathematical algorithms were 

developed for analyzing skin images. Firstly, a content-based image retrieval 

algorithm using 2D Gabor wavelet texture feature was developed. The results show 

that it can be very useful for human face recognition, facial expression recognition, 

skin cancer and skin disease diagnostics. The results also show that Gabor wavelet 

transform is particularly effective for retrieving grayscale skin capacitive images of 

the different parts of human body, which are very similar in texture. Secondly, an 

algorithm based on Grey level co-occurrence matrix (GLCM) has been developed 

specially for analyzing capacitive skin images. The results show that GLCM 

algorithm can effectively separate the skin texture information from the solvent 

penetration information from the same skin images, which makes it very useful for 

studying skin texture, as well as studying solvent penetrations through both skin and 

membranes. It is found that GLCM can also be used for image retrieval. 

 

Finally, a comparison study, to compare the performance of Gabor wavelet transform, 

Grey level co-occurrence matrix (GLCM) and Principal Component Analysis (PCA) 

for image retrieval, has been conducted. Four different types of images, e.g. human 

faces, skin cancers, skin diseases, and capacitive skin images are used. The results 

show that although Gabor wavelet transform is the slowest, it is the most efficient for 

retrieving capacitive skin images and human facial images with different orientations. 
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GLCM is medium fast, but very effective for retrieving skin cancer images and skin 

disease images. PCA is the fastest, and very efficient for human facial images with 

different expressions. 

 

For opto-thermal radiometry hardware design research, in order to overcome the 

limitations of the existing bench-top OTTER technology, a new low cost, portable 

opto-thermal radiometry instrument has been designed and a prototype has been 

developed. It uses a modulated broadband Infrared Emitter to heat up the sample 

surface, a room temperature PbS detector to pick up the blackbody radiation of the 

sample. The initial study shows that it can work on a range of different materials such 

as the back of hand, forearm, thumb, white paper, aluminum, dry cardboard and wood, 

which makes it a potential useful tool for non-destructive testing for arbitrary 

materials. 

 

In experimental investigation, various in-vivo and in-vitro experiments are performed 

in order to develop new methodologies for skin hydration and solvent penetration 

measurements by using OTTER, AquaFlux and capacitive contact imaging based on 

Fingerprint sensors, as well as to have a better understanding of capacitive contact 

imaging measurements. The results have demonstrated that capacitive contact 

imaging could be a very useful tool for skin hydration and solvent penetration 

measurements, due to its imaging capabilities. The results show that detection depth 

of Fingerprint sensor was about 50 mµ , which mean the capacitive contact imaging is 

mainly measuring the top part of epidermis. The effects of Fingerprint sensors’ 

configuration parameters, namely, discharge time, discharge current and gain, were 

also studied, in order to have a better understanding of the capacitive contact imaging 

measurements, and the best values were chosen for the measurements. 
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8.2 Future Work 

For the future work, the following are suggested: 

 

A: Improvements for portable Opto-thermal radiometry instrument 

 

In order to get more accurate results, on the one hand, the preamplifier section will be 

further improved to filter more noise; on the other hand, before the signal reaches the 

detector, it will be collected by a parabolic mirror and then sent to PbS detector 

through a diffraction grating, which will distinguish the infrared emission signal from 

reflected and refracted signals. 

 

B: Investigate new methodologies for solvent penetration measurements through 

skin by using AquaFlux and capacitive contact imaging based on Fingerprint 

sensors. 

 

Solvent penetration is a heavily researched area. More new solvents will be 

investigated for solvent penetration measurements, both through skin and membranes. 

Different types of membranes can also be investigated in these experiments.      

 

C: New mathematical algorithms for skin image processing 

 

In image retrieval investigation, although Gabor wavelet transform is a powerful tool 

which is adapted to extract features for capacitive skin image retrieval, the 

nonorthogonality of the Gabor wavelet implies that there is redundant information in 

the filtered images. In order to solve this problem, some algorithms, such as AdaBoost 

will be applied to eliminate redundant information, which will reduce the computation 

time and improving the retrieval accuracy. 

 

For skin research, the research on human skin roughness is of great interest in several 
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different research fields, such as Clinical Science and Pharmaceutics. For future work, 

Gabor wavelet transform, Grey level co-occurrence matrix (GLCM) and other 

algorithms for the human texture analysis, such as Markov Random Field will be 

applied in skin capacitive images captured by Fingerprint sensors. Through 

comprehensive analysis of the results, it should be able to get more accurate 

characteristic parameters for human skin roughness study. 
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APPENDIX 1 
 
The images shown below indicate the retrieval results of three different algorithms, 

namely, PCA, GLCM and Gabor wavelet transform for grayscale capacitive skin 

images, as described in chapter 7. The query images are grayscale capacitive skin 

images captured from skin sites on finger, eye, face, forehead, neck, volar forearm 

and palm. For the details of the GUI (graphical user interface), see chapter 7.  
 
 

 
(a) PCA- face 

 
(b) GLCM- face 
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(c) Gabor wavelet transform- face 

 
(d) PCA- finger 

 
(e) GLCM- finger 
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(f) Gabor wavelet transform- finger 

 
(g) PCA- neck 

 
(h) GLCM- neck 
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(i) Gabor wavelet transform- neck 

 
(j) PCA- volar forearm 

 
(k) GLCM- volar forearm 
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(l) Gabor wavelet transform- volar forearm 
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