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" The many rewards of financial econometrics come at a price. A solid background in mathematics, probability and statistics and finance theory is necessary for the practicing of financial econometrician, for precisely the reasons that make financial econometricians such an engaging endeavour” Campbell, Lo and Mackinlay (1997) in their seminal book " The Econometrics of Financial Markets.

The above quote was mentioned to me by my supervisor when I first joined the PhD programme, furthermore of course it was also pointed that computational and software skills are a must. This PhD is a very much secondary data driven investigation and furthermore what connects the three main topics in this PhD (by showing a solid background in above mentioned fields) is the comprehensive application of techniques, skills, and methods of financial econometrics.

In detail
Humbly in this PhD I provided this evidence that I on the path to becoming a financial econometrician by skill set; Chapter 1: fully updated traditional financial econometric model of second moment i.e. volatility of the multivariate data by showing expertise, probability statistics and financial theory. Chapter 2: A theoretical of Benford’s distribution showing probability statistics, financial theory and computational skills. Chapter 3: Mathematical finance, financial theory and simulation study of second and fourth moment through IFBM-GARCH.
Two of the fastest growing frontiers in econometrics and quantitative finance are time series and financial econometrics. Significant theoretical contributions to financial econometrics have been made by showing expertise in statistics, econometrics, mathematics, and time series analysis. The purpose of this research of the financial analysis to enrich the information investors use to make financial decisions on the stock markets. Firstly, liquidity has immediate consequences for a trader’s movements, this risk is an attractive area of interest for both academics and those who participate in the financial markets. Secondly, emphasizing common challenges and techniques across the disciplines, how Benford’s law can serve as a productive meeting ground for researchers and practitioners in diverse fields. Specifically, study examined the nature of complex financial market, and whether there is a sort of ‘regularity’ in available time series associated with the stock volume. The application of the Benford’s law shown the complexity of the financial market. Thirdly, research results confirm the role and importance of the modified/IFBM GARCH methodology for effective investment risk quantification in developed financial markets.
This research is organized as follows. In the first chapter research examines the linkages between market and funding liquidity pressures, as well as their interaction with solvency issues surrounding key financial institutions between pre/during and post crisis. In the second chapter research addresses the frequencies of the first, second, and first two significant digits counts and explore the conformance to Benford's laws of these distributions at eleven different (117 days minute data points) levels of disaggregation of mathematical model of processes that might account for such a leading digit distribution have also been investigated, using S&P500 minute volume data. In the third chapter research, i.e., a special focus in the research, is to develop the modified GARCH methodology in the observed financial markets and to compare the obtained results between the variation of Modified GARCH models as well.
[bookmark: _Toc90499922]Abstract 

This doctoral research consists of three parts; first part, discusses activities of international banks have been at the core of discussions on the causes and effects of the international financial crisis. Yet we know little about the actual magnitudes and mechanisms for transmission of liquidity shocks through international banks, including the reasons for heterogeneity in transmission across banks. The International Banking Research Network, established in 2012, brings together researchers from around the world with access to micro-level data on individual banks to analyse issues pertaining to global banks. This of research examines the linkages between market and funding liquidity pressures, as well as their interaction with solvency issues surrounding key financial institutions between pre/during and post crisis. This part of will undergo with the following steps: Step#1: test the significance of chosen data, analyse data feature, if series is non-stationary series, stabilize it by log difference or periodical difference. Step#2: ARMA model identification and parameter estimation: Identify the model and estimate parameter(s) according to series autocorrelation and partial correlation plot after stabilizing. Step#3: ARMA model test: Test model by statistical hypothesis testing method, if model is effective, then go to the fourth step, otherwise come back to the second step to adjust the model’s order and establish the model again. Step#4: ARCH effect test, model identification and parameter estimation: Do GARCH effect test for residual series, identify the model’s order, estimate the parameter, establish the ARMAGARCH model. Step#5: ARMA-GARCH model test: Test model by statistical hypothesis testing method, if model is effective, go to the sixth step, otherwise come back to the fourth step to adjust GARCH model’ order again. To select the order of GARCH model finally, we will also check the performance of that model on the validation set. Step#6: According to the established ARMA-GARCH model from steps 1-5 and integration to DCC-GARCH and BEKK-GARCH. Multivariate GARCH models have evolved from the optimal univariate GARCH model. The DCC specification will then allow the capture of possible structural breaks in the unconditional correlation amongst the variables. Finally, the BEKK-GARCH model will also be able to provide more detailed transmission information, apart from the conditional correlation. A multivariate GARCH model is estimated in order to test for the transmission of liquidity shocks across U.S. financial markets. It is found that the interaction between market and funding illiquidity increases/swerves sharply during the period of financial turbulence, and that bank solvency becomes important.
[bookmark: _Hlk90244714]Second part describes an investigation into Benford’s Law for the distribution of leading digits in real data sets of S&P500 minutes volume and the corresponding log-returns over a long-time interval, [01/05/2013 - 29/12/2017], amounting to 481769 data points. This part of research addresses the frequencies of the first, second, and first two significant digits counts and explore the conformance to Benford's laws of these distributions at eleven different (117 days minute data points) levels of disaggregation of mathematical model of processes that might account for such a leading digit distribution have also been investigated. The log-returns are studied for either positive or negative cases. The results for the S&P500 minute volume data set are showing a huge lack of nonconformity. Such data sets have been examined and it was found that only a small fraction of them conform to the law. whatever the different levels of disaggregation. Some “first digits” and first two digits values are even missing. The causes of this non-conformity are discussed, pointing to the danger in taking Benford's laws for granted in huge data bases, whence drawing “definite conclusions”.  Study found that based on the notion of taking the product of many random factors the most credible. This led to the identification of a class of lognormal distributions, those whose shape parameter exceeds 1, which satisfy Benford’s Law. This in turn led us to a novel explanation for the law: that it is fundamentally a consequence of the fact that many physical quantities cannot meaningfully take negative values. This enabled to develop a simple set of rules for determining whether a given data set is likely to conform to Benford’s Law. The agreements with Benford's laws are much better for the log-returns. Such a disparity in agreements finds an explanation in the data set itself: the inherent trend in the index. To further validate this, daily returns have been simulated calibrating the simulations with the observed data averages and tested against Benford's laws. One finds that not only the trend but also the standard deviation of the distributions are relevant parameters in concluding about conformity with Benford's laws.
[bookmark: _Hlk90244777]Third part is to modify and test the IFBM GARCH methodology in terms of quantifying the impact of daily rates of return-on-investment activities in the observed S&P 500 stock index. The aim of the research, i.e., a special focus in the research, is to develop the modified GARCH methodology in the observed financial markets and to compare the obtained results between the variation of Modified GARCH models as well. The part of research is also aimed to study the performance of Modified IFBM GARCH models. A comprehensive empirical analysis of returns and conditional variances of the US stock exchange (S&P 500) index are conduct in order to estimate the GARCH models, and also the implementation of symmetric and asymmetric or (A-GARCH) models to observe the daily stock market volatility. Glosten (1993) GJR-GARCH model in term of an alternative edition of the asymmetric mode of Engel et al. (1990). For instance, it is often observed in GJR-GARCH model the asymmetric response is bounded by only the negative shocks of the market. Nelson’s (1991) E-GARCH for formulating the conditional variance equation to implement the method of ensuring, that the variance is positives., where the width of the research time horizon allows testing the modified GARCH methodology in the different periods. In addition to the use of modified IFBM GARCH econometric models, the focus of this work is to make use of existing, well-known Information Criteria (IC) to identify the stock index data-generating-process whenever the GARCH effect is present. Akaike Information’s Criteria (AIC) and Bayesian Information Criteria (BIC) have used for this experiment. Research provides different models with different parameter values and observed the abilities of information criterion in choosing the correct model from a given pool of models, as well as the appropriate tests that are suitable for and/or adapted to the specific characteristics of financial markets, examine irrational agent behaviour reacting to time dependent news on the log-returns for modifying a financial market evolution. The research results confirm the role and importance of the modified IFBM GARCH methodology for effective investment risk in financial markets, in this sense, the obtained research results will be useful to both the academic community and the professional public in the context of investment decision making.
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[bookmark: _Toc90499924]Abstract: Part 1
[bookmark: _Hlk78539444][bookmark: _Hlk90244644]Activities of international banks have been at the core of discussions on the causes and effects of the international financial crisis. Yet we know little about the actual magnitudes and mechanisms for transmission of liquidity shocks through international banks, including the reasons for heterogeneity in transmission across banks. The International Banking Research Network, established in 2012, brings together researchers from around the world with access to micro-level data on individual banks to analyse issues pertaining to global banks. This research examines the linkages between market and funding liquidity pressures, as well as their interaction with solvency issues surrounding key financial institutions between pre/during and post crisis. This research will undergo with the following steps: Step#1: test the significance of chosen data, analyse data feature, if series is non-stationary series, stabilize it by log difference or periodical difference. Step#2: ARMA model identification and parameter estimation: Identify the model and estimate parameter(s) according to series autocorrelation and partial correlation plot after stabilizing. Step#3: ARMA model test: Test model by statistical hypothesis testing method, if model is effective, then go to the fourth step, otherwise come back to the second step to adjust the model’s order and establish the model again. Step#4: ARCH effect test, model identification and parameter estimation: Do GARCH effect test for residual series, identify the model’s order, estimate the parameter, establish the ARMAGARCH model. Step#5: ARMA-GARCH model test: Test model by statistical hypothesis testing method, if model is effective, go to the sixth step, otherwise come back to the fourth step to adjust GARCH model’ order again. To select the order of GARCH model finally, we will also check the performance of that model on the validation set. Step#6: According to the established ARMA-GARCH model from steps 1-5 and integration to DCC-GARCH and BEKK-GARCH. Multivariate GARCH models have evolved from the optimal univariate GARCH model. The DCC specification will then allow the capture of possible structural breaks in the unconditional correlation amongst the variables. Finally, the BEKK-GARCH model will also be able to provide more detailed transmission information, apart from the conditional correlation. A multivariate GARCH models are estimated in order to test for the transmission of liquidity shocks across U.S. financial markets. It is found that the interaction between market and funding illiquidity increases/swerves sharply during the period of financial turbulence, and that bank solvency becomes important.
[bookmark: _Toc90499925]1.1 Introduction 
[bookmark: _Toc90499926]1.1.1 Background
Interbank markets play a key role in banks’ liquidity management and the transmission of monetary policy. They provide benchmark rates for the pricing of fixed-income securities throughout the economy (e.g., LIBOR). In normal times, interbank markets are among the most liquid in the financial sector. Since August 2007, however, the functioning of interbank markets has become severely impaired around the world. As the financial crisis deepened in September 2008, liquidity in the interbank market has further dried up as banks preferred hoarding cash instead of lending it out even at short maturities. Central banks’ massive injections of liquidity did little to restart interbank lending. The failure of the interbank market to redistribute liquidity has become a key feature of the 2007-09 crisis (see, for example, Allen and Carletti, 2008, and Brunnermeier, 2009).
Various interbank market regimes arise depending on the level and distribution of counterparty risk. First, when the level and dispersion of risk are low, the unsecured interbank market functions smoothly despite counterparty risk and asymmetric information. The interest rate for unsecured loans is low and all banks manage their liquidity using the interbank market. Riskier banks exert an externality on safer banks as the latter subsidize the liquidity of the former. But the cost is small compared to the cost of obtaining liquidity outside the unsecured market. Second, for higher levels of risk there can be adverse selection in the interbank market. The externality on safer banks is so costly that they leave the unsecured market. Liquidity is still traded but the interest rate rises to reflect the presence of riskier banks. Third, the interbank market may break down when the dispersion of risk is high. Liquidity rich banks prefer to hoard liquidity instead of lending it out to an adverse selection of borrowers. Finally, it is possible that even riskier borrowers find the unsecured interest rate too high and prefer to obtain liquidity elsewhere. Moreover, when the dispersion of risk is high, multiple equilibria are possible and which regime occurs depends on self-fulfilling expectations.
The rapid growth of the subprime mortgage market in the late 1990s contributed to a significant proportion of the world's economy boom. Most developed and developing countries enjoyed explosive growth during this period. However, it has come at a price. The inherently lax monetary policy stimulated speculation and resulted in greater supply of debt to the global financial market. Under this economic environment, lending practices within the banking system have shifted from risk-neutral to risk-taking. Financial innovation enabled financial institutions to convert their lending model to the “Originate-to-Distribute” OTD from a traditional “Originate-to-Hold” OTH perspective, whereby the loan originator sells it to various third parties. In the past, banks received money from depositors and lend to lenders.
The utility of intermediaries is based on various liquidity priorities and facilitates the smooth flow of funds into the banking system, which gives banks the opportunity to make profit. In addition, banks are now closely linked with the ability to transfer credit risk due to the inter-bank crossholding and OTD business model. Therefore, banks are tempted to borrow excessively without proper monitoring and screening process. Purnandam (2008) found that lack of incentive to screening due to separation from the ultimate risk taker is one of the most important factors in the US subprime mortgage crisis. During the crisis, the impact was mostly due to this trend. This can be exemplified by the numerous financial shocks found in various liquid channels of funding throughout the US market.
Banks have a unique function in the economy, in that they act as intermediaries to meet different liquidity priorities. Banks can assess the creditworthiness of the borrower if they need a loan, and it is the responsibility of the banks to exercise due diligence before approving any loan. Screening and monitoring functions are also the standard procedure for banks for risk assessment. However, they do not always fully perform these functions. With the application of the OTD model, financial institutions can transfer credit risk to a third party by securitizing a mortgage pool while maintaining their profitability. This has led to a significant reduction in the incentive to diagnose efficacy and other risks. The standard of living has come from financial institutions that have adopted the OTD model extensively, as the screening work has not been performed poorly. Ashcraft and Schumerman (2008) provide an overview of the process of subprime mortgage securitization and the many key issues that arise from it. Ethical risk, predator lending, negative selection, and principal agent OTD are the basic issues between the banking model, and they arise at different stages of securitization. The final source of these tornadoes comes from the information asymmetry, where one party benefits from more information than the other party. Information received from one party may not fully reflect the true risks of the underlying product, as there is a significant amount of information lost during the transfer of the securitization process. In addition, due to the nature of the fee structure, start-ups and credit rating agencies may not work in the best interest of their principal.
Financial inventions created by capital constraints (Tofano, 2002) A bank functions as the most profitable institution in the economy. Based on different liquidity priorities, they act as a central between different parties and manage various risks to generate profit. There are some government tools that regulate the banking business, such as monetary policy and capital requirements. Although interest rate movements can be predicted within banks, the requirements for capital ratios leave financial institutions in place of financial innovation. Through the OTD model securitization process, banks can sell their debt portfolio to third parties and free up capital on their balance sheet. Additionally, credit risk to the counterparty is eliminated by the sale of a portfolio of loans.
Thus, the OTD model of lending has its own strengths. The diversification of a bank's portfolio by employing the model allows banks to use maximum risk sharing and thus increase flexibility in possible financial shocks. It may also reduce the need for regulatory capital by removing its positions from the balance sheet. It is desirable to maximize profitability, which is always looking for efficiency and therefore increase profitability. However, it is the motivator of the OTD model, as well as the guarantee of information at various stages of the securitization process, which causes irresponsible investment behaviour and therefore the failure of the model. The traditional OTH lending model, where banks originate loans and hold them to maturity, has become less popular. That's because the opportunity cost of leaving a loan portfolio on the balance sheet is substantial. Securitization of a portfolio of loans can help banks reach maximum capital structure and risk sharing status.
However, the benefit of the OTD model comes with a price. Financial institutions now rely more on each other in terms of their balance sheet. Large exposures by any bank can result in potential diseases and, in the worst case, create a financial risk to the financial market. That's what happened in the 2008 financial crisis.
This research provides an explanation for observed developments in the interbank market before, during and post of the 2007-09 financial crisis, for dramatic increases of unsecured interest rates and excess reserves banks hold. Interbank interest rates suddenly increased in August 2007. At that time, subprime-mortgage-backed securities were discovered in portfolios of banks and bank-sponsored conduits Structure investment vehicles (SIVs) leading to a reassessment of risk. The extent of exposures was unknown, and counterparties could not distinguish safe from risky banks. In the context of our model, the rise in the interest rate can be attributed either to an increase in the perceived dispersion of risk, or to a deterioration in the underlying level of risk, or a combination of the two. Interbank rates rose to record-high levels and trading activity declined significantly following the dramatic events surrounding the last weekend of September 2008, when the financial crisis spread outside the realm of investment banking and into the global financial system. These events can be interpreted as a further increase in the level and, importantly, in the dispersion of counterparty risk that could lead to liquidity hoarding by banks. Asymmetric information as an underlying friction can also rationalize the prolonged nature of interbank market tensions despite unprecedented interventions by public authorities designed to relieve them.
To understand the above phenomena following questions are discussed: 
· What initiated the interbank market to seize up? 
· Why has the market been dysfunctional for so long despite interventions by public authorities? 
· What frictions can explain these developments and how do they relate to the broader roots of the financial crisis? 
· How do the policy responses that were discussed or implemented around the world hold up against these frictions?
[bookmark: _Toc90499927]1.1.2 Research Motivation
The role of global banks as vehicle of international shock transmission has been clearly highlighted during the Great Recession. A crisis that started affecting a specific subset of banks, all from predominantly developed countries, spread across the globe in good part because of significant cross-border balance sheet adjustments of such banks (e.g., Acharya and Schnabl, 2010; Cetorelli and Goldberg, 2011; Shin, 2011).
Basic evidence attesting their role goes back at least as far as Peek and Rosengren (1997, 2000). However, there have been at least two important developments since those contributions. The first is that the scale and scope of the consequences of global banking activity is an order of magnitude greater today than it was in the 1990s. The international claims of global banks from BIS reporting countries (highly representative of the universe) have grown ten-fold over the last twenty years, peaking at about $25 trillion in 2007. Second, we have developed a better understanding of the specific mechanics of international transmission associated with global banking. In other words, not only do we know that global banks contribute to international shock transmission, but we know better how that happens. Traditional channels of transmission through cross border lending are well-documented. Yet, recent decades have increasingly been characterized by banks setting up and serving clients through branches and subsidiaries established in foreign locations (Claessens and van Horen, 2012). Applying basic corporate finance principles, it has been conjectured that global bank can respond to a funding shock by activating capital markets internal to the organization, reallocating funds across locations in response to their relative needs. Cetorelli and Goldberg (Forthcoming) have documented such dynamics, providing evidence of actual cross border, intra-bank funding flows between global banks' head offices and their foreign operations in response to domestic shocks. This internal funding reallocation can lead to adjustments in the external investments (e.g., lending and securities holdings) of their foreign operations, thus establishing another specific channel of international transmission. Importantly, this feature of internal funding allocation has been shown to be a common characteristic of global banks' conduct, observable in “normal” times and not just in times of crisis. 
Hence, global banks manage liquidity on a global scale, and this liquidity management aspect is at the heart of the contribution of global banks to international shock transmission. But how is this done exactly? What are the main drivers behind the choice of internal funding reallocation? And does it make a difference when we think of the global implications associated with global banking? This study digs deeper on the subject of global banks liquidity management by exploring alternative conjectures regarding the decision rules driving cross-locations, and internal funding dynamics. It argues that an understanding of the liquidity management of global banks is of first order importance for refining our predictions on the consequences of global banking.
The crisis that started in the summer of 2007 is one of the most dramatic and important crises of last decades. Its causes and unfolding have highlighted a number of new concerns and issues for policy makers, practitioners as well as academics interested in financial and monetary issues. The crisis started in the first half of 2007 when the credit quality of subprime residential mortgages, in particular adjustable-rate ones, started to deteriorate. Mortgage companies specializing in subprime products experienced funding pressures and many failed. Although problems were initially confined to the subprime mortgage markets, further deterioration of credit quality and increases in the delinquency rates led to a spread of the crisis to other markets and products.
By mid-2007 investors started to retreat from structured credit products and risky assets more generally, as rating agencies started downgrading many mortgage-backed securities. The securitization market for subprime mortgages simply broke down in July 2007 there was a tremendous jump in the co-movement of AAA-rated tranches of subprime mortgage-backed securities, commercial mortgage-backed securities, and securities linked to corporate credit quality. A general loss of confidence started to become pervasive. Signs of strain appeared in the leveraged syndicated loan market and in other leveraged lending markets in late June 2007, in the asset-backed commercial paper (ABCP) and in the term bank funding markets in August 2007. Spreads of collateralized loan obligations (CLOs) increased while the issuance of such debt reduced significantly, thus also reducing leveraged lending. Spreads on US ABCP widened significantly in mid-August, while the volume of ABCP outstanding dropped significantly. 
This put substantial pressure on the structured investment vehicles (SIVs) that had heavily invested in structured financial products. Many had to activate the contingent liquidity support from their sponsor banks. At the same time, problems arose in the term interbank funding markets in the US, Europe and the UK. Banks suddenly became much more unwilling to provide liquidity to other banks, especially for maturities longer than a few days. Reflecting that, Libor spreads rose significantly. The apparent reason for this liquidity hoarding was twofold. On the one hand, banks wanted to protect themselves against potential larger-than-anticipated liquidity needs deriving from the disruptions in the mortgage, syndicated loans and commercial paper markets. 
On the other hand, uncertainty about the counterparty risk increased as banks could not precisely assess their counterparties’ exposure to the subprime related securities and also to the other disrupted markets. After a relief of the tensions in September and October following a 50-basis point reduction in the Federal Funds rate, tensions mounted again in November and December when end-of-the-year considerations became an additional element fuelling the uncertainty deriving from the subprime market crisis. 
Spreads widened significantly again in all affected markets and a flight to quality led to a strong demand for safe assets and a sharp drop in Treasury bill yields. Problems mounted again in March 2008 when the release of news of further losses and write-downs due to the use of mark-to-market accounting increased concerns about the creditworthiness and the capital position of several institutions. Financial markets continued to be under great stress, particularly the markets for short-term uncollateralized and collateralized funding. Tensions culminated in mid-March 2008 when a sudden wholesale run on Bear Stearns impeded the investment bank obtaining funding on both unsecured and collateralized short-term financing markets. Indicators of counterparty risk started being more significantly affected. Central banks around the world accompanied the unfolding of the crisis with numerous interventions. Some of these interventions concerned reductions in policy rates (but the Fed also reduced the discount window rate in September 2007) as well as liquidity injections into the system. 
Other interventions concerned changes in the standard operational frameworks or the creation of more unusual, innovative forms of special liquidity schemes. Changes involved extensions in the maturity of central bank lending (in the US both with respect to the discount window loans in September 2007 and the open market operations in March 2008) and widening of the collateral accepted. Special liquidity schemes introduced during the crisis include the Term Auction Facility in December 2007 through which credit is auctioned to depository institutions against Discount Window collateral, the Term Securities Lending Facility in March 2008 which allows primary dealers to swap less-liquid mortgage and other asset backed securities for Treasury securities, and, after the collapse of Bear Stearns, the Primary Dealer Credit Facility through which the discount window was extended to primary dealers. Similarly, a special liquidity scheme was introduced in the UK in April 2008 according to which institutions eligible for the standing facilities can swap collateral with Treasury Bills.
 Furthermore, both the Bank of England and the Federal Reserve were directly involved in managing and orchestrating the rescue, respectively, of Northern Rock and Bear Stearns; and the Federal Reserve recently established a temporary arrangement to provide emergency liquidity to Fannie Mae and Freddie Mac, should it become necessary. More recently, the US Treasury has been given the power, though on a temporary basis, to extend unlimited credit to (and invest in the equity of) the two Government Sponsored Enterprises. Although the real effects of the crisis have so far been contained to some extent, initial signs of propagation seem to be emerging. Credit standards and terms on both commercial and industrial (C&I) loans and commercial real estate loans tightened and the yields on corporate bonds increased significantly over the first half of 2008 (see Federal Reserve Bank 2008, p. 12), indicating increasing pressures and risks for the nonfinancial corporate sector. 
Similar changes are occurring in the UK and Europe. The exchange rate of the dollar fluctuated during the crisis with a general trend towards depreciation against most currencies. Private payroll employment started falling substantially in February 2008, and inflation started also to be a source of concern. Economic growth remained slow in the first half of 2008, and the persistent weaknesses in the housing markets together with the tightened conditions for credit to businesses and households also weakened the projections for the second half of the year.
The mechanism of volatility spillover and liquidity shock transmission is important in terms of financial crisis and risk management. The traditional method of linear correlation in measurement dependence does not capture the full dynamics of financial shock transfer, as nonlinearity can be exhibited by some asset classes. The most intuitive way to detect infinity is to plot the scattered graphs. The literature suggests that the return of financial assets reflects the return of significant resources. That is, the return series is not linear. The generalized autoregressive conditional heteroskedasticity (GARCH), proposed by Bollerslev (1990), is popular in modelling financial shock transfer dynamics. The GARCH model has an average weight of measured squared residuals, but it has decreasing weights that never reach zero.
Conditional correlations are based on known information from previous periods, which do reflect the true, but not all, of the risks. Bollerslev (1990) proposed the Constitutional Correlation (CC) model. Although this model still allows different fluctuations over time (time -varying volatility), however, the conditional correlations are limited to the time invasion. Engel (2002) supports a new specification of a multivariate GARCH model called dynamic conditional correlation (DCC). The DCC model maintains the refinement of the CC model, while also allowing for different conditional relationships over time. Sheppard (2001) has improved the process of estimating the DCC model by reducing the multivariate GARCH estimation to a series of univariate GARCH processes with several additional correlation estimates. The specification of univariate GARCH for any given process is generous with normally distributed errors that satisfy non-negative constraints and stationary conditions. The question now is where and what the financial shocks are and how far they are moving from one channel to another. Furthermore, the multivariate BEKK model (Baba et al., 1995) is employed to investigate the pair-wise transmissions between the liquidity measures. In particular, the off-diagonal elements in the conditional variance-covariance matrix implied in the BEKK offer the quantities and directions of the transmission across liquidity measurements.
To summarize, the motivation for this research was first motivated by the question that the collapse of a domestic mortgage market in the United States almost led to the destruction of the global financial market. The investigation begins with an analysis of the economic background of the period 2001 to 2008. The US government adopted aggressive monetary policy and provided accessible credit to prevent the economy from recession after the dot-com bubble. These include predatory lending, negative selection, principal and agent issues and motivational issues. The above analysis can answer the question in terms of the first part of the collapse of a single domestic mortgage market. How it spread to other markets, however, remains unclear. This further investigates the inter-bank exposure and crossholding between banks. The interconnection of the financial market plays an important role in the liquidity shock transmission mechanism. If a bank has a large number of exhibits in front of a single institution, the primary bank is at risk of significant loss if its counterpart is predetermined. 
The precise transmission of U.S. subprime mortgages crises to other financial markets in the United States and abroad during the second half of 2007 has raised some important questions. In particular, during this period, which mechanism triggered the liquidity shocks to transmitted across the US financial markets? What was the relative strength of these potential linkages? Did the episode of funding illiquidity in structured investment vehicles (SIVs) and conduits turn into an issue of bank insolvency?  Conceivably, during the recent period of turmoil, multiple transmission mechanisms are likely to be established, either in terms of increased market illiquidity, or even predetermined (default) risks. The relative strength of these factors during the 2007 subprime crisis is an empirical question, which is analysed below.
Overall, the mechanisms through which liquidity shocks affect different markets can often work through different channels in the normal course of time, rather than the events of financial stress. During calm periods, market illiquidity shocks are generally short-lived, as they create opportunities for traders to profit and, in doing so, provide liquidity and contribute to the price discovery process. ۔ However, during the period of crisis, several mechanisms exacerbate and spread liquidity shocks across the financial markets, creating systemic risks. These mechanisms can operate through direct links between financial institutions' balance sheets, but also indirectly through asset prices. Existing literature examining these contacts includes Adrian and Shin (2007), Cifuentes, Ferrucci, and Shin (2005), and Brunnermeier and Pedersen (2008). Leverage in the models presented in these studies is procyclical and can amplify the financial cycle. Specifically, asset price movements are set in motion when financial institutions face marked-to-market price declines. As a result, positions are terminated, and if the value of the assets associated with them is significantly impacted, the increased risk of default may result in the loss of credibility of the respective entities.
Global Financial Stability Report (2008). In particular, some methodological refinements are introduced, which produce more accurate estimates of the transmission of liquidity shocks during the subprime crisis in 2007. The estimation is conducted by applying a multivariate GARCH specification, whereby the Dynamic Conditional Correlation (DCC) model developed by Engle (2002) is adopted. This allows us to evaluate the transmission of the liquidity shocks that spread from U.S. conduits and banks’ off-balance sheet SIVs to other credit and equity markets in the United States. Furthermore, this GARCH framework allows for the modelling of the heteroscedasticity exhibited by the data, in addition to interpreting the conditional variance as a time-varying risk measure. Following Cappiello, Engle and
Sheppard (2006), the DCC specification is modified to account for possible structural breaks in the unconditional correlations amongst the variables. The spillovers of U.S. liquidity shocks to international money markets and emerging market countries, using the same techniques, is discussed in Frank, González –Hermosillo and Hesse (2008).
The findings suggest that during the recent crisis period the interaction between market and funding liquidity sharply increases in U.S. markets while a proxy for bank solvency issues become important. In contrast, these transmission mechanisms were largely absent before the onset of financial turbulences in July 2007. The introduction of the structural break in the long run mean of the conditional correlations between the liquidity and other financial market variables is statistically significant and further strengthens these conclusions. Finally, we quantify the estimation uncertainty surrounding the correlation processes by providing estimates of their respective confidence intervals.
Indeed, the subsequent write-downs and losses emanating from structured financial products, required that banks raised significant amounts of new capital from other investors such as sovereign wealth funds. Third, we argue that the DCC model by Engle (2002) can potentially lead to an understatement of the duration and severity of the period of market stress. This is because the autoregressive model parameterization implies that the conditional correlations are mean reverting to their constant long-run unconditional average. Using the DCC specification by Cappiello, Engle and Sheppard (2006) allow us to explicitly model the subprime crisis as a structural break in the data generating processes, rather than a transitory shock. This paper will contribute to the existing SMC and liquidity risk literatures in three main aspects. The dataset (2005-2015) covers all period; pre-crisis (05.01.2004 to 01.06.2007) (04.06.2007 to 09.03.2009) and post-crisis (10.03.2009 to 20.10.2010) periods of the financial crisis of 2007–2008. This assists us to scrutiny a broader picture of the financial crisis. The empirical analysis uses the DCC model and provides evidence of structural breaks. Furthermore, we employ the bivariate BEKK estimation to measure pairwise liquidity transmission (LT) across the four liquidity measurements.
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“The panic in 2007 was not observed by anyone other than those trading or otherwise involved in the capital markets because the repo market does not involve regular people, but firms and institutional investors.” (Gorton, 2010). 
Gorton (2009 and 2010), Gorton & Metrick (2010b) and Bernanke’s speech in 2009 suggests agreement that in the crises of the last century, banks were insolvent, that is, the depositor demand for withdrawing was not able to be honoured by them. However, in the recent crisis, the withdrawals did not happen on banks (deposits) but in the repo market (repurchase agreements[footnoteRef:1] by increasing repo haircuts and decreasing the repo lending on many forms of collateral). This time, the run did not occur in the traditional banking system, it took place in the securitized banking system.[footnoteRef:2] [1:  Repurchase agreement is an arrangement whereby the Fed, or another party, purchases securities with the understanding that the seller will repurchase them in a short period of time, usually less than a week, defines Mishkin (2010, p.383)]  [2:  Gorton (2009) uses the “securitized banking” term to make reference to restructure and reselling loan to raise funds by repo agreements to the operation with “investment banks”.  ] 

At the beginning of the recent financial crisis, the thought that the U.S. subprime mortgages triggered the crisis was widespread, because of the lack of understanding of the magnitude and architecture of the whole banking system crisis (regulated and unregulated side or traditional and shadow). And effectively, the subprime mortgages were related to the crisis, but they were not the core cause, thus can be analysed by the ABX. HE index[footnoteRef:3], created in early 2007.  Also, Gorton & Metrick (2009) present that in the years 2001-2006, about $2.5 trillion in subprime mortgages were originated, from which $1.2 trillion were originated in 2005-2006 mostly by the refinancing of previous mortgages.  [3:  It is an index is composed of the 20 most liquid CDS (credit default swap) on U.S. home equity ABS. The ABX.HE index is the key trading tool for banks and asset managers that want to hedge asset-backed exposure or take a position in this asset class. Retrieved in June 20th, 2012 from http://www.markit.com/en/products/data/indices/structured-finance-indices/structured-finance-indices.page] 

In another of Gorton’s work (2010) an important point is discussed, why (if the subprime was not the core) did the prices of bonds, completely unrelated with them, fell dramatically? Because different asset classes were packaged in tranches of bonds, which were backed by subprime, student loans, credit card receivables and auto loans. Subprime securitization was not the main core of the crisis, neither large enough to have caused the losses in August 2007. 
The securitization of the loans was a good idea to reduce volatility of the financial system, besides lowering the cost of credit and improving its availability.  Pozsar et al. (2010) list some important and positive aspects of the securitization: 
“First”, securitization involving real credit risk transfer is an important way for an issuer to limit concentrations to certain borrowers, loan types and geographies on its balance sheet. “Second”, term asset-backed securitization (ABS) markets are valuable not only as a means for a lender to diversify its sources of funding, but also to raise long-term, maturity-matched funding to better manage its asset-liability mismatch than it could by funding term loans with short-term deposits. “Third”, securitization permits lenders to realize economies of scale from their loan origination platforms, branches, call centres and servicing operations that are not possible when required to retain loans on-balance sheet. “Fourth”, securitization is a potentially promising way to involve the market in the supervision of banks, by providing third-party discipline and market pricing of assets that would be opaque if left on the banks’ balance sheets. 
However, as the appetite and risk were together seeking for more returns, the idea became, on one side a way to reduce the risk by diversifying geographically, by type and tranches, and on the other side, an easy way to reach high returns without taking into account the consequences or a short-termism view. 
The hook of the securitization was its potential of generating an unlimited number of marketable securities out of risky loans, which can be posted (and re-posted) as collateral for short-term funding. In a compact way, Pacces (2010) concludes that it was a manner to take advantage of the spread between long-term and short-term funds. 
Nersisyan & Wray (2010) express the deterioration of loan quality due to the divorce between risk and responsibility, which is related to the evolution of the financial system that attracts institutions thirsty of high levered profits at any cost.  Regarding this, Bengtsson (2011) confirms that the deterioration in the credit quality of ABS had been limited to collateralized debt obligations (CDOs)[footnoteRef:4] of ABSs. Very few ABS tranches had been downgraded, and the rating agencies had been silent on the increasing losses with the 2006 vintages. But that all changed in July 2007, when the market for more senior tranches ABSs declined sharply. In July, the index for the first vintage of 2007 fell by around 10% for AAA rated and 26% for BBB-.  [4:  CDO are securities that paid out cash flows from subprime mortgaged-backed securities in different tranches, with the highest tranch paying out first, while lower ones paid out less If there were losses. (Mishkin, 2010, p.208).] 

If there was a divorce between risk and responsibility, what allowed the growth of the securitization banking system? It was this time different? (Reinhart & Rogoff, 2009)[footnoteRef:5] Could the agents have recognized the quality of the securitization debt? Gorton (2009) describes the features that gave the notion about the potential immunity of the securitization debt from adverse selection:  [5:  This time is different syndrome is that “old rules of valuation no longer apply”.] 

Several features make securitization debt potentially immune from adverse selection. First, most of the debt is senior and investment-grade. Second, with securitization, the debt is backed by portfolios. …Third, a by-product of many structured products is that they are complex. Complexity raises the cost of producing private information. Finally, securitization does not involve traded equity; this is important because there is no information leakage or externalities from the equity market, as with corporate bonds. … The most senior tranches of securitization transactions have never experienced defaults. 
On the other hand, Pacces (2010) explains that the problem with the securitization is to tend to support low-quality loans, and not only poor mortgages. There was an originate-to distribute model.[footnoteRef:6] [6:  According to Mishkin (2010), originate-to-distribute model is a business model in which the mortgage is originated by a separate party, typically a mortgage broker, and then distributed to an investor as an underlying asset in a security. (p.208).
] 

According to Gorton & Metrick (2010b) and Taskinsoy (2020), about 80 percent of the subprime mortgages were financed via securitization.  They explain this fact: 
Mortgages were sold in residential mortgage-backed securities (RMBS), which involves pooling thousands of mortgages together, selling the pool to a special purpose vehicle (SPV) which finances their purchase by issuing investment-grade securities (i.e., bonds with ratings in the categories of AAA, AA, A, BBB) with different seniority (called “tranches”) in the capital markets. Securitization does not involve public issuance of equity in the SPV. 
 [image: ]
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Source: (Taskinsoy, 2020)
In other words, the process of securitization implies a combination of the higher-rated (AAA and AA) with lower-rated (BBB and BBB-), as the figure 1.2.1 shows. Nonetheless, there is not enough AAA debt to satisfy the strong demand and therefore the supply was manufactured. The complexity of this process overshadowed the securitization of different assets. 
As mentioned above, the securitization products, neither the subprime related to, are not traded on the secondary markets, so the traded RMBSs and CDOs were not public, only in the shadow. 
Before beginning the description of the “shadow” part on the recent financial crisis, it will be explained, in a simple manner, some important points about the type of “run” occurred and the implication to the SBS. 
[bookmark: _Toc90499930]1.2.2 Tracking down the traces of the recent crisis: Empirical Data   
In the current crisis the bank run occurred in the repo market, which is a financial contract economically equivalent to a demand deposit. A demand deposit is a contract under which money is placed in a bank, with the right to ask for cash to be returned on demand. In principle, there is no maturity. Depositor’s “roll” their deposits as long as they do not need the cash and as long as they view the bank as being solvent. (Gorton & Metrick, 2009). 
Theoretically, as it was explained above, this time, the “run” happened on the sale and repurchase market (repo market), and not on banks.  But how can be this proved, if a part of the securitization process, which is a vital part of the repo market, is located (issued) in a shadow infrastructure?  Gorton & Metrick (2009) affirm that securitization, by definition, does not reside on-balance sheet until maturity, and there even it does not exist official statistics on the overall size of the repo market, how can it be proved that this time there was a run-on repo?  
In order to answer those questions, empirical results and some features of the repo market are presented. 
According to Hördahl, P. & King, R. M. (2008), the repo market was promoted by monetary authorities at different moments in time, in 1920s in the United States (U.S.), in 1970s in Europe, and in 1990s in the United Kingdom (U.K.). It was created as a monetary policy tool.  But at the same time, the repo market (like other financial markets) is subject to counterparty credit risk, market risk (price volatility) and operational risk.[footnoteRef:7] [7:  Hördahl & King (2008) explain: If the “counterparty credit risk” becomes effective, the collateral is legally property of the cash provider, who can sell it in the event that the security lender defaults on the loan. To address the “market risk”, repos feature haircut (initial margin). And to address the “operational risk” related to transfer and management the collateral, the security provider can make a delivery the next day at the unchanged invoice price. If it is an operational risk related to who holds the collateral, it will depend on the type of repo (bilateral, triparty and hold-in-custody repo). These risks are mirrored in the interest rate at which a repo transaction is agreed. ... During the crisis, the U.S. repo market was under stress, while EA and U.K. market signalled calmer conditions. When the repo market dried up, the parties were interested only in the highest-quality collateral, repos in corporate or structured products were no longer possible. ] 

During the last decades the repo market has grown significantly in size, but also in opacity. Some studies tried to measure the repo market, in spite of the lack of data and other problems (Krishnamurthy, Nagel & Orlov (2011), Singh, M. & Aitken, J. (2010) and Gorton & Metrick (2010b)):  the overestimation due to the reverse repo or double counting of the dealer bank repo data, and the extensive re-hypothecation of collateral, which produce uninformative data about the net size of the repo market.  And consequently, the re-hypothecation (re-use) of collateral has implications for measurement of financial and monetary aggregates and for the analysis of financial institutions’ balance sheets, so state Pozsar, Z. & Singh, M. (2011). 
Until this day, there is not official data about the size of repo, neither data of the participation in repo from nonfinancial firms.[footnoteRef:8] Below, it is presented a description of some studies about the repo’s size and other features, by analysing different sources, variables and models in order to cope with these data’s inconveniences.     [8:  According to Gorton & Metrick (2010b), there is just information from financial firms. 
] 

Hördahl & King (2008) indicate that the “repo markets have doubled in size since 2002, with gross amounts outstanding at year-end 2007 of roughly $10 trillion in each of the U.S. and Euro repo markets, and another $1 trillion in the U.K. repo market.”   
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[bookmark: _Toc78498667]Figure 1.2.2 Repo market size in U.S., EU and U.K
Source: Hördahl & King (2008)
 
They also detail, in figure 3.2, that by mid-2008 the gross market capitalization of the U.S. repo market exceeded $10 trillion, around 70% of U.S. GDP. As well as, in the euro area (EA), the repo market reached €6 trillion outstanding (doubled in size over the last six years), around 65% of Euro area (EA) GDP. And in the U.K., a peak of £662 billion was reached in mid-2007, that is around 50% of its GDP. Furthermore, Gorton & Metrick (2009 and 2010b) studied two state variables: the ABX.HE index, which captures the state of the subprime market directly, and another which captures the breakdown in the repo market, LIBOR-OIS. The study showed both indexes moved significantly, which means that repo spread, and repo haircuts rose during the crisis, fostering the run-on repo.[footnoteRef:9] The first study, in 2009, was a pioneer in analysing the spreads on securitized products with the aim of testing whether the asset classes, completely unrelated to subprime, were affected. This econometric model showed that the asset classes unrelated to subprime were affected in the recent run-on repo, which means that the last crisis was a systemic event.[footnoteRef:10]  [9:  Gorton & Metrick (2010b) affirm that at the same time, the repo rate and risk rate spread reflect the default probability that a repo’s lender/depositor would have, but also reveal the collateral value and transaction cost for selling it (collateral). For these reasons the LIBOR-OIS (bank-counterparty risk measure) may be relevant to lenders, because this measure makes them sensible to the uncertainty about collateral values, and in case of default ask higher rates and/or higher haircuts. Higher rates would occur because the loans are no longer risk free; higher haircuts could occur to adjust for the uncertain value of the collateral, since each dollar of collateral may worth much less by the time it can be sold. (p.25) ]  [10:  According to the results, the ABX climbed steadily, beginning with 153 in 2007, reaching 6721 bps in 2008. The LIBOR-OIS showed two jumps, in August 2007 and September 2008. Both indicators showed stressed moments during the crisis, related with subprime mortgages and interbank market, respectively. However, their behaviour does not look correlated. In contrast, change in LIBOR-OIS is positively correlated with the 75 percent of the industrials, which are significantly. Also confirm that among the rating categories eligible for repo, the AAA collateral was likely to be the most widely used. Notwithstanding, collateral pricing can be uncertain and the secondary market volatile. (Gorton & Metrick, 2009) 38 Reinhart & Rogoff (2009) call it “fire sale prices”. (p.144).] 

With these results they explain that the disruption in the interbank market is related with the fact that the repos do not roll or get reused anymore (unwind), which is equivalent to depositors withdrawing their money. With higher haircuts banks seek to raise money via repo (by using their equity). As soon as their equity finishes, they must sell assets, which lower the assets’ prices38 and (again) raise haircuts (due to the increment in uncertainty about collateral), bringing them to the end of the road. There was no way to become solvent, because the repo market dried up. Whereupon they argue that in this recent financial crisis the U.S. Treasury failed (settlement failure) in the repo market, because it was not possible to issue new securities or sell assets to raise funds and equity prices declined. The system was insolvent, especially the banking system, because it was the most active in the repo market.  On the contrary, as Hördahl & King (2008) explain, the repo markets in the EA and U.K. did not appear to undergo severe scarcity of sovereign collateral or a persistent rise in settlement fails. 
Among the studies that tried to measure the repo market, it is possible to distinguish those who analysed the bilateral repo market (Gorton & Metrick (2009, 2010b) and Hördahl & King (2008)) from the tri-party ones (Copeland, A., Martin, A. & Walker, L. (2011), Krishnamurthy, Nagel & Orlov (2011) and Martin, A., Skeie, D. & Von Thadden, E. L. (2011)).  The results obtained among those who studied the bilateral and the tri-party repo are different, as it could be expected, and occasionally opposite. 
For instance, by studying tri-party repo market, Copeland, Martin & Walker (2011)[footnoteRef:11] and Krishnamurthy, Nagel & Orlov (2011) present similar results.[footnoteRef:12]  Both agree with the (small) quantity of non-agency MBS/ABS (mortgages-backed securities/asset-backed securities) in the repo; and with the bare movement of haircuts on Treasuries and Agency MBS across the crisis (ABX and LIBOR-OIS index). Gorton & Metrick (2010b), by studying bilateral repo market, affirm the opposite, both indexes moved significantly.    [11:  According to Copeland, Martin & Walker (2011): “in the United States, a tri-party repo is a form of repo for which a third party, called the clearing bank, provides clearing and settlement services to the cash investor and the collateral provider.” Also, affirm that “tri-party repos are popular in part because of the efficiency gains associated with the services provided by the clearing bank (the third party).” (p.3)]  [12:  They diverge about the dependence of haircut terms on counterparty.] 

Among the mentioned studies, Krishnamurthy, Nagel & Orlov (2011) present relevant findings: 
(a) the contraction in repo, in the crisis, was small compared to the outstanding stock of nonagency MBS/ABS, (b) the ABCP played a more significant role than the repo market in supporting both the expansion and contraction of the shadow banking sector, (c) appears to have been a run on the repo backed by non-Agency MBS/ABS rather than a generalized run on certain financial intermediaries, (d) the repo contraction on non-Agency MBS/ABS played a more significant role for some dealer banks (Merrill Lynch, Goldman Sachs, Morgan Stanley and Citigroup) than for the SBS, and (e) Fed’s Programs (TSLF and PDCF) absorbed much of the contraction in repo funding of non-Agency MBS/ABS and corporate debt.  
At the same time, they present the most controversial position about the “run on repo”, by analysing the importance of repo for shadow banking funding from cash lenders (MMF and securities lenders) outside the SBS, in order to avoid the double-counting problem.[footnoteRef:13]  They assume there were a run on repo and a run in short-term debt, in which the first one was smaller, than the second one; therefore the run on repo was not the main cause of the SBS’s collapse.  The run-on repo was too small to foster the contraction of the whole shadow banking sector, contradicting Gorton (2009) and Gorton & Metrick (2010b). The run-on short-term debt occurred -significantly- on asset-backed commercial paper (ABCP):  [13:  For more information about the rationale for excluding inter-(shadow) bank repo, which is analogous to similar considerations about interbank deposits in the calculation of the money stock M2, see Krishnamurthy, Nagel & Orlov (2011). 42 They justify that “the run-up in both repo and ABCP is also consistent with the increased “money demand" argument of Gorton & Metrick, or the global imbalances of Caballero and Krishnamurthy (2009)” (Krishnamurthy, Nagel & Orlov, 2011, p.5).] 

The short-term funding of securitized assets through ABCP and direct investments by money market investors are an order of magnitude larger than repo funding, and the contraction in ABCP is an order of magnitude larger than the run-on repo. Troubles in funding securitized assets with repo may have been a major factor in the problems of some dealer banks that were most heavily exposed to these assets, but for the shadow banking system as a whole, the role of the repo market appears small. 
In spite of the differences in the paper [the authors above] they agree with Gorton & Metrick (2010b) in some basic happenings:  (a) the occurrence of a run on the short-term debt financing, which supported the shadow banking sector and led to its own demise in the crisis; (b) the dynamic of the inter-dealer in the repo market contributed to the systemic risk; and (c) that the engagement of dealer banks with other dealers, in interbank lending, pulled back much more dramatically on their credit extension (credit-crunch).   
A recent and interesting analysis is presented by Comotto (2012),[footnoteRef:14]  affirming that Gorton & Metrick’s (2010b) argument that changes in haircuts in (U.S.) repo was the main cause of the crisis. This paper does ignore the tri-party repo segment, and their database (provided by a U.S. broker-dealer) included only collateral in the form of structured securities (CDOs, CLOs, etc.); which was a modest proportion of the U.S. repo market even before the crisis.   [14:  Richard Comotto is a senior visiting fellow at International Capital Market Association (ICMA) Center.] 

Comotto attempted to calibrate and apply the Gorton & Metrick’s model in Europe by using a survey of haircuts in 2007 and 2009 from the Committee on the Global Financial System (CGFS). He demonstrated that changes in haircuts could explain less than 3 percent points of the 28% deleveraging of the repo market between 2007 and 2009.[footnoteRef:15] Finally, this author considers Krishnamurthy, Nagel & Orlov’s (2011) work a masterpiece, which showed that there was not a substantial variation in haircuts, and not a substantial variation of them as Gorton & Metrick (2010b) argued.  On the contrary, Copeland, Martin and  [15:  See Comotto, R. compiler. (2012). Initial margins and haircuts in the repo market. ICMA.] 

Walker (2011), focused on the behaviour of haircuts and quantity of funding, examined the tri-party agents and found also a substantial variation in haircuts across counterparty. 
From another perspective Martin, Skeie & Von Thadden (2011) developed an equilibrium model, which is supposed to be applied to various types of financial institutions[footnoteRef:16] that suffered from losses in short-term funding during the financial crisis of 2007-09.[footnoteRef:17] They applied this model to large securities dealers who use the tri-party repo market, as a mean source of financing.  The result showed that “Dealers’ borrowing in the tri-party repo market reached over $2.8 trillion outstanding in aggregate at its peak in 2008; individual dealer borrowing reached $400 billion, most of which with overnight maturity”.  Nevertheless, it is important to emphasize that this model does not pretend to measure the repo market, but rather the short-term collateralized borrowing and the conditions under which runs can occur.    [16:  Financial institutions as money market mutual funds (MMMFs), hedge funds, off-balance sheet vehicles including asset-backed commercial paper (ABCP) conduits, and structures investment vehicles (SIV’s).]  [17:  There is no doubt that the argument that the recent run happened on the short-term debt, as the tri-party repo market’s studies affirm (through the analysis of this type of financial intermediary related with the commercial papers), theoretically, provides a new scope to infer the behaviour and losses of the SBS.] 

Finally, Bengtsson (2011) affirms that through the analysis of MMFs it is possible to measure the SBS, because, generally, they invest in short term commercial paper, which in turn is used to obtain working capital by corporations.[footnoteRef:18]  His results show that in the third and fourth quarter of 2007, Europe enhanced MMFs suffered an outflow of €45 billion. Luxembourg-Based AXA Investment Management, French asset manager ODDO, (German) Union Investment, HSBC Investments Deutschland, Sal Oppenheim and Frankfurter Trust, German WestLB Mellon, French BNP Paribas (MMFs: Parvest Dynamic ABS, BNP Paribas ABS Euribor and BNP Paribas Paribas ABS Eonia) and German DWS revealed troubles with their redemptions and their net asset value haircuts, in the respective order.[footnoteRef:19]   Also the FSB (2011b) states that the MMFs assets increased from $2.9 trillion in 2002 to $4.8 trillion in 2008, but declined to $3.9 trillion in 2010.[footnoteRef:20]   [18:  Bengtsson (2011) presents that the MMFs, as cash manager of services (historically safe until this crisis) with high levels of liquidity, stability in principal value and competitive market-base yields, have grown into a €1.3 billion industry dominated by France, Luxembourg and Ireland; from which, many of them are managed elsewhere, such U.K. or Germany. ]  [19:  In spite of the sponsor to the MMFs month after the Lehman Brothers bankruptcy, and because of the spillover effect on other European countries due to the unilateral actions, the authorities began their liquidity assistance to secure the liquidity of money market funds. The authorities lowered the interest rates and broad the scope of eligible collateral for banks in October 2008. Also, the Irish Central Bank required the review of any discrepancies between the accounting value and market price of MMF assets residual maturity of less than 3 months. (Bengtsson, 2011, p.7)]  [20:  Aggregated results using the ECB’s euro area data broadly accord with $4.8 trillion in 2010.] 

So far, the described studies about the measurement of the repo market depict some general conclusions about the type of run, and somehow glimpse the traces of the recent financial crisis. 
In a broad-spectrum it seems that authors who studied the bilateral repo market, concluded that the repo market was the core of the run in the recent crisis; and those who studied the tri-party repo market, found the run on the repo market was too small to trigger the whole crisis.  Instead, they affirm that the short-term borrowing or debt was considerably big to boost the SBS collapse, and hence the crisis.  
[bookmark: _Toc90499931]1.2.3 Following the Banking System’s traces in the Shadow  
The three main assumptions identified, in this research, related to the cause of the recent financial crisis are the Subprime or Housing Bubble, the run-on repo market, and the run-on short-term debt (especially on the ABCP).  The first one seems to be just the tip of the iceberg; the second one was significant to some dealer banks that were most heavily exposed to these assets.[footnoteRef:21]  And the third one, the run on the short-term debt, appears to be the bigger on the whole financial ecosystem, due to the implication of financial intermediation (FI)[footnoteRef:22] as diverse non-bank entities. Therefore, the last assumption is presumably at the core of the SBS’s collapse, and hence of the crisis.    [21:  Merrill Lynch, Goldman Sachs, Morgan Stanley, Citigroup, BNP Paribas, Société Général, Wachovia Bank N.A., etc.]  [22:  According to Krishnamurthy, Nagel & Orlov (2011), the financial intermediation entities have the knowledge or capability to assess and handle collateral. It means to mediate between cash lender and borrowers, which is the motivation of a tri-party arrangement. For instance: they know if the counterparty is giving the required collateral.] 

The run on the short-term debt, especially on the ABCP, is called by Chang (2011), as a run-on money market mutual funds[footnoteRef:23], because these funds typically invest in short term commercial paper.  It is also called a run on the Asset-Backed Commercial Paper (ABCP), which spread quickly to the interbank market.  [23:  According to Mishkin F.S. & Eakins, S. G. (2012), money market mutual funds (MMMF) are funds that accumulate investment dollars from a large group of people and then invest in short-term securities such as Treasury bills and commercial paper. (p.299)] 

The authors of tri-party repo market (Gorton & Metrick (2010b), Copeland, Martin &Walker (2011) and Krishnamurthy, Nagel & Orlov (2011)), and the aftermath studies (Chang (2011) and Bouveret (2011)[footnoteRef:24]) agree that this type of run (on ABCP) triggered a chain of reactions.  [24:  He affirms that the financial turbulence caused by run on ABCP expanded to other financial markets such as the ones for repo, ABS and mortgage-backed securities, leading eventually to the collapse of Lehman Brothers in September 2008. 

] 

In order to understand the run-on short-term debt, especially on the ABCP, it is presented below, in figure 1.2.3, the dynamic of the traditional on-balance-sheet financing; and the SBS’s off-balance-sheet financing technique. 
The shadowy nature of the off-balance sheet technique represents a challenge to analyse the non-bank’s securities lending transaction (which is typically related with funding), besides the data problems, mentioned in the section above.  
In step 4 of the figure 1.2.3, financing becomes off-balance sheet of the bank. Loans are pooled and securitized. Bonds created by securitization are often the main source of collateral that provides insurance for large depositors, because deposit insurance worked for retail investors. 
[image: primary & secondary markets]
Dynamic of the traditional on-balance-sheet financing
[image: Assets, Liability and asset portfolio management, Money creation, Off-balance  sheet activities, Central bank money, Loans, Off-balance-sheet activities  that carry risk, Off-balance-sheet activities that carry no or little risk  - Banking]
SBS’s off-balance-sheet financing technique
[bookmark: _Toc78498668]Figure 1.2.3 On and Off-Balance-Sheet Financing
Source: Gorton & Metrick (2010a)
Securitization is not the fairy tale villain. On the one hand, it has the potential to create an unlimited number of marketable securities; on the other hand, these marketable securities are created out of risky loans. It is a mixed blessing for short-term funding.  As the following figure 1.4 shows securitization grew enormously.[footnoteRef:25]  [25:  According to Gorton & Metrick (2010a), the ratio of off-balance sheet loan funding to on-balance sheet loan funding grew from zero to over 60 percent. (p. 10) 
] 

 [image: Securitization as a response to monetary policy - Zhang - 2019 -  International Journal of Finance &amp;amp; Economics - Wiley Online Library]
[bookmark: _Toc78498669]Figure 1.2.4 Ratio of Total Private Securitization to Total Bank Loans
Source: Zhang and Xu (2019)
The securitization, as a form of banking and as a very important source of financing, allows the re-hypothecation (re-use) of the collateral in another transaction, potentially with a different counterparty. Consequently, securitization was able to knit together the housing bubble, the repo market and the short-term debt with the SBS because they are fertile soil to lay and trade “again and again” the collateral of a security for short-term funding, which does appear on-balance sheet not before maturity. 
Pozsar & Singh (2011) and Singh & Aitken (2010) confirm that the Flow of Funds (FoF) data of the U.S. Federal Reserve captures only on-balance sheet funding.  There is not a specific instrument to capture the off-balance-sheet financing.  Notwithstanding, the last authors affirm “since the U.S. banks re-hypothecate collateral received that can be pledge” with European banks and vice versa, the source of off-balance sheet funding is higher (through the velocity of collateral)”. 
Singh & Aitken (2010) examine the sizable role of re-hypothecation in the SBS (or non-bank institutions) and conclude that it is at least 50 percent bigger than documented so far. Their estimations “…suggest that about $1 trillion of the market value of securities of the global hedge fund industry was re-hypothecated, as of end-2007” (p.11). The next graphics show the re-hypothecation decline, by analysing the collateral received that is permitted to be pledged at Large U.S. Banks (figure 1.2.5) and at the large European banks (figure 1.2.6), from November 2007 to December 2009; in billions of U.S. dollar. 
As the next two figures show, after the Lehman’s Bankruptcy, the re-hypothecation declined rapidly.  In the United State, it declined especially for the largest seven U.S. broker-dealers (Lehman, Bear Stearns, Morgan Stanley, Goldman, Merrill and JPMorgan) from about $4.5 trillion to $2.1 trillion; and in Europe, it declined approximately from $4 trillion to $1.7 trillion (Deutsche Bank, Credit Suisse, UBS, Barclays and RBS). 
It is important to mention that despite the differences in the monetary system between the U.S. and Europe, the last one reached high levels of re-hypothecation too. These authors argue that the reduced or non-existence of a limitation of re-hypothecation and customer protection rules could be an explanation of the high levels of re-hypothecation reached in Europe. 
In the U.S., there is a customer protection regulation that establishes a quantitative cap or leverage’s limitation (via the 140 percent rule under Rule 15c3-3, Regulation T, Securities Investor Protection Corporation (SIPC))[footnoteRef:26].  When the leverage’s limitation was reached, the hedge funds opted for funding in other countries where that leverage is not capped as in the U.S. They found a European path to carry on the process and pledge collaterals, especially in the U.K., where an unlimited amount of the customer’s assets can be re-hypothecated and where no customer protection rules exist.   [26:  The 140 percent cap on the debit balance reduces each successive round of re-hypothecation.] 

[image: ]
[bookmark: _Toc78498670]Figure 1.2.5 Collateral Received (Permitted to be pledged at Large U.S. Banks)
Source: Singh & Aitken (2010).
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[bookmark: _Toc78498671]Figure 1.2.6 Collateral Received (Permitted to be pledged at Large European Banks)
Source: Singh & Aitken (2010)  
When a pledged collateral is permitted to be re-used (off-balance item), it means that “the pledged collateral is not owned by these firms, but due to re-hypothecation rights, these firms are legally allowed to use the collateral in their own name” (Singh & Aitken, 2010, p.10).  In other words, a U.S. bank that pledges/re-uses a collateral with a European Bank is not the owner of it, yet due to re-pledge rights,[footnoteRef:27] this bank can use the collateral in its own name, and vice versa.[footnoteRef:28] It is evident that the interest, of the banking sector, in the re-hypothecation and thus in pledging collateral, is justified by the opportunity to extract more funding out of the traditional system.  About this, Pozsar & Singh (2011) assert that the banks’ funding straddles the traditional (by using M2[footnoteRef:29], for households and some corporations) and the non-traditional banking system (by using market-based liabilities or non-M2).  As the non-M2 types of money were preferred by the asset managers, the funding’s instruments to banks are more asset-manager-to-bank than bank-to-bank claims (interbank). Therefore, they state that the shadow banking is primarily an asset manager to bank phenomenon than an interbank phenomenon. They explain:  [27:  According to Pozsar & Singh (2011), “the term re-pledged is a legal term and means that the dealer receiving the collateral has the right to re-use it in its own name (re-hypothecation is a term used in the context of re-use of hedge funds’ collateral).” (p. 10).]  [28:  Hördahl & King (2008) describe the composition of the euro area’s collateral: Two thirds of the collateral is central government bonds from euro area countries, 16% from other euro area entities and 12% from other OECD countries. In terms of country of issuance, German collateral makes up one quarter of the market, followed by Italian at 13%, French at 11% and another euro area at 15%. Whereas there are more than 7,500 banking participants, activity is highly concentrated, with the top 20 banks accounting for 80% of activity. Two thirds of repos have a maturity of one month or shorter, with the rest up to one year. Around half of euro repos are transacted directly between counterparties, while the remainder are brokered using either voice brokers or an electronic trading platform. (p.4)]  [29:  Mishkin (2010) defines M2 as a measure of money that adds to M1: money market deposit accounts, money market mutual fund shares, small-denominations time deposits, savings deposits, overnight repurchase agreements, and overnight Eurodollar. (p.62) M1 includes currency, traveler’s checks, and checkable deposits.] 

In the U.S., as noted, the gross volume of funding from non-banks that was intermediated by banks may have been as high as $25 trillion and $18 trillion at year-end 2007 and 2010, respectively. In other words, nonbanks’ funding to banks involves much more than just household and their deposits. [It also involves], …asset managers (mutual funds, pension funds, insurance companies, etc.); which are the major source of demand for non-M2 types of money[footnoteRef:30] and serve as source of collateral mines[footnoteRef:31] for the shadow banking system. (p.13)    [30:  Instead of M2-types of money, asset managers prefer alternatives such as short-term publicly guaranteed debt (such as Treasury bills and agency discount notes) and privately guaranteed wholesale funding instruments (such as repurchase agreements, asset-backed commercial paper and other asset-backed paper) issued by the shadow banking system. ]  [31:  The authors coin this term, in order to simplify the complex process of “looking for deposits of collateral (exploitation) and unearthing of passive securities so they can be re-use as collateral for various purposes in the SBS (extraction)” (Pozsar & Singh, 2011, p.5).] 

They estimate that “the total volume of collateral mined from ultimate sources (that is, from asset managers) [arrived] at $3.3 trillion and $2.4 trillion at year-end 2007 and 2010, respectively. These totals reflect $1.6 and $1.3 trillion in hedge fund assets, and $1.7 and $ 1.1 trillion in real money assets at end-2007 and 2010, respectively.” (p.9) This means the asset managers are miners of collateral and also the dominant sources of demand for nonM2 types of money for the SBS.[footnoteRef:32] [32:  Dealers obtain (or “mine”) collateral from asset managers through the levered and unlevered account. From the levered (or hedge fund) accounts they mine collateral through the provision of funding via repo against collateral, and the prime-brokerage related borrowings via margin loans against collateral. From the unlevered (or real money) accounts, dealers mine collateral directly from their custodians; in these transactions, unlevered accounts and custodians act as principal and agent securities lenders, respectively. However, the distinction between levered and unlevered accounts is increasingly blurred as the latter seek higher risk to cover their underfunded status (e.g., defined benefit pension funds). (Pozsar & Singh, 2011, p.9).
] 

On the other hand, they also estimated the re-pledge collateral in the European banks (plus the Japanese Nomura bank) and the U.S. banks, finding that their volume and velocity (or re-use rate) of source collateral shows the cross-border interconnection (multiple jurisdictions). Their estimation showed: (See figure 1.2.6) 
The volume of source collateral that was re-pledged (or re-used) gives a total of about $5.8 trillion in off balance sheet items at year-end 2010. While down from $10 trillion at end-2007, they are still sizable. This means that there are large volumes of source collateral accruing to global banks which they can freely recycle in financial markets.
[image: ]
[bookmark: _Toc78498672]Figure 1.2.7 Re-pledge collateral – Aggregate Market Size
Source: Pozsar & Singh (2011) 
The re-pledge, or repeated use of source collateral, lubricates the system, but also creates leverage collateral chains between bank and asset managers. The leverage is not necessarily by increased interbank lending, but due to the portfolio choices of the asset management.  The re-pledge dynamic could cause a ripple effect, because of the various financial transactions, which interconnect different actors.  Due to its high complexity, the objective of the subsequent chapters is the description of the SBS structure and dynamic, as well as an analysis of the implication for the banking sector.
[bookmark: _Toc90499932]1.2.4 TRANSMISSION OF SPILLOVERS DURING THE SUBPRIME CRISIS
This section gives a brief overview how the U.S. financial market segments that are relevant for the empirical analysis of the transmission of spillovers were affected during the recent subprime crisis. But before focusing attention on the mechanisms through which liquidity shocks were actually transmitted, market and funding liquidity need to be defined. Consistent with the existing literature, market liquidity is an asset-specific characteristic measuring the ease with which positions may be traded without significantly affecting their corresponding asset price. In contrast, funding liquidity refers to the availability of funds such that a solvent agent is able to borrow in the market in order to service his obligations.
An important determinant of market liquidity is the completeness and the symmetry of information with regard to the underlying asset. Other factors include the trading venue and the characteristics of the mechanisms for exchange. Thus, for example, securities traded in over the counter (OTC) markets may be subject to market illiquidity because of the absence of market-makers and a central clearing house, potentially impairing the price discovery process by limiting the potential matching of buyers and sellers. Also important in this respect is the absorptive capacity of market-makers, and the depth of secondary markets. In this context, many complex structured products are typically custom designed. Thus, high issuance of these heterogeneous OTC-traded assets does not necessarily imply abundant resale possibilities in secondary markets. Funding liquidity risk, as the risk that funds may not be available to a solvent agent, is implicitly embedded in many forms of financial intermediation, but is of limited relevance during times of tranquillity. In contrast, during periods of crisis, vulnerabilities to these risks increase significantly as outlined below. The most recent episode of turbulence, beginning in the summer of 2007, started with deteriorating quality of U.S. subprime mortgages, a credit, rather than a liquidity event. We argue that its propagation across different asset classes and financial markets is attributable to an amplification mechanism due to asymmetric information resulting from the complexity of the structured mortgage products and, subsequently, as a result of a more widespread repricing of risk which may have taken the form of a decrease in global investors’ risk appetite (see Gonzalez-Hermosillo (2008)). Increased delinquencies on subprime mortgages, driven by rising interest rates and falling house prices, resulted in uncertainty surrounding the value of a number of structured credit products which had these assets in their underlying portfolios. As a result, rating agencies downgraded many of the related securities and announced changes in their methodologies for rating such products, first in mid-July but then again in mid-August and in mid-October. Meanwhile, structured credit mortgage-backed instruments measured by the ABS indices (ABX) saw rapid declines, and the liquidity for initially tradable securities in their respective secondary markets evaporated. The losses, downgrades, and changes in methodologies shattered investors’ confidence in the rating agencies’ abilities to evaluate risks of complex securities, a result of which, investors pulled back from structured products in general.
It soon became apparent that a wide range of different financial institutions had exposures to many of these mortgage-backed securities, often off-balance sheet entities such as conduits or structured investment vehicles (SIVs). The SIVs or conduits were funded through the issuance of short-term asset-backed commercial paper (ABCP) in order to take advantage of a yield differential resulting in a maturity mismatch. Due to the increasing uncertainty with regard to their exposure to and the value of the underlying mortgage-backed securities, investors became unwilling to roll over the corresponding ABCP. 
As with most other OTC products, measures of market liquidity of these assets are difficult to obtain due to the lack of a centralized exchange which publishes prices and trading volumes. In this context, Caruana and Kodres (2008) point out that the average maturity of outstanding ABCP shortened from 24 to 18 days during the summer of 2007, and that the amount of outstanding ABCP declined by approximately $300bn between early August and early November in the U.S. market alone, suggesting the ABCP market became less liquid. 
As the problems with SIVs and conduits deepened, banks came under increasing pressure to rescue those that they had sponsored by providing liquidity or by taking their respective assets onto their own balance sheets. As a result, the balance sheets of those financial institutions were particularly strained by this reabsorption, which in addition was amplified due to declining asset values. A further strain on banks’ balance sheets came from warehousing a higher-than-expected number of mortgages and leveraged loans, the latter usually passed on to investors in order to fund the highly leveraged debt deals of private equity firms. Both the market for mortgages and leveraged loans dried up from the collapse of transactions in the mortgage-related securitization market and collagenized loan obligations (CLOs). Banks also felt obliged to honour liquidity commitments to alternative market participants, such as hedge funds and other financial institutions, that also suffered from the drain of liquidity. With regard to alternative channels of liquidity provision, stress in the FX swap markets and the negative reputational signal resulting from using the Fed discount window limited options further.
Consequently, the level of interbank lending declined both for reasons of liquidity and credit risk. The former is based on a prudency motive whereby banks hoarded liquid assets in order to insure themselves again contingent liabilities. In contrast, the latter was due to uncertainty with regard to the mortgage exposure of counterparties and the inability to value their respective assets. Subsequently, money markets were affected especially in advanced countries in the form of a widening of the Libor–overnight index swap (OIS) spreads, which in turn led to increased funding costs.
As turbulence related to the U.S. subprime mortgages heightened, financial markets more generally showed signs of stress, as investor preference moved away from complex structured products in a flight to liquidity. Subsequently, positions were shifted in order to invest in only the safest and most liquid of all assets, such as U.S. Treasury bonds.  Furthermore, hedge funds that held asset backed securities and other structured products were burdened by increased margin requirements, driven in turn by greater market volatility. As a consequence, they attempted to offload the more liquid parts of their portfolios in order to meet these margin calls and also respond to redemptions by investors. As argued by Khadani and Lo (2007), quantitatively driven hedge funds were especially engaged in liquidation sales across different asset classes, thus leading to a transmission of market stress as a result, trading volumes and numbers of trades in both the bond and the stock markets in the developed and emerging countries increased markedly, whilst the liquidity surrounding structured investments evaporated.
Finally, the evident deterioration of market and funding liquidity conditions had implications with regard to the solvency position of banks for several reasons. First, financial institutions saw a decline in the values of the securitized mortgages and structured securities on their balance sheets, which in turn resulted in extensive write-downs. Second, funding liquidity pressures forced rapid deleveraging during this period, further depressing asset prices. Third, funding costs increased due to rising money market spreads, which was amplified by the fact that many financial institutions had become increasingly reliant on funding from wholesale money markets. Jointly, these pressures resulted in a decline in the capital ratios throughout the banking sector, and as a result of which credit default swap (CDS) spreads increased significantly across the industry during the crisis.
The transmission mechanisms of liquidity shocks across differing U.S. financial markets outlined so far have been described as being unidirectional and sequential. But during periods of financial stress, as witnessed during the subprime crisis, re-enforcing liquidity spirals may be observed. As discussed above, market illiquidity can turn into funding illiquidity, as banks are forced to reabsorb their SIVs onto their balance sheets. Alternatively, infrequent trading and a limited price discovery process can cause increased volatility, which in turn will raise margins and needed collateral. Thus, this reduces the leverage and the funding possibilities which are open to traders. Furthermore, market illiquidity in complex structured products could lead to the inability of market participants to assess the fair value of assets, such as when the French bank BNP Paribas announced in August 2007 it would refuse to accept withdrawals from three of its investment funds.
Funding illiquidity can also lead to market illiquidity, whereby the former forces financial agents to sell securities at fire-sale prices, resulting in a sharp decline in asset prices and further deleveraging (Bernardo and Welch, 2004). Subsequently, the absorptive capacity and liquidity of secondary markets, especially if the assets are complex securities which are only sold over the counter (OTC), may become exhausted. In addition, financial institutions that operate across multiple markets could be affected when stress in specific funding markets spills over to market illiquidity in related areas. One example is when European banks in late 2007 required dollar funding through foreign exchange swaps, but due concerns over counterparty credit risk, liquidity, typically obtained in the underlying swap market dried up.
It has been argued that these spillovers has been facilitated by recent structural changes in the financial markets and by financial innovation. In this context, banks have become increasingly reliant on wholesale funding and short-term liquidity lines. Also, increased complexity of securities has led to great information asymmetries among market participants. Favourable macroeconomic conditions, especially low interest rates in recent years, have increased investors’ risk appetite and the demand for high yield products in order to satisfy profit margins. Finally, increased correlations between returns of differing asset classes due to algorithmic trading, such as by quantitative hedge funds, has heightened the vulnerability with regard to the transmission of illiquidity.
The possibility of re-enforcing liquidity spirals, in addition to the operation of spillovers across the five markets outlined above, is important for the model selection in the empirical analysis which is set out in section 3. The presence of potential multi-directionality of the propagation motivates us to conduct estimation using a multivariate DCC GARCH specification. This allows us to model the correlation dynamics between asset classes such that we can evaluate whether different markets co-moved to a greater extent during the subprime crisis of 2007.
[bookmark: _Toc90499933]1.2.5 Liquidity shocks transmission and GARCH model
One of the most significant functions that a differentiate bank from other business entities is a financial intermediary. Maturity mismatch and uncertainty enables banks to act as an intermediary based on different liquidity preferences. Allen and Carletti (2008) define liquidity as the ability to purchase financial assets and real goods and services immediately. If banks could not meet their short-term liability, they would be forced to sell their assets at a discounted price, which is termed as a fire-sale. In the case of subprime mortgage crisis, some banks were solvent but illiquid; hence a fire-sale of their assets resulted. A series of fire-sales further intensify the fragile financial system which subsequently dried out the liquidity of the financial market and led to global financial distress. It is clear that inadequate liquidity management might induce a systematic financial crisis. Diamond and Rajan (2005) argue that bank failures can shrink the common pool of liquidity, creating or exacerbating aggregate liquidity shortages. This could lead to a contagion of failures and a total meltdown of the system. Further, they show how liquidity shortages and solvency problems in banks interact, and how each can cause the other. Berger and Bouwman (2009) examine aggregate liquidity creation of banks before, during and after five major financial crises in the U.S. They found that there were patterns of behaviour such as a significant build-up or drop-off of abnormal liquidity creation before each crisis. They further identify that banking and market-related crises differ in two respects. The banking crises were preceded by abnormal positive liquidity creation by banks, while the market-related crises were generally preceded by abnormal negative liquidity creation. See Bordo et al (2001), Demirguc-Kunt et al (2006), Lorenzoni (2008), Strahan (2008), Adrian and Shin (2008) and Dell’Ariccia et al (2008) for bank liquidity in relation to financial crisis.   
Multivariate GARCH models have evolved from the standard univariate GARCH model. Bollerslev et al. (1988) originally proposed the basic framework for the multivariate GARCH, which extends the univariate GARCH into a vectorized conditional-variance matrix. This VECH model involves a large number of parameter estimates（No. of parameters: P = k4/2 + k3 + k2 + k/2 = O (k4), k is the number of dimensions). In order to make estimation more tractable, Bollerslev et al. (1988) propose the diagonal VECH model.  However, this type of MVGARCH model could not be used to examine spillover effects, since it simplifies the correlation between parameters. The factor GARCH (Engle et al., 1990) reduces the number of parameters to O(k2), but empirical studies reveal its poor performance on low and negative correlations. Bollerslev (1990) proposes the constant correlation (CC) model, which still allows volatility to be time-varied but the conditional correlations are restricted to be time-invariant. However, Longin and Solnik (1995) explore the correlation of monthly excess returns for seven major countries over the period 1960-1990 and conclude that the covariance matrices were not stable, but time-varying. Tse (2000) introduces a Lagrange Multiplier (LM) test for the constant-correlation hypothesis in a multivariate GARCH model. The test examines the restrictions imposed on a model which encompasses the constant-correlation multivariate GARCH model. They test three different data sets, namely, spot-futures prices, foreign exchange rates and stock market returns. The results show that spot-futures and foreign exchange data display constant correlations, while the correlations across national stock market returns are time-varying. Therefore, the CC model may not be generous enough. 
Engle and Kroner (1995) considerably improve the work of Baba, Engle, Kraft and Kroner and create a general quadratic form for the covariance equation, which successfully eliminates the positive definiteness problem of the original VECH model. In the fully general BEKK model, the number of parameters that must be estimated is O(k4), the standard BEKK estimation will involve O (k2) parameters. Other, more plausible formulations of the BEKK model include diagonal and scalar, where, as the name suggests, parameters are restricted to be either diagonal matrices or scalar. The most obvious shortcoming of those simplified BEKK models is that some information such as volatility spillover effects is missing from the variance-covariance matrix, since the parameters are reduced. Alexander (1999) demonstrates how to apply factor (or Orthogonal) GARCH models, which limit the factors accounting for the number of volatilities. The most attractive feature of this kind of MVGARCH model is that it is generous enough to provide a method for estimating any variance-covariance matrix using univariate GARCH models. However, Sheppard (2001) criticises that this approach is hardly suitable to interpret the coefficients on the univariate GARCH model and performs poorly for less correlated systems such as individual equities, since it reduces the number of parameters to O(k). 
Sheppard (2001) proposes a new type of multivariate GARCH model; namely, dynamic conditional correlation to deal with the difficulty of estimating large time-varying variance-covariance matrices. This new type multivariate GARCH model is distinguished from other specifications in that univariate GARCH models are estimated for each asset series, then use the standard residuals resulting from the first step, a time-varying correlation matrix is generated from the first step using a simple specification. This parameterization preserves the simple interpretation of univariate GARCH models with an easy to compute correlation step. The sample empirical study shows the power and easy implementation of this new type of model. In line with Sheppard (2001), Engle (2002) advocates a new class of MVARCH model which is named dynamic conditional correlation (DCC).  Intuitionally, the DCC model maintains the plausibility of the CC model and allows for time-varying conditional correlation. Sheppard (2001) makes a great contribution to DCC model estimation by reducing the approximation of MVGARCH to a series of univariate GARCH process plus an additional correlation estimator. The specification of the univariate GARCH is generous to any GARCH process with normally distributed errors that satisfies non-negative constraints and stationary conditions. Tse and Tsui (2002) propose a new MVGARCH with time-varying correlation, while adopting the vech presentation based on conditional variances and conditional correlations. Similar to DCC, each conditional-variance term is assumed to follow a univariate GARCH model and satisfies the positive-definite condition, as found in the constant-correlation and BEKK modes. Compared with the BEKK model, the prominent strength of the DCC model is that it does not suffer dimension hindrance and could be applied to any dimension. This is because estimation can be decomposed into two steps: estimation of the univariate GARCH and subsequent construction of a maximum likelihood function which has only two parameters (see details in section 3.2). However, the DCC model imposes more restrictions on the type of dynamic effects than the BEKK model. In particular, the conditional variance of returns only depends on past squared returns, such that volatility spillovers are excluded. Similarly, feedback from past volatilities or squared returns on correlations is severely limited in the DCC model.
Cappiello et al. (2006) advocate a new type of multivariate GARCH model, named the asymmetric generalized dynamic conditional correlation (AG-DCC) model, to explore the asymmetric dynamic in the correlation between global bond and equity markets. The AG-DCC process extends previous specifications along two dimensions. It allows for series-specific news impact and smoothing parameters and permits conditional asymmetries in correlation dynamics. Cappiello et al. (2006) employ the AG-DCC model to analyse the behaviour of international equities and government bonds. The results support the existence of asymmetries in conditional correlations for both equities and bonds, with equities responding more vigorously than bonds to joint bad news. The article also finds that, during periods of financial turmoil, equity market volatilities show important linkages, and conditional equity correlations among regional groups increase dramatically. 
Asamodis et al. (2008) apply three different types of MVGARCH: CCC, DCC and STCC to examine the co-movements between UK and US stock prices. The main innovation of this study is that it considers macroeconomic information together with time-varying conditional correlations. They find that correlation has increased from the year 2000, but no indication showing that it relates to the examined macroeconomic and financial variables. Evans and McMillan (2009) conduct comprehensive research on financial co-movements and correlations with regard to 33 international stock indices. They use Vector Error Correction Matrix (VECM) to test the cointegration and bivariate-GARCH (1,1) to examine the time-varying conditional correlation. They also compute realised correlations based upon realised variance methodology to construct international portfolios. Results suggest the portfolios weighted according to the realised correlations exhibit diversification benefits over equally weighted portfolios.
The transmission mechanisms of liquidity shocks in the subprime mortgage crisis demonstrate the fragility of the financial system under extreme circumstances. Short term market illiquidity shocks may pose opportunities for traders to take advantage and profit from them. However, under crisis periods, the liquidity shocks might be exaggerated or amplified via different transmission mechanisms. Frank et al (2008) estimates the transmission of liquidity shocks by applying a multivariate GARCH model during the subprime mortgage crisis period. The GARCH model allows for the evaluation of the transmission of the liquidity shock that spread from credit market to equity market as well as modelling the conditional heteroscedasticity exhibited by the data. In addition, the GARCH model explicitly address the links between market and funding liquidity effects and the dynamics of bank insolvency pressures among the largest financial institutions in the U.S. Further, the dynamic conditional correlation (DCC) model developed by Engle (2002) is also adopted.  The DCC specification is able to capture possible structural breaks in the unconditional correlation amongst the variables. The methodology will be discussed in detail in chapter three. The transmission mechanisms of liquidity shocks during subprime mortgage crisis have been described as reinforcing liquidity spirals, where it was perceived as a temporary liquidity shock in the beginning, eventually becoming severe financial distress.  These transmission mechanisms were not restricted to the U.S. financial market but were also observed across other advanced and emerging markets.














[bookmark: _Toc90499934]1.3 Methodology 
This chapter argues that the solution to the problem of complex financial crises should not only consider what has happened at the crisis level, but also the ultimate reasons and reasons behind it. This is similar to investigating the causes of the tsunami. When a tsunami occurs, it waves at a level that causes significant damage, but the cause of such destruction is the activity of the tectonic plates squeezing together and producing a powerful force. Understanding the driving force beneath the surface is very important for a complex system problem. The standard use of econometric techniques is to associate a particular understanding of the nature (or ontology) of reality and the appropriate ways of obtaining information about aspects of that fact (or cognition). However, the use of econometric techniques in a standard fashion will not be sufficient to produce fruitful results for answering complex and interrelated issues. This thesis applies critical realistic methodology as the basis of research strategies and guidelines, along with the appropriate use of econometric techniques and statistical inference, but also uses other quantitative and standard methods of testing assumptions. Is. The result is an experimental investigation framework that addresses complex system issues.
The economic behaviour of assumptions about how to test the estimation of econometric methods on the use of intermediaries rarely interrogates itself. The main debate has been more methodical, in response to "Lucas criticism". This developed version that the econometric model must have "micro-base" behaviour which is generally assumed by the extension that such micro-foundations must be grounded in the individual optimizing behaviour. At the heart of econometrics and, indeed, the concept of any mathematical economic theory, functional relationships. The value depends on a function of the unique variable related to a set of independent variables, which is practiced almost always linearly and differentiated in terms of well-behaved. It is illustrated by the smooth process of differential calculation.
In a simultaneous system, there may be a function of the dependent variable, one or more other functions in an independent variable. It is usually observable in practice as a variable that usually has more than one role or function. The main difference between the theory and practical work is that in the latter case, the functions include a "white noise" random period. The occurrence of regular conjunctions of observations to lead to a view of the lies behind the functions that lead to the world is expected for such a mechanism. Such event regularities of sophistication require an overall level of consistency in three key terms. First, the external closure means that all relevant independent variables are included and correctly observed. Secondly, internal closure means that the relationship between the function is unique and stable, represented by the probability ranges within the noise period. The third condition is that there exists a valid set of principles in the case where the underlying functional relationships exist to accumulate at the level of the observed variable. Together, these situations form a closed system. Given this ontological framework, epistemology is the standard econometrics of quantitative. This means that there is a question of the "functional assumptions" of structures derived from the reality of knowledge, the variable in the relationship between the functions about assumptions.
Lucas (1976) argues that relying on the traditional macro-econometric models of parameters is unlikely to follow the agents' expectations of policy change as their behaviour changes. This criticism is effective about two aspects. First, to help re-orient Orient's macroeconomic research model with clear expectations and "deep" parameters of taste and technology. These models include policy shifts to be unchangeable which were for the estimated first-order conditions and explicit optimization with the calibrated general balance model. Second, the focus of Lucas's critique of help is to change alternative policy considerations by evaluating change policies that allow for alternative policy rules that enable dynamic correction issues in the setting of individual agents. General Chat Lounge An important application of Lucas's critique (the micro-basis of the independent proposal) is that the correlation between the historical negative inflation and unemployment, known as the Philips curve, could break down if the monetary authorities tried to. Exploit it. Permanent inflation increases hopefully that it will permanently lower unemployment in the end due to firms' inflation forecasts, change their employment decisions.
The purpose of the objective is to develop and practice work so as to initially confirm the theory of relationship testing and ultimately to further discover where situations will not be as cheap as those relationships do not. The key subprime of identifying mortgages are between market participants and frictions in their initial research process. The reasoning of this model consists of explanation of prediction dependent variables in the initial conditions so there is no difference between the theory of past and future values ​​of the explanation. There is a practical difference to the extent that future values ​​marketing exogenous variables (models outside them) are unpredictable. Bulk-quality econometric work consists of structural assumptions in the form of functional assumptions, structured and less established equations, assumed these parameters to properly evaluate the structure of probabilistic features of data, and the formulation and application of diagnostic test data. Importance of Statistics. The combination of both models by means of understanding the econometric tools assisted in understanding not only the level of financial crisis, such as the liquidity reduction and elimination of the subprime lending market, but also the source crisis; This may be Keynesian's economical mindset for which there is a loose monetary policy through stimulus of consumption.
[bookmark: _Toc90499935]1.3.1 Research Strategy and process 
A research example is a philosophical framework that guides how scientific research should be conducted. Philosophy "uses reason and reason to search for truth and knowledge, especially final or general causes and principles of truth" (Oxford Compact Dictionary and Mojam, 1997). Describe the social phenomena and grounds that explain the Positivistic Focus Theories. Furthermore, they can be controlled to anticipate, anticipate, permit and therefore permit them. However, due to the nature of the reasons universal laws like to have very little scope. The second research position is the interpretivist view. Followers say that individuals and groups make sense based on a situation based on their individual experiences, memories and expectations. Through the construction and continuous re-creation of meaning and understanding, many different interpretations result from the experience. It is important to discover and understand the meaning and influence of relevant factors, determine and interpret those influences. This interpretivist approach is dynamic, as the knowledge of the learning process and construction is continually updated to receive new information, while the positivistic approach seeks to explain and apply current theories.
The two extremes, representing the positivist view, are seen to be more rational, and interpretivist as relativist and highly relevant. This doctoral study adopts an important realistic approach from which aspects of both positivist and interpretivist positions. The key realist view is that the real structure exists independently of human consciousness, but the knowledge that is born socially and the result of the reality of knowledge is social conditioning. Reality The differences between faith in the real world and especially in their view of it and the different ideas for building effort are in relation to the fact that time and space are relative. This desire covers a set of responses to the development of realism research that many cohorts’ context and various reflective participants. Bhaskar (1975) is the pioneer of this school of thought. He argues that science has always been more concerned with explaining what will happen in world forecasts.
This doctoral study employed in the method of scientific research includes advanced econometric approaches with historical research and quantitative modelling of experimental investigations. The research methodology is further enhanced by the following research onion model (Sanders et al., 2007).
In a research philosophy an observable phenomenon about the path of faith should be investigated, customized and analysed. The main purpose of the logical positivistic researcher is to generalize the results to a larger population called the 'Positive Negative Approach'. To put it more simply, the logical positivistic approach means that the principle must be first created (positive) and then tested by empirical (inductive) observations. If the theory is flawed, it is to be rejected and to replace it to develop a new foundation. This research focuses on observational data from diverse financial markets and, by incorporating a series of practical experiments on theoretical advancement procedures to generate complex data, econometric and quantitative analysis results and to test research questions.
This econometric research methodology, which mainly requires the following logical positivistic approach, details the basic economic and financial phenomena of data, data recovery, unknown measurement values ​​and comprehensive post-diagnostic tests. Provided satisfactory test criteria are met, the researcher can take action to make accurate decisions and predictions. Also, of key importance is that this research method can be used to "characterize a relationship or phenomenon. It is the data in the packages that shows in a way that results in the relationship to become [ Advancing] principle ". In addition, "econometrics contains many purposes that have little or no testing theories. Even an econometrician such as Hendry (1980), who says that the three golden principles are econometrics" tests, tests, tests, " is not concerned with direct test theories with as much data gain as possible". In addition, "Econometrics operates in such a Lakatosian spirit as well, with no commitment to fine details of the Lakatos method" (Hoover, 2005).).  The Lakatosian spirit essentially embodies the concept of a “problem shift” which moves the researcher towards a new theoretical/empirical state in which achievements become possible beyond that which was most recently produced in the research domain (Folse, 2005). 
(1) Data analysis: Based on the historical stock market index or exchange rate data, analyse data feature, if series is non-stationary series, stabilize it by log difference or periodical difference. 
(2) ARMA model identification and parameter estimation: Identify the model and estimate parameter(s) according to series autocorrelation and partial correlation plot after stabilizing. For the detailed theory of ARMA modelling, see Box and Jenkins (1970) and Pankratz (1983). 
(3) ARMA model test: Test model by statistical hypothesis testing method, if model is effective, then go to the fourth step, otherwise come back to the second step to adjust the model’s order and establish the model again. 
(4) ARCH effect test, model identification and parameter estimation: Do GARCH effect test for residual series, identify the model’s order, estimate the parameter, establish the ARMAGARCH model. 
(5) ARMA-GARCH model test: Test model by statistical hypothesis testing method, if model is effective, go to the sixth step, otherwise come back to the fourth step to adjust GARCH model’ order again. To select the order of GARCH model finally, will also check the performance of that model on the validation set, which is well illustrated in above. 
(6) According to the established ARMA-GARCH model from steps 1-5 and integration to DCC-GARCH and BEKK-GARCH. Multivariate GARCH models have evolved from the optimal univariate GARCH model. The DCC specification will then allow the capture of possible structural breaks in the unconditional correlation amongst the variables. Finally, the BEKK-GARCH model will also be able to provide more detailed transmission information, apart from the conditional correlation.
[bookmark: _Toc90499936][bookmark: _Hlk90322536]1.3.1.1Stationarity methods for de-trending the data
Financial time series are continually brought to our attention. Daily news reports in newspapers, on television and radio inform us for instance of the latest stock market index values, currency exchange rates, electricity prices, and interest rates. It is often desirable to monitor price behaviour frequently and to try to understand the probable development of the prices in the future. Private and corporate investors, businessmen, anyone involved in international trade and the brokers and analysts who advice these people can all benefit from a deeper understanding of price behaviour. Many traders deal with the risks associated with changes in prices. These risks can frequently be summarised by the variances of future returns, directly, or by their relationship with relevant covariances in a portfolio context. Forecasts of future standard deviations can provide up-to-date indications of risk, which might be used to avoid unacceptable risks perhaps by hedging. There are two main objectives of investigating financial time series. First, it is important to understand how prices behave. The variance of the time series is particularly relevant. Tomorrow’s price is uncertain, and it must therefore be described by a probability distribution. This means that statistical methods are the natural way to investigate prices. Usually one builds a model, which is a detailed description of how successive prices are determined. The second objective is to use knowledge of price behaviour to reduce risk or take better decisions. Time series models may for instance be used for forecasting, option pricing and risk management.
Direct statistical analysis of financial prices is difficult, because consecutive prices are highly correlated, and the variances of prices often increase with time. This makes it usually more convenient to analyse changes in prices. Results for changes can easily be used to give appropriate results for prices. Two main types of price changes are used: arithmetic and geometric returns (Jorion, 1997). There seems to be some confusion about the two terms, in the literature as well as among practitioners.
Compounded geometric returns are given as sums of geometric returns, there is another advantage of working with the log-scale. If the geometric returns are normally distributed, the prices will never be negative. In contrast, assuming that arithmetic returns are normally distributed may lead to negative prices, which is economically meaningless.
The relationship between geometric and arithmetic returns is given by 

Hence, D can be decomposed into a Taylor series as 

which simplifies to R if R is small. Thus, when arithmetic returns are small, there will be little difference between geometric and arithmetic returns. In practice, this means that if the volatility of a price series is small-, and the-time resolution is high, geometric and arithmetic returns are quite similar, but when volatility increases and the time resolution decreases, the difference grows larger.
In practice, financial models will be influenced by time, both by time resolution and time horizon. The concept of resolution signifies how densely data are recorded. In applications in the finance industry, this might vary from seconds to years. The finer the resolution, the heavier the tails of the return distribution are likely to be. For intra-daily, daily or weekly data, failure to account for the heavy-tailed characteristics of the financial time series will undoubtedly lead to an underestimation of portfolio Value-at-Risk (VaR). Hence, market risk analysis over short horizons should consider heavy-tailed distributions of market returns. For longer time periods, however, many smaller contributions would average out and approach the normal as the lag ahead expands.
It is also important to employ a statistical volatility or correlation model that is consistent with the horizon of the forecast/risk analysis. To forecast a long-term average volatility, it makes little sense (it may actually give misleading results) to use a high frequency time varying volatility model. On the other hand, little information about short-term variations in daily volatility would be forthcoming from a long-term moving average volatility model. As the time horizon increases, however, one encounters a problem with too few historical observations for estimating the model. One then might have to estimate the model using data with a higher resolution and aggregate this model to the correct resolution.
Financial prices are determined by many political, corporate, and individual decisions. A model for prices is a detailed description of how successive prices are determined. A good model is capable of providing simulated prices that behave like real prices. Thus, it should describe the most important of the known properties of recorded prices. In this course study will discuss two very common models, the random walk model and the autoregressive model.
Random walk model
A commonly used model in finance is the random walk, defined through 

where µ is the drift of the process and the increments, .. are serially independent random variables. Usually one requires that the sequence {} is identically distributed with mean zero and variance , but this is not a necessary assumption. The variance of the process at time t is given by 

i.e., it increases linearly with time. In finance, the random walk model is commonly used for equities, and it is usually assumed that it is the geometric returns of the time series that follows this model.
the variance σ might be dependent of the time t. The assumption of serially independent increments of the series can be motivated as follows. If there were correlation between different epochs, smart investors could bet on it and beat the market. However, in the process they would then destroy the basis for their own investment strategy and drive the correlations they utilised back to zero. Hence, the (geometric) random walk model assumes that it at a given moment is impossible to estimate where in the business cycle the economy is and utilise such knowledge for investment purposes.
Autoregressive models
Random walk models cannot be used for all financial time series. Interest rates, for instance, are influenced by complicated political factors that make them difficult to describe mathematically. However, if a description is called for, the class of autoregressive models is a useful candidate. We shall only discuss the simplest first order case, the AR (1)-model:

where |α| < 1 is a parameter and .. are serially independent random variables. As for the random walk model we assume that the random terms have mean 0 and variance . We are back to the random walk model if α = 1. This autoregressive process is important, because it provides a simple description of the stochastic nature of interest rates that is consistent with the empirical observation that interest rates tend to be mean reverting. The parameter α determines the speed of mean-reversion towards the stationary value Situations where current interest rates are high, imply a negative drift, until rates revert to the long-run value, and low current rates are associated with positive expected drift. The stationary variance of the process is given by 

To avoid negative interest rates, one usually models the logarithm of the rate rather than the original value. As in the random walk model, it is possible to let the volatility σ depend on time. A very common assumption for interest rates is to parameterise the volatility as a function of interest rate level (see Chan et al. (1992)), i.e.

where κ is a parameter. If one sets γ = 0, one is back to the  model, or the Ornstein Uhlenbeck process (Vasicek, 1977) in the continuous case. Setting  = 1/2 gives the wellknown CIR-model (Cox et al., 1985). A different class of models to capture volatility dynamics is the family of GARCH-models.

Returns from financial market variables measured over short time intervals (i.e., intra-daily, daily, or weekly) are uncorrelated, but not independent. In particular, it has been observed that although the signs of successive price movements seem to be independent, their magnitude, as represented by the absolute value or square of the price increments, is correlated in time. This phenomenon is denoted volatility clustering and indicates that the volatility of the series is time varying. Small changes in the price tend to be followed by small changes, and large changes by large ones. 
Since volatility clustering implies a strong autocorrelation in the absolute values of returns, a simple method for detecting volatility clustering is calculating the autocorrelation function of the absolute values of returns. If the volatility is clustered, the autocorrelation function will have positive values for a relatively large number of lags.
The issue of modelling returns accounting for time-varying volatility has been widely analysed in financial econometrics literature. Two main types of techniques have been used: Generalised Autoregressive Conditional Heteroscedasticity (GARCH)-models (Bollerslev, 1986) and stochastic volatility models (Aquilar and West, 2000; Kim et al., 1998). The success of the GARCH-models at capturing volatility clustering in financial markets is extensively documented in the literature. Recent surveys are given in Ghysels et al. (1996) and Shepard (1996). Stochastic volatility models are more sophisticated than the GARCH-models, and from a theoretical point of view they might be more appropriate to represent the behaviour of the returns in financial markets. The main drawback of the stochastic volatility models is, however, that estimating them is a statistically and computationally demanding task. This has prevented their wide-spread use in empirical applications, and they are little used in the industry compared to the GARCH-models. In this course we will therefore concentrate on the GARCH-models.
[bookmark: _Toc90499937]1.3.2 Stationarity Analysis
A stationarity process has the property that the mean, variance and autocorrelation structure do not change over time. Stationarity can be defined in precise mathematical terms, but for financial econometric purpose it means a flat looking series, without trend, constant variance over time, a constant autocorrelation structure over time and no periodic fluctuations.
To formally establish whether a time series is stationary or non-stationary, study will use unit root tests. Two popular tests are commonly use: The Augmented Dicky-Fuller test (ADF) and Phillips Perron test (PP). 
[bookmark: _Toc90499938]1.3.2.1 The Augmented Dickey Fuller (ADF) Test 
Dickey and Fuller (1979) developed a procedure for testing whether a variable has a unit root or, equivalently, that the variable follows a random walk. Hamilton (1994, 528–529) describes the four different cases to which the augmented Dickey–Fuller test can be applied. The null hypothesis is always that the variable has a unit root. They differ in whether the null hypothesis includes a drift term and whether the regression used to obtain the test statistic includes a constant term and time trend. Becketti (2013, chap. 9) provides additional examples showing how to conduct these tests
The true model is assumed to be

where ut is an independently and identically distributed zero-mean error term. In cases one and two, presumably α = 0, which is a random walk without drift. In cases three and four, we allow for a drift term by letting α be unrestricted
The Dickey–Fuller test involves fitting the model

by ordinary least squares (OLS), perhaps setting α = 0 or δ = 0. However, such a regression is likely to be plagued by serial correlation. To control for that, the augmented Dickey–Fuller test instead fits a model of the form

where k is the number of lags specified in the lags () option. The no constant option removes the constant term α from this regression, and the trend option includes the time trend δt, which by default is not included. Testing β = 0 is equivalent to testing ρ = 1, or, equivalently, that  follows a unit root process.
The tests above are only valid if  is white noise. In particular,  will be autocorrelated if there was autocorrelation in the dependent variable of the regression () which have not modelled. The solution is to “augment” the test using p lags of the dependent variable. 
 The same critical values from the ADF tables are used as before. A problem now arises in determining the optimal number of lags of the dependent variable. There are 2 ways - use the frequency of the data to decide - use information criteria
In the first case, the null hypothesis is that  follows a random walk without drift, and case 1 is fit without the constant term α and the time trend δt. The second case has the same null hypothesis as the first, except that we include α in the regression. In both cases, the population value of α is zero under the null hypothesis. In the third case, we hypothesize that  follows a unit root with drift, so that the population value of α is nonzero; we do not include the time trend in the regression. Finally, in the fourth case, the null hypothesis is that follows a unit root with or without drift so that α is unrestricted, and we include a time trend in the regression.
The following table summarizes the four cases.
[bookmark: _Toc78502183][bookmark: _Toc78502287]Table 0‑1.3.1 Augmented Dickey Fuller cases
	Case
	Process under null
Hypothesis
	Regression
restrictions
	dfuller 
Options

	1
	Random walk without drift
	 
	Non constant

	2
	Random walk without drift
	
	default

	3
	Random walk with drift
	
	Drift

	4
	Random walk with or without drift
	              None
	Trend


Table 1.3.1 Augmented Dickey Fuller cases
Except in the third case, the t-statistic used to test H0: β = 0 does not have a standard distribution. Hamilton (1994, chap. 17) derives the limiting distributions, which are different for each of the three other cases. The critical values reported by dfuller are interpolated based on the tables in Fuller (1996). MacKinnon (1994) shows how to approximate the p-values on the basis of a regression surface, and dfuller also reports that p-value. In the third case, where the regression includes a constant term and under the null hypothesis the series has a nonzero drift parameter α, the t statistic has the usual t distribution; dfuller reports the one-sided critical values and p-value for the test of H0 against the alternative Ha: β < 0, which is equivalent to ρ < 1.
Deciding which case to use involves a combination of theory and visual inspection of the data. If economic theory favours a particular null hypothesis, the appropriate case can be chosen based on that. If a graph of the data shows an upward trend over time, then case four may be preferred. If the data do not show a trend but do have a nonzero mean, then case two would be a valid alternative.
[bookmark: _Toc90499939]1.3.2.2 Phillips- Perron unit root test
Phillips and Perron (1988) developed a number of unit root tests that have become popular in the analysis of financial time series. The Phillips-Perron (PP) unit root tests differ from the ADF tests mainly in how they deal with serial correlation and heteroskedasticity in the errors. In particular, where the ADF tests use a parametric autoregression to approximate the ARMA structure of the errors in the test regression, the PP tests ignore any serial correlation in the test regression. The test regression for the PP tests is

Where  is the lag difference of time series, is an independently and identically distributed zero-mean error term and the null hypothesis is that follows a unit root with or without drift so that α is unrestricted, and we include a time trend in the regression.
by ordinary least squares (OLS), but serial correlation will present a problem. To account for this, the augmented Dickey–Fuller test’s regression includes lags of the first differences of . The Phillips–Perron test involves fitting in case 1, and the results are used to calculate the test statistics. Phillips and Perron (1988) proposed two alternative statistics, which pperron presents. Phillips and Perron’s test statistics can be viewed as Dickey–Fuller statistics that have been made robust to serial correlation by using the Newey–West (1987) heteroskedasticity- and autocorrelation-consistent covariance matrix estimator.
Hamilton (1994, chap. 17) and Taylor (1994) discuss four different cases into which unit-root tests can be classified. The Phillips–Perron test applies to cases one, two, and four but not to case three. Cases one and two assume that the variable has a unit root without drift under the null hypothesis, the only difference being whether the constant term α is included in regression. Case four assumes that the variable has a random walk, with or without drift, under the null hypothesis. Case three, which assumes that the variable has a random walk with drift under the null hypothesis, is just a special case of case four, so the fact that the Phillips–Perron test does not apply is not restrictive.
The table below summarizes the relevant cases:
[bookmark: _Toc78502184][bookmark: _Toc78502288]Table 1.3.0‑2 Phillips Perron cases
	Case
	Process under null
Hypothesis
	Regression
Restrictions
	dfuller 
Options

	1
	Random walk without drift
	 
	Non constant

	2
	Random walk without drift
	
	default

	4
	Random walk with or without drift
	              None
	Trend



The critical values for the Phillips–Perron test are the same as those for the augmented Dickey–Fuller test. See Hamilton (1994, chap. 17) for more information.
[bookmark: _Toc90499940]1.3.5 Autocorrelation and Partial Autocorrelation Functions (ACF and PACF)
To determine a proper model for a given time series data, it is necessary to carry out the ACF and PACF analysis. These statistical measures reflect how the observations in a time series are related to each other. For modelling and forecasting purpose it is often useful to plot the ACF and PACF against consecutive time lags. These plots help in determining the order of AR and MA terms. Below we give their mathematical definitions: 
For a time, series  the Autocovariance at lag k is defined as: 

The Autocorrelation Coefficient at lag k is defined as: 

Here μ is the mean of the time series, i.e., . The auto-covariance at lag zero i.e.,  is the variance of the time series. From the definition it is clear that the autocorrelation coefficient  is dimensionless and so is independent of the scale of measurement. Also, clearly . Statisticians Box and Jenkins termed  as the theoretical Autocovariance Function (ACVF) and  as the theoretical Autocorrelation Function (ACF).  Another measure, known as the Partial Autocorrelation Function (PACF) is used to measure the correlation between an observation k period ago and the current observation, after controlling for observations at intermediate lags (i.e., at lags < k).  At lag 1, PACF (1) is same as ACF (1). 
Normally, the stochastic process governing a time series is unknown and so it is not possible to determine the actual or theoretical ACF and PACF values. Rather these values are to be estimated from the training data, i.e., the known time series at hand. The estimated ACF and PACF values from the training data are respectively termed as sample ACF and PACF.  The most appropriate sample estimate for the ACVF at lag k is 

Then the estimate for the sample ACF at lag k is given by 

Here  is the training series of size n with mean μ.   
Box and Jerkins the sample ACF plot is useful in determining the type of model to fit to a time series of length N. Since ACF is symmetrical about lag zero, it is only required to plot the sample ACF for positive lags, from lag one onwards to a maximum lag of about N/4. The sample PACF plot helps in identifying the maximum order of an AR process.
[bookmark: _Toc90499941]1.3.6 The Autoregressive Moving Average (ARMA) Models
An ARMA (p, q) model is a combination of AR(p) and MA(q) models and is suitable for univariate time series modelling. In an AR(p) model the future value of a variable is assumed to be a linear combination of p past observations and a random error together with a constant term. Mathematically the AR(p) model can be expressed as:

Here  and  are respectively the actual value and random error (or random shock) at time period t ,  (i = 1,2,..., p) are model parameters and c is a constant. The integer constant p is known as the order of the model. Sometimes the constant term is omitted for simplicity. Usually For estimating parameters of an AR process using the given time series, the Yule-Walker equations are used.
Just as an AR(p) model regress against past values of the series, an MA(q) model uses past errors as the explanatory variables. The MA(q) model is given by:

Here μ is the mean of the series, (j 1, 2,...,q) are the model parameters and q is the order of the model. The random shocks are assumed to be a white noise process, i.e., a sequence of independent and identically distributed (i.i.d) random variables with zero mean and a constant variance.  Generally, the random shocks are assumed to follow the typical normal distribution. Thus, conceptually a moving average model is a linear regression of the current observation of the time series against the random shocks of one or more prior observations. Fitting an MA model to a time series is more complicated than fitting an AR model because in the former one the random error terms are not fore-see able.
Autoregressive (AR) and moving average (MA) models can be effectively combined together to form a general and useful class of time series models, known as the ARMA models. Mathematically an ARMA (p, q) model is represented as:

Usually, ARMA models are manipulated using the lag operator notation. The lag or backshift operator is defined as . Polynomials of lag operator or lag polynomials are used to represent ARMA models as follows:


Here

[bookmark: _Toc90499942]1.3.7 Autoregressive Integrated Moving Average (ARIMA) Models 
The ARMA models, described above can only be used for stationary time series data. However, in practice many time series such as those related to socio-economic, and business show non-stationary behaviour. Time series, which contain trend and seasonal patterns, are also non-stationary in nature. Thus, from application viewpoint ARMA models are inadequate to properly describe non-stationary time series, which are frequently encountered in practice. For this reason, the ARIMA model is proposed, which is a generalization of an ARMA model to include the case of non-stationarity as well. 
In ARIMA models a non-stationary time series is made stationary by applying finite differencing of the data points. The mathematical formulation of the ARIMA (p, d, q) model using lag polynomials is given below:


 Here, p, d and q are integers greater than or equal to zero and refer to the order of the autoregressive, integrated, and moving average parts of the model respectively. 
The integer d controls the level of differencing. Generally, d=1 is enough in most cases. When d=0, then it reduces to an ARMA (p, q) model.  
An ARIMA(p,0,0) is nothing but the AR(p) model and ARIMA (0,0, q) is the MA(q) model.
ARIMA (0,1,0), i.e.   is a special one and known as the Random Walk model. It is widely used for non-stationary data, like economic and stock price series.  
A useful generalization of ARIMA models is the Autoregressive Fractionally Integrated Moving Average (ARFIMA) model, which allows non-integer values of the differencing parameter d. ARFIMA has useful application in modelling time series with long memory. In this model the expansion of the term   is to be done by using the general binomial theorem. Various contributions have been made by researchers towards the estimation of the general ARFIMA parameters.
[bookmark: _Toc90499943]1.3.8 ARMA Filter 
Autoregressive-moving average (ARMA) processes are often used for modelling stationary time series. How to select an appropriate ARMA model for an observed time series is an indispensable and integrated part of statistical data analysis of ARMA processes.
[bookmark: bbib4][bookmark: bbib1][bookmark: bbib2][bookmark: bbib21][bookmark: bbib19]Many ARMA model selection procedures and methods are available in literature and practice which either preliminarily identify candidate ARMA models or formally search for the best ones. These include, among others, the graphic methods based on the autocorrelation and partial autocorrelation functions (ACF and PACF in Box et al., 1994) and the information-theoretic criteria such as AIC (Akaike, 1973, Akaike, 1974) and BIC (Schwarz, 1978, Rissanen, 1978) are used for this research. 

[bookmark: _Toc90499944]1.3.9 Model Selection 
When comparing among different specification of ARMA-GARCH models, then we select an appropriate model based on Akaike Information Criteria (AIC).

and can be computed with the Bayesian information criterion (BIC) or Schwarz information criterion (also SIC, SBC, SBIC) is a criterion for model selection among a finite set of models; the model with the lowest BIC is preferred. It is based, in part, on the likelihood function and it is closely related to the Akaike information criterion (AIC).   


Where L is the value of the likelihood function evaluated at the parameter estimates, N is the number of observations, and k is the number of estimated parameters. The minimum value of AIC, and BIC was selected as the better model when comparing among models, respectively. When comparing among ARMA-GARCH models, the smallest value of MSE, RMSE and MAPE are chosen as the best accurate forecast model.
[bookmark: _Toc414019626][bookmark: _Toc90499945]1.3.10 Introduction to GARCH model
Engle (1982) introduced the ARCH process which explicitly recognised the difference between the conditional and unconditional variance and also gives opportunity to change over time as a function of past error term. Weiss (1982) and Milhoj (1984) carried out the study for that type of new parametric class of models with their statistical properties for the immediate practical interest the limitation of ARCH is considered and in order to overcome and implement this ARCH class of model was extended, so it can allow both the long-term memory and a more flexible lag structure. Let  be denoted by a real value of discrete time stochastic process and  be the information set for all the information at time t then the GARCH (generalized autoregressive conditional heteroskedastic) process introduced by Bollerslev (1986), GARCH (1,1) can be written as


Where 




Bollerslev (1986) and Taylor (1986) introduced the generalized autoregressive conditional heteroskedastic GARCH model that is natural extension of Engle’s ARCH model design to capture some of the problems (stylized facts) in ARCH class of model. GARCH model is possibly the most widespread used in financial time series model and is similar in strength to an ARMA model. The efficiency of GARCH models can be categorized in two ways. The first one is symmetric GARCH models in which alternative distributions can be taken to forecasts the volatility in different financial markets. For instance, Whilhelmesson (2006) and Chaung el at. (2007) observed that the predictive ability of GARCH (1, 1) models for future returns with different error distributions by which the leptokurtic error distribution provides better variance forecasts for alternative forecasts horizon. The second category is to evaluate the predictive ability of different GARCH models with several conditions. Such as A-GARCH model was firstly suggested by Engle (1990) and later on discussed by Engle and Ng (1993), Glosten (1993) introduced the GJR-GARCH model in term of an alternative edition of the asymmetric models of Engel et al. (1990) In GJR-GARCH model the asymmetric response is bounded by only the negative shocks of the market. Although, there is also single extra parameter for leverage, and Nelson (1991) introduced the exponential GARCH model or E-GARCH for formulating the conditional variance equation to implement the method of ensuring that the variance is positive and do not need to impose the constraints on the coefficients.
[bookmark: _Toc414019628][bookmark: _Toc90499946]1.3.11 Symmetric GARCH model
Bollerslev (1986) and Taylor (1986) were developed the GARCH model independently. The GARCH model gives the opportunity to conditional variance to be dependent upon the previous own lags, therefore the conditional variance equation can be written as

 Where  is known as the conditional variance, as it is one-period ahead estimate provided any past information by calculated variance. It is possible to describe the current fitted variance by GARCH model from the information of volatility in terms of weighted function of a long-term average value during the previous period  and the fitted variance from the model 
[bookmark: _Toc90499947]1.3.12 Symmetric GARCH (1, 1) parameter estimation 
There is a natural elucidation for the parameter of the symmetric normal GARCH model in the way when the discussion about the reaction of market shocks and the mean reversion of volatility following the shocks: the reaction of the conditional volatility to market shock is measured, by the GARCH error parameter α. When α is comparatively large then volatility is extremely sensitive in market events. The GARCH lag parameter β measures the persistence in conditional volatility irrespective of anything happening in the market. If β extremely high. Then, the volatility takes long enough to vanish from the market. The expresses the rate of convergence of the conditional volatility to the long-term average level. The large value of  makes the term structure of volatility forecasts is extremely flat in the GARCH model. The GARCH constant parameter ω and  gives together the level long term average volatility, which is unconditional in GARCH model. If  is relatively large then its magnitude is connected to the magnitudes of returns, and also make the long-term volatility high in the market. 
 Duan (1995) considered GARCH-M model given by Engle el al. (1987), which implies that. In the financial literature may not be found enough justification, as it provides poor estimates of λ and normally has not a very good fit. Campbell at al. (1997, Chap. 2), as it widely noticed that positive autocorrelation of the returns is presented in the financial series (stock indices). Due to various reasons for instance infrequent and asynchronous trading of individual stocks entering the index. The risk premium attached with non-constant volatility may also be one of the reasons. Consequently, we selected the baseline GARCH model with normal errors 
     
(Note that the lognormal distribution properties can agreeably combine with GARCH-M)
Hafner and Herwartz (2001) given an idea as they found that German securities are incorporating  in the conditional expectation surprise them with higher likelihood value as compared to.
If  satisfies, then process is stationary. Consequently, the marginal variance of y increases by risk-neutralisation. The predictive values assumed to be taken longer time to converge its limiting value due to the stationarity condition and increases volatility persistence.
[bookmark: _Toc90499948]1.3.13 Symmetric GARCH volatility forecasts 
That is generally believed that there is not a significant difference for volatility estimates between GARCH and risk metrics, the main reason is the optimal value of GARCH α and β are not hugely different form the daily exponentially weighted moving average (EWMA) values for reaction and persistence. However, there would be considerably big difference between the forecast results generated from these two models. The difference come because the GARCH forecasts is different from the GARCH volatility estimates, it also depends on the horizon of the forecast. But situation is vice versa in the EWMA model. 
The GARCH (1, 1) parameter estimates can be used to generate the forward daily volatility forecasts and term structure volatility forecasts. The mechanism explains that all the forecasts are supposed to be made on the last day of the sample. In order to define that mechanism of forecasts the estimated model (Alexander, 2008) can be written as 
   

 Where T is the last day in the sample assuming the returns data are daily, therefore the 1-day-ahead variance forecast at time T is 

At time T  will be unknown because  is the last residual in the GARCH model. 
In general, the forecast of the forward daily variance form day T+S to T+S+1 is given by 
                                   
This is the GARCH term structure volatilities which are used to forecast the forward daily variance it is also called average volatilities over different period of time. 
In order to define the pattern for imposing the long-term volatility for GARCH, we need to formulate the symmetric GARCH model by substituting. After rearranging we have another arrangement of the symmetric GARCH (1, 1) model that deviate the conditional variance from the long-term average variance.  

Or 


[bookmark: _Toc414019629][bookmark: _Toc90499949]1.3.14 Asymmetric GARCH models
The conditional variance equation can be amended in many ways as there are many types of GARCH models available for motivation. The nature of the asset and frequency of the data really does matter on the choice of the GARCH models. It is normally assumed that the symmetric GARCH model might be the good selection for the weekly data of interest rate and foreign exchange rate. Whereas the selection for the equities, equity indices and commodities at any frequency is obvious the asymmetric GARCH models as it consists of daily data. One of the reasons for choosing the asymmetric GARCH models is equity market volatility increases are more articulated following a large negative return instead of following the positive return of the same size. When the stock price falls, the debt equity ratio increases due to leverage effect arises. Firm become more strongly leveraged, as the debt financing requires some time to change. Consequently, the future of the firm becomes more indecisive, and the stock price becomes more volatile. But, when the stock price rise with the same amount then give the result of negative correlation between equity and volatility as the firm do not face the same amount of volatility since the price rise is good news. There is a different situation in commodity market because when the prices rise it is considered bad news for the consumers, so the risen price of commodity mostly have weakened effect. That is the reason positive return increase the volatility in commodity market as compared to negative returns.
Glosten (1993) introduced the GJR-GARCH model in term of an alternative edition of the asymmetric mode of Engel et al. (1990). In GJR-GARCH model the asymmetric response is bounded by only the negative shocks of the market. Although, there is also single extra parameter for leverage.
Nelson (1991) introduced the exponential GARCH model or E-GARCH for formulating the conditional variance equation to implement the method of ensuring that the variance is positive and do not need to impose the constraints on the coefficients. He used the log of the variance instead of using variance itself, because of certain negative value can be obtained from log as compared to variance which will always be positive.
Bollerslev (1987) introduced the student-t GARCH; he assumed that the conditional distribution of market returns is t distributed. In this way the present degree of freedom in the distribution comes up as an additional parameter and that is supposed to be estimated along with parameters in the conditional variance equation. Lambert and Laurent (2001) also introduced the extended form of the symmetric t-GARCH in terms of skewed t distributions.
So far, the conclusion of above discussion is asymmetric GARCH models are the best and obvious choice of selection for equity and commodity markets. When there is a case of daily or intraday frequency of interest rate or foreign exchange rate. So, it is also requiring the asymmetric effect. Here we introduce three types of GARCH model in a sense that those will allocate volatility to react asymmetrically for positive and negative returns.
[bookmark: _Toc414019630][bookmark: _Toc90499950]1.3.15 Asymmetric GARCH model or A-GARCH 
The asymmetric GARCH or A-GARCH model is described by adding an additional parameter in the symmetric GARCH model such as to capture the asymmetric volatility response. The model was first suggested by Engle (1990) and later on discussed by Engle and Ng (1993). The A-GARCH (1, 1) model can be written as 

Where, λ the additional parameter was introduced to capture the leverage effect. 
The maximization of the likelihood function is still applicable for parameter estimation of the normal A-GARCH model. It can be noticed here that  now depends on the extra parameter λ. The constraints in A-GARCH model, lag, and error parameter on the ARCH constant are the same as  however, there is no constraint on λ. If λ > 0 then  will be larger when the market shock is negative, then when market shock is positive. There will be a vice versa situation if λ < 0. Therefore, when the above equation is estimated for the equity returns, we normally have the positive value of λ. However, when the above equation is estimated for commodity returns the negative value is more frequent.  
[bookmark: _Toc414019631]A-GARCH Volatility forecasts
In order to find out the long-term variance from the above model the fact can be used that  and assume that  for all t. Hence, the long-term variance of the A-GARCH model is:



After the parameter estimates, the one-step ahead variance forecasts through the volatility forecasts is  


Therefore, the s-step ahead forecasts from above when S > 1, can be written as

Alternative, the volatility forecasts has done before that can be the average variance over the next periods which is in reality the average of the s-step ahead forward variance forecasts for S = 1, . . . ., h. 
The forward forecasts of daily variance can be used to forecasts forward average volatilities in symmetric GARCH or any other GARCH model in order to make the A-GARCH model applicable for imposing the long-term volatility rearranging gives


       or    
                                                                                                                                                     
         

The mean reversion effect we obtained in symmetric model is just the same here. However, the reaction to market shocks is in asymmetric form. In equity market the positive shock is considered to reduce the volatility, when the leverage effect is positive. Same as negative shock increase the volatility in the asymmetric model as compared to the symmetric model. Mean reversion volatility is dependent on the long-term average effect no matter the current volatility high or low in the counteract or reinforce situation. 
[bookmark: _Toc90499951]1.3.16 Multivariate GARCH Model
Unlike the majority of the literature, Antonakakis (2012) examines return co-movements and volatility spillovers between major exchange rates before and after the introduction of the euro. Dynamic correlations and VAR-based spillover index results suggest significant return co-movements and volatility spillovers; however, their extent is, on average, lower in the post-euro period. Co-movements and spillovers are positively associated with extreme episodes and US dollar appreciations. The Deutsche mark is the dominant net transmitter of volatility, while the British pound is the dominant net receiver of volatility in both periods. Nevertheless, cross-market volatility spillovers are bidirectional, and the highest spillovers occur between European markets.
Noureldin.D et al. (2012) introduce a new class of multivariate volatility model which is easy to estimate using covariance targeting, even with rich dynamics, and is known as the rotated ARCH (RARCH) model. The basic structure is to rotate the returns and then to fit them using a BEKK-type parameterization of the time-varying covariance whose long-term covariance is the identity matrix. The extension to DCC-type parameterizations is given, introducing the rotated conditional correlation (RCC) model. Inference for these models is computationally attractive, and the asymptotic are standard. 
The asymmetric GARCH models are discussed above to capture different types of volatility clustering behaviours. The feature of volatility clustering is also exhibited in correlation and hence referred to as correlation clustering. The correlation clustering behaviour can be captured by a multivariate GARCH model. The Dynamic Conditional Correlation (DCC) specification by Engle (2002) is employed in the study. This is to provide a generalisation of the Constant Conditional Correlation (CCC) model by Bollerslev (1990). Sheppard (2001) contributes to DCC model estimation by reducing the estimation of MVGARCH to a series of univariate GARCH processes, plus an additional correlation estimator. The specification of the univariate GARCH is generous to any GARCH process, with normally distributed errors that satisfy non-negative constraints and stationary conditions. The DCC model is characterised by the following set of equations (see Engle, 2002; Frank, Gonzalez-Hermosillo and Hesse, 2008 for details):
 




        


-1-1



 is the k x k diagonal matrix of time varying standard deviations from univariate GARCH models, while  is just its variance. S is defined as the unconditional correlation matrix of the residuals  of the asset returns. Rt is a time varying correlation matrix, while Qt is the covariance matrix. In Equation Qt A and B are square and symmetric and so is the Hadamard product. In addition, λi is a weight parameter of  over time and  is the parameter associated with squared lagged asset returns. The DCC model is then estimated by the above equations with pre-whitened asset returns. The DCC specification allows the capture of possible structural breaks in the unconditional correlation amongst the variables.

[bookmark: _Toc344928788][bookmark: _Toc360480628][bookmark: _Toc361167180][bookmark: _Toc363499350][bookmark: _Toc363499521][bookmark: _Toc366175905][bookmark: _Toc90499952]1.3.17 ARMA (p, q) and the BEKK-GARCH Approach
The GARCH model allows for an evaluation of the transmission of liquidity shocks that spread from the credit market to the equity market, as well as modelling the conditional heteroscedasticity exhibited by the data. In addition, the multivariate GARCH models explicitly address the linkages between market and funding liquidity and are able to capture the dynamics of banks’ liquidity pressures within the interbank market. Further to the DCC model above, the BEKK model is able to provide more detailed transmission information, apart from the conditional correlation.  The off-diagonal elements in the variance-covariance matrix generated from BEKK display the measurement of the transmission percentage across liquidity. The transmission mechanisms of liquidity shocks during the subprime mortgage crisis have been described as reinforcing liquidity spirals, where it can be perceived that temporary liquidity shock in the beginning eventually caused severe financial distress.  The empirical results garnered from the BEKK model may help to test the above common belief from an econometric aspect. 

Engle and Kroner (1995) made considerable improvements to the work of Baba, Engle, Kraft and Kroner (1990) by creating a general quadratic form for the covariance equation which successfully eliminates the positive definiteness problem of the original VECH model. In the fully general BEKK model, the number of parameters needing to be estimated is O (k4), the standard BEKK estimation will involve O (k2) parameters. Other more plausible formulations of BEKK model include diagonal and scalar where the parameters are restricted to be either diagonal matrices or to be scalars.
 
In the current study the autoregressive moving average model ARMA (1, 1) is employed to define the conditional mean of returns.  Thus, according to Baba, Engle, Kraft and Kroner (1990), the ARMA (1, 1)-BEKK (1, 1) model takes the following form:


            


Where rt   is an T by 1 vector of asset returns, Ɛt is the innovation term in the return equation, Ωt-1 is the matrix of conditional previous information set and Ht is the variance-covariance matrix of the residuals term from original equation; it’s guaranteed to be positive because the BEKK model uses a quadratic form for the parameter matrices to ensure a positive definite variance- covariance matrix. The parameter vector consists of elements of C, which is a lower triangular matrix;  matrix is showing ARCH effects and   matrix which reveal the GARCH effects. In the BEKK model, the conditional variance is not only a function of all lagged conditional variances and squared returns, but also of conditional covariance and cross-product returns. The diagonal elements in the parameter matrix G measure the effect of lagged volatility; the off-diagonal elements capture the cross-market effects. Therefore, the BEKK model is very desirable to examine volatility spillover effects. The log-likelihood function of the BEKK model is given by




Where n is the number of variables in the model, T is total number of the observation and θ is the vectors of unknown parameters that need to be estimated. 

The DCC model assumes that return from k assets is conditionally multivariate normal with zero mean and covariance matrix Ht. The returns can be either zero mean or the residuals from a filtered time series.  



and 



where Dt   is the diagonal matrix of time varying standard deviations from univariate GARCH models with   on the ith diagonal. Rt is the time varying correlation matrix. 


The log-likelihood of the estimator is written as,




Where Ɛt ~ N(0, Rt) are the residuals standardised by their conditional standard deviations. 
Engle and Sheppard (2001) propose to rewrite the elements Dt as a multivariate GARCH in the following manner:



for i=1,1,…k with usual GARCH restrictions for non-negativity and stationary being 


                                   imposed: 				
The second component of the framework consists of a specific DCC (M, N) structure, which can be expressed as:

                                                      			

Where the proposed dynamic correlation:





Where Qt is the conditional variance-covariance matrix of residuals with its unconditional (time-invariant) variance-covariance matrix resulting from above. Q*t =diag {}

Especially, Engle (2002) specifies the DCC model through the GARCH (1, 1) -type process

             i, j=1,2

Where 	 is the assumed constant correlation between Ɛ1,t  and Ɛ2,t  ,  α is the new coefficient and β is the decay coefficient.  The model will be mean reverting if α+β<1. 
The quantity q12,t    from the above equation  is normalised using 





Considering the difficulty of discerning the large number of coefficients obtained from the BEKK model (e.g., k=4, No. Parameters=42 for a four-dimension BEKK), the pair-wise bivariate BEKK model is used to investigate liquidity transmission between different measurements. The second moment of a bivariate full BEKK can be represented as, 

[image: ]
The parameter vector consists of elements of C which is a lower triangular matrix. The 2×2 matrix Aij shows the ARCH effects and there is particular interest in the 2×2 matrix Gij, which reveals the GARCH effects. The diagonal elements in the parameter matrix G measure the effect of lagged liquidity and the off-diagonal elements capture the cross-liquidity channel effects. As a result, the BEKK model is preferred to investigate liquidity transmission. 
[bookmark: _Toc370414667][bookmark: _Toc370669150][bookmark: _Toc370669597][bookmark: _Toc90499953]1.3.18 ARMA-DCC 
The DCC model assumes that returns from k assets are conditionally multivariate normal with zero mean and covariance matrix . The returns can be either zero mean or the residuals from a filtered time series. 


where   is the  diagonal matrix of time-varying standard deviations from univariate GARCH models with   on the diagonal,  is the time-varying correlation matrix. 

The log-likelihood of the estimator is written as,
[image: ][image: ]
where ) are the residuals standardised by their conditional standard deviations.  
Engle and Sheppard (2001) propose to rewrite the elements Dt as univariate GARCH in the following manner:

for  with usual GARCH restrictions for non-negativity and stationery being imposed:
The specification of the univariate GARCH model is not limited to the standard , but can include any GARCH process with normally distributed errors that satisfies appropriate stationarity conditions and non-negative constraints. In the current study, it is proposed that a marginal distribution with univariate asymmetric GARCH model will be constructed. It accounts for the leverage effect that reflects how negative shock has a greater impact on volatility than a positive shock.
The second component of the framework consists of a specific structure, which can be expressed as:

where the proposed dynamic correlation:

Where  is the conditional variance-covariance matrix of residuals with its unconditional (time-invariant) variance-covariance matrix resulting from  


so that   is a diagonal matrix with the square root of the diagonal elements on the diagonal.
The typical element of will be the form  and the quantity   is normalised using   

                                                                                                                                      
This value including the sign is the main interesting result which represents the conditional correlation between different equity markets.






[bookmark: _Toc90499954]1.4 Data and Preliminary Analysis
Financial institutions provide liquidity to depositors and creditors by standing ready to provide them cash on demand. In the traditional framework, liquidity risk stemmed from the possibility of bank runs. These are episodes in which depositors lose faith in their bank and withdraw their money, either because of concerns about the bank’s financial condition or because they worry that others might stage runs. Such runs could make banks insolvent by initiating a chain reaction that forced a fire sale of illiquid loans. In the past, such instability was partly checked by reserve requirements tied to deposits, deposit insurance, and the availability of liquidity from central banks, the lenders of last resort.
More recently, liquidity risk has come less from deposit outflows and more from exposure to a range of lending and interbank financial arrangements. These include undrawn loan commitments, obligations to repurchase securitized assets, margin calls in the derivatives markets, and withdrawal of funds from wholesale short-term financing arrangements. For example, banks today often lend by extending credit lines that borrowers can tap on demand, or by making other kinds of loan commitments. Increases in borrower use of these commitments make this business risky. When the overall supply of liquidity falls, borrowers draw on funds from existing credit lines masse. Thus, in the 2007–08 financial crisis, nonfinancial firms lost access to short-term funds when the commercial paper market dried up. Commercial paper issuers turned instead to prearranged backup lines at banks to refinance their paper as it came due. Banks were obligated to fund such loans. As a result, funds became less available for new lending.
Nonfinancial business demand for liquidity also increased during the crisis to meet high precautionary demands for cash. Many businesses drew funds from existing credit lines simply because they feared continued disturbances in the credit markets. To cite one example, American Electric Power drew down $2 billion from an existing credit line supplied by JP Morgan Chase and Barclays as lead arrangers. According to an SEC Filing, the utility “took this proactive step to increase its cash position while there are disruptions in the debt markets.” (See Ivashina and Scharfstein 2010.)
Banks’s finance their balance sheets with more than just deposits and equity capital. Other liabilities include uninsured wholesale deposits, repurchase agreements, and other short-term unsecured debt instruments. These sources became scarce during the crisis. For example, repurchase agreements, known as repos, were often used to finance risky assets such as private-label mortgage-backed securities. Gorton and Metrick (2011) show that, in the middle of 2007, mortgage-backed securities could be almost completely financed with short-term borrowed funds in the repo market. However, by the fourth quarter of 2008, only about 55% of each dollar invested in such securities could be financed this way. Banks that used repos to finance purchases of mortgage-backed securities faced an unpleasant choice. They could sell their securities holdings into a falling market and take a big loss. Or they could find new, and presumably expensive, sources of credit.
[bookmark: _Toc90499955]Data rationale (Discrete or continuous)
Merton (1969) started this thriving field, a comprehensive survey and an illuminating perspective of the development of this field during the period from 1969 to 1990 can be found in the book by Merton (1990). Several excellent texts and articles have surveyed this field or certain subsections of this field as applied to research in financial economics. The texts by Bhattacharya and Constantinides (1989), Harrison (1985), Malliaris (1982), Ingersoll (1987), Dothan (1990), Duffie (1988, 1996), and Karatzas and Shreve (1988, 1998) in addition to Merton (1990) provide a detailed treatment of the developments in this field during the period from 1969 to 1990 and also provide extensive references to research in this area. Moreover, there are excellent surveys of important subfields of continuous-time finance that are also available. Examples in this context are Bhattacharya and Constantinides (1989), Constantinides (1989), and Merton (1990). 
The period from 1969 through 1980 saw most of the important breakthroughs in the field of continuous-time finance. The seminal contributions on options pricing by Black and Scholes (1973) and Merton (1973a) are unquestionably among the most influential papers in financial economics during this period. Further research changed the landscape of research in finance and the way in which finance research was viewed by the practitioners. Besides providing the first truly satisfactory model for the elusive problem of pricing options on equity, these papers also made the connection that many of the liabilities of the firm such as equity and debt can be thought of as contingent claims on the value of the assets of the firm. This insight led to a whole new field of study that has come to be known as “contingent claims research” that has been the bedrock of much of the valuation questions in derivatives, corporate finance, and the default risk literature until now. Simultaneously, exciting research developments were taking place in inter-temporal asset pricing theory during this period.
Establishment of an isomorphic relationship between dynamic stochastic optimal control problems and static state space representation frameworks in complete markets (Cox and Huang (1989a), Karatzas, Lehoczky, and Shreve (1987) show how martingale representation theory can be used to reduce the dynamic intertemporal problems into a static problem in a complete market setting. 
Efficiency results in continuous trading with a few securities: Duffie and Huang (1985) showed that continuous trading permits the implementation of Arrow–Debreu equilibrium with far fewer securities than the full complement of securities.
Reconciling the received theory of continuous-time finance with some observed empirical regularities: Specific examples of such empirical regularities are the equity premium puzzle; countercyclical variations in equity premia; predictability of equity returns (in asset pricing); volatility smiles and skews (in derivatives valuation); the persistent negative correlation between the changes in the default premium and the changes in the default-free interest rates (in the credit risk literature); the inability of conventional single-factor models of term structure to explain the rich variations in the shape of the yield curve. 
The incorporation of market frictions into continuous-time theory has helped the theory to better explain some stylized facts: Examples in this regard include taxes, transactions costs, restricted market participation, incompleteness, informational asymmetries, and so on. Researchers have started to expand the field to incorporate market friction as in Back (1992, 1993), Brennan and Xia (1999), Detemple (1986), He and Pearson (1991), and Veronesi (1999). 
Calibration of models to data derived from the markets: How can the models of asset pricing be calibrated to market data to make them attractive enough for valuing financial claims in real life? Examples in this context are the default-free term structure models and the reduced form approach to valuing securities that are subject to credit risk. 
In addition, as a logical progression of research, estimation of continuous-time models in finance has become an active area of research during this period. Indeed, most striking contributions in the continuous-time field during this period appear to have come from the econometric theory designed to develop moment restrictions in continuous-time models and parametric and nonparametric approaches to estimating continuous-time models in finance. 
Cox and Huang (1989b) predicted, there has been a stream of papers attempting to integrate game-theoretic and bargaining considerations into continuous-time models to enhance the intertemporal pricing richness of the framework with the objective of making the contractual features endogenous. This has always been the weak link in the continuous-time field. Game-theoretic and strategic considerations in models of securities valuation have been introduced in Fan and Sundaresan (1999), Mella-Barral and Perraudin (1997), and Grenadier (1999).
Furthermore, the term structure of default-free interest rates is yet another area where continuous-time methods have made a tremendous impact. An early precursor to equilibrium models of term structure Merton (1975) studies a stochastic growth model. A side result of this rsearch shows that the instantaneous risk-free interest rate follows a nonlinear diffusion that is the basis for equilibrium term structure models. Merton (1975) did not pursue the term structure implications. In a later contribution, expanding on the insights of Merton, Sundaresan (1984) explores a two-sector model and its consequences for the term structure.
Gallant and Tauchen (1996, 1997a, 1997b, 1998) offer a different approach to the estimation problem. They set up an auxiliary model and compute the “score” that is the derivative of the log density of the auxiliary model with respect to its parameters. The advantage is that the score has an analytical expression. They then use the expectations under the structural model of the score to develop moment conditions. Naturally they now depend on both the parameters of the auxiliary model and of the structural model. The parameters of the auxiliary model are replaced by their quasi-MLEs, and the estimates of the structural model are then obtained by minimizing the usual GMM criterion function. Two applications of this approach in finance are by Anderson and Lund (1997), who use the EMM approach to estimate continuous-time stochastic volatility models of the short-term interest rate, and by Benzoni (1999), who applies the EMM to estimate an options pricing problem with stochastic volatility.
There are several challenges that face researchers who use continuous-time methods in finance. I will try to sketch a few of them in this section. As Ross (1989) has noted, an important challenge to the theorists in finance is to explain the level and the pattern of volume of trading in financial markets. While this is a challenge irrespective of whether one uses continuous-time methods or not, this nonetheless represents an interesting challenge to scholars working in continuous-time finance. Models in continuous time begin by specifying continuous trading opportunities. Markets are not open all the time. Received empirical wisdom suggests that the estimated volatility of prices depends on whether one uses closing prices or transaction prices. The activity of trading in itself may generate volatility. There are interesting variations within a trading day in the pattern of volatility. How can one reconcile these facts in the context of a paradigm such as continuous-time trading? In a continuous-time model with transactions costs and taxes, trading intervals are endogenous and trading will only occur when the state variables cross certain trigger levels. Similarly, other sources of frictions such as asymmetric information, liquidation costs, and so forth, may also produce endogenous trading intervals. Fundamental to explaining the volume of trading are the information structure of the economy and the manner in which news gets generated and transmitted via trading. Although there is a potential to translate this to models that can be consistent with the stylized facts on volume of trading, the paradigm is a long way from realizing this goal.
An endemic weakness of the continuous-time methods is that the contractual features are almost always specified exogenously. The optimality of the contracts or endogenizing the contractual provisions has not been the strength of this framework. The derivatives literature is elegant in its inter-temporal formulation, richness of the specification of state variables, and the solution procedures but is typically silent on why a certain contract that is being valued is optimal. In this context the distinction between private optimality and social optimality has to be clearly articulated in models that seek to endogenize contracts. Questions pertaining to efficiency turn on the notion of social optimality, but the design of contracts for incentive purposes must be consistent with private optimality. Attaining one does not necessarily lead to the attainment of the other. The design and optimality of the contracts are starting to receive more attention in the literature recently. This also turns on the question of welfare issues that are traditionally ignored in the continuous-time finance. The optimality has to be pinned down relative to a measure of welfare. This is an issue that is addressed by Duffie and Huang (1985). They show that the full efficiency can be achieved by trading continuously in a few long-lived securities. Although their model is based on some restrictive assumptions, it should set the direction for research in this area. Of course, a rigorous treatment of asymmetric information in continuous-time models is clearly an important prerequisite to achieve this objective.
Among the elusive issues taunting the theorists is the problem of liquidity. Many observers have noted that from time to time, markets display lack of liquidity. The hedge funds crisis in the summer of 1998 was attributed by some to the lack of liquidity in the market. Liquidity also is closely related to the probability that there may be a major default or a crisis. Russian default in 1998 was attributed to the lack of liquidity and the flight to quality, which led to the demise and reorganizations of well-known hedge funds. A modelling challenge is the possibility that defaults may be correlated in the economy in an equilibrium, leading to a contagion. We know precious little from a theoretical perspective as to how such episodes occur in the markets. The literature is yet to formulate an interesting framework for studying “contagion in financial markets.” The recent work by Kyle and Xiong (1999) explores this question although they do not model default, which one suspects is at the root of any “contagion.”
Over the last three decades, continuous-time methods have become an integral part of research in financial economics. This field has left an indelible mark on several core areas of finance such as asset pricing theory, consumption-portfolio selection, and derivatives valuation. The popularity of this field is also attested by the fact that in every major university, doctoral students in finance are expected to take courses in this discipline and review the important papers in this area irrespective of their ultimate research interest. The availability of several excellent texts and the proliferation of journals in which research in this area is published also point to the growing popularity of this field in finance. Many universities now offer master’s degrees in disciplines such as computational finance or financial engineering. The core of the intellectual material in such programs is drawn from the continuous-time methods in finance. This field has made a substantial impact in the financial services industry, proving that sophisticated finance theory can be of practical assistance in the industry.









[bookmark: _Toc90499956]Step by step procedure of the (liquidity transmission mechanism) 
Calculated results from the various statistical tests.
Data Collection: Sec 1.4.1 Based on the historical data, Sec 1.4.2 and 1.4.3 analyse data feature (Volatility and stylized fact), Sec 1.4.4 if series is non-stationary series, stabilize it by log difference. 



Data Collection: Sec 1.4.1 Based on the historical data, Sec 1.4.2 and 1.4.3 analyse data feature (Volatility and stylized fact), Sec 1.4.4 if series is non-stationary series, stabilize it by log difference. Sec 1.4.5 Verify heteroscedasticity.



adjust the model’s order and establish the model again.



No
Sec 1.4.5.1 ARMA model test: Test model by statistical hypothesis testing method, if model is effective sec 1.4.5.2-3, then go to the fourth step, otherwise come back to the second step to adjust the model’s order and establish the model again.



Yes
Sec 1.4.5 ARCH effect test, model identification and parameter estimation: Do GARCH effect test for residual series, identify the model’s order, estimate the parameter, establish the ARMAGARCH model.



adjust GARCH model’ order
Sec 1.4.6 ARMA-GARCH model test: Test model by statistical hypothesis testing method, if model is effective, go to the sixth step, otherwise come back to the fourth step to adjust GARCH model’ order.

No


Steps 1-5 and integration to DCC-GARCH and BEKK-GARCH. Multivariate GARCH models have evolved from the optimal univariate GARCH model. The DCC specification will then allow the capture of possible structural breaks in the unconditional correlation amongst the variables. Finally, the BEKK-GARCH model
Yes



[bookmark: _Toc90499957]1.4.1 Data description  
[bookmark: _Hlk82714393]The data collection for this study is ranged from January 4th, 2005, until December 20th, 2015 (USA daily data) and it is collected from the Board of Governors of the Federal Reserve System, Bloomberg, Thompson, Banker One and DataStream. The data sample includes the period of pre/during/ and post subprime mortgage crisis. This sample period allows an evaluation of the dynamics of the interbank market prior to the collapse, during collapse and after collapse of the financial system and the persistence of the liquidity shocks in the pre/during/post crisis period. This study chooses four liquidity measurements to investigate the transmission mechanism within the interbank market. Funding liquidity conditions in the asset-backed commercial paper (ABCP) is measured by the spread between the yield of the three-month ABCP and the three-month U.S. Treasury bill (T-bill). 
[bookmark: _Hlk82714484]The ABCP spread serves as an indicator of the general attitude towards lending in the interbank market.  ABCP is a typically short-term investment that matures between 90 to 180 days and is used to provide short term liquidity for financial institutions. During the crisis period, as the market was unwilling to purchase ABCPs since a number of large financial institutions collapsed, the financial markets experienced a significant liquidity shock. Short term funding became difficult and expensive to obtain. Many of the financial institutions were solvent, but illiquid, in that they were not able to meet short term obligations while possessing too many fixed assets. The ABCP spread explicitly represents the dynamics of short-term liquidity funding and the tensions during the crisis period.    
[image: ]
[bookmark: _Toc78498673]Figure 1.4.1 Asset Backed Commercial Paper (ABCP) Spread
	   
Figure 1.4.1 shows the ABCP spread from 2005 up to late 2015. The ABCP spread remained relatively stable during the period of 2005 to early 2007. From mid-2007, the ABCP spread became much more volatile and reached its peak around mid-2008. The volatility in the ABCP spread seems to possess a certain degree of persistence and lag effect, as there were some significant spikes at the end of 2008. After 2009 …………………… This phenomenon was only observed in the ABCP spread, which suggests that it is more sensitive to market news and indicates that, as the subprime mortgage market fell in 2007, the interbank lending market started to intensify.  The ABCP was generally the main instrument for financial institutions to obtain short term funding. The shortage in the liquidity market reached its peak when the Lehman Brothers Bank collapsed in 2008 and gradually decreased thereafter  
[bookmark: _Hlk82714587] The second variable is the spread between the overnight indexed swap (OIS) and the 3-month LIBOR rate, which is considered to be a strong indicator of credit and liquidity risk in the money market.  The spread between the three-month U.S. interbank Libor rate and the overnight index swap (OIS) is used to measure bank funding liquidity pressures. OIS rates are an important measure of risk and liquidity in the money market; they serve as an effective indicator of relative stress among the interbank lending market. If a bank enters into an OIS contract, it is entitled to receive a fixed rate of interest on a notional amount called the OIS rate. LIBOR is considered riskier in comparison to OIS in the sense that the lending bank loans cash to the borrowing bank, while the OIS is considered stable as both counterparties only swap the floating rate of interest for the fixed rate of interest. Entering an OIS contract exposes the bank to future fluctuations in the reference rates. However, the bank is able to secure longer term funding, while still paying close to the overnight rate. Since OIS contracts do not involve any initial cash flows, they have limited exposure to default risk. It is therefore an accurate measure of investor expectations regarding the effective federal fund rate.  The spread between the two rates is therefore a measure of risk premiums in contrast with liquidity premiums. 

[image: ]
[bookmark: _Toc78498674]Figure 1.4.2 Overnight Index Swap Spread
	
Figure 1.4.2. demonstrates the movement of the OIS spread in pre/during and post crisis periods. The OIS spread generally remains below 20bsp under normal market conditions. It started to fluctuate significantly in after first quarter 2007 and jumped to its peak at almost 350bsp in mid-2008. This huge spike is largely caused by the collapse of the Lehman Brothers Bank. This indicates that banks were not willing to lend to each other at the time, as they were unable to fully access the credit risk of the counterparty, which therefore caused the liquidity market to freeze.  
[bookmark: _Hlk82714760]The third variable is the TED spread (difference between three-month LIBOR and three-month Treasury bill) as the third variable to measure the credit risk during the crisis period. The Treasury bill rate is often used to represent the risk-free rate, while LIBOR is the rate at which banks lend to one another. The difference in the two rates represents the risk premium of lending to a bank. The TED spread fluctuates over time; however, it has generally remained within the range of 10 to 50 bps, as lending to a bank was relatively safe.

[image: ]
[bookmark: _Toc78498675]Figure 1.4.3 TED Spread
  
However, during the crisis period, the TED spread reached a peak of 433bps, which potentially sent liquidity shocks into the financial market. The TED spread is an indicator of general credit risk in the market; a rising TED spread indicates that liquidity is being withdrawn from the market and vice versa. In Figure 1.4.3., there was a clear sign of a significantly large withdrawal of liquidity from the interbank market between 2008 and 2009. Three liquidity channels show a similar pattern of significant shortage in the lending market; this further intensified the fragile financial market and was caused by the collapse of large financial institutions.  
[image: ]
[bookmark: _Toc78498676]Figure 1.4.4  S&P 500 returns
The fourth variable is daily market volatility is modelled by S&P 500 stock market return and it serves as a proxy for volatility measurement. This is because the S&P 500 is a capitalisation weighted index; therefore, it reflects true market liquidity fluctuations and thus is the best measure for the purpose of this study.  Evaluation of the above variables is necessary in order to carry out a liquidity shock transmission analysis to identify and assess the dynamics and relationships among different liquidity channels with regard to market volatility. Moreover, the methodology is designed to explicitly capture the determinant of liquidity shock transmission. The argument is that liquidity shocks are widely transmitted in the event of large financial institution defaults. However, from where liquidity shocks originate and via what kind of liquidity channels they transmit, remains unclear. This is why the multivariate BEKK-GARCH is applied to identify the source of shock transmissions. 


[image: ]
[bookmark: _Toc78498677]Figure 1.4.5 S&P 500 returns
Table 1.4.1 shows the basic statistic descriptive of sample data. ABCP, OIS, TED and S&P500 index return series are mildly positively skewed, while the S&P500 is negatively skewed. All the spread display significant leptokurtic behaviour, as evidenced by large kurtosis with respect to Gaussian distribution. Note that in normal distribution, skewness and kurtosis take the value of 0 and 3. Jarque-Bera test statistics show that all the return series depart from the null hypothesis of normality distribution. 
[bookmark: _Toc90499958]1.4.2 Summary Statistics 

[bookmark: _Toc78502185][bookmark: _Toc78502289]Table 1.4.0‑1 Summary Statistics
	Variables
	 Obs
	 Mean
	 Std. Dev.
	 Min
	 Max
	 JB
	 Chi (2)
	 Skew.
	 Kurt.

	 SPRT
	2605
	0
	.013
	-.095
	.11
	1.2e+04
	0.0000
	-.353
	13.31

	 ABCP
	2605
	.468
	.568
	.01
	4.306
	1.6e+04
	0.0000
	2.987
	13.636

	 TED
	2605
	.509
	.523
	.109
	4.485
	5.6e+04
	0.0000
	3.175
	16.118

	 OIS
	2605
	.293
	.396
	.019
	3.644
	2.3e+04
	0.0000
	3.981
	24.283

	



[bookmark: _Toc90499959]1.4.3 Normality 
[image: ]
[bookmark: _Toc78498678]Figure 1.4.6 Quantile-Quantile plots
Figure 1.4.6 Quantile-Quantile plots show deviation from a normal distribution. If the data were normal, the quantiles should match those of normal distribution, which is not the case in this instance. Ljung-Box tests for lags, calculated for both returns and squared return series reveal that returns are strongly autocorrelated for all the retained spreads.
[image: ]
[bookmark: _Toc78498679]Figure 1.4.7 Marginal Density Distribution
Figure 1.4.7 shows the marginal density distribution fitting for the four spreads. Apparently, they all travel away from normal distribution. 
[image: ]
[bookmark: _Toc78498680]Figure 1.4.8 Marginal Density Distribution for pre, during and post crisis period.






[bookmark: _Toc90499960]1.4.4 Stationarity test 
[bookmark: _Toc90499961]1.4.4.1 Phillips-Perron test for unit root
[bookmark: _Toc78502186][bookmark: _Toc78502290]Table 1.4.0‑2 Phillips-Perron test for unit root
Phillips-Perron test for unit root                 Number of obs   =      2604
                                                   Newey-West lags =         2
                               ---------- Interpolated Dickey-Fuller ---------
                                 Test              1% Critical      5% Critical      10% Critical
                            Statistic               Value                Value              Value
----------------------------------------------------------------------------------------------
SPRT Z(rho)        -2799.235         -13.800             -8.100             -5.700
SPRT Z(t)              -56.240             -2.580              -1.950             -1.620
ABCP Z(rho)        -15.103             -13.800            -8.100             -5.700
ABCP Z(t)              -2.742               -2.580              -1.950             -1.620
OIS Z(rho)            -7.163              -13.800              -8.100             -5.700
 OIS Z(t)               -1.881                -2.580              -1.950             -1.620
TED Z(rho)           -9.075              -13.800             -8.100             -5.700
 TED Z(t)              -2.122                -2.580              -1.950             -1.620

[bookmark: _Toc90499962]1.4.4.2 Dickey-Fuller test for unit root                 

[bookmark: _Toc78502187][bookmark: _Toc78502291]Table 1.4.0‑3 Dickey-Fuller test for unit root
****Case  1 ******* 
no constant, no trent
Augmented Dickey-Fuller test for unit root         Number of obs   =      2602
Interpolated Dickey-Fuller ---------
                       Test          1% Critical       5% Critical      10% Critical
                      Statistic           Value             Value             Value
SPRT Z(t)      -31.201            -2.580            -1.950           -1.620
ABCP Z(t)     -2.645              -2.580            -1.950	 -1.620
OIS Z(t)        -2.188	       -2.580	    -1.950	-1.620
TED Z(t)        -2.239	       -2.580	    -1.950	-1.620
**** Case  2 *** 
Random walk without drift, but a constant term included 
Augmented Dickey-Fuller test for unit root         Number of obs   =      2602
Interpolated Dickey-Fuller ---------
                                Test           1% Critical       5% Critical      10% Critical
                             Statistic           Value              Value             Value
SPRT Z(t)            -31.216            -3.430            -2.860            -2.570
ABCP Z(t)	  -3.476              -3.430	          -2.860	        -2.570
OIS Z(t)	 -2.773	              -3.430	          -2.860	       -2.570		
TED Z(t)	 -3.163	              -3.430	          -2.860	       -2.570		
MacKinnon approximate p-value for SPRTZ(t) = 0.0000, ABCP Z(t) = 0.0086, OIS Z(t) = 0.0622          and TED Z(t) = 0.0222
**** Case  3 ******* include drift, no trent ***
Augmented Dickey-Fuller test for unit root         Number of obs   =      2602
Z(t) has t-distribution -----------
     Test              1% Critical       5% Critical      10% Critical
           Statistic              Value             Value             Value
SPRT Z(t)            -31.216         -2.328             -1.645            -1.282
ABCP Z(t)	  -3.476          -2.328	        -1.645	     -1.282
OIS Z(t)	 -2.773	          -2.328	        -1.645	    -1.282
TED Z(t)	 -3.163	          -2.328	        -1.645	    -1.282
p-value for SPRT Z(t) = 0.0000, ABCP Z(t) = 0.0003, OIS Z(t) = 0.0028 and TED  Z(t)	= 0.0008

**** Case  4 **** include drift, include trend and include constant in regression ***
Augmented Dickey-Fuller test for unit root         Number of obs   =      2602
Interpolated Dickey-Fuller ---------
                  Test         1% Critical       5% Critical      10% Critical
                              Statistic           Value             Value             Value
SPRT Z(t)            -31.224            -3.960            -3.410            -3.120
ABCP Z(t)	  -3.760	-3.960	           -3.410	        -3.120
OIS Z(t)	 -2.815	              -3.960	          -3.410	       -3.120	
TED Z(t)	 -3.414	             -3.960	          -3.410	       -3.120				
MacKinnon approximate p-value for SPRT Z(t) = 0.0000, ABCP Z(t)	= 0.0187,  OIS Z(t) = 0.1915 and  TED Z(t) = 0.0495
Stationary testing is conducted by using the Augmented Dickey-Fuller (ADF) test and Phillips-Perron (PP) unit root test, which is known to be robust when a strong ARCH effect exists. The lag lengths used for the ADF test are according to the Bayesian Information Criterion (BIC).  The statistic values reject the null hypothesis that there is a unit root, which indicates that the data are stationary at 1%, 5% and 10% level of significance. If there is a unit root, then the data need to be differenced. 
[bookmark: _Toc90499963]1.4.5 Heteroscedasticity test
Heteroscedasticity tests have been undertaken in order to guarantee the application of ARCH type models. Table 1.4.4 displays the results of heteroscedasticity tests for the current data sets. Two tests are adopted, namely Bresuch and Pagan’s (1980) and the Lagrange multiplier (LM) test with five lags to conduct the heteroscedasticity test. The residuals of AR (1) of each return series are tested and this is crucial to establishing whether ARCH/GARCH type models can be used. The BP test regresses the squared residuals on the original regressors by default, while the LM test regresses the squared residuals on lagged squared residuals and a constant.   In detail, the results reject the null hypothesis of no heteroscedasticity for all listed equity indices. The presence of strong heteroscedasticity (ARCH effects) lends support to the employment of the GARCH type model.
[bookmark: _Toc90499964]1.4.5.1 Breusch-Pegan Chi-squared ARCH LM test
[bookmark: _Toc78502188][bookmark: _Toc78502292]Table 1.4.0‑4.1 Breusch-Pegan Chi-squared ARCH LM test
	 
	Breusch-Pagan Chi-squared test
	 

	
	SPRT
	ABCP
	OIS
	TED

	Chi 2 (1)
	3639.97
	1357.15
	2109.42
	829.34

	P value
	0.0000
	0.0000
	0.0001
	0.0000

	
ARCH LM test
LM test for autoregressive conditional heteroskedasticity (ARCH)

	
Chi 2 (1)
	SPRT
90.374
	ABCP
1051.108
	OIS
1910.746
	TED
867.345

	P Value
	0.0000
	0.0000
	0.0000
	0.0000


H0: no ARCH effects      vs.  H1: ARCH(p) disturbance
Note: Critical values for Chi-squared (1) are 6.63, 3.84 and 2.71 at 1%, 5% and 10% levels of significance. The ARCH test is important in this study in order to comment on the acceptance or rejection of an ARCH type model. The critical values for ARCH (5) are 1.84, 2.21 and 3.02 at 1%, 5% and 10% levels of significance.  
Table 1.4.4.2 Ljung-Box Autocorrelation
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[bookmark: _Toc344928759][bookmark: _Toc360480600][bookmark: _Toc361167151][bookmark: _Toc363499321][bookmark: _Toc363499492][bookmark: _Toc366175875][image: ]
[bookmark: _Toc78498681]Figure 1.4.9 Graphical Evidence of Volatility
Figure 1.4.9 graphically describe the volatility clustering feature of the spread and S&P500, which implies that the volatility type models might be suitable for the current data. It can be observed that for each spread, large changes are followed by large changes while small changes follow small changes historically.  Further discussion and analysis are given in the next subsection.  








[bookmark: _Toc90499965]1.4.5.2 Serial Autocorrelation 

[image: ]
Figure 1.4.10 Autocorrelation
Note: SAC and PSAC do not show the ARCH/GARCH effect directly. The returns series are stationary with some showing autocorrelation, which could imply the underlying ARCH/GARCH effect.
[bookmark: _Toc90499966]1.4.5.3 Partial Serial Autocorrelation 
[image: ]
Figure 1.4.11 Partial Autocorrelation
Figures 1.4.10 and 1.4.11 show the sample autocorrelation (SAC), which indicates the ARCH effects and sample partial autocorrelation (PSAC), which displays the GARCH effects for the four stock indices. Both SAC and PSAC are calculated up to 40 lags by using the classical homoscedastic standard errors. It is quite obvious that all the series exhibit significant autocorrelation. 
[bookmark: _Toc90499967]1.4.6 Model selection for optimal conditional mean order
According to the AIC and BIC criteria, mean-orders for the examined spreads and S&P500 are selected to achieve the optimal   to obtain the conditional mean for the data.
Table 1.4.5 Optimal Conditional Mean-order
	Data
	AR
	MA

	S&P500(return)
	2
	0

	ABCP
	2
	0

	OIS
	2
	1

	TED
	2
	2


Note: is used for S&P500,  for ABCP,  for OIS and  for TED.
[bookmark: _Toc90499968]1.4.6.1 Autocorrelation after best ARMA
[image: ]
Figure 1.4.12 Autocorrelation after best ARMA
Figure 1.4.13 shows the LB diagnose test for the optimal ARMA residuals. There is no evidence of remaining autocorrelation from optimal models for the mean. 
[bookmark: _Toc90499969]1.4.6.2 Partial Autocorrelation after best ARMA
[image: ]
[bookmark: _Toc78498682]Figure 1.4.13 Partial Autocorrelation after best ARMA

[bookmark: _Toc90499970]1.4.7 Analysis and Interpretation of Liquidity Transmission Findings

Applying the methodologies discussed in section 1.3, S&P 500 is selected as a proxy of overall market volatility and estimated daily volatility by using GARCH (1, 1). Compared to the other four spreads which were observed, daily volatility is derived from an econometric model, which does not display any interdependence from other variables. Based on the results of maximum log likelihood values, it is determined that the daily volatility derived from the ARMA was the optimal selection. The optimisations were conducted using STATA; the results are summarised in Table 1.4.1 below.

The conditional correlation between ABCP and OIS spread and OIS and TED spread follows a mean reversion process up to the summer of 2007. There is clear evidence of increased correlation within the bank funding liquidity market. This investigation finds the first structural break during the summer of 2007, which is reflected by the start of the subprime mortgage crisis.  Because of the extended data set, this study was able to identify another larger jump in correlation in September 2008 across all liquidity channels. This can be explained by the collapse of Lehman Brothers and the fact that the general market perception of financial distress led to higher market volatility and also liquidity being withdrawn from the market within a short period of time. There is clear evidence of liquidity shock transmission across the interbank lending markets during the crisis period. The implied conditional correlation between ABCP and OIS spread rose from a pre-crisis average of approximately 0.25 to 0.5, followed by fluctuations for a short period, then by a larger jump to reach its peak at above 0.6. The strong interactions and correlations between overall market liquidity and the interbank lending market demonstrate the spillover effect from one channel to another. 

The structural breaks indicate that there is a significant sign of direction change; the liquidity market clearly suffered from a lack of funding within a short period of time. With these early signs of liquidity transmission and movement, the TED spread and OIS spread might be able to serve for risk management purposes as an indicator for incoming liquidity shocks.

[image: ]
[bookmark: _Toc78498683]Figure 1.4.14 Conditional correlation implied in DCC Pre-Crisis period.
This spillover effect is captured by the clear signs of three structural breaks (pre-crisis, during-crisis and post-crisis), where there was a reversal in movement of the trend during the subprime mortgage crisis period. In addition, the structural break pre-crisis is identified in both the OIS spread, and TED spread at approximately the same time period. However, there are some points of interest to be noted in the bottom four charts.  Firstly, the sharp rise in correlation in both spreads occurred before the subprime mortgage crisis.
[image: ]
[bookmark: _Toc78498684]Figure 1.4.15 Conditional correlation implied in DCC During-Crisis period.
Secondly, there are no signs of significant structural breaks during crisis period after the peak at the beginning of 2007, even when the collapse of Lehman Brothers occurred.  The possible explanations for these unexpected results might be that the markets underwent speculation activity with private information, hence driving the correlation between market volatility and TED/ABCP spread to increase significantly prior to the crash of 2007. The structural breaks indicate that there is a significant sign of direction change; the liquidity market clearly suffered from a lack of funding within a short period of time. With these early signs of liquidity transmission and movement, the TED spread and OIS spread might be able to serve for risk management purposes as an indicator for incoming liquidity shocks.

[image: ]
[bookmark: _Toc78498685]Figure 1.4.16 Conditional correlation implied in DCC Post-Crisis period.
There is clear evidence of increased correlation during the subprime mortgage crisis period. Several interesting evolutions can be observed. First of all, dynamic conditional correlations widely exist across different liquidity channels.  This confirms the reason for our earlier strategy of choosing the ABCP, OIS, TED and S&P500 volatility as the representatives of liquidity channels is appropriate. Also, this fact shows a macro picture of the different liquidity channels tend to affect each other. Moreover, the first structural break is found during mid-2007 which is consistent with the results of Frank et al. (2008). In addition, another structural break occurred in September 2008, likely to be explained by the effect from the collapse of the Lehman Brothers in September 2008. The failure of Lehman Brothers intensified the fragile liquidity market and led to significant liquidity shortages across different interbank markets. Thirdly, we observe a mean reverting process in the conditional correlation prior to the structural breaks. The implication is that after a liquidity shock occurs, the correlations tend to immediately return to the long-term unconditional level. 
The DCC specification allows this investigation to detect liquidity shock transmission in different lending channels and to identify whether there is a linear relationship. However, although the model explicitly shows that there is clear evidence of a volatility spillover effect among various liquidity channels, it fails to answer the question of which liquidity channels were transmitting shocks from one to another. Without a thorough investigation of the source of liquidity shocks, there is not much practical application in the evidence of correlation between liquidity channels.  This is the reason why this study employs the BEKK model to overcome this issue. The BEKK specification model is able to provide more detailed transmission information, apart from conditional correlation. The off-diagonal elements in the variance-covariance matrix generated from the BEKK model show the transmission percentage across different liquidity channels. Considering the difficulty of discerning the large number of coefficients obtained from the BEKK model (e.g., k=4, No. Parameters=42 for a four-dimension BEKK), the pair-wise bivariate BEKK model is used to investigate liquidity transmission between different measurements. The second moment of a bivariate full BEKK can be represented as, 

  


The parameter vector consists of elements of C, which is a lower triangular matrix. The 2×2 matrix Aij shows the ARCH effects and there is particular interest in the 2×2 matrix Gij, which reveals the GARCH effects. The diagonal elements in the parameter matrix G measure the effect of lagged liquidity and the off-diagonal elements capture the cross-liquidity channel effects. As a result, the BEKK model is selected to investigate liquidity transmission because it is able to determine the direction of transmission (from A to B or B to A) and its degree, i.e. to what extent was the shock transmitted.  
Table 1.4.6 displays three pair-wise results which exhibit significant liquidity transmission. Firstly, the numbers in parentheses are the standard error of the estimations. All standard errors are close to zero, which indicates that the estimations are statistically significant. There is evidence of liquidity shock transmission across all different liquidity channels during the crisis period. This also indicates that, to some extent, there was a systemic liquidity transmission in the financial market. In other words, once the liquidity shortage occurred in one of the liquidity channels, it affected the others and thus induced the whole market to collapse. There was a possibility of systemic risk in the financial market and a contagion effect can be observed within the liquidity market during the crisis period. The interbank lending market was under stressed conditions, as indicated by the widening spread in the ABCP channel and OIS channel. The cost of short-term funding became increasingly expensive, and it was difficult to obtain. Market participants were not willing to lend to one another, as the associated credit risk was difficult to assess. Financial institutions in a poor liquidity position were opened to suffering a possible liquidity crisis. 
The estimated BEKK-GARCH model can be obtained by substituting the following matrices into equation for all three periods.


[bookmark: _Toc90499971]1.4.7.1 Pre-crisis Period BEKK-GARCH


K by K by P matrix of symmetric innovation parameters

K by K by Q matrix of smoothing parameters

.  The off-diagonal elements of matrix  measure cross-market effects such as return spillovers among the three spreads. The parameters with asterisks are, significant at 5% level of significance.  

Table 1.4.6 Pre-Crisis: Liquidity Transmission Implied in bivariate BEKK model
	Liquidity transmit S&P500 Volatility to ABCP
	1.29%

	Liquidity transmit ABCP to S&P500 Volatility 
	0.07%

	Liquidity transmit S&P500 Volatility to OIS
	0.95%

	Liquidity transmit OIS to S&P500 Volatility 
	0.97%

	Liquidity transmit S&P500 Volatility to TED
	3.86%

	Liquidity transmit TED to S&P500 Volatility 
	0.80%

	Liquidity transmit ABCP to OIS
	0.10%

	Liquidity transmit OIS to ABCP 
	2.75%

	Liquidity transmit ABCP to TED
	1.08%

	Liquidity transmit TED to ABCP
	2.75%

	Liquidity transmit OIS to TED
	2.37%

	Liquidity transmit TED to OIS 
	0.38%


Note: liquidity transmission between different pairwise is described as percentage and the corresponding standard errors. The transmission percentage is indicated by the parameter G. For example, the liquidity transmit from OIS to S&P500 volatility is 0.97% because the  parameter is 0.0097 and  parameter is 0.0095 which tell us the liquidity transmission percentage from S&P500 volatility to OIS.
[bookmark: _Toc90499972]1.4.7.2 During Crisis Period BEKK-GARCH


K by K by P matrix of symmetric innovation parameters

K by K by Q matrix of smoothing parameters

.  The off-diagonal elements of matrix  measure cross-market effects such as return spillovers among the three spreads. The parameters with asterisks are, significant at 5% level of significance.  

Table 1.4.7 During Crisis: Liquidity Transmission Implied in bivariate BEKK model
	Liquidity transmit S&P500 Volatility to ABCP
	0.76%

	Liquidity transmit ABCP to S&P500 Volatility 
	0.65%

	Liquidity transmit S&P500 Volatility to OIS
	3.58%

	Liquidity transmit OIS to S&P500 Volatility 
	0.02%

	Liquidity transmit S&P500 Volatility to TED
	2.71%

	Liquidity transmit TED to S&P500 Volatility 
	3.10%

	Liquidity transmit ABCP to OIS
	1.18%

	Liquidity transmit OIS to ABCP 
	2.5%

	Liquidity transmit ABCP to TED
	1.07%

	Liquidity transmit TED to ABCP
	0.82%

	Liquidity transmit OIS to TED
	1.68%

	Liquidity transmit TED to OIS 
	3.84%


Note: liquidity transmission between different pairwise is described as percentage and the corresponding standard errors. The transmission percentage is indicated by the parameter G. For example, the liquidity transmit from ABCP to S&P500 volatility is 0.65% because the  parameter is 0.0065 and  parameter is 0.0076 which tell us the liquidity transmission percentage from S&P500 volatility to ABCP.
[bookmark: _Toc90499973]1.4.7.3 Post Crisis Period BEKK-GARCH


K by K by P matrix of symmetric innovation parameters

K by K by Q matrix of smoothing parameters

.  The off-diagonal elements of matrix  measure cross-market effects such as return spillovers among the three spreads. The parameters with asterisks are, significant at 5% level of significance.  

Table 1.4.8 Post Crisis: Liquidity Transmission Implied in bivariate BEKK model
	Liquidity transmit S&P500 Volatility to ABCP
	5.14%

	Liquidity transmit ABCP to S&P500 Volatility 
	13.74%

	Liquidity transmit S&P500 Volatility to OIS
	7.43%

	Liquidity transmit OIS to S&P500 Volatility 
	5.32%

	Liquidity transmit S&P500 Volatility to TED
	5.84%

	Liquidity transmit TED to S&P500 Volatility 
	5.41%

	Liquidity transmit ABCP to OIS
	1.25%

	Liquidity transmit OIS to ABCP 
	0.22%

	Liquidity transmit ABCP to TED
	2.69%

	Liquidity transmit TED to ABCP
	2.09%

	Liquidity transmit OIS to TED
	2.89%

	Liquidity transmit TED to OIS 
	3.34%


Note: liquidity transmission between different pairwise is described as percentage and the corresponding standard errors. The transmission percentage is indicated by the parameter G. For example, the liquidity transmit from OIS to S&P500 volatility is 5.32% because the  parameter is 0.0532 and  parameter is 0.0743 which tell us the liquidity transmission percentage from S&P500 volatility to OIS.
[bookmark: _Toc90499974][bookmark: _Hlk90299351]1.4.7.4 Liquidity Transmission Implied in bivariate BEKK model (pre, during and post crisis) 
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	Liquidity Transmission Implied in bivariate BEKK model
	Pre-Crisis
	During Crisis
	Post-Crisis

	S&P500 Volatility to ABCP
	1.29%
	0.76%
	5.14%

	ABCP to S&P500 Volatility 
	0.07%
	0.65%
	13.74%

	S&P500 Volatility to OIS
	0.95%
	3.58%
	7.43%

	OIS to S&P500 Volatility 
	0.97%
	0.02%
	5.32%

	S&P500 Volatility to TED
	3.86%
	2.71%
	5.84%

	TED to S&P500 Volatility 
	0.80%
	3.10%
	5.41%

	ABCP to OIS
	0.10%
	1.18%
	1.25%

	OIS to ABCP 
	2.75%
	2.50%
	0.22%

	ABCP to TED
	1.08%
	1.07%
	2.69%

	TED to ABCP
	2.75%
	0.82%
	2.09%

	OIS to TED
	2.37%
	1.68%
	2.89%

	TED to OIS 
	0.38%
	3.84%
	3.34%



Comparison table for pre, during and post financial crisis.
For the subprime crisis period, study found multidirectional lead–lag relations between these three spreads. Overall, the result implies that the subprime turmoil had a universal impact on the spreads, and that these three markets were very closely related during the crisis. For the volatility transmissions before the crisis period, the conditional variances for all three spreads were independent of each other, although the volatilities for the three spreads were persistent. For the volatility transmissions during the crisis period however, that there were significant one-way volatility transmissions from the spread. These findings reveal that, in contrast to the independent behaviour of the spreads during (pre, during and post-crisis) periods these three markets were closely linked and interrelated.
Once the subprime crisis started, the relevance of financial variables, particularly those related to banks' credit and funding risks, acquired greater prominence. A common metric of banks' credit risks is the TED spread, or the difference between the interest rates on inter-bank loans (we use the US dollar, 3-month LIBOR) and short-term U.S. government debt (3-month US Treasury bills). This captures the risk premium on bank borrowing, since LIBOR is the rate at which banks borrow and Treasury bills (T-bills) are commonly considered risk-free.
However, the TED spread reflects not just banking-sector credit risk but also includes liquidity or flight-to-quality risk. These two categories of risks can be approximately decomposed. TED = (LIBOR-OIS) + (OIS-T-bill), where the OIS is an “overnight index swap” which measures the expected daily average Federal Funds rate over the next 3 months. Thus, the TED spread can be decomposed into the banking-sector credit risk premium (LIBOR-OIS) and liquidity or flight-to-quality premium (OIS-T-bill). 
The TED spread rose sharply in the post-Lehman-crisis period. While the liquidity premium also increased, the more substantial increase was in credit risk. Note also the spike after the start of the subprime crisis in the spread on ABCP. Since banks use these instruments for their short-term funding, the rise in these spread proxies the risks associated with rollover in short-term funding. That the trading in market for ABCP issued by banks and conduits decreased substantially within days of the Lehman bankruptcy is well known; e.g. see Dwyer and Tkac (2009) for an overview of events in fixed-income markets before March 2009.
The collapse of Northern Rock, Bear Stearns and Lehman Brothers are classic examples of such phenomena.  Secondly, as an indicator of the whole financial market, during crisis the S&P 500 volatility transmitted 3.58% to the OIS spread and 2.71% to the TED spread, respectively. Although there is no direct transmission between S&P500 and ABCP, it is interesting to note that the TED measurement transmitted 0.76% to the ABCP spread. There was a significant amplifying effect on liquidity shock from S&P 500 through the liquidity channel of the TED spread, which eventually severely impacted on the ABCP spread. The logic of such phenomena can be explained by the elements of the TED spread and its connection to the ABCP spread channel. 
As previously discussed, the TED spread is the spread between the three-month Treasury bill and the three-month LIBOR. The Treasury bill is perceived to be a risk-free rate, while the LIBOR rate is an indicator of financial institutions willingness to lend. A wider TED spread indicates that the market is undergoing a liquidity shortage, as funding is more difficult and expensive to obtain. Given the LIBOR rate is the basis of the interbank lending rate, and the basis of the TED spread and the ABCP spread are the three-month Treasury bill, if the LIBOR rate increases as banks are not willing to lend to one another, the alternative method of raising short term funding by issuing ABCP papers is therefore more expensive. 
The interconnection of the TED spread and ABCP spread explains the amplifying effect of the liquidity shock transmission across the two channels. Also, it is interesting to observe that the transmission is bidirectional, but not symmetric, as there was a dominant source of liquidity shock transmission from market volatility. For example, the S&P500 transmitted 3.58% to OIS spread, but only about 1% the other way around. A similar pattern is observed for pair-wise comparison of S&P500 and TED. This suggests that the S&P500 volatility has a significant impact on the liquidity transmission mechanism. This particular result also answers the question of whether liquidity shock was transmitted from A to B or vice versa. Liquidity shock was transmitted from S&P 500 channel to both the TED and OIS spreads, respectively. There were few liquidity shock transmissions towards S&P 500 from both interbank lending channels. 
The interpretation of such phenomena is that the liquidity channels within the interbank market were the victims of a sudden shock. The large jump in the S&P 500 channel caused significant volatility and widened the lending spread, leading to potential bank runs.  The liquidity measurement of the TED spread introduced in this doctoral study was involved in two of the three significant liquidity transmission pairs. When the TED spread increases, it is a sign that lenders believe the risk of default on interbank loans is increasing. Interbank lenders, therefore, demand a higher rate of interest, or accept lower returns on safe investments such as T-bills. Nevertheless, the question of how and why the TED spread was the most significant among other liquidity channels remain unclear.  This empirical result of the test confirms the appropriateness of the selection of the TED spread measurement in the model, and also suggests a new direction to undertake further investigation of the role of TED in liquidity transmission. All the results presented are statistically significant, which confirms that the initial selection of these spread measurements was suitable as a proxy of liquidity channels.  
[bookmark: _Toc90499975]1.4.7.5 Graphic representation of   ARMA-GJR-DCC (1, 1)
The dynamic conditional correlations implied in the DCC model are plotted in Figure 1.4.17, as demonstrated by the blue curves. Without exception, the figures represent time-varying patterns in the correlation dynamic path. Accordingly, the current strategy of using the DCC model is testified. In general, all three spreads exhibit relatively high conditional correlation, which is consistent with unconditional correlation. The TED and ABCP show the highest correlation for returns between Jan 2005-Dec-2009. These figures also offer visual evidence showing the conditional correlation obtained from the DCC (1,1) model versus actual semi-annual (e.g., six months) sample correlation (in dash lines). By visually evaluating these figures, it is clear that forecasting from the ARMA-GJR-DCC (1, 1) is too noisy to represent true correlation. In particular, the fluctuations often exceed long-term changes in sample correlations. Last but not least, from the implied time-varying conditional correlation in ARMA-GJR-DCC (1, 1), it is effortless to distinguish dynamic conditional correlation and unconditional correlations between the spreads and S&P 500.  
 [image: ]
[bookmark: _Toc78498686]Figure 1.4.17 Time-varying Conditional Correlations
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The subprime mortgage crisis has had a significant impact on the extent to which financial institutions trust each other, especially with regard to extending credit and dealing in securities and other financial products. Trust and creditability are vital to whether banks succeed or fail in a highly competitive market. In the case of financial markets, trust can be defined as “faith or confidence in the loyalty, strength, veracity of a person or thing without examination”. During the subprime mortgage crisis, issues of trust or mistrust led to the failures of some commercial banks, for example, Northern Rock, and some investment banks such as Lehman Brothers. In the financial world, trust means a number of things to the people who run the institutions. A lack of trust in banks or in financial markets can undermine the system as a whole. This is observed during the subprime mortgage crisis, as banks stopped lending to each other due to liquidity constraints and fears the counterparty might not be able to repay. The development of a relationship of trust between bankers and their clients leads to the build-up of informational capital. 

As bankers move further away from their clients and trust is lost, this knowledge is lost as well. Real investment in an economy, which generates economic growth and jobs, requires funding. Similarly, households require funding to finance housing and other forms of expenditure, whether of a longer-term investment nature, such as education, or more consumer-type expenditure. Banks and other financial intermediaries play a unique role in channelling savings to investors. Both savers and investors face risk and uncertainty. Savers cannot always easily assess the risk of an investment, and by pooling savings, banks allow for increased returns for savers. Investors who require funds for investment projects, on the other hand, can take advantage of the pooling of savings and the intermediation services of banks or other financial agents. A healthy, well-functioning financial sector is essential for economic growth. When the banking sector becomes dysfunctional and stops lending, the implications for the real economy can be extremely serious. According to the financial accelerator theory, which helps to explain the procyclical nature of bank lending, adverse conditions in the financial markets impact on the real economy, which in turn reinforces the negative conditions in financial markets.  This negative feedback loop propagates and amplifies the downturn. The opposite is true for favourable feedback loops.  

This accelerator principle implies that there are disproportionate increases or decreases in credit extension in response to changes in underlying conditions.  For example, during a boom, asset prices rise, and this increases the value of collateral available, allowing for increased leverage and credit expansion. More investment is undertaken, and more jobs are created, which in turn leads to further expansion in the financial sector. Conversely, when asset values fall, deleveraging occurs as the value of existing collateral declines, with negative implications for the real economy. Normal cyclical downturns are often reinforced by tight monetary policies in response to an overheating economy and inflationary pressures, and the downturn can be effectively moderated by a reversal in the monetary policy stance. There are differing views as to the origins of the global financial crisis, but it is widely accepted that a combination of weak or light-touch regulation of the banking system, coupled with some rather questionable innovations in the banking sector, were at the epicentre of the crisis. It became clear in the aftermath of the crisis that many of the senior bank executives did not fully understand these complex products and the risks associated with them. 
The DCC analysis shows three structural breaks. The first one is matched with the finding of Frank et al. (2008), the second structural break is found in September 2008 which can be explained by the collapse of Lehman Brothers and that the general market perception of financial distress leads to higher market volatility and the third structural break express the aftershock mechanism. The results from the bivariate BEKK estimation show that there are three exceptionally significant LTs pairwise across the four liquidity measurements and moreover, two of them involve the TED indicator. The dynamics of LT within the interbank market found significant evidence that there were liquidity shocks spillovers in the four different liquidity measurements across the U.S. market. Banks are able to obtain short-term funding from the ABCP market under normal market condition. However, in the event of bank failures the confidence of the interbank market reduced significantly. Banks with an unhealthy balance sheet such as high leverage ratio may become illiquid but still solvent, where they possess sufficient assets against their liabilities but are unable to meet the short-term financial obligations. This is demonstrated by the drying up of the ABCP market during the crisis period. In addition, as the interbank market was intensified by a series of negative events during the SMC, the TED spread jumped up significantly. This indicates that as the overall perceived credit risk rose in the interbank market the willingness of banks to lend to each other is significantly diminished. 
The Ted spread was the most significant of the shock transmitting forces, while the APCB spread was the least influential among all sample lending channels. Furthermore, there was an amplifying effect of the liquidity shock transmission through the TED spread channel. The market-wide study provides an insight into the sources of liquidity shock transmission within the banking system during the time of financial distress. Interbank lending channels can turn into channels which transmit liquidity shocks. Further research should focus on analyzing other, not so profound, crisis. Also, the parameters considered have to be adapted to various types of crisis, for instance in specific industries and regions.
The lending mechanism under the OTD model describes the degree of complexity in interbank holdings between financial institutions. The cross holdings of structured products within the banking system might not pose a problem during normal economic conditions. However, in the event of financial distress such as the subprime mortgage crisis, liquidity shocks can be transmitted through these lending channels. Based on quantitative analysis, this study has found evidence of the existence of liquidity shock transmission during the subprime mortgage crisis. Liquidity shocks can be transmitted through these lending channels. The contribution here relates to the empirical study of liquidity shock transmission within the interbank market. This study, based on quantitative analysis, found evidence of the existence of liquidity shock transmission during the subprime mortgage crisis. The Ted spread was the most significant of the shock transmitting forces, while the APCB spread was the least influential among all sample lending channels. Furthermore, there was an amplifying effect of the liquidity shock transmission through the Ted spread channel. The market-wide study provides an insight into the sources of liquidity shock transmission within the banking system during the time of financial distress. Interbank lending channels can turn into channels which transmit liquidity shocks. 





[bookmark: _Toc90499977]1.5.1 Contribution to knowledge

Several seminal findings from the planned analysis above contribute to the existing knowledge on liquidity shocks, risk transmission and the financial crisis. The contributions are summarised as follows:
· First of all, the research finds evidence of liquidity shock transmissions pre, during and post subprime crisis period by identifying structural breaks across many liquidity channels, whereby interbank liquidity channels became the sources of risk transmission. This is confirmed by the findings of Frank et al. (2008). Moreover, by extending the data set, another structural break across interbank channels with strong persistence was found during the period of 2008 and was followed by a mean reverting process. The strong co-movement of different spreads in the findings suggest that interbank funding liquidity, general market liquidity and stock market volatility are interrelated and interdependent during the crisis period. The contagion effect of liquidity shock transmission on the interbank market is also observed during the subprime mortgage crisis. The finding is crucial in that it serves as an early indicator for liquidity shock and hence provides a warning so as to avoid substantial future losses in extreme events.    
· Secondly, the TED spread, which is the difference between the three-month Treasury bill (T-bill) and three-month LIBOR rate, is added into the model to explicitly measure the attitude of the overall market towards lending within the interbank market. The inclusion of the TED spread variable yielded a significant result in that it was one of the major sources of liquidity shock transmission.
· In addition, the findings in correlation between market volatility and ABCP/TED spreads show that the correlation increased before the subprime mortgage crisis of 2007. The interactions and interrelations exhibited in the patterns suggest that there are speculation activities in the pre-crisis period which may have been caused by private information. The analysis of liquidity risk transmission reflects how different liquidity channels interacted and were interdependent within the interbank market. 
· This research makes several important contributions to the emerging literature on liquidity shocks during the recent subprime crisis. First, as far as we can tell, this is the first attempt to model empirically the transmission of liquidity shocks across U.S. financial markets specifically during the recent period of financial stress. Second, the GARCH model explicitly addresses the links between market and funding liquidity effects and the dynamics of bank insolvency pressures among the largest complex financial institutions. This connection is of critical importance since this latest crisis, which in its early stages was perceived as a temporary liquidity episode, eventually metastasized into one of solvency for a number of major global banks.
Furthermore, the author also analyses optimal GARCH to determine the most appropriate model for the liquidity shock transmission. The findings suggest that there is significant evidence of liquidity shock transmission during the subprime mortgage crisis. This is of importance, as it will serve for future policy making decisions.
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Part 2: Benford's laws tests on the volume of S&P500 minutes data.
[bookmark: _Toc90499980]Abstract: Part 2

[bookmark: _Hlk78539486]This chapter describes an examination of Benford’s Law for the distribution of leading digits in real data sets of S&P500 minutes volume and the corresponding log-returns over a interval, [01/05/2013 - 29/12/2017], amounting to 481769 data points. This doctoral research addresses the frequencies of the first, second, and first two significant digits counts and reconnoitre the conformance to Benford's laws of these distributions at eleven different (117 days minute data points) levels of disaggregation of mathematical model of methods that may account for such a leading digit distribution have also been studied. The log-returns are mainly studied for either positive or negative cases. The outcomes for the S&P500 minute volume informational index are showing an enormous absence of defiance. Such informational indexes have been inspected and it was tracked down that main a little part of them adjust to the law. whatever the various degrees of disaggregation. The reasons of this non-conformity are discussed, indicating to the peril in taking Benford's laws for granted in huge data bases, whence drawing “definite conclusions”.  Investigation discovered that dependent on the thought of taking the result of numerous irregular factors the most trustworthy. This prompted the distinguishing proof of a class of lognormal distributions, those whose shape boundary surpasses 1, which fulfil Benford's Law. This thus driven us to an original clarification for the law: that it is generally an outcome of the way that numerous actual amounts can't genuinely take negative qualities. This empowered to foster a straightforward arrangement of rules for deciding if a given informational collection is probably going to adjust to Benford's Law. The concurrences with Benford's laws are greatly improved for the log-returns. Such a dissimilarity in arrangements discovers a clarification in the informational collection itself: the innate pattern in the index. To further validate this, daily returns can be simulated so that calibrate the simulations with the observed data averages and tested against Benford's laws. 
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The history of Benford’s Law is a fascinating and unexpected story of the interplay between theory and applications. From its beginnings in understanding the distribution of digits in tables of logarithms, the subject has grown enormously. Currently hundreds of papers are being written by accountants, computer scientists, engineers, mathematicians, statisticians, and many others. This section of research starts by stating Benford’s Law of digit bias and describing its history. Studying the distribution of the leading digits of numbers was Frank Benford’s the Law of Anomalous Numbers, published in the Proceedings of the American Philosophical Society in 1938. In addition to advancing explanations as to why digits have this distribution, he also presents some justification as to why this is a problem worthy of study. Discusses its origins and give numerous examples of data sets that follow this law, as well as some that do not. From these examples one can extract several explanations as to the prevalence of Benford’s Law, which are described in greater detail. Summarising many of the diverse situations in which Benford’s Law holds, and why an observation that began in looking at the wear and tear in tables of logarithms has become a major tool in subjects as diverse as detecting tax fraud and building efficient computers. We live in an age when we are constantly bombarded with massive amounts of data. Satellites orbiting the Earth daily transmit more information than is in the entire Library of Congress; researchers must quickly sort through these data sets to find the relevant pieces. It is thus not surprising that people are interested in patterns in data. One of the more interesting, and initially surprising, is Benford’s Law on the distribution of the first or the leading digits. There are many advantages to studying the first digits of a data set. One reason is that it helps us compare apples and apples and not apples and oranges. By this we mean the following: two different data sets could have very different scales; one could be masses of subatomic particles while another could be closing stock prices. While the units are different and the magnitudes differ greatly, every number has a unique leading digit, and thus we can compare the distribution of the first digits of the two data sets.
The evolution of prices and volumes in the international stock markets has a remarkable informative content. In fact, financial markets and their components are highly correlated with the surrounding socio-political environment and a shock of noneconomic nature might influence the economic system.
This research moves from this scientific ground. We aim at analysing the context of global stock markets with a specific focus on all the indexes composing them. In particular, this research deal with the nature of complex system of the markets and discuss whenever the available time series associated to prices and volumes of the stocks exhibit a sort of “regularity”.
Indeed, datasets often exhibit deviations from a pure uniform law, even if they are not constructed in an “ad-hoc” manner. Think about countries’ GDPs, with a great percentage of low levels and a few data with high values.
In this respect, the so-called Benford's Law, firstly empirically observed by Newcomb (1881) and lately formalized by Benford (1938), has been proved to hold in a wide set of contexts. Benford's Law is an evident regularity of the distribution of the digits of several large datasets. It states that the frequency of the first and second digits of the values of a set of data decreases with the value of the digit and achieves its maximum when the digit is “one”.
Studying the distribution of the leading digits of numbers was Frank Benford’s the Law of Anomalous Numbers, published in the Proceedings of the American Philosophical Society in 1938 (see Benford (1938)). In addition to advancing explanations as to why digits have this distribution, he also presents some justification as to why this is a problem worthy of study. It has been observed that the pages of a much-used table of common logarithms show evidence of a selective use of the natural numbers. The pages containing the logarithms of the low numbers 1 and 2 are apt to be more stained and frayed by use than those of the higher numbers 8 and 9. Unquestionably, no one could be expected to be greatly interested in the condition of a table of logarithms, but the matter may be considered more worthy of study when we recall that the table is used in the building up of our scientific, engineering, and general factual literature. There may be, in the relative cleanliness of the pages of a logarithm table, data on how we think and how we react when dealing with things that can be described by means of numbers.
This doctoral research tried to interpret the efficacy and functionality of financial markets worldwide. It checked the reliability of Benford law for stock volume to apply it on daily volumes of stocks comprising S&P500 minute data. It will be interesting to see how this application of Benford law analyses and comments consistent results; in fact, the cases in which the Law will be verified are various, and research provide a brief discussion on the technical and historical reasons leading to the failure of this law.
[bookmark: _Toc90499982]2.2 Literature Review

In the political environment Mebane (2011) used the law for verify the trustworthiness of the election results. In this respect, the law was also used by the Iranian minister Boudewijn F. Roukema to ensure the accuracy of the electoral results in the presidential election of 2009, because of the complaint about electoral fraud made by Moussavi (opposition leader) against the election of President Ahmadinejad. City after city, the minister analysed the relative frequencies of the first significant digit of the number of votes and compared the frequencies obtained with the theoretical frequencies of BL. As a result, Roukema remarked that while all the frequencies of the other digits were very similar to those theoretical, the number 7 appeared too many times, hence supporting the truthfulness of the charges of Moussavi. Decided to settle the matter, the minister remarked that the anomaly concerned three out of the six larger areas of Iran. In these areas the winner Ahmadinejad had won a share of the vote much higher than in other areas.
Also, Varian (1972) suggested the possibility of using BL to identify any falsification in the collection of data used to support political decisions. The author proposed to compare the relative frequency of the first digit of the numbers used to the support political decisions with the theoretical frequencies of BL, to highlight any abnormal results. He applied the law in a set of land planning for 777 tracts in San Francisco Bay. The law was respected.
Nigrini (1996) was able to show the benefits of the possible application of BL to detect the falsification and the frauds in accounting and activity auditing (which of course may not be intentional, such as arithmetic errors and, more generally, errors in calculation or misapplication of the applicable accounting standards; or it could be outright intentional frauds, such as the alteration of records or documents, the lack of enforcement of accounting standards, the omission of some results or finally recording non-existent transactions). This system is now used in most of the American States to support the identification of tax fraud.
In the economic field BL can also be applied to check the efficiency of financial indices, and in general financial quantities. Ley (1996) calculated if the distribution of the relative frequencies of the first significant digit of daily returns of two American stock indexes (i.e., the S&P 500 for the period from 1926 to 1993 and the Dow Jones for the period from 1900 to 1993), using the BL: the result obtained that both stock indexes respected this law, and it was a demonstration of the current index efficiency.
Realdon (2008) and Ausloos et.al., (2016) dealt with the assessment of the validity of the BL on the sovereign credit default swap markets. Carrera (2015) analysed exchange rates to check whether there exists the possibility of manipulation for policy management. In support of macroeconomic data, Nye and Moul (2007) studied the GDP data of the Penn World Tables. Günnel and Tödter (2009) applied the BL on the forecast of GDP growth and inflation of German consumer prices. Holz (2014) evaluated the quality of the Chinese GDP advancing suspicions on the statistics published by the National Bureau of Statistics of China. Michalski and Stoltz (2013) examined the balance of payments data for 103 countries between 1989 and 2007. Mir (2016) studied the illicit financial outflows from developing countries. Finally, Mir et al. (2014) and Ausloos et al. (2017) have instead applied the BL to the aggregate of income taxes of municipalities and Italian regions for the period between 2007 and 2011.
Benford’s paper contains many of the key observations in the subject. One of the most important is that while individual data sets may fail to satisfy Benford’s Law, amalgamating many different sets of data leads to a new sequence whose behaviour is typically closer to Benford’s Law. This is seen both in the row corresponding to (where we can prove that each of these is non-Benford) as well as in the average over all data sets.
Benford’s article suffered a much better fate than Newcomb’s paper, possibly in part because it immediately preceded a physics article by Bethe, Rose and Smith on the multiple scattering of electrons. Whereas it was decades before there was another article building on Newcomb’s work, the next article after Benford’s paper was six years later (by S. A. Goutsmit and W. H. Furry, Significant Figures of Numbers in Statistical Tables, in Nature), and after that the papers started occurring more and more frequently. See Hurlimann’s extensive bibliography for a list of papers, books and reports on Benford’s Law from 1881 to 2006, as well as the online bibliography maintained by Arno Berger and Ted Hill (2015).
[bookmark: _Toc90499983]2.2.1 STATEMENT OF BENFORD’S LAW
Definition 1: (Benford’s Law for the Leading Digit). A set of numbers satisfies Benford’s Law for the Leading Digit if the probability of observing a first digit of is .
While clean and easy to state, the above definition has several problems when we apply it to real data sets. The most glaring is that the numbers  are irrational. If we have at a set with  observations, then the number of times the first digit is  must be an integer, and hence the observed frequencies are always rational numbers.
One solution to this issue is to consider only infinite sets. Unfortunately, this is not possible in many cases of interest, as most real-world data sets are finite (i.e., there are only finitely many counties or finitely many trading days). Thus, while Definition 1 is fine for mathematical investigations of sequences and functions, it is not practical for many sets of interest. We therefore adjust the definition to
Definition 2: (Benford’s Law for the Leading Digit (Working Definition)). Consider a data set satisfies Benford’s Law for the Leading Digit if the probability of observing a first digit of d is approximately 
Note that the above definition is vague, as we need to clarify what is meant by “approximately.” It is a non-trivial task to find good statistical tests for large data sets. The famous and popular chi-square tests, for example, frequently cannot be used with extensive data sets as this test becomes very sensitive to small deviations when there are many observations. For now, we shall use the above definition and interpret “approximately” to mean a good visual fit. This approach works quite well for many applications. For example, we shall see that many corporate and other financial data sets follow Benford’s Law, and thus if the distribution is visually far from Benford, it is quite likely that the data’s integrity has been compromised.
Finally, instead of studying just the leading digit we could study the entire significand. Thus, in place of asking for the probability of a first digit of 1 or 2 or 3, we now ask for the probability of observing a significand between 1 and 2, or between  and . This generalisation is frequently called the Strong Benford’s Law.
Definition 3: (Strong Benford’s Law for the Leading Digits (Working Definition)). It can be said the data set satisfies the Strong Benford’s Law if the probability of observing a significand in is .
Note that Strong Benford behaviour implies Benford behaviour; the probability of a first digit of d is just the probability the significand is in Writing  as  we see this probability is just 
Previous studies on this topic have been inconclusive in terms of both the direction and the magnitude. In terms of direction, some argue that, similar to other developing countries, the underdeveloped reporting capacity of the Chinese state may lead to downward biases in growth rates (Holz, 2014).1 Upward biases are also possible due to the political incentives of the authoritarian regime (Martinez, 2019). In terms of magnitude, some have uncovered evidence of substantial discrepancies (Rawski, 2001), whereas others believe that China’s GDP data are largely accurate (Mehrotra and Pääkkönen, 2011; Chow, 2006; Holz, 2014).
Benford’s Law was separately discovered by Frank Benford (1938) and Simon Newcomb (1881). It states that for many naturally occurring numerical sequences, the probability of observing a first digit of n should be approximately log10(1 + 1/n). This was initially applied to data series occurring in the natural environment, such as the length of rivers, molecular weights, or death rates (Hill, 1995; for a survey, see Miller, 2015). More recent advances in statistics and economics have extended Benford’s Law beyond the natural environment to fraud detection in social activities, including stock prices (Ley, 1996), accounting (Nigrini, 2012; Fernandes and Guedes, 2010), elections (Pericchi and Torres, 2011; Deckert et al., 2011), international trade (Barabesi et al., 2018), and macro-economic data (Michalski and Stoltz, 2013; Rauch et al., 2011; Gonzalez-Garcia and Pastor, 2009). Benford’s Law arises naturally for many types of data, including process of exponential growth (such as population and economic growth), products of independent random variables (such as sales and industrial output), and random data pooled from a large population of independent agents (such as population or industrial census) (Miller, 2015).
Benford’s Law is used to detect fraud or flaws in data collection based on the distribution of the first digits of observed data. A Benford distribution of first digits arises naturally for exponential processes with multiple changes of magnitude, Michalski and Stoltz (2013). The spread of COVID-19 demonstrates exponential growth and changes of magnitude.
The frequency with which the first digit is ‘‘1’’ is 30.1%, the first digit is ‘‘2’’ is 17.6% etc., declining to the first digit being ‘‘9’’ only 4.6% of the time. Since it takes a 100% increase to go from ‘‘1’’ to ‘‘2’’ and a mere 11.1% increase to go from ‘‘9’’ to ‘‘1’’, this logarithmic distribution makes sense. The use of Benford’s Law to detect fraud has been widely demonstrated in economics and accounting (Varian, 1972). Benford’s Law has been used to detect manipulation of economic statistics: Nye and Moul (2007), Gonzales-Garcia and Pastor (2009), Rauch et al. (2011), Holz (2014) and Nigrini (1996).

[bookmark: _Toc90499984]2.3 Methodology
The motivation to carry out the study described in this chapter arose as part of an investigation to discover what characteristics of data sets make them difficult for classification learning procedures. This research required numerous sets of data of known characteristics. Empirical study, Benford (1938) proposed a rule for the distribution of all nine possible leading digits in real data:
(Newcomb, 1881) saw that the initial not many pages of logarithmic table books are more thumbed than the last ones. He surmised that numbers with more modest introductory digits are more frequently searched for and utilized than numbers with bigger starting digits. Newcomb perception was forgotten for around sixty years (Mir and Ausloos, 2017). 
(Benford, 1938), this examination evidently and freely went on exhaustively and tried the precision of his perception by breaking down an enormous assortment of (altogether 20000) numbers, accumulated from twenty different elds, subsequently building up a law as
                                                                      (2.3.1)
for = 1, 2, 3, . . . , 9, where  is the probability of a number having the rst non-zero digit and is the logarithm in base 10. 
The main huge digit of a number is its left-most nonzero digit. As per Eq. (2.3.1), the littlest digit, 1, ought to show up as the principal digit with the most elevated extent (30.1%), though the biggest digit, 9, will show up as first digit with the least extent (4.6%). Hence,  , the occasions the number = 1, 2, 3, . . . , 9 is seen to happen as the main digit, in an informational collection, is given by the supposed "Benford law for the principal digit" (BL1 in the future)
                                             (2.3.2)
where  is the total number of considered data points. 
One can show that the probability that = 1, 2, 3, . . . , 9 is encountered as the second digit is given by “Benford law for the second digit” (BL2 hereafter)
                    (2.3.3)
Moreover, one can extend BL1 to the first two digits, a so called BL12,
        (2.3.4)
Following a recovery because of Nigrini, these days, these supposed Benford's laws (Berger and Hill, 2015; Miller, 2015; Mir and Ausloos, 2017) are of continuous use to notice inconsistencies and normalities in numerous informational indexes [e.g., see 8, where broadly utilized overview informational indices has been assessed]. In short, would one be able to trust the information?
Allow us to caution that Benford's laws (BLs) one of a kind beginning isn't acknowledged by all theoreticians; truth be told, it probably won't be special. Also, some conversation properly exists on whether Benford's laws ought to try and be substantial by any means! One may likewise talk about how to test the legitimacy (or not) of BLs (D'amico, 2013; Lesperance et al., 2016; Omerzu and Kolar, 2019) and (Newcomb, 1881; Mir and Ausloos, 2017) as instances of such contemplations, in the field.
Generally, one thinks about that Benford's laws ought to be substantial in case there is no information control, or then again if human imperatives are non-existent (Hassler and Hosseinkouchack, 2019). However, there are cases in which Benford laws are either not found to hold, despite the fact that their event ought normal (Ausloos, Herteliu and Ileanu, 2015), or actually are not relied upon to be noticed, yet are noticed (Clippe and Ausloos, 2012; Mir, Ausloos and Cerqueti, 2014; Cerqueti and Ausloos, 2015; Mir, 2016; Ausloos, Cerqueti and Mir, 2017; Shi, Ausloos and Zhu, 2018). Subsequently, testing BLs on different examples ought to achieve some contention talking about the debates.
To clarify the term significant, a brief example is provided: the first digit of 4.1562 is 4 and the second digit is 1; the first digit of 315 is 3 and the second digit is 1; the first significant digit of 0.0154 is 1 and the second digit is 5.
The empirical frequencies of the digits have been compared with the theoretical distribution given by the Benford law. To pursue our scope, we have adopted a comparison criterion grounded on statistical theory which is one of the most used in the literature for testing the Benford law: the Pearson's χ2 test. Such a test is of parametric type and serves for checking if the empirical frequencies are statistically different from theoretical frequencies of the Benford law.
In our framework, this test can be written as  


Where
Oi is the frequency actually detected for character i;
Ei is the theoretical frequency of character i, according to the Benford law.
Accentuating the fiscal report aspects, it appears to be curious to that essential financial market indices have not been greatly contemplated, whenever learned by any stretch of the imagination. The segment "Best in class" (Sect. 2.3.1) permits us to review what is by and by found in the writing concerning the utilization of Benford's laws for concentrating on financial market indices.
This review reports assessment of Benford's law first, second, and initial two digits legitimacy (called BL1, BL2, BL12), upon the S&P500 market closing values, throughout a long-term stretch: from [01/05/2013 - 29/12/2017], This adds up to 481769 information focuses. The time series is downloaded from Yahoo! Finance, a definitive site giving monetary information. In doing as such we are in accordance with focuses on like (Juergens and Lindsey, 2009; Haley, 2017; Riccioni and Cerqueti, 2018; Shi, Ausloos and Zhu, 2018). Study discusses both minute volume and minute log returns. Moreover, divide the whole-time interval into 11 windows of 117 days minutes subsets made of roughly 43777 observations each. The interest of such a disaggregation will be discussed below.
This may observe deviations of the market minute volume through data histograms with respect to the Benford’s laws predictions and/or expectations results will publish in Section (2.4). The findings will be discussed in reflection of studies like (Ley, 1996; Corazza, Ellero and Zorzi, 2010; Zhao and Wu, 2010) and the causes for such findings as disagreement will provide in Section (2.5). Also, the log returns will be investigated for the confirmation of Benford’s laws. 
In this manner, despite the fact that Benford laws are primarily used to call attention to likely cheats in fiscal reports, by organizations (Saville, 2006) or (Rauch, Göttsche, Engel and Brähler, 2011), one might contemplate and/or expect that such  <<laws>> can be utilized by financial backers, or in building relevant models dependent on instability. Next to the discoveries about information ranges, and the role of digits recurrence at some situation in the thought about numbers, one might propose further examination, forthcoming that the contemplations can be attached to different methods dependent on the recurrence of digits, similar to letters in a text (Shulzinger and Bormashenko, 2017). This is likewise applicable to Bayesian methodologies (or sources of info) and Markov models in financial backer danger taking angles.
[bookmark: _Toc90499985]2.3.1 State of the Art
(Ley, 1996) has evidently been quick to inspect "the unconventional circulation of the US stock lists' digits". One needs to stand by 2010, for contemplations by Zhao and Wu on the inquiry whether Chinese stock lists concur with Benford's Law (Zhao and Wu, 2010). In the two cases, (Ley, 1996) and (Zhao and Wu, 2010), Benford's law is professed to be legitimate. Firmly associated with our report, (Corazza, Ellero and Zorzi, 2010) checked whether financial markets like the S&P 500 case, from August 14, 1995, to October 17, 2007, subsequently 3067 information focuses, submitted to BL1 (Corazza, Ellero and Zorzi, 2010). The creators additionally tracked down some sensible arrangement, aside from, they guarantee, at abnormal occasions, similar to showcase accidents or extraordinary occasions. Allow to make reference to (Cinko, 2014) and (Aybars and Ataunal, 2016) where it is tried the "dispersion of BIST-100 returns" along BLs. Even more as of late, in 2018, (Shi, Ausloos and Zhu, 2018) took a gander at whether BL1 could derive the unwavering quality of monetary reports in (6) agricultural nations. It was shown that few outwardly atypical information must be deduced taken out, to work on the understanding.
Somewhere else, i.e., outside market lists considers, (Rauch, Goettsche and Mouaaouy, 2013) concentrated on LIBOR Manipulation, playing out an "Experimental Analysis of Financial Market Benchmarks Using Benford's Law. The review focuses to a centralization of eminently high deviations from the Benford distribution”.
Table 2.3.1 Descriptive statistics of the S&P500 volume on minute data
	 
	N
	Max
	Min
	mean
	St.Dev.
	Skew
	Kurt

	SP
	481769
	4.2E+09
	10
	2960634
	30052957
	59.03976
	5225.896

	LRV
	481768
	15.19274
	-15.6441
	2.61E-07
	0.708392
	1.980201
	67.91988


Table 2.1: Statistical characteristics of the S&P500 minute volume values (SP) and corresponding log-returns (LRV) distributions over the whole data set, [01/05/2013 - 29/12/2017]. The characteristics values are rounded to at most 5 significant digits.

In (Alali and Romero, 2013), a decade of financial data for “a large sample of U.S. public companies” is studied along a BL12 perspective. (Alali and Romero, 2013) also broke “down the decade of data into six sub-periods”, and found “different indicators of manipulation”, similar conclusion against Benford's law compliance is presented in (Alali and Romero, 2013), by the same authors. In so reading, there is no need to say that more analysis can be welcome, and subsequent findings have to be discussed section.2.4.
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This research investigates the S&P500 minute volume values (SP) via the Yahoo! Finance web site. The downloaded data cover a period starting on [01/05/2013 - 29/12/2017]; it is reported in as minute volume data, see Fig. 2.4.1. This amounts to 481769 data points. From such a set, one can easily obtain the 481768 log-returns (LRV); see Fig. 2.4.1 also the really measurable attributes of such an example are accounted for in Table 1. Here it is worth to feature the gigantic distinction arranged by extents for the S&P500 minute volume values, going from ∼ 16 toward the start of the time series to ∼ 2000 acknowledged in 2014.
Since there are once in a while a few conversations on the satisfactory size of the example (Berger and Hill, 2020) and, for time series, about their "stationarity", we have likewise isolated the first example into 11 windows of 117 days approx. equivalent size gatherings: hence, each set containing around 43777 information data point. The relating log-returns follow at once.
A Benford's laws examination is typically restricted to the first, and in some cases second, digit. The second, third-and fourth-digit distributions are normally observed to be somewhat concurring with BL2, BL3, and BL4; they can barely be utilized for conversation. Here and there, one discovers an investigation of the initial two - BL12 - (and initial three digits, BL123). In this way, to get ready for a BLs investigation, one typically gathers together the information to at most 5 digits, to stay away from an adjusting of the fourth huge digit in the event that it happens. We kept that adjusting rule despite the fact that we just think about the main, second, and initial two digits, to test BL1, BL2 and BL12 on each S&P500 and log-returns test back. The measurable attributes of such "changed qualities" are introduced in Table 2.4.1, for the entire data set and for every subset. The notations seem to be obvious:  and , with k = I, ...V refer to the subsets. For completeness, let us mention that the upper limits of such subsets are 87404, 131215, 174831, 218805, 262767, 306338, 350241, 394057, 437899, and 481769, respectively[footnoteRef:33]. [33:  It can be easily understood that we do not take into account the first value of each log return subset when dividing the whole set into 11 boxes, in order to have the same number of data points, however, number of observations is different for each subset. This is obviously far from a drastic assumption!] 

Table 2.4.1 Statistical summary of “adjusted values” of 11 windows.
[image: ]
Table 2.4.1: Statistical characteristics of (“top”) the S&P500 (minute data when it applies) and (“bottom”) the corresponding daily log-returns for the whole data set (481769 and 481768 data points, respectively), and for the 11 subsets of 117 days minute data (around 43777 and 43776 data points, respectively). N.B.: * ≡  ; ** ≡ . 

One can notice numerous assortments in the information announced in Table 2.4.1: for instance, there are enormous negative log-returns because of a couple of accidents, whence the standard deviation can likewise be exceptionally high. Likewise, the skewness and kurtosis, either for the S&P500 crude volume data and for the log-returns have various significant degrees. From there on, we can think about the quantity of first, second, and first two digits in quite a while sets (12, 11 for volume data, 11 for log-returns and 2 for the worldwide examination). In the terminologies, we recognize the 11 subsets by various symbol.
Two admonitions first: (I) authoritatively, a zero can't be a first digit, when concentrating on BLs; (ii) decimal focuses separators are likewise overlooked. By the by, in our counting calculations, it has kept 0 as a real first (and furthermore second) digit on account of BLs tests on the log-returns. To be sure, in a few cases, these log-returns are totally equivalent to 0, on the grounds that there was no adjustment of two progressive S&P500 volume esteems. In such cases, the subsequent digit is obviously additionally 0. Keeping such a digit, for the tests on log-returns, permits one to notice the "relative significance" of such occasions; clearly ≤ ∼ 1%. It is effortlessly conceded that the significance is "not extraordinary". Be that as it may, “necessarily”, the number of observed events, , with k = I, ...V , thereafter differs in the previously imposed equal size intervals because the zeros are not homogeneously distributed across the 11 log-return subsets.
Here, centre immediately to accentuate the accompanying: a few "first digits", whence "Initial two digits", values are absent in different subsets. For instance, the missing first digits in each , can be found from Table 2.4.2; this is additionally obviously seen in the primary digit figure for S&P500, Fig. 2.4.2, where one has piled up the subset histograms. This is anything but a minor point; one comprehends (deduced) that this is because of the presence of various patterns in the information; see the conversation in Section.2.5.
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[bookmark: _Toc78498687]Figure 2.4.1 (bottom) S&P500 daily minute volume, (Top) corresponding daily log returns, between 01/05/2013 and 29/12/2017.
Table 2.4.2 Number of d1 digits, in  groups; observe that there are sometimes missing digits.
	 
	 
	 
	chi_d1
	chi_d2
	chi_d12

	 
	Chi sq
	 
	15.507
	16.919
	112.022

	chunk
	type
	N
	 
	 
	 

	SP
	Volume
	481769
	64559.47
	450.3822
	74501.39

	SP[I]
	Volume
	43777
	14108.77
	130.9584
	16227.3

	SP[II]
	Volume
	43627
	15059.35
	88.40505
	16838.42

	SP[III]
	Volume
	43811
	13546.56
	85.81335
	15390.97

	SP[IV]
	Volume
	43616
	11491.37
	88.79849
	13269.89

	SP[V]
	Volume
	43974
	17805.13
	141.1138
	19896.69

	SP[VI]
	Volume
	43962
	15093
	347.7891
	17277.29

	SP[VII]
	Volume
	43571
	14071.74
	460.8984
	15971.62

	SP[VIII]
	Volume
	43903
	16551.71
	197.4
	18326.39

	SP[IX]
	Volume
	43816
	5104.601
	57.80049
	5885.52

	SP[X]
	Volume
	43842
	23663.99
	362.221
	26294.13

	SP[XI]
	Volume
	43870
	22941.41
	398.9494
	25227.43



Table 2.4.2: Results of  test of the daily volume values (SP) conformity with BL1, BL2, and BL12 for the S&P500 whole data set and for the 11 windows of 117 days subsets; the number  of observations (or data points) is indicated for each case: 481769 for the whole time series and 43777 data points, for the eleven subsets, respectively. The number of degrees of freedom (d.o.f) is easily derived from the number of bins. The corresponding   (0.05) is given for an immediate comparison.






Figure 2.4.2 Test of BL1 on S&P500 volume 
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[bookmark: _Toc78498688]Figure 2.4.2 Test of BL1 on S&P500 closing minute volume between 01/05/2013 and 29/12/2017.
Figure 2.4.3 Test of BL1 on S&P500 volume returns 
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[bookmark: _Toc78498689]Figure 2.4.3 Test of BL1 on S&P500 minute volume returns (01/05/2013- 29/12/2017).
Fig. 2.4.2 presents the data for testing BL1 on the whole S&P500 daily minute volume values. The division by shading gives data about the analysed time stretches. Fig. 2.4.3 presents the corresponding BL1 on the whole S&P500 daily minute volume returns, Fig.2.4.4 presents BL2 data and corresponding returns in Fig. 2.2.5, and Fig. 2.4.5 & Fig. 2.4.6 the data serving for a BL12 analysis and corresponding returns. At once, visually, the S&P500 data looks scarcely representable by a log function, similar to Eqs. (2.3.2)- (2.3.4). Conversely, the log returns histograms have a seriously engaging structure. Notice that we recognize negative and positive log-returns and notice on each chart the event of rigorously zero and twofold zero values.
Figure 2.4.4 Test of BL2 on S&P500 volume
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[bookmark: _Toc78498690]Figure 2.4.4 Test of BL2 on S&P500 closing minute volume between 01/05/2013 and 29/12/2017.




Figure 2.4.5: Test of BL2 on S&P500 volume returns
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[bookmark: _Toc78498691]Figure 2.4.5 Test of BL2 on S&P500 minute volume returns (01/05/2013-29/12/2017)
Figure 2.4.6: Test of BL12 on S&P500 volume
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[bookmark: _Toc78498692]Figure 2.4.6 Test of BL12 on S&P500 minute volume between 01/05/2013 and 29/12/2017
Figure 2.4.7: Test of BL12 on S&P500 volume returns
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[bookmark: _Toc78498693]Figure 2.4.7 Test of BL12 on S&P500 minute volume returns (01/05/2013-29/12/2017)
Figure 2.4.8: S&P500 volume log scale
[image: Chart

Description automatically generated]
[bookmark: _Toc78498694]Figure 2.4.8 S&P500 closing minute volume log scale of 11 windows between 01/05/2013 and 29/12/2013
In Table 2.4.3, we report the  test of variables conformity with BL1, BL2, and BL12 for the S&P500 whole data set and for the subsets; the number  of observations (or data points) is indicated for each case: 481769 and, for the 11 subsets of 117 days data points, respectively. The number of degrees of freedom (d.o.f), easily derived from the number of bins, is also indicated with the “critical”   (0.05) value. One can barely concede any congruity, given the huge qualities contrasted with the “critical”  (0.05) value. Regardless of whether a χ 2 test can be guaranteed as not being the most impressive test for BL conformance (Lesperance et al., 2016), the current outcomes are so unique in relation to "any great assumption" that the use of another test will be improbable ready to converse the conclusions.
Let’s turn attention to the log-returns. As mentioned, there are 32 cases in which the log-return is equal to 0, since the closing prices are identical two consecutive.
Table 2.4.3 log-return incorporating 0
	 
	 
	 
	chi_d1
	chi_d2
	chi_d12

	 
	Chi sq
	 
	15.507
	16.919
	112.022

	Chunk
	type
	N
	 
	 
	 

	LR_TOT
	Log Change TOT with 0
	481769
	8877.386
	240.0422
	10447.65

	LRV[I]
	Log Change w 0
	43777
	956.9712
	30.33526
	1152.966

	LRV[II]
	Log Change w 0
	43627
	811.2248
	27.45276
	1023.942

	LRV[III]
	Log Change w 0
	43811
	1076.101
	38.20197
	1264.585

	LRV[IV]
	Log Change w 0
	43616
	1009.273
	41.96765
	1255.186

	LRV[V]
	Log Change w 0
	43974
	1035.019
	58.09611
	1264.963

	LRV[VI]
	Log Change w 0
	43962
	822.2179
	39.56903
	1017.388

	LRV[VII]
	Log Change w 0
	43571
	985.4344
	41.64779
	1267.581

	LRV[VIII]
	Log Change w 0
	43903
	1087.114
	25.95437
	1296.072

	LRV[IX]
	Log Change w 0
	43816
	1038.212
	15.17244
	1255.852

	LRV[X]
	Log Change w 0
	43842
	897.0796
	16.85738
	1099.259

	LRV[XI]
	Log Change w 0
	43870
	1068.288
	9.280211
	1253.185




Table 2.4.4 distinguish (top of table) the case of the absolute values of log returns and those corresponding to either positive or negative log-return sign
	 
	 
	 
	chi_d1
	chi_d2
	chi_d12

	 
	Chi sq
	 
	15.507
	16.919
	112.022

	chunk
	Type
	N
	 
	 
	 

	LR_TOT+
	TOT Log Ret +
	236084
	3789.962
	149.9528
	4574.722

	LRV[I]
	Log Ret +
	21311
	369.9884
	33.55425
	519.4224

	LRV[II]
	Log Ret +
	21312
	373.2466
	24.99364
	499.3249

	LRV[III]
	Log Ret +
	21247
	557.745
	24.95572
	683.7617

	LRV[IV]
	Log Ret +
	21194
	409.5804
	30.74787
	576.6392

	LRV[V]
	Log Ret +
	21547
	469.6467
	26.69556
	625.696

	LRV[VI]
	Log Ret +
	21488
	388.0196
	29.29325
	530.044

	LRV[VII]
	Log Ret +
	21383
	417.3019
	23.70641
	594.5901

	LRV[VIII]
	Log Ret +
	21608
	465.8416
	18.30568
	572.8814

	LRV[IX]
	Log Ret +
	21574
	424.6637
	14.23121
	585.9661

	LRV[X]
	Log Ret +
	21649
	402.602
	13.34576
	545.1732

	LRV[XI]
	Log Ret +
	21771
	494.3357
	12.02638
	632.8762



	 
	 
	 
	chi_d1
	chi_d2
	chi_d12

	 
	Chi sq
	 
	15.507
	16.919
	112.022

	chunk
	Type
	N
	 
	 
	 

	LR_TOT-
	TOT Log Ret -
	245653
	5163.392
	98.72612
	6025.158

	LRV[I]
	Log Ret -
	22466
	625.6019
	11.4837
	749.1347

	LRV[II]
	Log Ret -
	22315
	449.9112
	11.90237
	608.2338

	LRV[III]
	Log Ret -
	22564
	530.5809
	25.42897
	672.0921

	LRV[IV]
	Log Ret -
	22422
	623.1925
	18.85329
	794.6152

	LRV[V]
	Log Ret -
	22427
	576.2205
	38.89997
	741.8394

	LRV[VI]
	Log Ret -
	22474
	441.1901
	18.9292
	591.7037

	LRV[VII]
	Log Ret -
	22188
	582.324
	31.88035
	783.0445

	LRV[VIII]
	Log Ret -
	22295
	631.6797
	15.21211
	806.3703

	LRV[IX]
	Log Ret -
	22242
	625.9589
	13.06083
	760.471

	LRV[X]
	Log Ret -
	22193
	509.1456
	12.48341
	639.291

	LRV[XI]
	Log Ret -
	22099
	585.9183
	9.370041
	697.6186



Table 2.4.4: Results of χ 2 conformity test with BL1, BL2, and BL12 for the S&P500 corresponding daily log-returns (LRV) for the whole data set and for the subsets. The number of degrees of freedom (d.o.f), easily derived from the number of bins, is also indicated. The number N of data points is equal to 481768 for the whole set and should be expected to be around 481737 for the 11 subsets of 117 days; however, , the "quantity of perceptions", shifts for the different cases, since one isn't considering the number (32) of log-return values stringently equivalent to 0. In addition, notice that we recognize (top of table) the instance of the outright upsides of log returns and those relating to one or the other positive or negative log-return sign, days: these cases occur unevenly in the different  intervals: for completeness, let us mention their occurrence. This influences the number of observations  in each  subgroup; see first column in Table 2.4.4.
Therefore, there are 481769 - 32 = 481737 cases to be examined in the whole LRV series. When dividing the LR series into 5 subsets, for coherence, the rest value in the II, III, IV, V , subsets are disregarded, since the first one (day) is “missing” in the  case. Thus, the number of LR observations on which to test BL1 amounts to 481768 - 32 = 4861736.
The number N of data points should be expected to be around 4861737 for the 11 LRV subsets. However,   , the number of observations in the k-subset, varies in each subset, since one is not taking into account the number (32) of log-return values strictly equal to 0, and such a number is not uniformly distributed through the subsets. Moreover, notice that we distinguish (top of Table 2.5) the case of the absolute values of log-returns and those corresponding to either positive or negative log-return sign.
The results of the χ 2 test of variables conformity with BL1, BL2, and BL12 for the S&P500 corresponding daily log-returns (LRV) for the whole data set and for the subsets are given in Table 2.4.4. BL1 is hardly obeyed, but the difference between the χ 2 values and the   Is not so big as for the SP minute volume sample. Some exceptional cases appear to obey BL1, all of the fall in the study of negative returns,  and  . The circumstance is practically ideally suited for BL2, for which just  is marginally conflicting. On account of BL12, unquestionably the most recent subsets present some arrangement, however the primary subset and the entire example series are doubtlessly not submitting to BL12.


[bookmark: _Toc90499987]2.5 Conclusions 
Considering expanding information about utilizations of Benford's laws, this doctoral examination investigated highlights in the distributions of S&P500 daily minute volume and the corresponding daily log-returns over a long-time interval, that is, from the first days of May 2013 till almost the end of December 2013, amounting to 481769 data points. This review addressed contemplations to the measure of first, second and initial two critical digits. Concentrate likewise investigated the conformance to Benford's laws of these distributions recognizing 11 unique window of 117 days levels of disaggregation, to test a few (non)stationarities (stowed away) highlight, - in the event that it may happen. Besides, albeit this isn't common, we have recognized negative log-returns from positive ones, or more their blend, since we have sufficient accessible data points.
The outcomes for the S&P500 minute volume values  are unexpectedly showing a huge lack of compliance, whatever the different levels of disaggregation. We have noticed that some first digits and “first two digits” values are missing in some subsets. The agreements with Benford's laws are much better for the log-returns . uch a divergence in arrangements discovers a clarification in the informational collection itself, as opposed to in a chance of misrepresentation!
In fact, this component permits us to remark on some regularly failed to remember basis for testing the similarity of BLs (Berger and Hill, 2020). Without a doubt, one ought to underline that BLs must be helpfully contemplated and noticed if all digits - from 1 to 9 - are very much addressed as each first digit. A time series or a bunch of information focuses should initially be tried for its reach, essentially, the base and greatest qualities. The contention is here very much supported by noticing the advancement of the S&P500 over the long run.
Fig. 2.4.2 provides a semi-log perspective of the S&P500 minute volume log returns; the eleven studied subsets are stressed. This permits one to comprehend why the distributions of digits are exceptional. Having "deserted" a 1 first digit in some area because of the financial trend, it takes “some time” before one goes from a 9 to a new 1 (for the following decade for example). Another model appearance because at times a BL investigation and peculiarity allowance may be dicey is found in sector  : the index starts from  62, reaches , but never goes to any 50, or 20 or 200, a fortiori 300, etc. Hence, the list "misses" a couple of first digit esteems. A similar perception goes valid for different areas where first digits are absent. In the current investigation of a financial market, this is because of the inborn pattern in the list. Such reasons for no congruity clarify beforehand astounding perceptions like in (Clippe and Ausloos, 2012). Related clarifications do follow for instances of information containing crashes, and "long time" spent in developing and recuperating (Corazza, Ellero and Zorzi, 2010).
Consequently, next to an exhaustive examination of a financial index, a case infrequently analysed, certainly over a so huge arrangement of information focuses, explicit reasons for this non-congruity are introduced, highlighting the risk of underestimating Benford's laws in enormous information bases, whence prompting "unmistakable ends". “Definite conclusions”.
One frequently peruses "the more, the better" as in (Nairn, 2011) or (Collins, 2017) where it is asserted "the bigger, the better" for applying Benford's laws and reasoning misrepresentation or not through absence of similarity or not. This isn't correct! A huge arrangement of information focuses is neither an adequate nor fundamental rule for a particularly measurable similarity test (Heilig and Lusk, 2018). Under this point of view, one could apply reproduction of day-by-day returns utilizing the midpoints of the genuine information introduced in this exploration with the Geometric Brownian Motion definition. What's more, for each mean, henceforth for each concentrated on stretch of time, the standard deviations connected. The BL consistence results could in accordance with the results got with the noticed information. This is an extra clue; truth be told, one necessity to consider the distributional provisions of the wonder being scrutinized rather than just zeroing in on the quantity of perceptions or on the granularity of the information. This sort of remarks is in accordance with (Mebane, 2011), where the creator has remarked equivalent exercise runs for concentrating on misrepresentation discovery utilization of BL in political races.
At last, review that BLs are utilized to recognize misrepresentation primarily. Obviously, there are informational indexes which can be barely controlled. We are completely persuaded that S&P 500 and other monetary lists result from midpoints, hence clearly submitting to the BL legitimacy hypothetical models, whence couldn't have deceitful angles. Nonetheless, the current review recommends that one may utilize BLs at a more minute level, that of organization share cost, as currently valued by (Saville, 2006).
As currently expressed, one of the principal discoveries of this exploration has been about the information range. Without a doubt, to adjust with the law, the informational collection should contain information in which each number 1 through 9 has an equivalent shot at being the main digit; there ought to be equipartition (Janvresse and de la Rue, 2004; Lafrate, Miller and Strauch, 2015). In any case, this appears to be confusing. What this review show is that the information change, from the crude record worth to the log-return space, is a vital stage for seeing that there is no information control and compliance to BL. The pattern value is stayed away from. Also, BL2 and BL12 are less delicate to drift control.
As so noticed, one might envision that BL2 and BL12 are of revenue for financial backers, since a difference in the primary digit is preferably uncommon when offer costs are higher over 10 (whatever currency). BL1 ought to be checked at << modest values >>, lower than 10. This would prompt a venture methodology like that considering the equality of digits in information series to letters in texts (Ausloos and Bronlet, 2003). Whence it would be intriguing for financial investigators to rethink an association among Benford and Zipf law draws near.
A frequent feature of many datasets is the regularity of their elements, which allows them to keep their individuality within a unified framework. An illustrative example of this feature is that of Benford's law, introduced in (Newcomb, 1881) and successfully tested and described in (Benford, 1938). Benford’s law is a sort of magic rule, for which the first digit(s) of the elements of a given dataset follow a specific distribution called Benford’s distribution. Benford’s law is not at all intuitive; however, over the years, long after Frank Benford’s rsearch appeared and provide several solid theoretical motivations and explanations have been found, mathematically validating the phenomenon (Kossovsky, 2014; Bergers, 2015; Riami, 1976; Hill, 1995; Leemis, 2015; Miller, 2015; Schurger, 2015; and Kossovsky, 2021). Surprisingly, this digital pattern holds true in a large number of cases, with datasets in the fields of economics, accounting, finance, geophysics and hydrology, as well as social sciences. 
The application of Benford’s law to stock trade and returns was explored and it was found that stock trade that included volume, number of trades, and turnover confirmed the distribution but stock returns did not conform the distribution (Jayashree, 2017). In this context, the present study attempts to understand its implications to investors by examining the data of stock volume tick by tick data to cover during announcement and post-announcement period of observation. The study also examines whether stocks volume conforming the distribution and stocks volume returns not conforming the distribution are significantly different in buying and selling.
Some of the obvious reasons for further research are identified below. First, the data collection method may include an obvious source of sample bias in that with the benefit of hindsight, the status of ‘errant’ and ‘compliant’ companies was known before testing was conducted. This begs the question of whether the test method would be as reliable in the case of live data, that is, as a prediction tool (where the value of the instrument is unambiguously greatest). There is no cause to doubt that this is the case. Nevertheless, testing of live data would go some way in confirming the tool’s validity. Second, and related to this point, the results reveal that the test functions in a highly effective fashion in the tails of the distribution– correctly failing ‘errant’ companies and passing ‘compliant’ companies. However, the data set used in this study offers no insight as to ‘what goes on in between’. Over most of the sample period there were in excess.
The instrument is arguably best used as an indicator of potential data error or fraud rather than a corroborator of data problems. Third, the results offer no guide as to whether all windows that fail the test ultimately fail and, if so, what the extent of the lag in time is between detection and failure. Fourth, why would not in the international setting, Benford’s Law has been applied more widely than accounting data as the basis for detecting data error or fraud. 
[bookmark: _Toc90499988]2.6 Contribution To knowledge 
Over the past decade, the frequency of accounting data error and fraud has increased in the international and domestic settings. The adverse economic effects of these data problems are considered to be material. For this reason, broad-based efforts are being made by the accounting and auditing professions and regulatory authorities to reduce the incidence of data error and fraud. However, even in a world where recording and reporting of data is potentially error free, elements of human behaviour (such as greed and deceit) will linger on, causing data error and fraud to persist. Moreover, the pace at which progress in accounting, auditing and regulatory advances are being made is slow. For these reasons, error and fraud detection instruments are likely to remain important instruments in the toolkits of auditors, shareholders, financial analysts, investment managers, private investors and other users of publicly reported accounting data, such as the revenue services. One such potential tool is Benford’s Law. However, whilst the potential effectiveness of the law has been established in the international literature, the domestic research environment is silent on the topic. Similar to the usage of Normal distribution as a tool for reference and gold standard, this law can be utilized to detect patterns (or lack thereof) in naturally occurring datasets. This can lead to important applications in data science such as catching anomalies or fraud detection. The reason for this appears to be elegantly simple: like supernovae, fraudulent companies give themselves away by shining more brightly than their peers as they zealously thrash away them final moments. Nevertheless, whilst these early results of the application of Benford’s Law yield encouraging findings, the test procedure and data set have limitations that suggest further research is required. 
The evolution of prices and volumes in the international stock markets has a remarkable informative content. In fact, financial markets and their components are highly correlated with the surrounding socio-political environment and a shock of noneconomic nature might influence the economic system. Indeed, the potential applications of the law are wide. For instance, the law has been identified as relevant to the interrogation of design efficiency (Hamming, 1970 and Knuth, 1981 in Scott and Fasli, 2001), the examination of authenticity of mathematical models (Varian, 1972 in Scott and Fasli; Nigrini, 1996), assessment of the validity of research results (Matthews, 1999: 26) and the examination of data storage and data management efficiency (Nigrini, 1999). Moreover, the tool also is applicable as an instrument for detecting fraud in claims (such as insurance claims and expense account claims), payments (bank payments and payroll disbursements) and tax fraud (income declarations and expense claims). However, constraints of time confine the extant study to a consideration of stocks data problems amongst listed companies. Broader, and more detailed, studies of Benford’s Law should address these limitations.

This doctoral research tried to interpret the efficacy and functionality of financial markets worldwide. It checked the reliability of Benford law for stock volume to apply it on daily volumes of stocks comprising S&P500 minute data. It will be interesting to see how this application of Benford law analyses and comments consistent results; in fact, the cases in which the Law will be verified are various, and research provide a brief discussion on the technical and historical reasons leading to the failure of this law.
This research moves from this scientific ground. We aim at analysing the context of global stock markets with a specific focus on all the indexes composing them. In particular, this research deal with the nature of complex system of the markets and discuss whenever the available time series associated to prices and volumes of the stocks exhibit a sort of “regularity”. Indeed, datasets often exhibit deviations from a pure uniform law, even if they are not constructed in an “ad-hoc” manner. Think about countries’ GDPs, with a great percentage of low levels and a few data with high values.
Consequently, next to an exhaustive examination of a financial index, a case infrequently analysed, certainly over a so huge arrangement of information focuses, explicit reasons for this non-congruity are introduced, highlighting the risk of underestimating Benford's laws in enormous information bases, whence prompting "unmistakable ends". “Definite conclusions”.
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[bookmark: _Toc90499990]Part 3: Model and application: Irrational Fractional Brownian Motion GARCH

[bookmark: _Toc90499991]Abstract: part 3 

[bookmark: _Hlk78539521]The subject of this research is to modify and test the IFBM GARCH methodology in terms of quantifying the impact of daily rates of return-on-investment activities in the observed S&P 500 stock index. The aim of the research, i.e., a special focus in the research, is to develop the modified GARCH methodology in the observed financial markets and to compare the obtained results between the variation of Modified GARCH models as well. The research is also aimed to study the performance of Modified IFBM GARCH models. A comprehensive empirical analysis of returns and conditional variances of the US stock exchange (S&P 500) index are conduct in order to estimate the GARCH models, and also the implementation of symmetric and asymmetric or (A-GARCH) models to observe the daily stock market volatility. Glosten (1993) GJR-GARCH model in term of an alternative edition of the asymmetric mode of Engel et al. (1990). For instance, it is often observed in GJR-GARCH model the asymmetric response is bounded by only the negative shocks of the market. Nelson’s (1991) E-GARCH for formulating the conditional variance equation to implement the method of ensuring, that the variance is positives., where the width of the research time horizon allows testing the modified GARCH methodology in the different periods. In addition to the use of modified IFBM GARCH econometric models, the focus of this work is to make use of existing, well-known Information Criteria (IC) to identify the stock index data-generating-process whenever the GARCH effect is present. Akaike Information’s Criteria (AIC) and Bayesian Information Criteria (BIC) have used for this experiment. Research provides different models with different parameter values and observed the abilities of information criterion in choosing the correct model from a given pool of models, as well as the appropriate tests that are suitable for and/or adapted to the specific characteristics of financial markets, examine irrational agent behaviour reacting to time dependent news on the log-returns for modifying a financial market evolution. The research results confirm the role and importance of the modified IFBM GARCH methodology for effective investment risk in financial markets, in this sense, the obtained research results will be useful to both the academic community and the professional public in the context of investment decision making.
[bookmark: _Toc90499992]3.1 Introduction
[bookmark: _Toc90499993]3.1.1 Background 
Financial and economic data are naturally recorded as temporal sequences or time series, and thus one of major tasks on those data is making time series analysis. Typically, a mathematical model is obtained to describe the regression relation of the current observation from its past observations, such that the future observation is predicted. Such a prediction task has been extensively studied in both the literature of time series analysis and the literature of machine learning and neural networks. One most classic tool for time series analyses is the autoregressive (AR) model or generally autoregressive–moving-average (ARMA) model, which describes a linear dependence of the current observation on past values and noise disturbances. Extended from describing stationary processes to data with some identifiable trend of a polynomial growth (Box and Jenkins 1970), an initial differencing step can be applied to remove such a non-stationarity. See Box 1 in Fig. 3.1.1; the autoregressive integrated moving average (ARIMA) model is used to refer a “cascade” of this initialization and ARMA. For simplicity, we still prefer to use AMRA to refer ARIMA by regarding such an initialization as a pre-processing stage.
The literatures of statistics and econometrics, as outlined in Fig. 3.1.1 by Box 2, generalizations of ARMA have also been made toward Autoregressive Conditional Heteroskedasticity (ARCH) and generalized ARCH (GARCH) for considering conditional heteroskedasticity of variables (Engle 1982; Bollerslev 1986), to nonlinear ARMA for modelling nonlinear dependence (Leontaritis and Billings 1985), and Vector AR (VAR) for capturing the linear interdependencies among multiple time series (Sims 1980; Engle and Granger 1987). 
The field of NN-ML in economics and finance involves each of the three streams of studies. In the early stage, most efforts were put on using multilayer neural networks or recurrent networks for a sophisticated nonlinear dependence of the current observation on past values and noise disturbances, as outlined in Fig. 3.1.1 by Box 3. There have been already several books on these studies (e.g., Azof 1994; Gately 1995; Zhang 2003), and thus this chapter does not cover this type of studies.
Since 1994, the author’s group has made many efforts on extending AR, ARMA, ARCH and GARCH models into finite mixture or mixture-of-experts (Xu 1994, 1995a, b; Cheung et al. 1996, 1997; Leung 1997; Kwok et al. 1998; Wong et al. 1998; Chiu and Xu 2002a, 2003; Tang et al. 2003). Outlined in Fig. 3.1.1 by Box 4, studies actually proceed along an alternative road for modelling temporal dependence featured with nonlinearity, heteroskedasticity and non-stationarity. “Financial prediction: time series models and three finite mixture extensions” section is dedicated to the studies summarised in Fig. 3.1.1, together with introductions on learning implementations by the maximum likelihood (ML) learning, the rival penalized competitive learning (RPCL) (Xu et al. 1992, 1993), and approaches of learning with model selection.
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Figure 3.1.1 A road map on studies of time series prediction
Source: Xu et al. (1992, 1993)





[bookmark: _Toc90499994]3.1.2 Rational of study
Numerous ARCH class models have been proposed to estimate the conditional volatility of log returns including ARCH model (Engel, 1982) and GARCH model (Bollerslev, 1986). Both models are suitable for estimating the time-varying nature of the volatility in log returns of financial assets. The GARCH model is popular today, but it cannot capture the asymmetric effects of shocks on volatilities. The exponential GARCH (EGARCH, Nelson, 1991) and the GJR-GARCH models (Glosten et al., 1993) were introduced to analyse the asymmetric effects. Subsequently proposed were the regime switching GARCH models such as the volatility-switching GARCH (Fornari and Mele, 1996, 1997) and the Markov-switching GARCH (Kim, 1993). The former allows all parameters in the conditional variance equation to depend on the sign of shocks, and, in the latter, the regime of the conditional variance equation is determined by unobservable Markov-processes. Baillie et al. (1996) and Bollerslev and Mikkelsen (1996) proposed the fractionally integrated GARCH and EGARCH, respectively, to analyse the persistent effect of shocks on volatilities. Further, every effort has been made to develop multivariate models including Bollerslev (1990), Engle and Kroner (1995). See Engel et al. (1990) and Kim and Tsurumi (2000) for empirical studies. In this study, the GARCH model is modified so that it can capture the effect of spells of positive or negative shocks on volatilities. The number of consecutive positive or negative shocks is incorporated into the GARCH model as a nonlinear coefficient of the ARCH term. Spells of positive or negative shocks are expected to have positive effect on volatilities as the size of returns does. On the other hand, the effect of these spells on returns can be either positive or negative. For instance, a positive return is not necessarily expected to follow from a spell of positive returns. 
One of the main empirical characteristics of financial returns is the dynamic evolution of their volatilities. There are two important properties that characterized this evolution. First of all, power transformations of absolute returns have significant autocorrelations which decay toward zero slower than in a short-memory process. Many authors have argued that this pattern of the sample autocorrelations suggests that the volatilities of financial returns can be represented by long-memory processes; see Ding et al. (1993) and Lobato and Savin (1998) among many others. The second property that characterizes volatilities is their asymmetric response to positive and negative returns. This property, known as leverage effect, was first described by Black (1976). There are two main families of econometric models proposed to represent the dynamic evolution of volatilities. The ARCH-type models are mainly characterized by specifying the volatility as a function of powers of past absolute returns and, consequently, the volatility can be observed one-step ahead. On the other hand, stochastic volatility (SV) models specify the volatility as a latent variable that is not directly observable. There have been several proposals of ARCH-type models that represent simultaneously leverage effect and long-memory. For example, Hwang (2001) generalizes the long-memory FIGARCH model of Baillie et al. (1996) to represent the leverage effect. However, Davidson (2004) shows that the FIGARCH model has the unpleasant property that the persistence of shocks to volatility decreases as the long-memory parameter increases. A similar conclusion appears in Zaffaroni (2004) who shows that the FIGARCH model cannot generate autocorrelations of squares with long memory. Finally, Ruiz and Pérez (2003) showed that the model proposed by Hwang (2001) has identification problems.
Current circumstances in the financial markets, globalization trends, the financial crisis and significant volatility of the market are some of the key conditions that have influenced the change in the logic of financial thinking. The forecasting methods and techniques of the expected corresponding investment effects have been inevitably changed and adapted to contemporary market conditions and opportunities. Investing in financial markets today must be considered differently and analysed in relation to the period before the outbreak of the financial crisis. Therefore, it must be seen in the context of modern market conditions, with a resulting change of the investment strategy in order to optimise the effects.  As the functionality and symmetry of the daily return rates on financial markets have a different "form" after the financial crisis, researchers must use custom models to analyse and quantify the risks of investment activities. 
Compared with developed financial markets, emerging markets are rather volatile, underdeveloped and "shallow," characterised by the lack of continuous trading, low liquidity, low capitalization, lack of high turnover, and low efficiency. However, the benefits of the financial markets of developing countries are reflected in the fact that they bear a higher risk, as well. as higher returns on investment activities.
Practical testing of econometric models provides information on their quality and efficiency in order to define and measure investment return volatility. In addition, the basic and modified econometric models should be continually tested, emphasising investment risk minimisation, especially given their specificities. As a quantified measure of market risk, volatility estimation is of great importance for investment decisions, where return volatility estimation represents the most important input for determining the optimal investment strategy.  
This study presents a brief description of GARCH processes and how it can lead to potential variation of GARCH based on irrational fractional Brownian motion (IFBM) model. The GARCH process was developed by Bollerslev (1986) and Taylor (1986) which is identical to an ARMA model in terms of efficiency. Due to its characteristics, the GARCH process is most commonly used to analyse economic and financial time series data.
Suppose  is represented by a real value of discrete time stochastic process and  be the information set for all the information at time t then the GARCH (generalized autoregressive conditional heteroskedasticity) process developed by Bollerslev (1986) can be described as:


Where 



The main essence of ARCH/GARCH processes is the assumption of homoskedasticity. It states that for a least squares model, the mean value of all error terms remains unchanged for any time if squared once. In other words, the variance of the error terms does not change with the passage of time.
Whereas heteroskedasticity states that the variance of error terms keeps changing over time for time series data. As a result, the mean value of the error terms can change as well. Alternatively, the data is said to be heteroskedastic if it shows signs of a GARCH sequence. Therefore, for any ordinary least square’s regression, the estimates of regression coefficients are unbiased. However, standard errors and confidence intervals for the significance of these estimates would become very slim, pretending an artificial accuracy. These hiccups in least squares are corrected by ARCH/GARCH processes; also, these models measure the level of heteroskedasticity.  
The basic version of GARCH states that conditional variance changes with the passage of time for a Gaussian distribution and is symmetric in acknowledging the previous changes. This symmetric GARCH is known as the plain vanilla version of GARCH model. Vanilla GARCH model estimates variances and co variances of stock returns by modelling time changing conditional variances. Whereas in ARCH process, the conditional variance changes by time as a function of previous squared deviations from mean, without considering previous variance. Parameter estimation is carried out in GARCH by increasing the value of log likelihood function. These parameters are induced from the underlying distribution for the model (for example normal distribution). Conditional volatility in GARCH is defined as the annualised square root of conditional variance. The conditional variance and volatility are referred to be conditional on the basis that these are conditional on the data set, which provides information till current time.
Another extension of GARCH process named as Normal GARCH is applied to detect volatility clustering in data; however, it does not distinguish the leverage effect that is to signal that the market reaction to bad news is greater than to the good news. Asymmetric GARCH model includes an extra parameter to the symmetric GARCH model so that so that it has a system to trap asymmetric volatility response. The GARCH (1, 1) is known as the general volatility model in the GARCH family, which can be modified in a number of ways. For example, parameters are evaluated by maximising likelihood function. Mean reversion effect is same as in the symmetric GARCH model, however response to market disturbance is asymmetric.
But, the GARCH model has its constraints that the conditional variance is dependent on the number of lags of error terms, it does not consider the symmetry of underlying distribution and does not consider the sign of error term. According to Yoon and Lee (2008), “GARCH model cannot reflect leverage effects, a kind of asymmetric information effects that have more crucial impact on volatility when negative shocks happen than positive shocks do”. This is why further extensions of GARCH process have been introduced and some of them have been described briefly in the above sentences. These innovative models of GARCH analyse the shape of a distribution, include extra lag terms for errors. Some of these extended GARCH models include:
· Exponential GARCH (EGARCH) developed by Glosten and Rankle (1992)
· GJR-GARCH model
· Asymmetric power ARCH (APARCH)model
Testing and contrasting the modified IFBM GARCH methodology on S&P 500 stock index not only provide quantitative information on the impact effectiveness but also analyse the differences between the observed financial periods. The following hypotheses have been tested in this study: 
H0: The application of the modified (IFBM) GARCH methodology in order to quantify the impact of the inflation rate, on the daily rates of return significantly contributes to reducing the risk of investment activities. Accordingly, the additional (derived) hypotheses have been tested as follows: 
H1: The application of the modified GARCH (1,1) model can be equally successful in real financial markets. 
H2: The modified GARCH (1,1) model is the most effective for assessing the impact significance of some particular macroeconomic factors.













[bookmark: _Toc90499995]3.2 Literature Review
The history of stochastic integration and the modelling of risky asset prices both begin with Brownian motion. The earliest attempts to model Brownian motion mathematically can be traced to three sources, each of which knew nothing about the others: the first was that of T. N. Thiele of Copenhagen, who effectively created a model of Brownian motion while studying time series in 1880.; the second was that of Louis Bachelier , who created a model of Brownian motion while deriving the dynamic behaviour of the Paris stock market, in 1900 (Bachelier); and the third was that of A. Einstein, who proposed a model of the motion of small particles suspended in a liquid, in an attempt to convince other physicists of the molecular nature of matter, in 1905. Of these three models, those of Thiele and Bachelier had little impact for a long time, while that of Einstein was immediately influential. 
[bookmark: _Toc326066076][bookmark: _Toc11914208][bookmark: _Toc90499996]3.2.1 Bachelier’s Model:

Consider  represent the probability of price being in the interval, at time t. Then the diffusion equation of probability P is written as (Davis and Etheridge, 2006):

                                                                 
With the solution

                                                 
The notion is directly related to that of the movement of particle in a fluid or air, moving freely thus following an abnormal pattern.  The continuous impacts of particle with fluid molecules from different directions through different angles cause the irregular movement of particle; hence the probability of position of particle at future time can be proportional to different probabilities of being at different positions. Thus, making the displacement of particle during a small-time interval is almost independent of its previous movements (Einstein, 1906; Wax, 1954).
Bachelier is now seen by many as the founder of modern Mathematical Finance. Ignorant of the work of Thiele (which was little appreciated in its day) and preceding the work of Einstein, Bachelier attempted to model the market noise of the Paris Bourse. Exploiting the ideas of the Central Limit Theorem, and realizing that market noise should be without memory, he reasoned those increments of stock prices should be independent and normally distributed. He combined his reasoning with the Markov property and semi groups, and connected Brownian motion with the heat equation, using that the Gaussian kernel is the fundamental solution to the heat equation. He was able to define other processes related to Brownian motion, such as the maximum change during a time interval (for one dimensional Brownian motion), by using random walks and letting the time steps go to zero, and by then taking limits.
Bachelier’s Brownian motion arises as a model of the fluctuations in stock prices. He argues that the small fluctuations in price seen over a short time interval should be independent of the current value of the price. Implicitly he also assumes them to be independent of past behaviour of the process and combined with the Central Limit Theorem he deduces that increments of the process are independent and normally distributed. In modern language, he obtains Brownian motion as the diffusion limit (that is as a particular rescaling limit) of random walk. Having obtained the increments of his price process as independent Gaussian random variables, Bachelier uses the ‘lack of memory’ property for the price process to write down what we would now call the Chapman-Kolmogorov equation and from this derives (not completely rigorously) the connection with the heat equation. This ‘lack of memory property’, now known as the Markov property, was formalised by A. A. Markov in 1906 when he initiated the study of systems of random variables ‘connected in a chain’, processes that we now call Markov chains in his honour. Markov also wrote down the Chapman-Kolmogorov equation for chains, but it was another quarter of a century before there was a rigorous treatment of Bachelier’s case, in which the process has continuous paths.
[bookmark: _Toc326066081][bookmark: _Toc357670945][bookmark: _Toc11914212][bookmark: _Toc90499997]3.2.2 Geometric Brownian Motion:

    The stochastic model to represent stock price using Brownian Motion model is given by:

                                                                                                                               
· α is instantaneous rate of returns
· σ is standard deviation of returns
· W is standard Brownian motion

For any initial value S (0) above mentioned equation has solution

                                             
With  is obtained by applying Ito’s lemma.
[bookmark: _Toc326066083][bookmark: _Toc357670946][bookmark: _Toc11914213][bookmark: _Toc90499998]3.2.3 Variations of Brownian Motion:

Since the situation of world in general and of financial market in particular is not same all the time thus element of risk increases or decreases with the time and so returns associated with these factors vary in each situation which does not support the assumption that returns are identically distributed as the standard deviation of returns will vary during different periods which will be less when markets are stable and increased during the period of instability. Benoit Mandelbrot, as cited by John Norstadt (2005), believe that returns most likely have a fractal distribution, a key property of such distribution is that it has infinite variance which is against the assumption of a Random Walk Model that returns have a finite variance.
Bachelier’s seminal work for finance was almost unnoticed till 1950. By the evolution in computing technology and Economics and Finance, researchers and academics started thinking along those lines. Following Bachelier’s work, several improved models for asset pricing, derivatives and interest rates were developed.  The Table below presents a snapshot of different variations of GBM model which are applied to price different financial instruments and their underlying volatility:





Table 3.2.1 Some variations of Brownian Motion.
	Name
	Model
	EXTRA FACTOR
	Application in Pricing
	Limitations

	GBM
	

	
	Stock 
	The returns are not Normally distributed

	CEV (1975)
	
	α ≥0
	Stock, Commodities
	Assumes a positive probability of stock price being zero.

	CIR (1985)
	
	k,α=1/2
	Interest Rate, Volatility
	Accommodates only positive interest rates

	HULL-WHITE(1990)
	

	
	Interest Rate, Bonds
	Possibility of negative interest rates

	HESTON (1993)
	
&


	 is not constant
	Volatility
	Tricky to estimate parameters, not a good fit for small data set.

	MRW(1997)
	

	T 
	Volatility, VaR
	Non-Stationary, Challenging to model realistic financial market 

	Jump Diffusion
	
,
	dJ(t)
	Option Pricing
	Mixed density


Source: Dhesi et al., 2016

[bookmark: _Toc11914247]Financial asset models has been also addressed by the development of Normal Inverse Gaussian Levy Process providing the explanation of the empirical scaling power law as in Barndorff-Nielson (1997, 1998a, 1998b). Alternatively, distributions that can account for skewness and kurtosis can be obtained by introducing skewness into a symmetric distribution that already contains a shape parameter. Examples of distributions obtained by this method are skew-t distributions (Hansen, 1994; Fernandez and Steel, 1998a; Azzalini and Capitanio, 2003; Rosco et al., 2011), and skew-Exponential power distributions (Azzalini, 1986; Fernandez et al., 1995). Other distributions containing shape and skewness parameters have been proposed in different contexts such as the generalized hyperbolic distribution (Barndorff-Nielsen et al., 1982; Aas and Haff, 2006), the skew–t proposed in Jones and Faddy (2003), and the α−stable family of distributions. With the exception of the so called “two–piece” transformation (Fernandez and Steel, 1998a; Arellano-Valle et al., 2005), the aforementioned transformations produce distributions with different shapes and/or different tail behaviour in each direction. Surveys on families of “flexible tail” distributions can be found in Jones (2014b) and Ley (2015). Levy processes combined with jump models have been developed and applied for financial asset modelling as in Leon et al., (2002) and Corcuera et al., (2003).
Finally, other approaches used to produce so called flexible models are semi-parametric models (Quintana et al., 2009) or fully nonparametric models (e.g., kernel density estimators and Bayesian nonparametric density estimation). 
However, recent papers use a quite innovative approach for doing so (Dhesi et al., 2011; Dhesi et al., 2016; Dhesi and Ausloos, 2016). This is achieved by adding an extra stochastic function, with only two parameters (k and c) to be estimated, to the GBM, incorporating a weighting factor (see equation 5 here below).  The introduction of such (up to now) parameters can be easily argued, see below in Sect.1. Interestingly, this type of modelling is endogenous and part of some coherent understanding of the market process, i.e., considering some so-called irrationality of agents. Feedback and success of “irrational investors” is for example reported in Hiershleifer et al., (2006). Such a psychological behaviour is sometimes accepted as common knowledge that is as a realistic possibility, but rarely included in models.
[bookmark: _Hlk77619226]The Irrational Fractional Brownian Motion (IFBM) modelling captures the fat tails and overall leptokurtosis (Dhesi et al., 2016; Dhesi and Ausloos, 2016). Therefore, it can be claimed that the model makes a fully pertinent connection between the extra function and so-called irrational behaviour of financial markets.
In light of such premises, and in view of predicting/explaining the exponent, the chapters are organized as follows. Section 2 briefly outlines the Geometric Brownian Motion model, for completeness and the development of MBMM, while Section 3 explains the novel Irrational Fractional Brownian Motion model and development of IFBM GARCH. Section 4 explains the fine results obtained from this method are summarized and further discussed in Section 5.  
[bookmark: _Toc90499999]3.2.4 Standard Brownian Motion:
A standard Brownian Motion or Wiener process  is defined as a stochastic process with following properties:
i. Continuous sample paths
ii. Independent increments, that is, for each is independent of values  such that 
iii. Stationary Increments, for each  depends only on 
iv. 
v. Increments are stationary and normally distributed.
The basics of quantitative finance still rely heavily in line with rational behaviour of investors and weak form EMH. That is continuous financial returns can be expressed as  

			

where µ is the average returns and  is assumed to be normally independently distributed with zero mean and constant variance. The above equation can be written as 

					

where  is a random number drawn from standardised normal distribution and is a small time step. This equation is deployed to run simulations and construct the modelled returns distribution based on the Geometric Brownian Motion (GBM). Furthermore, the continuous time version of the above equation is 

					
Applying Ito’s Lemma, the equivalent stochastic differential equation (SDE) form  is expressed as

			
The above model (four equations) provides the foundations of classical quantitative finance and further financial modelling rely on this representation. 
The extreme events in financial markets are caused by severe fluctuations (oscillations) of prices subject to news about that particular stock. The news in this case acts as a potential moving the price up (bubble) or down (burst). These price oscillations before extreme events increase exponentially suggesting the spread of news among traders and its influence on their behaviour. Consequently, this triggers a huge discrepancy in demand and supply of the stock price. The essential constituent of the pricing process is time at which price changes due to news feedbacks affecting investor’s behaviours. A financial model is considered reputable if it fulfils the underlying assumptions. One of the key assumptions of GBM is that stock returns are independent of their past values. This assumption seems to hold during stable time period in stock markets; but during a speculative bubble or burst time period these assumptions fail as prices does follow a specific pattern.
Since the randomness or effect of news is modelled as W(t) in the GBM model; therefore, a potential parameter is added as function of W(t). This leads to the notion that if stock price can be modelled as a sinusoidal function or if an extra element of Sine or Cosine functions can be added to the GBM model. Note that extra factor has to be scaled to a very small level to customise the effect on overall model. The modified GBM model then become

 
Or
 with 
A much more simple and intuitive approach considered is Taylor series expansion of  and  which is.


And then including first two terms of each series into GBM model as

And 

Only first two terms of each series were considered in each equation above to have minimum effect on model as it is already increasing exponentially. The embedding of first two terms of Taylor series makes the model more coherent with GBM model. To model the historic returns distribution, this research also included a range of other functions including exponential, trigonometric, inverse trigonometric and combination of such functions to capture the true nature of returns distribution but the quest of modifying the GBM proved as challenging as it was at the start. However, after extensive efforts for developing the modified GBM with all the different combinations of functions, one function which passed the rigorous workings of fitting to different datasets from different time periods is tangent inverse (arctan). The reason for that is the shape of the inverse tangent function which when combined with exponential function scales up the shape within a given interval. The figure below presents a sketch of inverse tangent function to explain this phenomenon.

[image: ]
Figure 3.1.2 Graph of inverse tangent.
Source: Dhesi et al., 2016
[bookmark: _Toc11914270][bookmark: _Toc90500000][bookmark: _Hlk82640245]3.2.5 Towards the  function:
It is always convoluted what is to be considered as rational or irrational behaviour, as briefly outlined in Section, through a few references. In line with the Efficient Market Hypothesis, attribute rational behaviour of the markets to the notion that the market price incorporates all information rationally and instantly. Thereafter, the irrational component has to be introduced.
As discussed, the usual financial log-returns definition. 

			

where  is the average return and  is assumed to be normally independently distributed (NID) with zero mean and constant variance (a “white noise”), within the underlying assumptions of the error term in the EMH. The above equation can be written as 

					


in which  is a random number, drawn from a standardised normal (“Gaussian”) distribution and is a small-time step. This equation is deployed to model returns distributions based on the Geometric Brownian Motion (GBM), e.g., see Peters (1990) or Paul and Baschnagel (1989). However, the distribution of returns generated from this GBM model does not match the distribution of historic returns data which often show leptokurtosis (Breen et al., 1998; Lux, 1989). Motivated by an experimental paper due to Dhesi et al. (2011), added a function of the random number  weighted by the mean and an extra parameter  , in order to describe the returns distribution through (Dhesi et al., 2016). 

			

Thereby leading indeed to a much better fit to the log-return distributions, in particular in the peak and the tails: (as explained in previous chapter). This modified specification is important as this endogenously generates a distribution which is not arbitrarily exogenously imposed but demands to choose the appropriate realisation of, that is leptokurtic and hence is appropriate for the return’s distributions. 

Therefore, this modelling process suggests ways to describe irrational behaviour in finance: details are provided in section 3.3. It should be noticed that only the normally distributed  innovation appears in the model, in contrast to e.g., the numerous models of returns distributions using jump diffusion processes which contain normal and Poisson jumps (Birge and Lintesky, 2008). 
[bookmark: _Toc425246556][bookmark: _Toc11914249][bookmark: _Toc90500001]3.2.6 The Modified Model:
Dhesi et al., (2019) presents the matching power of the GBM to historical returns distribution by adding a function of Z multiplied by the mean, and a parameter. Of course, when  they recover the GBM. In line with  being an innovation at time t, we can also loosely consider it to be news generated at time t, with the result that the modified model in its general form is: 


where different equation for a different  produces a distinct output for various values of.  At least 100,000 simulations have been run for various combinations of  and  and the average of simulated paths taken. These results have then been used to compare the main features of the simulated series against the originals, by applying descriptive statistics and statistical tests including goodness of fit and the Jacque-Bera (JB) test.

Dhesi et al., (2016) referred to as the Modified Brownian Motion Model (MBMM); and it may also be referred to as the Stochastic Mean Model. The realisation of is dependent on extensive empirical analysis of historical data. The function proposed is: 

                                                
The analysis was performed on various market indices. The software package employed for extensive simulations. Fit for purpose optimal value of parameters  for specific data sets are selected using chi-squared goodness-of-fit statistics (Dhesi et al., 2016).
[bookmark: _Toc11914289][bookmark: _Toc90500002][bookmark: _Toc11914275]3.2.7 Irrational Fractional Brownian Motion model
Given that market log returns are additive, due to the central limit theorem, one might expect market log returns to be approximately normally distributed. However, this is only the case over the longest of time periods, such as annual returns (Ausloos and Ivanova, 2003). One argument could be as follows. Price-influencing events may be normally distributed, but the likelihood of said events being reported in the news increases with the magnitude of the impact of the event. For the latter distribution, one can factor in the tendency for the media to simplify and exaggerate the news implication. When multiplying the normal distribution by the distribution according to a function modelling, the likelihood/duration/impact of such news reports leads to a much fatter-tailed distribution than a Gaussian (Dhesi et al., 2011). After extensive simulations and analyses, Dhesi et al., (2016) proposed the Irrational Fractional Brownian Motion (IFBM): in order to manage such aspects; it reads.

or
           
This research is structured in the following way: the subject of the research, the goal, and the hypotheses are defined in the introductory considerations. Using above literature and conceptual framework the next part of the research presents relevant research methodology and the development of irrational fractional Brownian motion (IFBM) GARCH process. 






[bookmark: _Toc90500003]3.3 Methodology 
[bookmark: _Toc11914277][bookmark: _Toc90500004]3.3.1 GARCH (p, q)
The primary GARCH (p, q) process is a symmetric variance process. It does not consider the sign of error term. A general GARCH (p, q) model consists of two halves. First part represents the mean function given by 

                           

 The above model denotes that Yt follows an ARMA (R, M) process. The other part of process consists of the variance:
                                   

With following limits:



,,,and 



The procedure of estimation of GARCH (p, q) model is by maximum likelihood function, evaluates the accuracy of estimators predicted by GARCH (p, q) model. Major assumption of maximum likelihood function is that returns are normally distributed with a given mean and variance. The methodology of maximum likelihood function is to develop a likelihood function dependant on the nature of parameters supposed for the underlying distribution. Thus, if logarithmic returns have a normal distribution, then the corresponding parameters of the model can be evaluated by optimising the likelihood function for time series.
[bookmark: _Toc90500005]3.3.2 Development of IFBM GARCH Process:
To improve the GARCH process, some extensions of GARCH (p, q) have been introduced including exponential GARCH, GJR-GARCH etc. These extended versions of model deal with irregular volatility, mostly used with large data sets including daily or hourly data, with the inclusion of additional lags in model; these extended models accommodate both quick and gradual diffusion of information.
GARCH (1, 1) is a basic GARCH model applied to detect volatility clustering and heteroskedasticity within time series. GARCH (1 ,1) is represented as 


That is returns on security  are equivalent to a constant term and an uncorrelated white noise innovation   . This model is usually enough to determine the conditional mean of a financial return data. The corresponding variance equation is given by:


Where
·  represents variance at time t
·  represents variance at time t-1
·  represents squared error term for time t-1
· is a constant
·  are the weights associated squared error term and with variance for time t-1 respectively?

A description of the above variance model can be:  is represented as a sum of weighted average of variance and squared term from previous time period plus a constant term. The error terms in the model are because of random variables, which are supposed to possess a normal distribution. The conditional distribution of GARCH models has been shown to comprise of heavier tail than that of a normal distribution and so it provides a better estimation to original time series.
[bookmark: _Toc11914282][bookmark: _Toc90500006]3.3.3 IFBM GARCH process:
In line with above equations, this research proposes an initial version of GARCH model based on the IFBM model as follows:
GARCH simulation with 



Since    
Where 
When   we have  
Also 

                                         then      and  

At t = 1

At t =2


At t =3 




For IFBM GARCH

where  represents exogenous variables inserted into the model  
Mean equation:

With  



In order to select the most optimal GARCH model, the types of GARCH models will be presented as follows:
[bookmark: _Toc11914278][bookmark: _Toc90500007]3.3.4 Exponential GARCH (EGARCH (p, q))
Nelson (1991) developed the exponential GARCH model which transforms the conditional variance model in terms of logarithm of the variance instead of the variance itself. The rational for this is to make sure the variance remain positive without setting any bounds on the coefficients. The logarithm of a certain value can be negative, but the final value of variance will always be positive. EGARCH is an asymmetric GARCH which is better than symmetric GARCH for approximately any security data. The typical EGARCH (p, q) model for the conditional variance of error terms with extra leverage terms is represented by:
 
With degrees of freedom v>2, where

As EGARCH only considers logarithmic conversion so the conditional heteroskedasticity is always positive without any constraints set on the coefficients. Also, the conditional heteroskedasticity is dependent entirely on the level of disturbances and presents the influence of shock direction. In the above model, L represents the leverage effect which is generally negative. If the estimate of L is non-zero, then there is evidence of irregularity; if estimate of L is less than zero then negative news (ε < 0) will lead to increase in volatility than good news (ε > 0). If the leverage effects are present in data, then the estimate of L would be negative and so a negative disturbance will cause a bigger influence on potential volatility as compared to a positive disturbance. A positive estimate of L implies that previous negative disturbances have a deeper influence on present conditional volatility than previous positive disturbances. On the other hand, it indicates that good news is causing more changes in volatility than bad news. Another difference of EGARCH with symmetric GARCH and GJR GARCH is that it treats Zt as explanatory variable for disturbance and conditional variance. The symmetric GARCH and GJR GARCH models grant the volatility clustering through combination of weights  and. Whereas, in EGARCH only the  term highlight volatility clustering.
[bookmark: _Toc11914279][bookmark: _Toc90500008] 3.3.5 Asymmetric GARCH model or A-GARCH 

The asymmetric GARCH or A-GARCH model is represented by adding an additional parameter to the symmetric GARCH model. The rational for an additional parameter is to detect the asymmetric volatility response. Engle (1990) presented AGARCH process initially and later on discussed by Engle and Ng (1993) improved it. Then the model can be written as
 

Where, λ represents the extra parameter to detect the leverage effect. 
The optimisation of the likelihood function is also valid for parameter estimation of the normal A-GARCH model. However, a point to be considered here is that  now depends on the additional parameter λ. The limitations in A-GARCH model, lag, and disturbance parameter on the ARCH constant are the same as  but, there is no limit on λ. If λ > 0 then  will increase when the market shock is negative, then when market shock is positive. There will be vice versa situation if λ < 0. Therefore, value of λ is non-negative when the above model is estimated for the asset returns. However, when the above model is estimated for commodity returns the output for value of λ is usually negative.  
[bookmark: _Toc11914280][bookmark: _Toc90500009]3.3.6 A-GARCH Volatility forecasts

Above mentioned model can be helpful to determine the long-term variance by using the property  and so assume that  for all t. Adapting this approach, above model is also useful to determine the variance of the A-GARCH model:


After the parameter forecast, the one-step forward variance forecasts through the volatility forecasts are: 


Hence, the s-step in future prediction from when S > 1, can be written as



Alternatively, the volatility estimates obtained by this model, can be interpreted as average variance for next periods which is in fact the average of s-step in future variance prediction, where S can assume values S= 1,2,3...h. and using the notion of 250 trading days per annum as a proxy of annualising factor, which can be modelled into the volatility. By doing so, the resultant volatility will become the long-term volatility, which will depend on long term variance estimators.
The future estimates of daily volatility can be applied to estimate future average volatilities in classical GARCH or any of its asymmetric extension. To represent A-GARCH model such that it can be applied to model long term volatility, the model can be described as:
Or    
                                     
Another important characteristic of classical GARCH process, known as mean reverting process, is identical in A-GARCH. But the response to market anomalies is in asymmetric format. For equity indices, an optimistic shock is assumed to minimise the volatility provided the associated leverage effect is non-negative. However, for symmetric model, there is a completely different story. Similarly, a pessimistic shock maximises the volatility in asymmetric model as compared to symmetric model. Also, the volatility about reverting towards mean is a function of long-term average effect despite the fact what the magnitude of present volatility is in reinforced case.
[bookmark: _Toc11914281][bookmark: _Toc90500010]3.3.7 GJR- GARCH:
Another widely used asymmetric GARCH model is known as Glosten-Jagannathan-Runkle GARCH (GJR-GARCH) model developed by Glosten et al. (1993). One advantage of GJR-GARCH is that it acknowledges the conditional variance to behave differently to previous negative and positive disturbances by adopting a different approach to EGARCH process. Instead GJR-GARCH is closely linked with the Threshold GARCH (TGARCH) process developed by Zakoian (1994). The variation between these two models is that TGARCH uses the conditional standard deviation rather than conditional variance.
The general GJR (p, q) model for the conditional variance of innovations with leverage terms is 

Where , if , k≥0 , , , with constraints

Note that there is only one excess ‘leverage’ variable, however the irregular behaviour is described to address the volatility response from negative shocks only. GJR-GARCH is just a substitute to asymmetric GARCH. Asymmetric GARCH which differentiates the impacts of negative shocks and positive shocks to volatility. The choice between GJR-GARCH and Asymmetric GARCH can be very tricky since outcomes from both models are very useful. However, it is not advisable to use both simultaneously. Most of the times Asymmetric GARCH is the easiest to evaluate whereas it is a bit challenging to maximise GJR-GARCH process (Alexander, 2008).

The histogram is the oldest and most popular tool for graphical display of a univariate data set. It is taught in virtually all elementary data analysis courses and is available in most statistical computing packages. An important parameter that needs to be specified when constructing a histogram is the bin width. This is simply the length of the subintervals of the real line, sometimes called "bins," on which the histogram is based. It is not very difficult to see that the choice of the bin width has an enormous effect on the appearance of the resulting histogram. The choice of a very small bin width results in a jagged histogram, with a separate block for each distinct observation. A very large bin width results in a histogram with a single block. Intermediate bin widths lead to a variety of histogram shapes between these two extremes. Ideally, the bin width should be chosen so that the histogram displays the essential structure of the data, without giving too much credence to the data set at hand. Scott (1992, p. 48) gave an interesting historical account of bin width selection. The earliest published rule for selecting the bin width appears to be that of Sturges (1926). As Scott points out, Sturges's proposal is more of a number of bins rule rather than a bin width rule itself, but essentially amounts to choosing the bin width.

where n is the sample size. Well-established theory (e.g., Scott 1992) shows that this bin width leads to an over smoothed histogram, especially for large samples. However, Sturges's rule, or variations of it such as that proposed by Doane (1976), is often used in statistical packages as a default. The default bin width used by the popular languages is a modification of Sturges's rule that ensures nice break points between the bins. It could be argued that this situation is somewhat unfortunate because inexperienced users might miss important features in their data sets. Acceptance of this viewpoint implies that default bin widths should be "more scientific," driven by some sort of optimal estimation theory. At the same time, one should not lose sight of the simplicity of the histogram, and the advantages of having the choice of the bin width kept really simple as well.
Table 3.3.1 optimal values of K and c
	
	
	
	
	Historic 
	GBM
	IFBM

	Time Window
	C
	k
	k/c
	Kurtosis
	Kurtosis
	Kurtosis

	1990-1991
	0.3
	0.002
	0.0059
	3.235887
	2.91430
	3.30811

	1992-1993
	0.7
	0.001
	0.0019
	3.343758
	2.83918
	3.24248

	1994-1995
	0.4
	0.002
	0.0042
	3.564686
	2.98539
	3.62970

	1996-1997
	0.2
	0.003
	0.0132
	3.570610
	2.96275
	3.60373

	1998-1999
	0.3
	0.002
	0.0082
	3.480683
	3.01699
	3.45123

	2000-2001
	0.2
	0.002
	0.0119
	3.319048
	2.95830
	3.33218

	2002-2003
	0.6
	0.003
	0.0043
	3.398068
	2.90596
	3.24078

	2004-2005
	1.1
	9E-04
	0.0009
	3.159916
	2.97078
	3.16851

	2006-2007
	0.5
	0.003
	0.0064
	4.071763
	2.99778
	3.80458

	2008-2009
	0.3
	0.010
	0.0328
	4.320958
	2.96258
	4.11278

	2010-2011
	0.4
	0.006
	0.0145
	3.937480
	2.84927
	3.87489

	2012-2013
	0.6
	0.001
	0.0025
	3.488274
	2.86441
	3.25203
















Source: Dhesi et.al (2019) This data (50 bins in customised distribution) has chi-squared value of 614.26 (p-value=7.6E-100) for GBM and 88.4(p-value= 0.00012) for MBMM (). Kurtosis for the customised historical data is 4.95 and the modelled Kurtosis from MBMM is 4.32.

According to Dhesi et. al (2016) the table above represent the MBMM was applied on big (i.e., fifty year) monthly data sets were tested, and it is observed that here again MBMM provides a superior fit. to observe the output for optimal values of K and c. A significant reduction in chi-squared value shows huge improvement in p-value, indicates that MBMM provides a closer fit to historic data as compared to GBM. Further research is being carried out on how to model highly turbulent time series returns distributions.
Dhesi et al., (2018) provide a theoretical analysis of financial data to demonstrate the response function introduced in Irrational Fractional Brownian Motion model (IFBM) to render Geometric Brownian Motion model with more flexible is of validity and forecasting strength. This accurate for forecasting of fat tailed frequency distribution for returns.
Criteria for AR lag order selection. 

Assume that given set of data  is generated by a stationary AR(p) process:

Where c is defined by the following equation

Where μ is the process mean,  are unknown parameters and  is an error term. Here object is to find p, the true unknown lag order. It is assumed that there is a prior maximum order M, so that estimate for p can be any integer between 0,1, . . ., M. All prior studies of the issue, both theoretical and empirical, assume the errors to be normally distributed. 
[bookmark: _Toc90500011]3.3.8 Model Selection 
When comparing among different specification of ARMA-GARCH models, then we select an appropriate model based on Akaike Information Criteria (AIC).

and can be computed with the Bayesian information criterion (BIC) or Schwarz information criterion (also SIC, SBC, SBIC) is a criterion for model selection among a finite set of models; the model with the lowest BIC is preferred. It is based, in part, on the likelihood function and it is closely related to the Akaike information criterion (AIC).   


Where L is the value of the likelihood function evaluated at the parameter estimates, N is the number of observations, and k is the number of estimated parameters. The minimum value of AIC, and BIC was selected as the better model when comparing among models, respectively. When comparing among ARMA-GARCH models, the smallest value of MSE, RMSE and MAPE are chosen as the best accurate forecast model.
There are two main objectives in learning from data. One is for scientific discovery, understanding of the data-generation process, and interpretation of the nature of the data. A scientist, e.g., may use the data to support a physical model or identify genes that clearly promote early onset of a disease. Another objective of learning from data is for prediction, i.e., to quantitatively describe future observations. Here the data scientist does not necessarily care about obtaining an accurate probabilistic description of the data. Of course, one may also be interested in both directions.
In tune with the two different objectives, model selection can also have two directions: model selection for inference and model selection for prediction. The first one is intended to identify the best model for the data, which hopefully provides a reliable characterization of the sources of uncertainty for scientific insight and interpretation and the second is to choose a model as a vehicle to arrive at a model or method that offers top performance. For the former goal, it is crucially important that the selected model is not too sensitive to the sample size. For the latter, however, the selected model may simply be the lucky winner among a few close competitors, yet the predictive performance can still be (nearly) the best possible. If so, the model selection is perfectly fine for the second goal (prediction), but the use of the selected model for insight and interpretation may be severely unreliable and misleading. Associated with the first goal of model selection for inference or identifying the best candidate is the following concept of selection consistency.
Mainly, question implies that AIC or BIC which is one is the best. The AIC tries to select the model that most adequately describes an unknown, high dimensional reality. This means that reality is never in the set of candidate models that are being considered. On the contrary, BIC tries to find the TRUE model among the set of candidates. I find it quite odd the assumption that reality is instantiated in one of the models that the researchers built along the way. This is a real issue for BIC.
Nevertheless, there are a lot of researchers who say BIC is better than AIC, using model recovery simulations as an argument. These simulations consist of generating data from models A and B, and then fitting both datasets with the two models. Overfitting occurs when the wrong model fits the data better than the generating. The point of these simulations is to see how well AIC and BIC correct these overfits. Usually, the results point to the fact that AIC is too liberal and still frequently prefers a more complex, wrong model over a simpler, true model. At first glance these simulations seem to be really good arguments, but the problem with them is that they are meaningless for AIC. As I said before, AIC does not consider that any of the candidate models being tested is actually true. According to AIC, all models are approximations to reality, and reality should never have a low dimensionality. At least lower than some of the candidate models.
· AIC is best for prediction as it is asymptotically equivalent to cross-validation.
· BIC is best for explanation as it allows consistent estimation of the underlying data generating process.

The AIC and BIC are both methods of assessing model fit penalized for the number of estimated parameters. As I understand it, BIC penalizes models more for free parameters than does AIC. Beyond a preference based on the stringency of the criteria.





[bookmark: _Toc90500012]3.4 Data and Preliminary Analysis
[bookmark: _Toc90500013]3.4.1 Data description  
The data collection for this study is ranged from January 1990 until December 2013, S&P 500 daily data and distributed into two years window, it is collected from the Bloomberg, Thompson, Banker One and DataStream. The data sample includes the period of the crisis as well. This sample period of two years windows allows an evaluation of the dynamics of the market prior to the collapse of the financial system and the persistence of the liquidity shocks in the crisis period. 

In this section the results of the modified (IFBM) GARCH models are analyse and quantify the impact of macroeconomic factors from the aspect of investment activities on financial market (however, full details of GARCH (1,1) and simulated GARCH are presents in appendix 3.1). For each observed window, the best modified (IFBM) GARCH model has been selected and results compared with historic and simulated returns for entire observation period. Afterwards, the residual motion is graphically presented.
Furthermore, the research sample includes daily values, divided in two years window and calculated return rates for the S&P 500. The research timeline covers the period from January 1, 1990, to December 31, 2013. The width of the time horizon allows testing of the model effects in the period without effecting parameters, the global economic and financial crisis. 
Sample results of data between 1990-1991 are stated below. However, detail of complete data set from January 1990 until December 2013, S&P 500 daily data and distributed into two years window are presented in appendix 3.1. 

Table 3.4.1 Summary statistics
[image: ]

Table 3.4.1 shows the descriptive analysis of historic, simulated and IFBM of S&P 500 stock index in which daily mean return is positive and approximately equal to 0.03% and daily standard deviation is also very close to each other and is in range between 0.95% to 1.42% over the selected time period. The greatest positive and negative returns are 4.42% and -3.86%. The first half of the index exhibits upward trend and second almost downward that can be seen in figure 3.2. The returns series have positive skewness that represent that the distribution has long right tail. The Jarque-Bera rejects the normality at 5% level for all distribution.

Table 3.4.2 Estimated parameters of the optimal modified (IFBM) GARCH models for the S&P 500 stock index.
[image: ]



·  is the GARCH error parameter and measure the reaction of the conditional volatility to market shocks.
·  is the GARCH lag parameter and measure the persistence in conditional volatility and does not depend on anything happens in the market.
·  is the sum of above parameters and provides the rate of the convergence of the conditional volatility to the long-term average level.
·  is the constant of GARCH parameter and work together with the sum of  provides the long-term average volatility. 
·   is leverage parameter, which restrict the asymmetric response of volatility response from the negative market shocks. 

Table 3.4.2 shows the estimated parameters of the IFBM GARCH models for S&P 500 stock index in the observed periods, there is no normal distribution. The average daily return is positive, which is a feature of the developed financial markets.  Elongated distributions and negative asymmetry are characteristics of developed financial markets. As for other periods, the different normality distribution assessments of the observed periods are noticeable, which indicates a small number of observations, as well as a stronger impact of macroeconomic factors on the daily rates of return of the S&P 500 index. 
The result generated for selected GARCH models can also be reflected in part wise from table 3.4.2 since the reaction parameter in GJR model hit the boundary condition. The log likelihood is much better than the normal GARCH model. The positive leverage effect is obtained in A-GARCH and EGARCH models for both indices which recommend that the volatility of selected subset become more reactive and less persistent, and leverage effect become more prominent. The maximum value of likelihood is obtained by normal IFBM GJR-GARCH, IFBM E-GARCH for selected data, and conclude that the IFBM GARCH (1,1) and IFBM-EGARCH is the best fit of GARCH models for most of the examined data.
The comparison of these GARCH models took place in this research for volatility performance having different assumption. The research found that IFBM-EGARCH model is the most capable for recognizing the dynamic behaviour of returns. Since it reflects their underlying process in terms of asymmetric volatility clustering and leptokurtosis innovation. The produced result emphasis that the IFBM-EGARCH model could be better than other three models in the perspective of risk management strategies for S&P 500 index returns (in the light of selected data sample). As the volatility is the measured of the total financial risk. This research concludes that the increment in risk is not necessarily leads to the increment in returns.

Table 3.4.3 Representative AIC and BIC criteria for selecting the optimal modified (IFBM) GARCH model
[image: ]

Table 3.4.3 shows the representative AIC, and BIC criteria for selecting the optimal modified GARCH models in all observed of S&P 500 daily returns. Figure 3.4.2 shows the movement of residual trends of the historic returns, GARCH simulation and IFBM returns S&P500 index for the reference period 1990-1991. 

The selection of the best model based on the given criteria is the evidence of the impact of macroeconomic factors on the daily return of the S&P500 index. In the period of 1990-1991, the modified EGARCH model with the lowest AIC and BIC criterium is most favourable, while the modified GARCH (1,1) model is optimal. In the observed periods various positive and negative impacts of macroeconomic factors on daily return rates of investment activities are recorded. In the entire observation period, the modified EGARCH model shows negative impacts on the daily return of the observed index, while the obtained results of the modified GARCH (1,1) model show positive impacts.

By applying methodologies discussed on S&P 500 daily return, volatility and estimated daily volatility by using GARCH (1, 1), EGARCH and GJR GARCH model. The daily volatility is derived from an econometric model, which does not have any interdependence with other variables. Based on the results of maximum log likelihood values we determine that the daily volatility derived from GJR model was the optimal selection. The optimizations were conducted by using STATA14 version, the results are summarised below: 
Table 3.4.4 Representative AIC and BIC criteria for selecting the optimal GARCH model
	Model
	Obs  ll(null)  ll(model)      df
	AIC
	BIC

	 
	 
	 
	 

	GARCH
	505         .   1640.912       4
	-3273.83
	-3256.93

	GJRGARCH
	505         .    1644.93       5
	-3279.86
	-3258.74

	EGARCH
	505         .   1635.082       5
	-3260.16
	-3239.04

	AGARCH
	505         .   1644.568       5
	-3279.14
	-3258.01



The GJR GARCH model returns the largest log likelihood in comparison to normal GARCH and EGARCH model, hence we use the daily volatility derived from the GJR model as our overall market volatility measurement. It is worth to note that, the normal GARCH (1, 1) model has the lowest Log likelihood value. That can be explained by the fact that as the market tends to response negative news more sensitively, the asymmetric GARCH model is able to capture the leverage and lag effects.
Appendix 3.1 shows the comparative overview of the obtained research result. The above table shows the most optimal GARCH models-IFBM GARCH (according to the lowest value of the AIC information criterion) for the observed financial market in all observed periods. The selection of the best model based on the given criteria is the evidence of the impact of macroeconomic factors on the daily return rates of the S&P 500 stock index. In the entire period, the modified EGARCH model with the lowest AIC criterium is most favourable, the modified GARCH (1,1) model is optimal. In the observed periods, various positive and negative impacts of macroeconomic factors on daily return rates of investment activities are recorded.

Furthermore, research conducted the estimation from different GARCH models, using daily log return of S&P 500 covering the period 1990 to 2013 with two years windows, and the Table 3.4.4 shows the results of normal symmetric and normal asymmetric GARCH models for first window. The parameter estimated in GJR-GARCH model using STATA; it has hit the boundary condition for both Stock market index over the selected period, and also the excel optimizer provided the best E-GARCH convergence solution for the solution of long-term volatility that is also the case for both of the stock market indices. The optimizer generated the highest value of likelihood function using E-GARCH model however the likelihood generated for S&P 500 is significantly higher than another model. 

It is recommended that the volatility estimated from GARCH models is superior to any other models, such as moving average models that normally have constant term structure and lead towards the inconsistency of volatility clustering as it is common in liquid market. The magnificence of GARCH models is that the maximum likelihood is used to estimate the GARCH parameters optimally; therefore, they provide the best fit of the data then the parameters of moving average models. The reason is the mechanism of the IFBM GARCH volatility models that are purposely designed to capture the volatility clustering. 


[bookmark: _Hlk78491896]Figure 3.4.1 three different examples of daily S&P 500 return series (1990-2013)[image: ]
[bookmark: _Toc78498696]Figure 3.4.0‑1 three different examples of daily S&P 500 return series (1990-2013)
[image: ]
Figure 3.4.1 represents three different examples of return series corresponding to daily financial data of S&P 500 stock index: (a) The historic Standard and Poor 500 Index (S&P 500) from January 1, 1990, to December 31, 2013; (b) The Simulated GARCH return from January 1, 1990, to December 31, 2013; (c) Irrational Fractional Brownian Motion return from January 1, 1990, to December 31, 2013. In Fig 3.4.1 plot represents the daily returns of these three series. This plot suggests that the series contain several outliers that correspond to unusually large movements in the returns.

[bookmark: bf0005]Also, figure 3.4.1 is drawn to further illustrate the variation features of stocks returns using different models over time. The mean values and standard deviations of these series are relatively close to each other, respectively (please see appendix 3.1). It is also observed that all the series are negatively skewed and leptokurtic. In addition, the figures show that S&P 500 stock return series exhibit high volatility over time.
















Figure 3.4.2 three different examples of daily S&P 500 residuals (1990-2013)
[image: ]
[bookmark: _Toc78498697]Figure 3.4.2 three different examples of daily S&P 500 residuals (1990-2013)
Figure 3.4.2 three different examples of daily S&P 500 residuals (1990-2013)
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Figure 3.4.2 shows the comparison of Historic returns, Simulated GARCH and Modified IFBM GARCH (for S&P 500 1990-2013) again the parameter is already estimated using Symmetric and asymmetric GARCH models for historic, simulated and IFBM returns for entire selected data and present in appendix 3.1. In figure 3.4.2 also each time series of a standard uniform distribution apart from those two market shocks are inserted, positive, and negative respectively to observe the volatility response. From the above figure it is also noticed that the Modified IFBM GARCH process has additional intense reaction to the negative market shocks and the asymmetric volatility response is pronounced. The volatility increments much more following the negative shock as compared to follow the positive shock as it has positive λ in A-GARCH.
It is noticed that the unconditional volatility estimated under the assumption of IFBM GARCH did match with the long-term volatility obtained from different GARCH models in most of the selected period that is strongly recommended that the unconditional volatility depend on the model as the volatility is a parameter of probability distribution and it can only be determined with the condition of models. 
The GARCH model is modified to capture the effect of consecutive run-ups and declines on volatilities. Spells of positive or negative shocks are expected to have positive effect on volatilities. The new model nomenclature IFBM GARCH is applied to the S&P 500 index. Similarly, the EGARCH model is extended to the IFBM GARCH model along the same line and is applied to the same sets of data. The IFBM GARCH model describes the dynamic behaviour of conditional volatility better than the GARCH model in analysing the selected index series might have been influenced by spells of positive or negative shocks. Conditional volatilities but not the mean returns might have increased as investors face consecutive positive or negative shocks. Theoretical justification is needed to explain this phenomenon. The IFBM GARCH model is simple and can be extended into other directions. It is also of interest to apply this model to other series, particularly, to market indices of newly established stock exchanges in the world.



[bookmark: _Toc90500014]3.5 Conclusion
The research results indicate the importance of the modified (IFBM) GARCH methodology for quantification and optimisation of many macroeconomic factors in investment activities in modern business conditions. In practice, the research tests the role and significance of a modified GARCH methodology for estimating daily return. This research emphasised the importance of the application analysis and optimisation of the modified GARCH methodology for investment activities in developed and emerging financial markets.
The scientific contribution of the research is reflected in the quality and significance of research results and the possibilities of efficient application of the modified (IFBM) GARCH tailored methodology.  The modified GARCH methodology quantified the impact of macroeconomic factors, such as inflation rate, interest rates on government bonds, reference interest rates and exchange rates, on daily return rates from investment activities for the developed and emerging financial markets. The application of the modified GARCH methodology serves to manage the investment risk, which significantly extends the field of the research area. The practical contribution of the research is reflected in the expanded possibilities of efficient application of the modified GARCH methodology to the daily return rates in everyday investment decision making.
Assuming that the application of the modified (IFBM) GARCH methodology for quantifying the impact of the inflation rate, the interest rates on government bonds, the reference interest rates and the exchange rate on the daily return rates significantly contributes to investment risk reduction, the main H0 hypothesis has been confirmed. In the developed financial markets, as well as in the financial markets in the developing countries, the correlation between the daily return rates of stock exchange indices and macroeconomic factors (inflation rate, reference interest rate, interest rate on government bonds and exchange rate) for all observed periods will be confirmed. By introducing macroeconomic factors in GARCH models, the basic models are expanded and certainly made optimal. The obtained research results are more favourable and contribute to the optimisation of the investment strategy. AIC and BIC information criteria were used to select the optimal IFBM GARCH model among all extensions of GARCH (1,1), GJRGARCH and EGARCH in all all-observed periods. It can be concluded that the same GARCH model cannot be used in every financial market to quantify the impact of macroeconomic factors that will have the optimal estimated model parameters. In addition, it can be concluded that the application of the modified GARCH methodology in both the developed and emerging markets can be tested the impact of macroeconomic factors and contributed to the optimisation of the investment strategy with well-defined results of positive and negative impacts of macroeconomic factors on the daily return rates of stock exchange indices. The modified GARCH methodology significantly contributes to investment risk reduction in the observed financial markets.
Claiming that the application of a modified (IFBM) GARCH (1,1) model can be equally successfully applicable in selected financial markets, the H1 hypothesis has also been confirmed. It means that the research results show that the custom GARCH (IFBM) model and the application of the modified GARCH (1,1) model can be equally successful in real financial markets. Using the AIC and BIC information criteria, the comparative overview shows that the custom GARCH (1,1) model prevails in the selected financial market.  The modified GARCH (1,1) proves itself as optimal for S&P 500 stock index. In 9 out of 12 cases, it verified as optimal in the observed periods. 
The aforementioned facts show the importance of a modified (IFBM) GARCH methodology to test the difference between the impact of macroeconomic factors on the return daily rates on the developed financial markets and contribute to investment risk reduction. The special quality of the research results stems from the fact that it is focused on the use of a new approach to the modified (IFBM) GARCH methodology in the developed, whilst the analysis of comparative literature in this research field shows a relatively small number of studies with this topic.
Both the basic and the specific goals are fully met by the research, with the modified (IFBM) GARCH methodology application tested in practice in the developed financial markets. The research has a wide period of time, i.e., it is focused on the periods of the global economic and financial crisis, which ensures the complete representativity of the obtained research results. 
The testing of the impact of macroeconomic factors using the modified (IFBM) GARCH methodology has a fully scientific, i.e., academic contribution, which opens up opportunities for further research on the topic. The research results have multiple relevance, especially for domestic and international investors (institutional investors, investment funds, portfolio managers, market analysts and others), thus confirming the practical contribution of the research. The obtained results help domestic and international investors in the process of defining an optimal investment strategy, as well as making investment decisions in both developed and emerging financial markets. The research results indicate a practical contribution in terms of whether the appropriate investment strategy should be applied and in which markets, depending on the economic conditions in order to protect and reduce the risk of investment activities.
On the one hand, the research presents the problems and challenges arising from the specific characteristics of the financial markets and the need to adapt the tested modified (IFBM) GARCH models to the specificities of different markets. The greatest challenge for this research was to implement and modify existing GARCH econometric models and quantify the impact of macroeconomic factors thus applying them successfully and obtaining results that are based on science and practice. 
[bookmark: _Toc90500015]3.6 Contribution to knowledge 
Current circumstances in the financial markets, globalization trends, the financial crisis and significant volatility of the market are some of the key conditions that have influenced the change in the logic of financial thinking. The forecasting methods and techniques of the expected corresponding investment effects have been inevitably changed and adapted to contemporary market conditions and opportunities. Investing in financial markets today must be considered differently and analysed in relation to the period before the outbreak of the financial crisis. Therefore, it must be seen in the context of modern market conditions, with a resulting change of the investment strategy in order to optimise the effects.  As the functionality and symmetry of the daily return rates on financial markets have a different "form" after the financial crisis, researchers must use custom models to analyse and quantify the risks of investment activities.  
Empirical findings also suggest the presence of volatility clusters in the distributions of financial asset returns. This can be accounted for by GARCH models (Bollerslev, 1986; Engle, 1982), that assume innovations with serially correlated conditional variance. This approach, which admits temporal dependencies in the shocks of the stochastic process being modelled, often assumes that the conditional distribution of the innovations is Gaussian. Many financial time series, however, show levels of empirical kurtosis and/or skewness that cannot be adequately explained this way. 
Following a Geometrical Brownian Motion extension into an Irrational fractional Brownian motion model, this chapter re-examine irrational agent behaviour reacting to time dependent news on the log-returns for modifying a financial market evolution. We specifically discuss the role of financial news or economic information positive or negative feedback of such irrational (or contrarian) agents upon the price evolution. We observe a kink-like effect reminiscent of soliton behaviour, suggesting how analysts' forecasts errors induce stock prices to adjust accordingly, thereby proposing a measure of the irrational force in a market.
Irrational fractional Brownian motion (IFBM) can be used to modify the moments of the distribution of a random variable. In this chapter, existing GARCH adjusted distributions are employed to model the skewness and kurtosis of the conditional distributions of GARCH models. To flexibly capture the skewness and kurtosis of data, the distributions of the innovations reshaped include, besides the Gaussian, also leptokurtic laws such as the logistic and the hyperbolic secant. Modelling GARCH innovations can effectively improve the precision of the forecasts. This strategy is analysed in GARCH models with different specifications for the conditional variance, such as the APARCH, the EGARCH, the Realized GARCH, and APARCH with time-varying skewness and kurtosis. An empirical application on different types of asset returns shows the good performance of these models in providing accurate forecasts according to several criteria based on density forecasting, downside risk, and volatility prediction. Compared with developed financial markets, emerging markets are rather volatile, underdeveloped and "shallow," characterised by the lack of continuous trading, low liquidity, low capitalization, lack of high turnover, and low efficiency. However, the benefits of the financial markets of developing countries are reflected in the fact that they bear a higher risk, as well. as higher returns on investment activities.
Practical testing of econometric models provides information on their quality and efficiency in order to define and measure investment return volatility. In addition, the basic and modified econometric models should be continually tested, emphasising investment risk minimisation, especially given their specificities. As a quantified measure of market risk, volatility estimation is of great importance for investment decisions, where return volatility estimation represents the most important input for determining the optimal investment strategy. This study presents a brief description of GARCH processes and how it can lead to potential variation of GARCH based on irrational fractional Brownian motion (IFBM) model. The GARCH process was developed by Bollerslev (1986) and Taylor (1986) which is identical to an ARMA model in terms of efficiency. Due to its characteristics, the GARCH process is most commonly used to analyse economic and financial time series data.



[bookmark: _Toc90500016]Future Research 
Although most previous studies provide substantial empirical evidence of the impact of volatility on international trade (Arize and Shwiff, 1998; Dogˇanlar, 2002; Kanas, 2002), few empirical studies investigate the impact of uncertainty (Belke and Gros, 2002; Belke and Setzer, 2003, 2004). Previous studies rely on conventional Ordinary Least Squares (OLS) procedure with restrictive lag structures to estimate the parameters. Such a procedure has not only a potentially spurious regressive problem if the data tend to be nonstationary but also the disadvantage of losing valuable information because all variables require prior de-trending. In addition, previous studies did not check the residual diagnostic on the residual of their empirical models.
Future research in this area should focus on extending the research to other financial markets of developing countries and comparing them with developed financial markets, thereby increasing the flexibility of the tested modified (IFBM) GARCH methodology in order to maximise the effects and reduce the risk of investment activity. In this regard, the focus of future research will be extended to the development of a methodology with a higher level of flexibility and adaptability, taking into account the dynamics of changes in financial markets caused by global trends. 
This research will help to re-examin empirically the investment-uncertainty link, using a large macroeconomic data set for developing countries. Rather than focusing on the sample variability of any one arbitrarily-chosen variable (e.g., inflation or the real exchange rate), the study constructs alternative measures of uncertainty based on the dispersion of the innovations to five key macroeconomic variables: three related to the macroeconomic environment and the aggregate profitability of capital—growth, inflation and the relative price of investment goods— and another two more closely related to the relative profitability of different economic sectors— the terms of trade and the real exchange rate.
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Descriptive Statistics
	Variables
	 Obs
	 Mean
	 Std. Dev.
	 Min
	 Max
	 p1
	 p99
	 Skew.
	 Kurt.

	 SPRT
	2605
	0
	.013
	-.095
	.11
	-.039
	.036
	-.353
	13.31

	 ABCP
	2605
	.468
	.568
	.01
	4.306
	.072
	2.804
	2.987
	13.636

	 TED
	2605
	.509
	.523
	.109
	4.485
	.146
	2.708
	3.175
	16.118

	 OIS
	2605
	.293
	.396
	.019
	3.644
	.056
	2.127
	3.981
	24.283
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[bookmark: _Toc90500044]Appendix 1.2 (Stata and Matlab programing codes)
****intiatiating program*****
d "C:\StataDirectory"
log using "C:\StataDirectory\res5draft.smcl"
import excel "C:\Users\babar\Desktop\raw1.xlsx", sheet("Sheet1") firstrow
describe
bcal create raw1, from (Date) generate(bcdate) excludemissing(Date) replace
tsset bcdate

Descriptive statistics 
******Descriptive Statisctics******
asdoc summarize SPRT ABCP TED OIS, detail replace
summarize SPRT ABCP OIS TED, detail
** Summary Statistics for pre-Crisis ****
summarize SPRT ABCP OIS TED if bcdate>=bofd("raw1", td(05jan2005))&bcdate<=bofd("raw1", td(01jun2007)), detail
** Summary Statistics for during Crisis ****
summarize SPRT ABCP OIS TED if bcdate>=bofd("raw1", td(04jun2007))&bcdate<=bofd("raw1", td(09mar2009)), detail
** Summary Statistics for post Crisis ****
summarize SPRT ABCP OIS TED if bcdate>=bofd("raw1", td(10mar2009))&bcdate<=bofd("raw1", td(23dec2015)), detail

Normality 
******Normality Test******
*****            testing normality     *****
histogram SPRT, normal kdensity
graph save Graph "F:\FinalWork\copy of continue\RES5 work\SPHistogram.gph"
histogram ABCP, normal kdensity
graph save Graph "F:\FinalWork\copy of continue\RES5 work\ABCPHistogram.gph"
histogram OIS, normal kdensity
graph save Graph "F:\FinalWork\copy of continue\RES5 work\OISHistogram.gph"
histogram TED, normal kdensity
graph save Graph "F:\FinalWork\copy of continue\RES5 work\TEDHistogram.gph"
qnorm SPRT
graph save Graph "F:\FinalWork\copy of continue\RES5 work\QuartileNormalitySPgraph.gph"
qnorm ABCP
graph save Graph "F:\FinalWork\copy of continue\RES5 work\QuartileNormalityABCPgraph.gph"
graph save Graph "F:\FinalWork\copy of continue\RES5 work\QuartileNormalityABCPgraph.gph", replace
qnorm OIS
graph save Graph "F:\FinalWork\copy of continue\RES5 work\QuartileNormalityOISgraph.gph"
qnorm TED
graph save Graph "F:\FinalWork\copy of continue\RES5 work\QuartileNormalityTEDgraph.gph"
sktest SPRT ABCP OIS TED

swilk SPRT ABCP OIS TED
sfrancia SPRT ABCP OIS TED

Stationarity 

******Stationarity Test******
Phillips Perron test
pperron SPRT
pperron ABCP
pperron OIS
pperron TED

Augmented Dicky Fuller Test 
  *****       Stationarity test        *******
******     Augmented dicky fuller unit root test   *****
******S&P500*****
**** Case 1 ****
*** no constant, no trent ***
dfuller SPRT, noconstant lags (2)
**** Case 2 ****
***** Random walk without drift, but a constant term included *******
dfuller SPRT, lags (2)
**** Case 3 ****
*** include drift, no trent ***
dfuller SPRT, drift lags (2)
**** Case 4 ****
*** include drift, include trend and include constant in regression ***
dfuller SPRT, trend lags (2)
twoway (tsline SPRT), name (SPRT)
graph save SPRT "F:\FinalWork\copy of continue\RES5 work\SPRTgraphfor stationarity.gph"
*****   ABCP   ******
**** Case 1 ****
*** no constant, no trent ***
dfuller ABCP, noconstant lags (2)
**** Case 2 ****
***** Random walk without drift, but a constant term included *******
dfuller ABCP, lags (2)
**** Case 3 ****
*** include drift, no trent ***
dfuller ABCP, drift lags (2)
**** Case 4 ****
*** include drift, include trend and include constant in regression ***
dfuller ABCP, trend lags (2)
twoway (tsline ABCP), name (ABCP)
graph save ABCP "F:\FinalWork\copy of continue\RES5 work\ABCPgraphfor stationarity.gph"
***** OIS ******
**** Case 1 ****
*** no constant, no trent ***
dfuller OIS, noconstant lags (2)
**** Case 2 ****
***** Random walk without drift, but a constant term included *******
dfuller OIS, lags (2)
**** Case 3 ****
*** include drift, no trent ***
dfuller OIS, drift lags (2)
**** Case 4 ****
*** include drift, include trend and include constant in regression ***
dfuller OIS, trend lags (2)
twoway (tsline OIS), name (OIS)
graph save OIS "F:\FinalWork\copy of continue\RES5 work\OISgraphfor stationarity.gph"
****** TED *****
**** Case 1 ****
*** no constant, no trent ***
dfuller TED, noconstant lags (2)
**** Case 2 ****
***** Random walk without drift, but a constant term included *******
dfuller TED, lags (2)
**** Case 3 ****
*** include drift, no trent ***
dfuller TED, drift lags (2)
**** Case 4 ****
*** include drift, include trend and include constant in regression ***
dfuller TED, trend lags (2)

*****Graphical Represntation******
twoway (tsline TED), name (TED)
graph save TED "F:\FinalWork\copy of continue\RES5 work\TEDgraphfor stationarity.gph"
graph combine SPRT ABCP OIS TED
graph save Graph "F:\FinalWork\copy of continue\RES5 work\combinegraphofstationarity.gph"
corrgram SPRT
ac SPRT, name (ACSPRT)
ac ABCP, name (ACABCP)
ac OIS, name (ACOIS)
ac TED, name (ACTED)
graph combine ACSPRT ACABCP ACOIS ACTED
graph save Graph "F:\FinalWork\copy of continue\RES5 work\combinegraphACF.gph"

Heteroscedasticity 

******** Heteroscedasticity ******
regress SPRT
predict residuals, residuals
estat archlm, lags(1 5 10)
regress ABCP
estat archlm, lags(1 5 10)
regress OIS
estat archlm, lags(1 5 10)
regress TED
estat archlm, lags(1 5 10)
lmalb SPRES
lmalb ABCPRES
lmalb OISRES
lmalb TEDRES


ARMA Filter

******   ARMA Filter ******
arima SPRT
estimates store SParma00
predict resSParma00, residuals
wntestq resSParma00
arima SPRT, arima(0,0,1)
estimates store SParma01
predict resSParma01, residuals
wntestq resSParma01
arima SPRT, arima(1,0,0)
estimates store SParma10
predict resSParma10, residuals
wntestq resSParma10
arima SPRT, arima(1,0,1)
estimates store SParma11
predict resSParma11, residuals
wntestq resSParma11
arima SPRT, arima(2,0,0)
estimates store SParma20
predict resSParma20, residuals
wntestq resSParma20
arima SPRT, arima(2,0,1)
estimates store SParma21
predict resSParma21, residuals
wntestq resSParma21
arima SPRT, arima(2,0,2)
estimates store SParma22
predict resSParma22, residuals
wntestq resSParma22
arima SPRT, arima(0,0,2)
estimates store SParma02
predict resSParma02, residuals
wntestq resSParma02
arima SPRT, arima(1,0,2)
estimates store SParma12
predict resSParma12, residuals
wntestq resSParma12
          
  *******       Here is the summary of ARMA filter for S&P returns     *********
estimates stats SParma00 SParma01 SParma02 SParma10 SParma11 SParma12 SParma20 SParma21 SParma22
arima ABCP
estimates store ABCParma00
predict resABCParma00, residuals
wntestq resABCParma00
arima ABCP, arima(0,0,1)
estimates store ABCParma01
predict resABCParma01, residuals
wntestq resABCParma01
arima ABCP, arima(1,0,0)
estimates store ABCParma10
predict resABCParma10, residuals
wntestq resABCParma10
arima ABCP, arima(1,0,1)
estimates store ABCParma11
predict resABCParma11, residuals
wntestq resABCParma11
arima ABCP, arima(2,0,0)
estimates store ABCParma20
predict resABCParma20, residuals
wntestq resABCParma20
arima ABCP, arima(2,0,1)
estimates store ABCParma21
predict resABCParma21, residuals
wntestq resABCParma21
arima ABCP, arima(2,0,2)
estimates store ABCParma22
predict resABCParma22, residuals
wntestq resABCParma22
arima ABCP, arima(0,0,2)
estimates store ABCParma02
predict resABCParma02, residuals
wntestq resABCParma02
arima ABCP, arima(1,0,2)
estimates store ABCParma12
predict resABCParma12, residuals
wntestq resABCParma12
            *******       Here is the summary of ARMA filter for ABCP SPREAD     *********
estimates stats ABCParma00 ABCParma01 ABCParma02 ABCParma10 ABCParma11 ABCParma12 ABCParma20 ABCParma21 ABCParma22
arima OIS
estimates store OISarma00
predict resOISarma00, residuals
wntestq resOISarma00
arima OIS, arima(0,0,1)
estimates store OISarma01
predict resOISarma01, residuals
wntestq resOISarma01
arima OIS, arima(1,0,0)
estimates store OISarma10
predict resOISarma10, residuals
wntestq resOISarma10
arima OIS, arima(1,0,1)
estimates store OISarma11
predict resOISarma11, residuals
wntestq resOISarma11
arima OIS, arima(2,0,0)
estimates store OISarma20
predict resOISarma20, residuals
wntestq resOISarma20
arima OIS, arima(2,0,1)
estimates store OISarma21
predict resOISarma21, residuals
wntestq resOISarma21
arima OIS, arima(2,0,2)
estimates store OISarma22
predict resOISarma22, residuals
wntestq resOISarma22
arima OIS, arima(0,0,2)
estimates store OISarma02
predict resOISarma02, residuals
wntestq resOISarma02
arima OIS, arima(1,0,2)
estimates store OISarma12
predict resOISarma12, residuals
wntestq resOISarma12
            *******       Here is the summary of ARMA filter for OIS SPREAD     *********
estimates stats OISarma00 OISarma01 OISarma02 OISarma10 OISarma11 OISarma12 OISarma20 OISarma21 OISarma22
arima TED
estimates store TEDarma00
predict resTEDarma00, residuals
wntestq resTEDarma00
arima TED, arima(0,0,1)
estimates store TEDarma01
predict resTEDarma01, residuals
wntestq resTEDarma01
arima TED, arima(1,0,0)
estimates store TEDarma10
predict resTEDarma10, residuals
wntestq resTEDarma10
arima TED, arima(1,0,1)
estimates store TEDarma11
predict resTEDarma11, residuals
wntestq resTEDarma11
arima TED, arima(2,0,0)
estimates store TEDarma20
predict resTEDarma20, residuals
wntestq resTEDarma20
arima TED, arima(2,0,1)
estimates store TEDarma21
predict resTEDarma21, residuals
wntestq resTEDarma21
arima TED, arima(2,0,2)
estimates store TEDarma22
predict resTEDarma22, residuals
wntestq resTEDarma22
arima TED, arima(0,0,2)
estimates store TEDarma02
predict resTEDarma02, residuals
wntestq resTEDarma02
arima TED, arima(1,0,2)
estimates store TEDarma12
predict resTEDarma12, residuals
wntestq resTEDarma12
            *******       Here is the summary of ARMA filter for TED SPREAD     *********
estimates stats TEDarma00 TEDarma01 TEDarma02 TEDarma10 TEDarma11 TEDarma12 TEDarma20 TEDarma21 TEDarma22

GARCH FILTER
******GARCH Filter******
***** the arma model we selected for garch: SP ((2,0) ABCP (2,0) OIS (2,1) TED (2,2) *********
******** GARCH with ARMA20 ******
arch SPRT, arch(1/1) garch(1/1) arima(2,0,0) nolog
estimates store SPgarch11
arch SPRT, arch(1/1) garch(1/2) arima(2,0,0) nolog
estimates store SPgarch12
arch SPRT, arch(1/2) garch(1/2) arima(2,0,0) nolog
estimates store SPgarch22
arch SPRT, arch(1/2) garch(1/1) arima(2,0,0) nolog
estimates store SPgarch21
estimates stats SPgarch11 SPgarch12 SPgarch22 SPgarch21 
estimates store table1
***** ABCP   ***
******** GARCH with ARMA20 ******
arch ABCP, arch(1/1) garch(1/1) arima(2,0,0) nolog
estimates store ABCPgarch11
arch ABCP, arch(1/1) garch(1/2) arima(2,0,0) nolog
estimates store ABCPgarch12
arch ABCP, arch(1/2) garch(1/2) arima(2,0,0) nolog
estimates store ABCPgarch22
arch ABCP, arch(1/2) garch(1/1) arima(2,0,0) nolog
estimates store ABCPgarch21
estimates stats ABCPgarch11 ABCPgarch12 ABCPgarch22 ABCPgarch21
estimates store table2
***** OIS  *******
******** GARCH with ARMA21 ******
arch OIS, arch(1/1) garch(1/1) arima(2,0,1)
estimates store OISgarch11
arch OIS, arch(1/1) garch(1/2) arima(2,0,1)
estimates store OISgarch12
arch OIS, arch(1/2) garch(1/2) arima(2,0,1)
estimates store OISgarch22
arch OIS, arch(1/2) garch(1/1) arima(2,0,1)
estimates store OISgarch21
estimates stats OISgarch11 OISgarch12 OISgarch22 OISgarch21
estimates store table3
********** TED *******
******** GARCH with ARMA22 ******
arch TED, arch(1/1) garch(1/1) arima(2,0,2) nolog
estimates store TEDgarch11
arch TED, arch(1/1) garch(1/2) arima(2,0,2) nolog 
estimates store TEDgarch12
arch TED, arch(1/2) garch(1/2) arima(2,0,2) nolog
estimates store TEDgarch22
arch TED, arch(1/2) garch(1/1) arima(2,0,2) nolog
estimates store TEDgarch21
estimates stats TEDgarch11 TEDgarch12 TEDgarch22 TEDgarch21
estimates store table4

DCC
*****Dynamic Conditional Correlation (DCC)*****
***** The Garch selection from the above results for DCC-MGARCH ******
mgarch dcc (SPRT = L.SPRT L.ABCP L.OIS L.TED, arch(1/2) garch(1/1)) (ABCP = L.SPRT L.ABCP L.OIS L.TED, arch(1/2) garch(1/2)) (OIS = L.SPRT L.ABCP L.OIS L.TED, arch(1/2) garch(1/1)) (TED = L.SPRT L.ABCP L.OIS L.TED, arch(1/2) garch(1/1)), nolog
predict corr*, correlation
tsline corr_ABCP_SPRT if bcdate>= bofd("raw1", td(05jan2005))&bcdate<= bofd("raw1", td(01jun2007)), name(ABCPSPRTpre)
tsline corr_OIS_SPRT if bcdate>= bofd("raw1", td(05jan2005))&bcdate<= bofd("raw1", td(01jun2007)), name(OISSPRTpre)
tsline corr_TED_SPRT if bcdate>= bofd("raw1", td(05jan2005))&bcdate<= bofd("raw1", td(01jun2007)), name(TEDSPRTpre)
tsline corr_OIS_ABCP if bcdate>= bofd("raw1", td(05jan2005))&bcdate<= bofd("raw1", td(01jun2007)), name(OISABCPpre)
tsline corr_TED_ABCP if bcdate>= bofd("raw1", td(05jan2005))&bcdate<= bofd("raw1", td(01jun2007)), name(TEDABCPpre)
tsline corr_TED_OIS if bcdate>= bofd("raw1", td(05jan2005))&bcdate<= bofd("raw1", td(01jun2007)), name(TEDOISpre)
graph combine ABCPSPRTpre OISSPRTpre TEDSPRTpre OISABCPpre TEDABCPpre TEDOISpre
tsline corr_ABCP_SPRT if bcdate>= bofd("raw1", td(04jun2007))&bcdate<= bofd("raw1", td(09mar2009)), name(ABCPSPRTdur)
tsline corr_OIS_SPRT if bcdate>= bofd("raw1", td(04jun2007))&bcdate<= bofd("raw1", td(09mar2009)), name(OISSPRTdur)
tsline corr_TED_SPRT if bcdate>= bofd("raw1", td(04jun2007))&bcdate<= bofd("raw1", td(09mar2009)), name(TEDSPRTdur)
tsline corr_OIS_ABCP if bcdate>= bofd("raw1", td(04jun2007))&bcdate<= bofd("raw1", td(09mar2009)), name(OISABCPdur)
tsline corr_TED_ABCP if bcdate>= bofd("raw1", td(04jun2007))&bcdate<= bofd("raw1", td(09mar2009)), name(TEDABCPdur)
tsline corr_TED_OIS if bcdate>= bofd("raw1", td(04jun2007))&bcdate<= bofd("raw1", td(09mar2009)), name(TEDOISdur)
graph combine ABCPSPRTdur OISSPRTdur TEDSPRTdur OISABCPdur TEDABCPdur TEDOISdur
tsline corr_ABCP_SPRT if bcdate>= bofd("raw1", td(10mar2009))&bcdate<= bofd("raw1", td(23dec2015)), name(ABCPSPRTpost)
tsline corr_OIS_SPRT if bcdate>= bofd("raw1", td(10mar2009))&bcdate<= bofd("raw1", td(23dec2015)), name(OISSPRTpost)
tsline corr_TED_SPRT if bcdate>= bofd("raw1", td(10mar2009))&bcdate<= bofd("raw1", td(23dec2015)), name(TEDSPRTpost)
tsline corr_OIS_ABCP if bcdate>= bofd("raw1", td(10mar2009))&bcdate<= bofd("raw1", td(23dec2015)), name(OISABCPpost)
tsline corr_TED_ABCP if bcdate>= bofd("raw1", td(10mar2009))&bcdate<= bofd("raw1", td(23dec2015)), name(TEDABCPpost)
tsline corr_TED_OIS if bcdate>= bofd("raw1", td(10mar2009))&bcdate<= bofd("raw1", td(23dec2015)), name(TEDOISpost)
graph combine ABCPSPRTpost OISSPRTpost TEDSPRTpost OISABCPpost TEDABCPpost TEDOISpost
graph combine ABCPSPRTpre ABCPSPRTdur ABCPSPRTpost
graph save Graph "F:\FinalWork\copy of continue\RES5 work\Combine(pretopost)ABCPSPRT.gph"
predict H*, variance
estimates store Vol
twoway (tsline H_SPRT_SPRT), title("VARIANCE SPRT ") name(HSPRT)
twoway (tsline H_ABCP_ABCP), title("VARIANCE ABCP ") name(HABCP)
twoway (tsline H_OIS_OIS), title("VARIANCE OIS ") name(HOIS)
twoway (tsline H_TED_TED), title("VARIANCE TED ") name(HTED)
graph combine HSPRT HABCP HOIS HTED
log close
save "F:\FinalWork\copy of continue\RES5 work\RES5workoutput.dta"


















DCC Inference 

[k,~,T] = size(data);
% Parse parameters
count = 0;
for i=1:k
    u = univariate{i};
    count = count + u.p+u.o+u.q+1;
end
garchParameters = parameters(1:count);
offset = count;
% R is next
count = k*(k-1)/2;
R = corr_ivech(parameters(offset + (1:count)));
offset = offset + count;
if l>0
    count = k*(k+1)/2;
    N = ivech(parameters(offset+(1:count)));
end
 
H = dcc_reconstruct_variance(garchParameters,univariate);
stdData = zeros(k,k,T);
stdDataAsym = zeros(k,k,T);
for t=1:T
    h = sqrt(H(t,:));
    stdData(:,:,t) = data(:,:,t)./(h'*h);
    stdDataAsym(:,:,t) = dataAsym(:,:,t)./(h'*h);
end
 
scales = diag(mean(stdData,3));
objs = zeros(T,1);
for j=1:k-1 % Cols
    for i=j+1:k % Rows
        scale = sqrt(scales(i)*scales(j));
        errors = squeeze(stdData(i,j,:))/scale - R(i,j);
        objs = objs + 0.5*(errors.^2);
    end
end
 
if l>0
    for j=1:k
        for i= j:k
            errors = squeeze(stdDataAsym(i,j,:)) - N(i,j);
            objs = objs + 0.5*(errors.^2);
        end
    end
end
 
obj = sum(objs);
 

  Auto-generated by MATLAB on 30-Jul-2021 03:15:52
 
% Import the file
newData1 = load('-mat', fileToRead1);
 
% Create new variables in the base workspace from those fields.
vars = fieldnames(newData1);
for i = 1:length(vars)
    assignin('base', vars{i}, newData1.(vars{i}));
end


BEKK


BEKK 
load('threeperiodsresiduals.mat');
 
%BEKK full
[parameters, ll, Ht, VCV, scores] = bekk(Durdata,[],1,0,1,'Full');
 
% transform Bekk parameters
[C,A,B] = bekk_parameter_transform(parameters,1,0,1,4,'Full');
 
% BEKK simulation
ii = [0,0,0,0];
ii(1,1) = 1;
ii(1,2) = 2;
ii(1,3) = 3;
ii(1,4) = 4;
[data, Ht] = bekk_simulate(433,4,parameters,1,0,1,'Full');
[T,k]=size(Durdata);
Ht=Ht;
var1 = squeeze(Ht(1,1,:));  % this is a column vector of variances
var2 = squeeze(Ht(2,2,:));
var3 = squeeze(Ht(3,3,:));
var4 = squeeze(Ht(4,4,:));
cov12 = squeeze(Ht(1,2,:));
cov13 = squeeze(Ht(1,3,:));
cov14 = squeeze(Ht(1,4,:));
cov23 = squeeze(Ht(2,3,:));
cov24 = squeeze(Ht(2,4,:));
cov34 = squeeze(Ht(3,4,:));
corr12 = cov12./sqrt(var1.*var2);
corr13 = cov13./sqrt(var1.*var3);
corr14 = cov14./sqrt(var1.*var4);
corr23 = cov23./sqrt(var2.*var3);
corr24 = cov24./sqrt(var2.*var4);
corr34 = cov34./sqrt(var3.*var4);
 
truecorr = ones(T,4);
step = 140;
steps = 1;
Tt = 1;
steps = steps + step;
uncondcorr12 = corrcoef(data(Tt:steps,ii));
truecorr(Tt,1) = uncondcorr12(1,2);
truecorr(Tt,2) = uncondcorr12(1,3);
truecorr(Tt,3) = uncondcorr12(1,4);
truecorr(Tt,4) = uncondcorr12(2,3);
truecorr(Tt,5) = uncondcorr12(2,4);
truecorr(Tt,6) = uncondcorr12(3,4);
Tt = Tt + 1;
while Tt <= T
    truecorr(Tt,1) = truecorr(Tt-1,1);
    truecorr(Tt,2) = truecorr(Tt-1,2);
    truecorr(Tt,3) = truecorr(Tt-1,3);
    truecorr(Tt,4) = truecorr(Tt-1,4);
    truecorr(Tt,5) = truecorr(Tt-1,5);
    truecorr(Tt,6) = truecorr(Tt-1,6);
    if Tt == steps
        steps = steps + step;
        uncondcorr12 = corrcoef(data(Tt:min(steps,T),ii));
        truecorr(Tt,1) = uncondcorr12(1,2);
        truecorr(Tt,2) = uncondcorr12(1,3);
        truecorr(Tt,3) = uncondcorr12(1,4);
        truecorr(Tt,4) = uncondcorr12(2,3);
        truecorr(Tt,5) = uncondcorr12(2,4);
        truecorr(Tt,6) = uncondcorr12(3,4);
    end
    Tt = Tt + 1;
end
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Rehypothecation Declined During the Recent Crisis
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Source: Company Reports, IMF Staff calculations.
Note: JPMorgan data post Nov'07 includes Bear Stearns and WAMU: market sources indicate that JPMorgan

may have benefited from being close to Fed: end-June’09 data shown in lieu of end-Nov. ‘08 data as latter was
not easy to disentangle.
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     Note: Dataset has changed since last saved.

Sorted by: 

                                                                                                                                                                                                                                           

TED             double  %10.0g                TED

OIS             double  %10.0g                OIS

ABCP            double  %10.0g                ABCP

SPRT            double  %10.0g                S&PRT

Date            int     %td..                 Date

                                                                                                                                                                                                                                           

variable name   type    format     label      variable label

              storage   display    value

                                                                                                                                                                                                                                           

 size:        88,570                          

 vars:             5                          

  obs:         2,605                          

Contains data


image98.emf
                delta:  1 day

        time variable:  bcdate, 05jan2005 to 23dec2015

. tsset bcdate

    Date not in %td format

    variable bcdate created; it contains business dates in %tbraw1 format

    business calendar file raw1.stbcal saved

  Notes:

                   237.6            approx. days/year

   included:     2,605              days

                   127.7            approx. days/year

    omitted:     1,400              days

                     0              in %tbraw1 units

                 16441              in %td units

     center:  05jan2005

                     0       2604   in %tbraw1 units

                 16441      20445   in %td units

      range:  05jan2005  23dec2015

    purpose:  

  Business calendar raw1 (format %tbraw1):

. bcal create raw1, from(Date) generate(bcdate) excludemissing(Date) replace

     Note: Dataset has changed since last saved.

Sorted by: 
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. 

99%       2.7082        4.48454       Kurtosis       16.11761

95%      1.56916        4.41922       Skewness       3.174976

90%       1.1176        4.31276       Variance       .2731991

75%       .49807        4.27031

                        Largest       Std. Dev.      .5226845

50%       .32958                      Mean           .5085394

25%       .22424         .11595       Sum of Wgt.       2,605

10%       .19537         .11445       Obs               2,605

 5%       .16909         .11218

 1%       .14586         .10914

      Percentiles      Smallest

                                                             

                             TED

99%      2.12725        3.64425       Kurtosis       24.28326

95%        .9535          3.542       Skewness       3.980868

90%         .735         3.5365       Variance       .1565338

75%       .31075          3.453

                        Largest       Std. Dev.      .3956435

50%        .1451                      Mean           .2931018

25%         .102          .0367       Sum of Wgt.       2,605

10%        .0775         .03275       Obs               2,605

 5%          .07         .02188

 1%       .05625         .01913

      Percentiles      Smallest

                                                             

                             OIS

99%      2.80411        4.30579       Kurtosis       13.63589

95%      1.65735        4.28276       Skewness       2.986677

90%       1.1917        4.15672       Variance       .3224435

75%       .45569        4.09531

                        Largest       Std. Dev.      .5678411

50%       .28257                      Mean            .468249

25%       .15197         .05254       Sum of Wgt.       2,605

10%       .11448         .04843       Obs               2,605

 5%       .09833          .0266

 1%       .07221         .00989

      Percentiles      Smallest

                                                             

                            ABCP

99%      .035849        .109572       Kurtosis       13.30972

95%     .0173937       .1024573       Skewness       -.353498

90%     .0124222       .0683664       Variance       .0001667

75%     .0059163       .0627143

                        Largest       Std. Dev.      .0129101

50%     .0007275                      Mean           .0002121

25%    -.0047357       -.079224       Sum of Wgt.       2,605

10%    -.0127298      -.0920024       Obs               2,605

 5%    -.0195793      -.0935366

 1%    -.0392793      -.0946951

      Percentiles      Smallest

                                                             

                            S&PRT

. summarize SPRT ABCP OIS  TED, detail
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99%       .65122         .73884       Kurtosis       2.694482

95%       .59888         .70094       Skewness       .4394924

90%       .56536         .68226       Variance       .0087869

75%       .48037         .67107

                        Largest       Std. Dev.      .0937384

50%       .42018                      Mean           .4272479

25%       .35381         .26305       Sum of Wgt.         591

10%       .30637         .25816       Obs                 591

 5%       .28661         .25395

 1%       .26566         .23582

      Percentiles      Smallest

                                                             

                             TED

99%         .129           .163       Kurtosis       4.561624

95%         .111         .14538       Skewness       .2724828

90%         .104           .141       Variance       .0002904

75%        .0935            .14

                        Largest       Std. Dev.      .0170409

50%         .082                      Mean           .0828951

25%       .07313          .0367       Sum of Wgt.         591

10%       .06238         .03275       Obs                 591

 5%         .057         .02188

 1%       .03813         .01913

      Percentiles      Smallest

                                                             

                             OIS

99%       .60122         .67884       Kurtosis       2.642826

95%       .53767         .64094       Skewness       .4119041

90%       .50811         .62226       Variance       .0095026

75%       .42537         .61107

                        Largest       Std. Dev.      .0974812

50%        .3558                      Mean           .3623623

25%       .28357         .17816       Sum of Wgt.         591

10%       .24112          .1665       Obs                 591

 5%       .22312         .16395

 1%       .18078         .15582

      Percentiles      Smallest

                                                             

                            ABCP

99%     .0166378       .0213358       Kurtosis       4.790765

95%     .0103425       .0210128       Skewness      -.3018117

90%     .0084247        .019544       Variance       .0000421

75%      .004079        .018385

                        Largest       Std. Dev.      .0064912

50%     .0008413                      Mean            .000435

25%    -.0034108      -.0179601       Sum of Wgt.         591

10%    -.0077657      -.0184963       Obs                 591

 5%    -.0102485      -.0205786

 1%    -.0168618      -.0353427

      Percentiles      Smallest

                                                             

                            S&PRT

. summarize SPRT ABCP OIS TED if bcdate>=bofd("raw1", td(05jan2005))&bcdate<=bofd("raw1", td(01jun2007)), detail

. 

. ** Summary Statistics for pre Crisis ****


image8.jpeg
Pledged Collateral-European Banks (plus Nomura)

E III I III lill
= .Il o0 Ao A0an AR NN s e

Deutsche Credit  UBS  Barcays  RBS  HSBC Nomura
Gonete P S o

Pledged Collateral--US Banks
InUSD billion

1200

: I | |
E A 0 ol
o | il (AEEN

Bearstearns lehman  Morgan  Goldman  Merril/BoA
stnley  Sach

3

pworgan  Citgroup

InUSD bilion

000
- III III
o

European Banks

g




image101.emf
99%      4.19703        4.48454       Kurtosis       6.668998

95%      2.86234        4.41922       Skewness       1.697035

90%      2.17674        4.31276       Variance       .5002361

75%      1.69008        4.27031

                        Largest       Std. Dev.      .7072737

50%      1.25602                      Mean           1.436746

25%       .99097         .50048       Sum of Wgt.         433

10%       .79014         .49432       Obs                 433

 5%       .58002         .49017

 1%        .5046         .48473

      Percentiles      Smallest

                                                             

                             TED

99%        3.445        3.64425       Kurtosis       7.412217

95%       2.5105          3.542       Skewness       1.931154

90%        1.758         3.5365       Variance       .4196496

75%       .96888          3.453

                        Largest       Std. Dev.      .6478036

50%       .73675                      Mean           .8875317

25%         .597          .0755       Sum of Wgt.         433

10%         .134           .075       Obs                 433

 5%        .0805          .0745

 1%        .0765          .0685

      Percentiles      Smallest

                                                             

                             OIS

99%      4.06703        4.30579       Kurtosis       4.626362

95%       2.8657        4.28276       Skewness       1.245856

90%      2.53288        4.15672       Variance       .5869257

75%      1.86397        4.09531

                        Largest       Std. Dev.      .7661108

50%      1.29881                      Mean           1.479281

25%       .93195         .46048       Sum of Wgt.         433

10%       .66889         .45432       Obs                 433

 5%          .55         .44473

 1%        .4646         .44017

      Percentiles      Smallest

                                                             

                            ABCP

99%     .0527853        .109572       Kurtosis       7.777893

95%     .0287896       .1024573       Skewness      -.1687018

90%     .0188757       .0627143       Variance       .0004774

75%     .0075331        .061328

                        Largest       Std. Dev.      .0218501

50%     .0000531                      Mean          -.0018942

25%    -.0115678       -.079224       Sum of Wgt.         433

10%    -.0259493      -.0920024       Obs                 433

 5%    -.0353154      -.0935366

 1%    -.0694818      -.0946951

      Percentiles      Smallest

                                                             

                            S&PRT

. summarize SPRT ABCP OIS TED if bcdate>=bofd("raw1", td(04jun2007))&bcdate<=bofd("raw1", td(09mar2009)), detail

. 

. ** Summary Statistics for during Crisis ****
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99%       .98358        1.13342       Kurtosis       14.73153

95%       .52469        1.12823       Skewness       3.043776

90%       .42044        1.11381       Variance       .0214903

75%       .32097        1.11332

                        Largest       Std. Dev.      .1465958

50%        .2365                      Mean           .2847127

25%       .20935         .11595       Sum of Wgt.       1,581

10%       .17517         .11445       Obs               1,581

 5%       .16147         .11218

 1%       .13564         .10914

      Percentiles      Smallest

                                                             

                             TED

99%       .94394        1.07763       Kurtosis       14.76857

95%       .46025        1.07225       Skewness       3.095665

90%       .34856          1.072       Variance       .0226744

75%       .25583         1.0675

                        Largest       Std. Dev.      .1505803

50%        .1519                      Mean           .2088791

25%       .13188         .06188       Sum of Wgt.       1,581

10%       .11055         .06119       Obs               1,581

 5%       .10125           .061

 1%       .08041         .05963

      Percentiles      Smallest

                                                             

                             OIS

99%       .99796        1.33787       Kurtosis       14.68539

95%       .49738        1.33207       Skewness       2.740783

90%       .41307         1.3235       Variance       .0267159

75%        .3036        1.30306

                        Largest       Std. Dev.      .1634499

50%       .17003                      Mean           .2309322

25%       .12675         .05254       Sum of Wgt.       1,581

10%       .10313         .04843       Obs               1,581

 5%       .09105          .0266

 1%        .0638         .00989

      Percentiles      Smallest

                                                             

                            ABCP

99%     .0308501       .0683664       Kurtosis       7.132717

95%     .0173109       .0617187       Skewness      -.0791181

90%     .0127499       .0487555       Variance       .0001269

75%     .0061675       .0463174

                        Largest       Std. Dev.      .0112667

50%     .0007326                      Mean           .0007056

25%    -.0042562      -.0451568       Sum of Wgt.       1,581

10%    -.0118808      -.0456186       Obs               1,581

 5%    -.0175856      -.0490016

 1%    -.0316358      -.0689583

      Percentiles      Smallest

                                                             

                            S&PRT

. summarize SPRT ABCP OIS TED if bcdate>=bofd("raw1", td(10mar2009))&bcdate<=bofd("raw1", td(23dec2015)), detail

. 

. ** Summary Statistics for post Crisis ****
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         TED        2,605     0.0000        0.0000           .              .

         OIS        2,605     0.0000        0.0000           .              .

        ABCP        2,605     0.0000        0.0000           .              .

        SPRT        2,605     0.0000        0.0000           .         0.0000

                                                                             

    Variable          Obs  Pr(Skewness)  Pr(Kurtosis) adj chi2(2)   Prob>chi2

                                                                 joint       

                    Skewness/Kurtosis tests for Normality

. sktest SPRT ABCP OIS TED
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      is valid for 4<=n<=2000.

Note: The normal approximation to the sampling distribution of W'

         TED        2,605    0.62176    570.235    16.296    0.00000

         OIS        2,605    0.55436    671.850    16.717    0.00000

        ABCP        2,605    0.62714    562.127    16.260    0.00000

        SPRT        2,605    0.88313    176.197    13.280    0.00000

                                                                    

    Variable          Obs       W           V         z       Prob>z

                   Shapiro-Wilk W test for normal data

. swilk SPRT ABCP OIS TED
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         TED       2,605    0.62133    605.750    15.592    0.00001

         OIS       2,605    0.55379    713.790    15.991    0.00001

        ABCP       2,605    0.62684    596.944    15.556    0.00001

        SPRT       2,605    0.88144    189.664    12.766    0.00001

                                                                   

    Variable         Obs       W'          V'        z       Prob>z

                  Shapiro-Francia W' test for normal data

. sfrancia SPRT ABCP OIS TED
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MacKinnon approximate p-value for Z(t) = 0.0000

                                                                              

 Z(t)            -56.654            -3.430            -2.860            -2.570

 Z(rho)        -2679.047           -20.700           -14.100           -11.300

                                                                              

               Statistic           Value             Value             Value

                  Test         1% Critical       5% Critical      10% Critical

                                          Interpolated Dickey-Fuller          

                                                   Newey-West lags =         8

Phillips-Perron test for unit root                 Number of obs   =      2604
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MacKinnon approximate p-value for Z(t) = 0.0172

                                                                              

 Z(t)             -3.252            -3.430            -2.860            -2.570

 Z(rho)          -21.066           -20.700           -14.100           -11.300

                                                                              

               Statistic           Value             Value             Value

                  Test         1% Critical       5% Critical      10% Critical

                                          Interpolated Dickey-Fuller          

                                                   Newey-West lags =         8

Phillips-Perron test for unit root                 Number of obs   =      2604

. pperron TED

MacKinnon approximate p-value for Z(t) = 0.0337

                                                                              

 Z(t)             -3.013            -3.430            -2.860            -2.570

 Z(rho)          -18.035           -20.700           -14.100           -11.300

                                                                              

               Statistic           Value             Value             Value

                  Test         1% Critical       5% Critical      10% Critical

                                          Interpolated Dickey-Fuller          

                                                   Newey-West lags =         8

Phillips-Perron test for unit root                 Number of obs   =      2604

. pperron OIS

MacKinnon approximate p-value for Z(t) = 0.0051

                                                                              

 Z(t)             -3.636            -3.430            -2.860            -2.570

 Z(rho)          -26.237           -20.700           -14.100           -11.300

                                                                              

               Statistic           Value             Value             Value

                  Test         1% Critical       5% Critical      10% Critical

                                          Interpolated Dickey-Fuller          

                                                   Newey-West lags =         8

Phillips-Perron test for unit root                 Number of obs   =      2604

. pperron ABCP

MacKinnon approximate p-value for Z(t) = 0.0000

                                                                              

 Z(t)            -56.654            -3.430            -2.860            -2.570

 Z(rho)        -2679.047           -20.700           -14.100           -11.300

                                                                              

               Statistic           Value             Value             Value

                  Test         1% Critical       5% Critical      10% Critical

                                          Interpolated Dickey-Fuller          

                                                   Newey-West lags =         8

Phillips-Perron test for unit root                 Number of obs   =      2604

. pperron SPRT
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MacKinnon approximate p-value for Z(t) = 0.0000

                                                                              

 Z(t)            -31.224            -3.960            -3.410            -3.120

                                                                              

               Statistic           Value             Value             Value

                  Test         1% Critical       5% Critical      10% Critical

                                          Interpolated Dickey-Fuller          

Augmented Dickey-Fuller test for unit root         Number of obs   =      2602

. dfuller SPRT, trend lags(2)

. 

. *** include drift, include trend and include constant in regression ***

. 

. **** Case  4 ****

. 

p-value for Z(t) = 0.0000

                                                                              

 Z(t)            -31.216            -2.328            -1.645            -1.282

                                                                              

               Statistic           Value             Value             Value

                  Test         1% Critical       5% Critical      10% Critical

                                           Z(t) has t-distribution            

Augmented Dickey-Fuller test for unit root         Number of obs   =      2602

. dfuller SPRT, drift lags(2)

. 

. *** include drift, no trent ***

. 

. **** Case  3 ****

. 

MacKinnon approximate p-value for Z(t) = 0.0000

                                                                              

 Z(t)            -31.216            -3.430            -2.860            -2.570

                                                                              

               Statistic           Value             Value             Value

                  Test         1% Critical       5% Critical      10% Critical

                                          Interpolated Dickey-Fuller          

Augmented Dickey-Fuller test for unit root         Number of obs   =      2602

. dfuller SPRT, lags(2)

. 

. ***** Random walk without drift, but a constant term included *******

. 

. **** Case  2 ****

. 

 Z(t)            -31.201            -2.580            -1.950            -1.620

                                                                              

               Statistic           Value             Value             Value

                  Test         1% Critical       5% Critical      10% Critical

                                          Interpolated Dickey-Fuller          

Augmented Dickey-Fuller test for unit root         Number of obs   =      2602

. dfuller SPRT, noconstant lags(2)

. 

. *** no constant, no trent ***

. 

. **** Case  1 ****

. 

. ******     Augmented dicky fuller unit root test   *****

. 

.   *****       Stationarity test        *******
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MacKinnon approximate p-value for Z(t) = 0.0187

                                                                              

 Z(t)             -3.760            -3.960            -3.410            -3.120

                                                                              

               Statistic           Value             Value             Value

                  Test         1% Critical       5% Critical      10% Critical

                                          Interpolated Dickey-Fuller          

Augmented Dickey-Fuller test for unit root         Number of obs   =      2602

. dfuller ABCP, trend lags(2)

. 

. *** include drift, include trend and include constant in regression ***

. 

. **** Case  4 ****

. 

p-value for Z(t) = 0.0003

                                                                              

 Z(t)             -3.476            -2.328            -1.645            -1.282

                                                                              

               Statistic           Value             Value             Value

                  Test         1% Critical       5% Critical      10% Critical

                                           Z(t) has t-distribution            

Augmented Dickey-Fuller test for unit root         Number of obs   =      2602

. dfuller ABCP, drift lags(2)

. 

. *** include drift, no trent ***

. 

. **** Case  3 ****

. 

MacKinnon approximate p-value for Z(t) = 0.0086

                                                                              

 Z(t)             -3.476            -3.430            -2.860            -2.570

                                                                              

               Statistic           Value             Value             Value

                  Test         1% Critical       5% Critical      10% Critical

                                          Interpolated Dickey-Fuller          

Augmented Dickey-Fuller test for unit root         Number of obs   =      2602

. dfuller ABCP, lags(2)

. 

. ***** Random walk without drift, but a constant term included *******

. 

. **** Case  2 ****

. 

 Z(t)             -2.645            -2.580            -1.950            -1.620

                                                                              

               Statistic           Value             Value             Value

                  Test         1% Critical       5% Critical      10% Critical

                                          Interpolated Dickey-Fuller          

Augmented Dickey-Fuller test for unit root         Number of obs   =      2602

. dfuller ABCP, noconstant lags(2)

. 

. *** no constant, no trent ***

. 

. **** Case  1 ****

. 

. *****   ABCP   ******
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MacKinnon approximate p-value for Z(t) = 0.1915

                                                                              

 Z(t)             -2.815            -3.960            -3.410            -3.120

                                                                              

               Statistic           Value             Value             Value

                  Test         1% Critical       5% Critical      10% Critical

                                          Interpolated Dickey-Fuller          

Augmented Dickey-Fuller test for unit root         Number of obs   =      2602

. dfuller OIS, trend lags(2)

. 

. *** include drift, include trend and include constant in regression ***

. 

. **** Case  4 ****

. 

p-value for Z(t) = 0.0028

                                                                              

 Z(t)             -2.773            -2.328            -1.645            -1.282

                                                                              

               Statistic           Value             Value             Value

                  Test         1% Critical       5% Critical      10% Critical

                                           Z(t) has t-distribution            

Augmented Dickey-Fuller test for unit root         Number of obs   =      2602

. dfuller OIS, drift lags(2)

. 

. *** include drift, no trent ***

. 

. **** Case  3 ****

. 

MacKinnon approximate p-value for Z(t) = 0.0622

                                                                              

 Z(t)             -2.773            -3.430            -2.860            -2.570

                                                                              

               Statistic           Value             Value             Value

                  Test         1% Critical       5% Critical      10% Critical

                                          Interpolated Dickey-Fuller          

Augmented Dickey-Fuller test for unit root         Number of obs   =      2602

. dfuller OIS, lags(2)

. 

. ***** Random walk without drift, but a constant term included *******

. 

. **** Case  2 ****

. 

 Z(t)             -2.188            -2.580            -1.950            -1.620

                                                                              

               Statistic           Value             Value             Value

                  Test         1% Critical       5% Critical      10% Critical

                                          Interpolated Dickey-Fuller          

Augmented Dickey-Fuller test for unit root         Number of obs   =      2602

. dfuller OIS, noconstant lags(2)

. 

. *** no constant, no trent ***

. 

. **** Case  1 ****

. 

. ***** OIS  ******
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Sources: 10K reports and equivalent financial statements of the banks listed (as well as discussions with the
banks’ treasury departments, if needed). Also see Singh and Aitken (2010).
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MacKinnon approximate p-value for Z(t) = 0.0495

                                                                              

 Z(t)             -3.414            -3.960            -3.410            -3.120

                                                                              

               Statistic           Value             Value             Value

                  Test         1% Critical       5% Critical      10% Critical

                                          Interpolated Dickey-Fuller          

Augmented Dickey-Fuller test for unit root         Number of obs   =      2602

. dfuller TED, trend lags(2)

. 

. *** include drift, include trend and include constant in regression ***

. 

. **** Case  4 ****

. 

p-value for Z(t) = 0.0008

                                                                              

 Z(t)             -3.163            -2.328            -1.645            -1.282

                                                                              

               Statistic           Value             Value             Value

                  Test         1% Critical       5% Critical      10% Critical

                                           Z(t) has t-distribution            

Augmented Dickey-Fuller test for unit root         Number of obs   =      2602

. dfuller TED, drift lags(2)

. 

. *** include drift, no trent ***

. 

. **** Case  3 ****

. 

MacKinnon approximate p-value for Z(t) = 0.0222

                                                                              

 Z(t)             -3.163            -3.430            -2.860            -2.570

                                                                              

               Statistic           Value             Value             Value

                  Test         1% Critical       5% Critical      10% Critical

                                          Interpolated Dickey-Fuller          

Augmented Dickey-Fuller test for unit root         Number of obs   =      2602

. dfuller TED, lags(2)

. 

. ***** Random walk without drift, but a constant term included *******

. 

. **** Case  2 ****

. 

 Z(t)             -2.239            -2.580            -1.950            -1.620

                                                                              

               Statistic           Value             Value             Value

                  Test         1% Critical       5% Critical      10% Critical

                                          Interpolated Dickey-Fuller          

Augmented Dickey-Fuller test for unit root         Number of obs   =      2602

. dfuller TED, noconstant lags(2)

. 

. *** no constant, no trent ***

. 

. **** Case  1 ****

. 

. ****** TED *****
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40       0.0235   0.0514   193.28  0.0000                                      

39       0.0605   0.0383   191.81  0.0000                                      

38      -0.0014   0.0138   182.12  0.0000                                      

37       0.0269   0.0568   182.11  0.0000                                      

36       0.0511   0.0273   180.21  0.0000                                      

35       0.0170   0.0119   173.31  0.0000                                      

34      -0.0581  -0.0470   172.54  0.0000                                      

33       0.0097   0.0064   163.63  0.0000                                      

32      -0.0334  -0.0319   163.38  0.0000                                      

31       0.0158   0.0049   160.43  0.0000                                      

30       0.0185   0.0223   159.77  0.0000                                      

29      -0.0443  -0.0171   158.87  0.0000                                      

28       0.0855   0.0745   153.71  0.0000                                      

27       0.0048  -0.0007   134.44  0.0000                                      

26      -0.0530  -0.0426   134.38  0.0000                                      

25       0.0013  -0.0123   126.98  0.0000                                      

24      -0.0243  -0.0141   126.98  0.0000                                      

23       0.0547   0.0672   125.43  0.0000                                      

22       0.0592   0.0477   117.56  0.0000                                      

21      -0.0673  -0.0620   108.35  0.0000                                      

20       0.0116   0.0071   96.462  0.0000                                      

19       0.0394   0.0243   96.109  0.0000                                      

18      -0.0925  -0.0811   92.024  0.0000                                      

17       0.0099   0.0145   69.585  0.0000                                      

16       0.0614   0.0534   69.328  0.0000                                      

15      -0.0338  -0.0317   59.449  0.0000                                      

14      -0.0065  -0.0063   56.459  0.0000                                      

13       0.0048   0.0119   56.349  0.0000                                      

12       0.0158   0.0108   56.288  0.0000                                      

11       0.0115   0.0014    55.63  0.0000                                      

10      -0.0459  -0.0399   55.285  0.0000                                      

9        0.0063   0.0118   49.783  0.0000                                      

8        0.0618   0.0508   49.678  0.0000                                      

7       -0.0566  -0.0615   39.702  0.0000                                      

6       -0.0025  -0.0095   31.321  0.0000                                      

5       -0.0289  -0.0303   31.305  0.0000                                      

4       -0.0089  -0.0095   29.118  0.0000                                      

3        0.0128   0.0036   28.913  0.0000                                      

2       -0.0427  -0.0523   28.482  0.0000                                      

1       -0.0954  -0.0954   23.723  0.0000                                      

                                                                               

 LAG       AC       PAC      Q     Prob>Q  [Autocorrelation]  [Partial Autocor]

                                          -1       0       1 -1       0       1

. corrgram SPRT
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       _cons     .0002121   .0002529     0.84   0.402    -.0002839    .0007081

                                                                              

        SPRT        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total     .43400779     2,604   .00016667   Root MSE        =    .01291

                                                   Adj R-squared   =    0.0000

    Residual     .43400779     2,604   .00016667   R-squared       =    0.0000

       Model             0         0           .   Prob > F        =         .

                                                   F(0, 2604)      =      0.00

      Source         SS           df       MS      Number of obs   =     2,605

. regress SPRT

. 

. ******** Heteroscedasticity ******
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         H0: no ARCH effects      vs.  H1: ARCH(p) disturbance

                                                                           

      10             2482.979              10                   0.0000

       5             2484.443               5                   0.0000

       1             2485.920               1                   0.0000

                                                                           

    lags(p)             chi2               df                 Prob > chi2

                                                                           

LM test for autoregressive conditional heteroskedasticity (ARCH)

. estat archlm, lags(1 5 10)

. 

                                                                              

       _cons      .468249   .0111256    42.09   0.000     .4464331    .4900649

                                                                              

        ABCP        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    839.642907     2,604  .322443513   Root MSE        =    .56784

                                                   Adj R-squared   =    0.0000

    Residual    839.642907     2,604  .322443513   R-squared       =    0.0000

       Model             0         0           .   Prob > F        =         .

                                                   F(0, 2604)      =      0.00

      Source         SS           df       MS      Number of obs   =     2,605

. regress ABCP

. 

         H0: no ARCH effects      vs.  H1: ARCH(p) disturbance

                                                                           

      10              721.191              10                   0.0000

       5              613.581               5                   0.0000

       1               98.680               1                   0.0000

                                                                           

    lags(p)             chi2               df                 Prob > chi2

                                                                           

LM test for autoregressive conditional heteroskedasticity (ARCH)

. estat archlm, lags(1 5 10)

. 

. predict residuals, residuals
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         H0: no ARCH effects      vs.  H1: ARCH(p) disturbance

                                                                           

      10             2517.049              10                   0.0000

       5             2518.983               5                   0.0000

       1             2514.108               1                   0.0000

                                                                           

    lags(p)             chi2               df                 Prob > chi2

                                                                           

LM test for autoregressive conditional heteroskedasticity (ARCH)

. estat archlm, lags(1 5 10)

. 

                                                                              

       _cons     .5085394   .0102408    49.66   0.000     .4884584    .5286204

                                                                              

         TED        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    711.410465     2,604  .273199103   Root MSE        =    .52268

                                                   Adj R-squared   =    0.0000

    Residual    711.410465     2,604  .273199103   R-squared       =    0.0000

       Model             0         0           .   Prob > F        =         .

                                                   F(0, 2604)      =      0.00

      Source         SS           df       MS      Number of obs   =     2,605

. regress TED

. 

         H0: no ARCH effects      vs.  H1: ARCH(p) disturbance

                                                                           

      10             2567.394              10                   0.0000

       5             2570.275               5                   0.0000

       1             2560.096               1                   0.0000

                                                                           

    lags(p)             chi2               df                 Prob > chi2

                                                                           

LM test for autoregressive conditional heteroskedasticity (ARCH)

. estat archlm, lags(1 5 10)

. 

                                                                              

       _cons     .2931018   .0077518    37.81   0.000     .2779015     .308302

                                                                              

         OIS        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    407.613904     2,604  .156533757   Root MSE        =    .39564

                                                   Adj R-squared   =    0.0000

    Residual    407.613904     2,604  .156533757   R-squared       =    0.0000

       Model             0         0           .   Prob > F        =         .

                                                   F(0, 2604)      =      0.00

      Source         SS           df       MS      Number of obs   =     2,605

. regress OIS
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      confidence interval is truncated at zero.

Note: The test of the variance against zero is one sided, and the two-sided

                                                                              

      /sigma     .0129076   .0000724   178.16   0.000     .0127656    .0130496

                                                                              

       _cons     .0002121   .0002542     0.83   0.404    -.0002861    .0007103

SPRT          

                                                                              

        SPRT        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                               OPG

                                                                              

Log likelihood =   7635.26                      Prob > chi2       =          .

                                                Wald chi2(.)      =          .

Sample:  05jan2005 - 23dec2015                  Number of obs     =       2605

ARIMA regression

Iteration 1:   log likelihood =  7635.2598  

Iteration 0:   log likelihood =  7635.2598  

(setting optimization to BHHH)

. arima SPRT

. ******   ARMA Filter ******


image117.emf
 Prob > chi2(40)           =     0.0000

 Portmanteau (Q) statistic =   193.2804

                                       

Portmanteau test for white noise

. wntestq resSParma00
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      confidence interval is truncated at zero.

Note: The test of the variance against zero is one sided, and the two-sided

                                                                              

      /sigma     .0128426   .0000739   173.70   0.000     .0126977    .0129876

                                                                              

         L1.    -.1050453   .0112459    -9.34   0.000    -.1270868   -.0830039

          ma  

ARMA          

                                                                              

       _cons     .0002116   .0002352     0.90   0.368    -.0002494    .0006726

SPRT          

                                                                              

        SPRT        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                               OPG

                                                                              

Log likelihood =  7648.389                      Prob > chi2       =     0.0000

                                                Wald chi2(1)      =      87.25

Sample:  05jan2005 - 23dec2015                  Number of obs     =       2605

ARIMA regression
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      confidence interval is truncated at zero.

Note: The test of the variance against zero is one sided, and the two-sided

                                                                              

      /sigma     .0128488   .0000726   177.05   0.000     .0127066     .012991

                                                                              

         L1.    -.0953721   .0113086    -8.43   0.000    -.1175366   -.0732077

          ar  

ARMA          

                                                                              

       _cons     .0002119   .0002376     0.89   0.372    -.0002537    .0006775

SPRT          

                                                                              

        SPRT        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                               OPG

                                                                              

Log likelihood =  7647.162                      Prob > chi2       =     0.0000

                                                Wald chi2(1)      =      71.13

Sample:  05jan2005 - 23dec2015                  Number of obs     =       2605

ARIMA regression
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      confidence interval is truncated at zero.

Note: The test of the variance against zero is one sided, and the two-sided

                                                                              

      /sigma     .0128324   .0000772   166.29   0.000     .0126811    .0129836

                                                                              

         L1.    -.4811405    .066094    -7.28   0.000    -.6106823   -.3515987

          ma  

              

         L1.     .3808523   .0729177     5.22   0.000     .2379362    .5237684

          ar  

ARMA          

                                                                              

       _cons     .0002113    .000229     0.92   0.356    -.0002376    .0006602

SPRT          

                                                                              

        SPRT        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                               OPG

                                                                              

Log likelihood =   7650.49                      Prob > chi2       =     0.0000

                                                Wald chi2(2)      =     284.01

Sample:  05jan2005 - 23dec2015                  Number of obs     =       2605

ARIMA regression
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      confidence interval is truncated at zero.

Note: The test of the variance against zero is one sided, and the two-sided

                                                                              

      /sigma      .012831   .0000795   161.47   0.000     .0126753    .0129868

                                                                              

         L2.    -.0522994   .0086362    -6.06   0.000    -.0692261   -.0353727

         L1.     -.100373   .0114547    -8.76   0.000    -.1228238   -.0779222

          ar  

ARMA          

                                                                              

       _cons     .0002116   .0002287     0.93   0.355    -.0002365    .0006598

SPRT          

                                                                              

        SPRT        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                               OPG

                                                                              

Log likelihood =  7650.729                      Prob > chi2       =     0.0000

                                                Wald chi2(2)      =     103.66

Sample:  05jan2005 - 23dec2015                  Number of obs     =       2605

ARIMA regression
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      confidence interval is truncated at zero.

Note: The test of the variance against zero is one sided, and the two-sided

                                                                              

      /sigma     .0128309   .0000796   161.21   0.000     .0126749    .0129869

                                                                              

         L1.     .0853036   .2022948     0.42   0.673    -.3111869    .4817941

          ma  

              

         L2.    -.0603853   .0214382    -2.82   0.005    -.1024033   -.0183673

         L1.    -.1854384   .2016233    -0.92   0.358    -.5806128     .209736

          ar  

ARMA          

                                                                              

       _cons     .0002112   .0002312     0.91   0.361     -.000242    .0006644

SPRT          

                                                                              

        SPRT        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                               OPG

                                                                              

Log likelihood =  7650.752                      Prob > chi2       =     0.0000

                                                Wald chi2(3)      =      94.92

Sample:  05jan2005 - 23dec2015                  Number of obs     =       2605
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      confidence interval is truncated at zero.

Note: The test of the variance against zero is one sided, and the two-sided

                                                                              

      /sigma     .0128308   .0000798   160.82   0.000     .0126745    .0129872

                                                                              

         L2.    -.0454438   .1818926    -0.25   0.803    -.4019466    .3110591

         L1.     .0957481   .3729082     0.26   0.797    -.6351387    .8266348

          ma  

              

         L2.    -.0168395   .1524566    -0.11   0.912     -.315649      .28197

         L1.    -.1960508   .3712963    -0.53   0.597    -.9237782    .5316766

          ar  

ARMA          

                                                                              

       _cons     .0002115   .0002359     0.90   0.370    -.0002508    .0006739

SPRT          

                                                                              

        SPRT        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                               OPG

                                                                              

Log likelihood =  7650.766                      Prob > chi2       =     0.0000

                                                Wald chi2(4)      =      95.16

Sample:  05jan2005 - 23dec2015                  Number of obs     =       2605
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      confidence interval is truncated at zero.

Note: The test of the variance against zero is one sided, and the two-sided

                                                                              

      /sigma     .0128314   .0000793   161.85   0.000      .012676    .0129868

                                                                              

         L2.    -.0426815   .0085393    -5.00   0.000    -.0594182   -.0259447

         L1.    -.1000525   .0113952    -8.78   0.000    -.1223867   -.0777183

          ma  

ARMA          

                                                                              

       _cons     .0002113   .0002287     0.92   0.355    -.0002368    .0006595

SPRT          

                                                                              

        SPRT        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                               OPG

                                                                              

Log likelihood =  7650.664                      Prob > chi2       =     0.0000

                                                Wald chi2(2)      =     124.14

Sample:  05jan2005 - 23dec2015                  Number of obs     =       2605


image125.emf
 Prob > chi2(40)           =     0.0000

 Portmanteau (Q) statistic =   147.3461

                                       

Portmanteau test for white noise

. wntestq resSParma02
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      confidence interval is truncated at zero.

Note: The test of the variance against zero is one sided, and the two-sided

                                                                              

      /sigma     .0128309   .0000797   160.93   0.000     .0126747    .0129872

                                                                              

         L2.    -.0624946   .0257492    -2.43   0.015    -.1129621   -.0120271

         L1.     .0955679   .2406847     0.40   0.691    -.3761655    .5673013

          ma  

              

         L1.    -.1958387   .2409211    -0.81   0.416    -.6680355    .2763581

          ar  

ARMA          

                                                                              

       _cons     .0002114   .0002307     0.92   0.359    -.0002407    .0006636

SPRT          

                                                                              

        SPRT        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                               OPG

                                                                              

Log likelihood =  7650.764                      Prob > chi2       =     0.0000

                                                Wald chi2(3)      =      95.85

Sample:  05jan2005 - 23dec2015                  Number of obs     =       2605
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 Prob > chi2(40)           =     0.0000

 Portmanteau (Q) statistic =   145.8404

                                       

Portmanteau test for white noise

. wntestq resSParma12


image128.emf
               Note: N=Obs used in calculating BIC; see [R] BIC note.

                                                                             

    SParma22        2,605         .   7650.766       6   -15289.53  -15254.34

    SParma21        2,605         .   7650.752       5    -15291.5  -15262.18

    SParma20        2,605         .   7650.729       4   -15293.46     -15270

    SParma12        2,605         .   7650.764       5   -15291.53   -15262.2

    SParma11        2,605         .    7650.49       4   -15292.98  -15269.52

    SParma10        2,605         .   7647.162       3   -15288.32  -15270.73

    SParma02        2,605         .   7650.664       4   -15293.33  -15269.87

    SParma01        2,605         .   7648.389       3   -15290.78  -15273.18

    SParma00        2,605         .    7635.26       2   -15266.52  -15254.79

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             

Akaike's information criterion and Bayesian information criterion


image129.emf
               Note: N=Obs used in calculating BIC; see [R] BIC note.

                                                                             

  ABCParma22        2,605         .   2760.488       6   -5508.975  -5473.784

  ABCParma21        2,605         .   2758.536       5   -5507.073  -5477.747

  ABCParma20        2,605         .   2758.533       4   -5509.066  -5485.606

  ABCParma12        2,605         .   2758.535       5    -5507.07  -5477.744

  ABCParma11        2,605         .   2758.496       4   -5508.992  -5485.531

  ABCParma10        2,605         .   2749.048       3   -5492.095    -5474.5

  ABCParma02        2,605         .   357.0897       4   -706.1794  -682.7186

  ABCParma01        2,605         .   -688.987       3    1383.974    1401.57

  ABCParma00        2,605         .   -2221.63       2    4447.259    4458.99

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             

Akaike's information criterion and Bayesian information criterion


image130.emf
               Note: N=Obs used in calculating BIC; see [R] BIC note.

                                                                             

   OISarma22        2,605         .   5340.762       6   -10669.52  -10634.33

   OISarma21        2,605         .   5339.813       5   -10669.63   -10640.3

   OISarma20        2,605         .   5281.162       4   -10554.32  -10530.86

   OISarma12        2,605         .   5293.883       5   -10577.77  -10548.44

   OISarma11        2,605         .   5274.908       4   -10541.82  -10518.36

   OISarma10        2,605         .   5250.504       3   -10495.01  -10477.41

   OISarma02        2,605         .   1637.454       4   -3266.907  -3243.447

   OISarma01        2,605         .   389.7942       3   -773.5885  -755.9929

   OISarma00        2,605         .   -1280.37       2     2564.74    2576.47

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             

Akaike's information criterion and Bayesian information criterion


image11.png
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               Note: N=Obs used in calculating BIC; see [R] BIC note.

                                                                             

   TEDarma22        2,605         .   3893.835       6    -7775.67  -7740.479

   TEDarma21        2,605         .   3890.336       5   -7770.673  -7741.347

   TEDarma20        2,605         .   3890.307       4   -7772.614  -7749.153

   TEDarma12        2,605         .   3890.425       5    -7770.85  -7741.524

   TEDarma11        2,605         .   3889.561       4   -7771.122  -7747.661

   TEDarma10        2,605         .   3854.409       3   -7702.818  -7685.223

   TEDarma02        2,605         .   859.6924       4   -1711.385  -1687.924

   TEDarma01        2,605         .   -377.214       3     760.428   778.0235

   TEDarma00        2,605         .   -2005.77       2     4015.54   4027.271

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             

Akaike's information criterion and Bayesian information criterion
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. ******** GARCH with ARMA20 ******

. ***** the arma model we selected for garch: SP ((2,0) ABCP (2,0) OIS (2,1) TED (2,2) *********


image133.emf
               Note: N=Obs used in calculating BIC; see [R] BIC note.

                                                                             

   SPgarch21        2,605         .   8350.039       7   -16686.08  -16645.02

   SPgarch22        2,605         .   8350.675       8   -16685.35  -16638.43

   SPgarch12        2,605         .   8347.574       7   -16681.15  -16640.09

   SPgarch11        2,605         .   8341.111       6   -16670.22  -16635.03

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             

Akaike's information criterion and Bayesian information criterion


image134.emf
               Note: N=Obs used in calculating BIC; see [R] BIC note.

                                                                             

 ABCPgarch21        2,605         .   4769.363       7   -9524.726  -9483.669

 ABCPgarch22        2,605         .   4774.069       8   -9532.138  -9485.216

 ABCPgarch12        2,605         .   4764.186       7   -9514.372  -9473.316

 ABCPgarch11        2,605         .   4761.004       6   -9510.008  -9474.817

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             

Akaike's information criterion and Bayesian information criterion


image135.emf
               Note: N=Obs used in calculating BIC; see [R] BIC note.

                                                                             

  OISgarch21        2,605         .   8457.679       8   -16899.36  -16852.44

  OISgarch22        2,605         .    8466.45       9    -16914.9  -16862.11

  OISgarch12        2,605         .   8456.893       8   -16897.79  -16850.86

  OISgarch11        2,605         .    8455.44       7   -16896.88  -16855.82

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             

Akaike's information criterion and Bayesian information criterion


image136.emf
               Note: N=Obs used in calculating BIC; see [R] BIC note.

                                                                             

  TEDgarch21        2,605         .   7389.152       9    -14760.3  -14707.52

  TEDgarch22        2,605         .   7388.542      10   -14757.08  -14698.43

  TEDgarch12        2,605         .   7388.489       9   -14758.98  -14706.19

  TEDgarch11        2,605         .   7382.589       8   -14749.18  -14702.26

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             

Akaike's information criterion and Bayesian information criterion


image137.emf
                                                                                 

          _cons      .000041   5.85e-06     7.01   0.000     .0000295    .0000525

                 

            L2.     .7309863   .0324531    22.52   0.000     .6673794    .7945932

            L1.    -.0600703   .0444559    -1.35   0.177    -.1472023    .0270616

          garch  

                 

            L2.     .1620623   .0274306     5.91   0.000     .1082993    .2158253

            L1.     .2439027   .0179088    13.62   0.000     .2088022    .2790033

           arch  

ARCH_ABCP        

                                                                                 

          _cons    -.0122534   .0013193    -9.29   0.000    -.0148392   -.0096675

                 

            L1.     .1636961   .0114749    14.27   0.000     .1412057    .1861864

            TED  

                 

            L1.     .0075741   .0042009     1.80   0.071    -.0006594    .0158076

            OIS  

                 

            L1.     .8409029   .0104341    80.59   0.000     .8204525    .8613533

           ABCP  

                 

            L1.     .0424749    .041606     1.02   0.307    -.0390714    .1240212

           SPRT  

ABCP             

                                                                                 

          _cons     3.94e-06   7.19e-07     5.48   0.000     2.53e-06    5.35e-06

                 

            L1.      .831596   .0185004    44.95   0.000     .7953359     .867856

          garch  

                 

            L2.      .111141   .0258828     4.29   0.000     .0604116    .1618704

            L1.     .0387011   .0188643     2.05   0.040     .0017277    .0756746

           arch  

ARCH_SPRT        

                                                                                 

          _cons     .0006363   .0003736     1.70   0.089     -.000096    .0013686

                 

            L1.     .0000395    .002843     0.01   0.989    -.0055327    .0056116

            TED  

                 

            L1.     .0014292   .0013867     1.03   0.303    -.0012887     .004147

            OIS  

                 

            L1.    -.0007704   .0024533    -0.31   0.754    -.0055787     .004038

           ABCP  

                 

            L1.    -.0473114   .0194827    -2.43   0.015    -.0854969   -.0091259

           SPRT  

SPRT             

                                                                                 

                       Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                                 

Log likelihood =  29908.89                        Prob > chi2     =     0.0000

Distribution: Gaussian                            Wald chi2(16)   =   1.08e+06

Sample: 05jan2005 - 23dec2015                     Number of obs   =      2,604

Dynamic conditional correlation MGARCH model

> 1)), nolog

. mgarch dcc (SPRT = L.SPRT L.ABCP L.OIS L.TED, arch(1/2) garch(1/1)) (ABCP = L.SPRT L.ABCP L.OIS L.TED, arch(1/2) garch(1/2)) (OIS = L.SPRT L.ABCP L.OIS L.TED, arch(1/2) garch(1/1)) (TED = L.SPRT L.ABCP L.OIS L.TED, arch(1/2) garch(1/

. ***** The Garch selection from the above results for DCC-MGARCH ******


image138.emf
                                                                                 

          _cons     .0015623   .0004191     3.73   0.000     .0007409    .0023837

                 

            L1.     .9981146   .0033999   293.57   0.000     .9914509    1.004778

            TED  

                 

            L1.    -.0056285   .0028014    -2.01   0.045    -.0111191   -.0001378

            OIS  

                 

            L1.    -.0003593   .0022194    -0.16   0.871    -.0047092    .0039905

           ABCP  

                 

            L1.     .0027831   .0154711     0.18   0.857    -.0275397     .033106

           SPRT  

TED              

                                                                                 

          _cons     2.83e-06   3.56e-07     7.94   0.000     2.13e-06    3.53e-06

                 

            L1.     .7252521   .0180388    40.21   0.000     .6898967    .7606075

          garch  

                 

            L2.     .0767559     .04043     1.90   0.058    -.0024854    .1559972

            L1.     .2854251    .033094     8.62   0.000     .2205621     .350288

           arch  

ARCH_OIS         

                                                                                 

          _cons     .0005605   .0003001     1.87   0.062    -.0000276    .0011486

                 

            L1.     .0034949   .0020037     1.74   0.081    -.0004322     .007422

            TED  

                 

            L1.      .992488   .0012862   771.65   0.000     .9899671    .9950089

            OIS  

                 

            L1.    -.0020605   .0017286    -1.19   0.233    -.0054484    .0013275

           ABCP  

                 

            L1.     .0082624   .0134031     0.62   0.538    -.0180072     .034532

           SPRT  

OIS              

                                                                                 


image139.emf
. predict corr*, correlation

                                                                                 

        lambda2     .9365164   .0027838   336.42   0.000     .9310603    .9419725

        lambda1     .0512912   .0024482    20.95   0.000     .0464927    .0560897

Adjustment       

                                                                                 

   corr(OIS,TED)    .4197998   .0612994     6.85   0.000     .2996552    .5399445

  corr(ABCP,TED)    .8153172   .0320061    25.47   0.000     .7525865    .8780479

  corr(ABCP,OIS)    .3197657   .0640872     4.99   0.000     .1941571    .4453742

  corr(SPRT,TED)   -.0433765    .074799    -0.58   0.562    -.1899798    .1032269

  corr(SPRT,OIS)   -.0963658    .073695    -1.31   0.191    -.2408053    .0480738

 corr(SPRT,ABCP)   -.0070011   .0744859    -0.09   0.925    -.1529908    .1389886

                                                                                 

          _cons     1.33e-06   2.89e-07     4.61   0.000     7.66e-07    1.90e-06

                 

            L1.     .8137158   .0104824    77.63   0.000     .7931707    .8342609

          garch  

                 

            L2.    -.0141435   .0236855    -0.60   0.550    -.0605662    .0322792

            L1.     .2628792   .0224933    11.69   0.000     .2187932    .3069652

           arch  

ARCH_TED         

                                                                                 


image140.emf
                                                                  

         bic   -3256.9265   -3258.7376    -3239.041   -3258.0132  

         aic   -3273.8247   -3279.8604   -3260.1638    -3279.136  

Statistics                                                        

                                                                  

       _cons    3.674e-06    5.860e-06   -18.331313    4.013e-06  

              

         L1.                                          -.00051311  

      saarch  

              

         L1.                             -.96452062               

      egarch  

              

         L1.                              .01528989               

     earch_a  

              

         L1.                             -.02160622               

       earch  

              

         L1.                 -.0690403                            

       tarch  

              

         L1.    .92712316    .89853503                 .92842643  

       garch  

              

         L1.    .03176362    .06915511                 .02581034  

        arch  

ARCH          

                                                                  

       _cons    .00037999    .00030607    .00034298    .00030135  

HistoricRe~n  

                                                                  

    Variable     GARCH       GJRGARCH      EGARCH       AGARCH    

                                                                  


image12.png
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image141.emf
                                                                             

      AGARCH          505         .   1644.568       5   -3279.136  -3258.013

      EGARCH          505         .   1635.082       5   -3260.164  -3239.041

    GJRGARCH          505         .    1644.93       5    -3279.86  -3258.738

       GARCH          505         .   1640.912       4   -3273.825  -3256.927

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             

Akaike's information criterion and Bayesian information criterion


image142.emf
                                                                  

         bic   -3167.7564   -3155.8615   -3163.3988   -3155.1672  

         aic   -3184.6546   -3176.9843   -3184.5216     -3176.29  

Statistics                                                        

                                                                  

       _cons    1.812e-06    .00015023   -.12442328      .000206  

              

         L1.                                           .00031607  

      saarch  

              

         L1.                               .9865353               

      egarch  

              

         L1.                              .05752567               

     earch_a  

              

         L1.                              .00235366               

       earch  

              

         L1.                 .08207239                            

       tarch  

              

         L1.    .95762347   -.35711689                -.91454368  

       garch  

              

         L1.     .0250907   -.08677132                -.00457699  

        arch  

ARCH          

                                                                  

       _cons    .00024913    .00034789    .00024508     .0003188  

GARCHReturn   

                                                                  

    Variable    SIMGARCH    SIMGJRGA~H   SIMEGARCH    SIMAGARCH   

                                                                  


image143.emf
                                                                             

   SIMAGARCH          505         .   1593.145       5    -3176.29  -3155.167

   SIMEGARCH          505         .   1597.261       5   -3184.522  -3163.399

 SIMGJRGARCH          505         .   1593.492       5   -3176.984  -3155.861

    SIMGARCH          505         .   1596.327       4   -3184.655  -3167.756

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             

Akaike's information criterion and Bayesian information criterion


image144.emf
  IFBMReturn          506    .0001399     .007995  -.0243854   .0340105

 GARCHReturn          506    .0004582    .0062831  -.0224842   .0180826

HistoricRe~n          506    .0002202     .005769  -.0242929   .0190943

                                                                       

    Variable          Obs        Mean    Std. Dev.       Min        Max


image145.emf
                                                                  

         bic   -3763.1411   -3764.2189   -3763.6976   -3767.0354  

         aic   -3780.0472   -3785.3516   -3784.8303   -3788.1681  

Statistics                                                        

                                                                  

       _cons    4.303e-07    1.855e-06   -.54329729    2.103e-06  

              

         L1.                                          -.00081176  

      saarch  

              

         L1.                              .94714842               

      egarch  

              

         L1.                              .03298891               

     earch_a  

              

         L1.                             -.11057728               

       earch  

              

         L1.                -.12021923                            

       tarch  

              

         L1.     .9677083    .92193442                 .91201951  

       garch  

              

         L1.    .01840893    .08646044                 .03045804  

        arch  

ARCH          

                                                                  

       _cons    .00024388    8.138e-06    .00004139    .00002728  

HistoricRe~n  

                                                                  

    Variable     GARCH       GJRGARCH      EGARCH       AGARCH    

                                                                  


image146.emf
                                                                             

      AGARCH          506         .   1899.084       5   -3788.168  -3767.035

      EGARCH          506         .   1897.415       5    -3784.83  -3763.698

    GJRGARCH          506         .   1897.676       5   -3785.352  -3764.219

       GARCH          506         .   1894.024       4   -3780.047  -3763.141

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             

Akaike's information criterion and Bayesian information criterion


image147.emf
                                                     

         bic   -3682.4168   -3677.8756   -3677.1555  

         aic   -3699.3229   -3699.0082   -3698.2882  

Statistics                                           

                                                     

       _cons    2.719e-06    1.795e-06    2.368e-06  

              

         L1.                              .00019414  

      saarch  

              

         L1.                 .04588487               

       tarch  

              

         L1.    .87136962    .90374483    .88291784  

       garch  

              

         L1.    .05958864    .02765407    .05711367  

        arch  

ARCH          

                                                     

       _cons    .00050834    .00052219    .00052538  

GARCHReturn   

                                                     

    Variable    SIMGARCH    SIMGJRGA~H   SIMAGARCH   

                                                     


image148.emf
                                                                             

   SIMAGARCH          506         .   1854.144       5   -3698.288  -3677.156

 SIMGJRGARCH          506         .   1854.504       5   -3699.008  -3677.876

    SIMGARCH          506         .   1853.661       4   -3699.323  -3682.417

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             

Akaike's information criterion and Bayesian information criterion


image149.emf
                                                                  

         bic   -3439.6538   -3424.7889   -3427.1908   -3429.4274  

         aic   -3456.5599   -3445.9216   -3448.3234   -3450.5601  

Statistics                                                        

                                                                  

       _cons    8.655e-07    .00007563   -17.897872     .0000758  

              

         L1.                                          -.00173357  

      saarch  

              

         L1.                             -.85034972               

      egarch  

              

         L1.                              .13147784               

     earch_a  

              

         L1.                              -.0351345               

       earch  

              

         L1.                -.18794773                            

       tarch  

              

         L1.    .95296229    -.2552194                -.25644841  

       garch  

              

         L1.    .03305124    .17587684                 .07988596  

        arch  

ARCH          

                                                                  

       _cons    .00022623    .00015621    .00022821    .00013611  

IFBMReturn    

                                                                  

    Variable   IFBMGARCH    IFBMGJRG~H   IFBMEGARCH   IFBMAGARCH  

                                                                  


image150.emf
                                                                             

  IFBMAGARCH          506         .    1730.28       5    -3450.56  -3429.427

  IFBMEGARCH          506         .   1729.162       5   -3448.323  -3427.191

IFBMGJRGARCH          506         .   1727.961       5   -3445.922  -3424.789

   IFBMGARCH          506         .    1732.28       4    -3456.56  -3439.654

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             

Akaike's information criterion and Bayesian information criterion


image13.png




image151.emf
  IFBMReturn          506    .0007691    .0088333  -.0281991   .0261109

 GARCHReturn          506    .0006433    .0059588   -.014919   .0220469

HistoricRe~n          506    .0005347    .0056219  -.0229358   .0211232

                                                                       

    Variable          Obs        Mean    Std. Dev.       Min        Max


image152.emf
                                                                  

         bic   -3792.8373   -3806.0687   -3786.3617   -3813.2895  

         aic   -3809.7435   -3827.2014   -3807.4944   -3834.4222  

Statistics                                                        

                                                                  

       _cons    2.426e-06    6.685e-06     -19.5065    7.310e-06  

              

         L1.                                          -.00135314  

      saarch  

              

         L1.                             -.87937367               

      egarch  

              

         L1.                              .10405461               

     earch_a  

              

         L1.                             -.05083417               

       earch  

              

         L1.                -.24650903                            

       tarch  

              

         L1.    .87494994    .74348934                 .76023082  

       garch  

              

         L1.    .04912245    .16592924                 .01060408  

        arch  

ARCH          

                                                                  

       _cons    .00068935    .00050678    .00060388    .00047166  

HistoricRe~n  

                                                                  

    Variable     GARCH       GJRGARCH      EGARCH       AGARCH    

                                                                  


image153.emf
                                                                             

      AGARCH          506         .   1922.211       5   -3834.422  -3813.289

      EGARCH          506         .   1908.747       5   -3807.494  -3786.362

    GJRGARCH          506         .   1918.601       5   -3827.201  -3806.069

       GARCH          506         .   1908.872       4   -3809.743  -3792.837

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             

Akaike's information criterion and Bayesian information criterion


image154.emf
                                                                  

         bic   -3725.8578   -3719.6475   -3719.8264   -3719.7335  

         aic   -3742.7639   -3740.7802   -3740.9591   -3740.8662  

Statistics                                                        

                                                                  

       _cons    .00005489    .00005493   -14.468266    .00005388  

              

         L1.                                           .00011292  

      saarch  

              

         L1.                             -.41122765               

      egarch  

              

         L1.                              .10818142               

     earch_a  

              

         L1.                              .02807572               

       earch  

              

         L1.                -.00846483                            

       tarch  

              

         L1.   -.60181061   -.60304734                -.57318472  

       garch  

              

         L1.    .04749654    .05203622                 .04852047  

        arch  

ARCH          

                                                                  

       _cons    .00065264    .00064996    .00064792    .00065683  

GARCHReturn   

                                                                  

    Variable    SIMGARCH    SIMGJRGA~H   SIMEGARCH    SIMAGARCH   

                                                                  


image155.emf
                                                                             

   SIMAGARCH          506         .   1875.433       5   -3740.866  -3719.734

   SIMEGARCH          506         .    1875.48       5   -3740.959  -3719.826

 SIMGJRGARCH          506         .    1875.39       5    -3740.78  -3719.648

    SIMGARCH          506         .   1875.382       4   -3742.764  -3725.858

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             

Akaike's information criterion and Bayesian information criterion


image156.emf
                                                     

         bic   -3329.4974   -3328.2406   -3328.9187  

         aic   -3346.4035   -3349.3732   -3350.0514  

Statistics                                           

                                                     

       _cons    .00008769    .00007837    .00008223  

              

         L1.                             -.00144216  

      saarch  

              

         L1.                -.19387259               

       tarch  

              

         L1.   -.20833371   -.09149364   -.12438061  

       garch  

              

         L1.    .08137857    .17715113    .06471272  

        arch  

ARCH          

                                                     

       _cons    .00089064    .00085855    .00087311  

IFBMReturn    

                                                     

    Variable   IFBMGARCH    IFBMGJRG~H   IFBMAGARCH  

                                                     


image157.emf
                                                                             

  IFBMAGARCH          506         .   1680.026       5   -3350.051  -3328.919

IFBMGJRGARCH          506         .   1679.687       5   -3349.373  -3328.241

   IFBMGARCH          506         .   1677.202       4   -3346.404  -3329.497

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             

Akaike's information criterion and Bayesian information criterion


image158.emf
  IFBMReturn          506    .0008471    .0155339  -.0863449   .0601692

 GARCHReturn          506    .0010963    .0098569   -.030426    .051176

HistoricRe~n          506    .0008831     .009645  -.0711274   .0498869

                                                                       

    Variable          Obs        Mean    Std. Dev.       Min        Max


image159.emf
                                                                  

         bic    -3284.254    -3295.981   -3306.7331    -3300.673  

         aic   -3301.1602   -3317.1137   -3327.8658   -3321.8057  

Statistics                                                        

                                                                  

       _cons    5.688e-06    7.027e-06   -.64657669    7.734e-06  

              

         L1.                                          -.00170447  

      saarch  

              

         L1.                              .93056337               

      egarch  

              

         L1.                               .1475188               

     earch_a  

              

         L1.                             -.15813762               

       earch  

              

         L1.                -.21775802                            

       tarch  

              

         L1.    .82971068    .82129983                 .83944652  

       garch  

              

         L1.    .11670736    .21447903                 .08138184  

        arch  

ARCH          

                                                                  

       _cons     .0010637    .00081437    .00059893    .00074662  

HistoricRe~n  

                                                                  

    Variable     GARCH       GJRGARCH      EGARCH       AGARCH    

                                                                  


image160.emf
                                                                             

      AGARCH          506         .   1665.903       5   -3321.806  -3300.673

      EGARCH          506         .   1668.933       5   -3327.866  -3306.733

    GJRGARCH          506         .   1663.557       5   -3317.114  -3295.981

       GARCH          506         .    1654.58       4    -3301.16  -3284.254

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             

Akaike's information criterion and Bayesian information criterion


image14.png




image161.emf
                                                                  

         bic   -3260.1502   -3254.5298   -3248.9029    -3254.057  

         aic   -3277.0563   -3275.6625   -3270.0356   -3275.1897  

Statistics                                                        

                                                                  

       _cons    8.043e-06    8.796e-06   -1.1462462    8.597e-06  

              

         L1.                                           .00021002  

      saarch  

              

         L1.                              .87613064               

      egarch  

              

         L1.                               .2994887               

     earch_a  

              

         L1.                               .0427027               

       earch  

              

         L1.                 .05623085                            

       tarch  

              

         L1.    .78083151    .76886382                 .77160191  

       garch  

              

         L1.    .14118679    .11658047                 .14469971  

        arch  

ARCH          

                                                                  

       _cons    .00092882    .00096756    .00099729    .00094438  

GARCHReturn   

                                                                  

    Variable    SIMGARCH    SIMGJRGA~H   SIMEGARCH    SIMAGARCH   

                                                                  


image162.emf
                                                                             

   SIMAGARCH          506         .   1642.595       5    -3275.19  -3254.057

   SIMEGARCH          506         .   1640.018       5   -3270.036  -3248.903

 SIMGJRGARCH          506         .   1642.831       5   -3275.663   -3254.53

    SIMGARCH          506         .   1642.528       4   -3277.056   -3260.15

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             

Akaike's information criterion and Bayesian information criterion


image163.emf
                                                                  

         bic    -2804.951   -2798.9579   -2800.6958   -2799.8284  

         aic   -2821.8571   -2820.0905   -2821.8285   -2820.9611  

Statistics                                                        

                                                                  

       _cons    5.243e-06    5.270e-06   -.36178544    5.024e-06  

              

         L1.                                          -.00055756  

      saarch  

              

         L1.                              .95679894               

      egarch  

              

         L1.                              .23465736               

     earch_a  

              

         L1.                             -.03420599               

       earch  

              

         L1.                -.02366927                            

       tarch  

              

         L1.    .88020916    .87909119                 .88224255  

       garch  

              

         L1.    .10544761    .11812123                 .10466345  

        arch  

ARCH          

                                                                  

       _cons    .00093042    .00086807    .00073946    .00075691  

IFBMReturn    

                                                                  

    Variable   IFBMGARCH    IFBMGJRG~H   IFBMEGARCH   IFBMAGARCH  

                                                                  


image164.emf
                                                                             

  IFBMAGARCH          506         .   1415.481       5   -2820.961  -2799.828

  IFBMEGARCH          506         .   1415.914       5   -2821.828  -2800.696

IFBMGJRGARCH          506         .   1415.045       5   -2820.091  -2798.958

   IFBMGARCH          506         .   1414.929       4   -2821.857  -2804.951

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             


image165.emf
  IFBMReturn          506     .001002    .0171332  -.0596617   .0911788

 GARCHReturn          506    .0013079    .0122918  -.0362288   .0519222

HistoricRe~n          506    .0008808    .0121259  -.0704376    .049646

                                                                       

    Variable          Obs        Mean    Std. Dev.       Min        Max


image166.emf
                                                                  

         bic   -3060.5944   -3089.4605   -3085.1477   -3083.0768  

         aic   -3077.5005   -3110.5932   -3106.2804   -3104.2095  

Statistics                                                        

                                                                  

       _cons    4.259e-06    2.701e-06   -.33261816    .00001085  

              

         L1.                                          -.00210514  

      saarch  

              

         L1.                              .96299806               

      egarch  

              

         L1.                              .08032765               

     earch_a  

              

         L1.                             -.14894775               

       earch  

              

         L1.                -.18729794                            

       tarch  

              

         L1.    .88145444    .95458939                 .87183267  

       garch  

              

         L1.    .08976779    .11925992                 .05032973  

        arch  

ARCH          

                                                                  

       _cons    .00122633     .0005691    .00063558     .0006831  

HistoricRe~n  

                                                                  

    Variable     GARCH       GJRGARCH      EGARCH       AGARCH    

                                                                  


image167.emf
                                                                             

      AGARCH          506         .   1557.105       5    -3104.21  -3083.077

      EGARCH          506         .    1558.14       5    -3106.28  -3085.148

    GJRGARCH          506         .   1560.297       5   -3110.593   -3089.46

       GARCH          506         .    1542.75       4   -3077.501  -3060.594

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             

Akaike's information criterion and Bayesian information criterion


image168.emf
                                                                  

         bic   -3019.0705   -3013.6476   -3013.5696   -3014.8852  

         aic   -3035.9766   -3034.7802   -3034.7023   -3036.0179  

Statistics                                                        

                                                                  

       _cons    4.438e-06    3.170e-06    -.1732857    2.677e-06  

              

         L1.                                          -.00044599  

      saarch  

              

         L1.                              .98019105               

      egarch  

              

         L1.                              .10349881               

     earch_a  

              

         L1.                             -.02241853               

       earch  

              

         L1.                -.02686496                            

       tarch  

              

         L1.    .91766605    .93095499                 .94017035  

       garch  

              

         L1.    .05203506    .06103164                 .04212512  

        arch  

ARCH          

                                                                  

       _cons    .00118953    .00113692    .00112511    .00104867  

GARCHReturn   

                                                                  

    Variable    SIMGARCH    SIMGJRGA~H   SIMEGARCH    SIMAGARCH   

                                                                  


image169.emf
                                                                             

   SIMAGARCH          506         .   1523.009       5   -3036.018  -3014.885

   SIMEGARCH          506         .   1522.351       5   -3034.702   -3013.57

 SIMGJRGARCH          506         .    1522.39       5    -3034.78  -3013.648

    SIMGARCH          506         .   1521.988       4   -3035.977   -3019.07

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             

Akaike's information criterion and Bayesian information criterion


image170.emf
                                                                  

         bic   -2688.0777   -2659.5184   -2682.7463   -2656.8669  

         aic   -2704.9839   -2680.6511    -2703.879   -2677.9996  

Statistics                                                        

                                                                  

       _cons    9.095e-06       .00052   -.23743959    .00050659  

              

         L1.                                           .00133791  

      saarch  

              

         L1.                              .97122231               

      egarch  

              

         L1.                               .1708021               

     earch_a  

              

         L1.                             -.06182394               

       earch  

              

         L1.                 .06621646                            

       tarch  

              

         L1.    .88771457    -.8042606                 -.7607013  

       garch  

              

         L1.    .08092307   -.02196737                 .03025778  

        arch  

ARCH          

                                                                  

       _cons    .00085174    .00098592     .0003639    .00097404  

IFBMReturn    

                                                                  

    Variable   IFBMGARCH    IFBMGJRG~H   IFBMEGARCH   IFBMAGARCH  

                                                                  


image15.png
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image171.emf
                                                                             

  IFBMAGARCH          506         .       1344       5       -2678  -2656.867

  IFBMEGARCH          506         .   1356.939       5   -2703.879  -2682.746

IFBMGJRGARCH          506         .   1345.326       5   -2680.651  -2659.518

   IFBMGARCH          506         .   1356.492       4   -2704.984  -2688.078

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             

Akaike's information criterion and Bayesian information criterion


image172.emf
  IFBMReturn          499    .0001319    .0201616    -.05916   .0708646

 GARCHReturn          499    .0000734    .0136996  -.0691278   .0595742

HistoricRe~n          499   -.0004751    .0137894  -.0600451    .048884

                                                                       

    Variable          Obs        Mean    Std. Dev.       Min        Max


image173.emf
                                                                  

         bic   -2865.7681   -2895.8539   -2831.9916   -2906.2386  

         aic   -2882.6186   -2916.9169   -2853.0546   -2927.3016  

Statistics                                                        

                                                                  

       _cons    .00001312    4.964e-06   -17.022898    4.471e-06  

              

         L1.                                          -.00221952  

      saarch  

              

         L1.                             -.98328365               

      egarch  

              

         L1.                             -.01571626               

     earch_a  

              

         L1.                             -.01602642               

       earch  

              

         L1.                -.21922755                            

       tarch  

              

         L1.    .81175601    .90153154                 .95238523  

       garch  

              

         L1.    .12167486    .19099764                 .03072328  

        arch  

ARCH          

                                                                  

       _cons    -.0002775   -.00110843   -.00048878   -.00126139  

HistoricRe~n  

                                                                  

    Variable     GARCH       GJRGARCH      EGARCH       AGARCH    

                                                                  


image174.emf
                                                                             

      AGARCH          499         .   1468.651       5   -2927.302  -2906.239

      EGARCH          499         .   1431.527       5   -2853.055  -2831.992

    GJRGARCH          499         .   1463.458       5   -2916.917  -2895.854

       GARCH          499         .   1445.309       4   -2882.619  -2865.768

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             

Akaike's information criterion and Bayesian information criterion


image175.emf
                                                                  

         bic   -2845.9189   -2846.3111   -2843.7502   -2842.6041  

         aic   -2862.7693   -2867.3741   -2864.8132   -2863.6671  

Statistics                                                        

                                                                  

       _cons    .00014613    .00015544   -.92455725     .0001585  

              

         L1.                                           .00177885  

      saarch  

              

         L1.                              .89193739               

      egarch  

              

         L1.                              .14547666               

     earch_a  

              

         L1.                               .0399514               

       earch  

              

         L1.                 .18346789                            

       tarch  

              

         L1.    .13938383    .10816258                 .10722056  

       garch  

              

         L1.    .08163534   -.03369499                 .04289532  

        arch  

ARCH          

                                                                  

       _cons   -.00003305   -.00004001    .00015904     .0000383  

GARCHReturn   

                                                                  

    Variable    SIMGARCH    SIMGJRGA~H   SIMEGARCH    SIMAGARCH   

                                                                  


image176.emf
                                                                             

   SIMAGARCH          499         .   1436.834       5   -2863.667  -2842.604

   SIMEGARCH          499         .   1437.407       5   -2864.813   -2843.75

 SIMGJRGARCH          499         .   1438.687       5   -2867.374  -2846.311

    SIMGARCH          499         .   1435.385       4   -2862.769  -2845.919

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             

Akaike's information criterion and Bayesian information criterion


image177.emf
                                                                  

         bic   -2470.4177    -2476.385   -2480.3823   -2483.7619  

         aic   -2487.2681    -2497.448   -2501.4453   -2504.8249  

Statistics                                                        

                                                                  

       _cons    .00001502    .00001327   -.34026411    .00001377  

              

         L1.                                          -.00220446  

      saarch  

              

         L1.                              .95691084               

      egarch  

              

         L1.                              .06742442               

     earch_a  

              

         L1.                             -.10511068               

       earch  

              

         L1.                -.11297133                            

       tarch  

              

         L1.    .89704079    .91052101                 .92295985  

       garch  

              

         L1.    .06554048    .11424539                 .04342391  

        arch  

ARCH          

                                                                  

       _cons    .00078327     .0001486    .00003542   -.00009294  

IFBMReturn    

                                                                  

    Variable   IFBMGARCH    IFBMGJRG~H   IFBMEGARCH   IFBMAGARCH  

                                                                  


image178.emf
                                                                             

  IFBMAGARCH          499         .   1257.412       5   -2504.825  -2483.762

  IFBMEGARCH          499         .   1255.723       5   -2501.445  -2480.382

IFBMGJRGARCH          499         .   1253.724       5   -2497.448  -2476.385

   IFBMGARCH          499         .   1247.634       4   -2487.268  -2470.418

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             

Akaike's information criterion and Bayesian information criterion


image179.emf
  IFBMReturn          503    .0004969     .020429  -.0687753   .0765164

 GARCHReturn          503   -.0006252    .0147494  -.0483448    .057603

HistoricRe~n          503    -.000075    .0138668  -.0424234   .0557443

                                                                       

    Variable          Obs        Mean    Std. Dev.       Min        Max


image180.emf
                                                                  

         bic   -2955.7212   -2972.7293   -2977.2088   -2972.7787  

         aic   -2972.6035   -2993.8323   -2998.3118   -2993.8817  

Statistics                                                        

                                                                  

       _cons    4.124e-07    1.503e-08   -.05094592    6.256e-07  

              

         L1.                                          -.00107896  

      saarch  

              

         L1.                              .99474749               

      egarch  

              

         L1.                              .00766793               

     earch_a  

              

         L1.                             -.08781671               

       earch  

              

         L1.                 -.1221526                            

       tarch  

              

         L1.    .93700127    .99006611                 .99233162  

       garch  

              

         L1.    .06046172    .07087171                 .00097294  

        arch  

ARCH          

                                                                  

       _cons    .00057403    .00015165    .00016714    .00021477  

HistoricRe~n  

                                                                  

    Variable     GARCH       GJRGARCH      EGARCH       AGARCH    

                                                                  


image16.wmf
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image181.emf
                                                                             

      AGARCH          503         .   1501.941       5   -2993.882  -2972.779

      EGARCH          503         .   1504.156       5   -2998.312  -2977.209

    GJRGARCH          503         .   1501.916       5   -2993.832  -2972.729

       GARCH          503         .   1490.302       4   -2972.604  -2955.721

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             

Akaike's information criterion and Bayesian information criterion


image182.emf
                                                                  

         bic   -2862.7174   -2857.8399   -2856.3983   -2858.3613  

         aic   -2879.5998   -2878.9429   -2877.5013   -2879.4643  

Statistics                                                        

                                                                  

       _cons    1.960e-06    1.825e-06   -.10453808    2.345e-06  

              

         L1.                                           .00058956  

      saarch  

              

         L1.                              .98815707               

      egarch  

              

         L1.                              .19790746               

     earch_a  

              

         L1.                              .03634228               

       earch  

              

         L1.                 .05137711                            

       tarch  

              

         L1.    .89189288    .88804928                 .87697462  

       garch  

              

         L1.    .10156962    .08203022                 .11670802  

        arch  

ARCH          

                                                                  

       _cons   -.00060563   -.00043411   -.00037468   -.00037916  

GARCHReturn   

                                                                  

    Variable    SIMGARCH    SIMGJRGA~H   SIMEGARCH    SIMAGARCH   

                                                                  


image183.emf
                                                                             

   SIMAGARCH          503         .   1444.732       5   -2879.464  -2858.361

   SIMEGARCH          503         .   1443.751       5   -2877.501  -2856.398

 SIMGJRGARCH          503         .   1444.471       5   -2878.943   -2857.84

    SIMGARCH          503         .     1443.8       4     -2879.6  -2862.717

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             

Akaike's information criterion and Bayesian information criterion


image184.emf
                                                                  

         bic   -2579.6253   -2575.2138   -2574.3221   -2574.8382  

         aic   -2596.5077   -2596.3168   -2595.4251   -2595.9411  

Statistics                                                        

                                                                  

       _cons    2.978e-06    2.707e-06   -.05300441    3.176e-06  

              

         L1.                                          -.00067941  

      saarch  

              

         L1.                              .99350139               

      egarch  

              

         L1.                              .14894617               

     earch_a  

              

         L1.                             -.02882125               

       earch  

              

         L1.                -.05377686                            

       tarch  

              

         L1.    .91566892    .91868672                  .9162998  

       garch  

              

         L1.    .07676827    .10183443                 .07635412  

        arch  

ARCH          

                                                                  

       _cons    .00012379   -.00013454   -.00012806   -.00014541  

IFBMReturn    

                                                                  

    Variable   IFBMGARCH    IFBMGJRG~H   IFBMEGARCH   IFBMAGARCH  

                                                                  


image185.emf
                                                                             

  IFBMAGARCH          503         .   1302.971       5   -2595.941  -2574.838

  IFBMEGARCH          503         .   1302.713       5   -2595.425  -2574.322

IFBMGJRGARCH          503         .   1303.158       5   -2596.317  -2575.214

   IFBMGARCH          503         .   1302.254       4   -2596.508  -2579.625

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             


image186.emf
  IFBMReturn          503   -.0001002    .0169889  -.0645232   .0582848

 GARCHReturn          503   -2.48e-06    .0070652  -.0240262   .0247367

HistoricRe~n          503    .0002362     .006737  -.0168618    .019544

                                                                       

    Variable          Obs        Mean    Std. Dev.       Min        Max


image187.emf
                                                                  

         bic   -3584.4487   -3594.9211   -3573.6328   -3595.1089  

         aic    -3601.331    -3616.024   -3594.7358   -3616.2119  

Statistics                                                        

                                                                  

       _cons    4.975e-06    2.550e-06   -18.561875    2.234e-06  

              

         L1.                                          -.00068034  

      saarch  

              

         L1.                             -.85617048               

      egarch  

              

         L1.                             -.05037046               

     earch_a  

              

         L1.                              .00553007               

       earch  

              

         L1.                -.12188118                            

       tarch  

              

         L1.    .84034891     .9320905                  .9506234  

       garch  

              

         L1.     .0491082    .07074571                 .00123847  

        arch  

ARCH          

                                                                  

       _cons    .00026605    .00011985    .00024345     .0000912  

HistoricRe~n  

                                                                  

    Variable     GARCH       GJRGARCH      EGARCH       AGARCH    

                                                                  


image188.emf
                                                                             

      AGARCH          503         .   1813.106       5   -3616.212  -3595.109

      EGARCH          503         .   1802.368       5   -3594.736  -3573.633

    GJRGARCH          503         .   1813.012       5   -3616.024  -3594.921

       GARCH          503         .   1804.666       4   -3601.331  -3584.449

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             

Akaike's information criterion and Bayesian information criterion


image189.emf
                                                                  

         bic   -3542.5685   -3537.4937   -3537.4828   -3537.8928  

         aic   -3559.4508   -3558.5967   -3558.5858   -3558.9957  

Statistics                                                        

                                                                  

       _cons    6.809e-06    7.702e-06   -1.2983451    7.358e-06  

              

         L1.                                          -.00041295  

      saarch  

              

         L1.                              .86925834               

      egarch  

              

         L1.                              .17743758               

     earch_a  

              

         L1.                             -.03979391               

       earch  

              

         L1.                 -.0689444                            

       tarch  

              

         L1.    .78248777    .75529665                 .77037662  

       garch  

              

         L1.    .08113458    .12594622                 .08180865  

        arch  

ARCH          

                                                                  

       _cons    .00008947    .00003803    .00003314    .00002503  

GARCHReturn   

                                                                  

    Variable    SIMGARCH    SIMGJRGA~H   SIMEGARCH    SIMAGARCH   

                                                                  


image190.emf
                                                                             

   SIMAGARCH          503         .   1784.498       5   -3558.996  -3537.893

   SIMEGARCH          503         .   1784.293       5   -3558.586  -3537.483

 SIMGJRGARCH          503         .   1784.298       5   -3558.597  -3537.494

    SIMGARCH          503         .   1783.725       4   -3559.451  -3542.568

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             

Akaike's information criterion and Bayesian information criterion


oleObject1.bin

image191.emf
                                                     

         bic   -2755.5618   -2760.0464   -2760.9621  

         aic   -2772.4441   -2781.1494    -2782.065  

Statistics                                           

                                                     

       _cons    4.768e-06    3.762e-06    5.637e-06  

              

         L1.                             -.00128708  

      saarch  

              

         L1.                -.11678329               

       tarch  

              

         L1.    .89742899      .915118    .90578717  

       garch  

              

         L1.    .08478671    .13126149    .07222699  

        arch  

ARCH          

                                                     

       _cons    .00013734   -.00036861   -.00031687  

IFBMReturn    

                                                     

    Variable   IFBMGARCH    IFBMGJRG~H   IFBMAGARCH  

                                                     


image192.emf
                                                                             

  IFBMAGARCH          503         .   1396.033       5   -2782.065  -2760.962

IFBMGJRGARCH          503         .   1395.575       5   -2781.149  -2760.046

   IFBMGARCH          503         .   1390.222       4   -2772.444  -2755.562

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             

Akaike's information criterion and Bayesian information criterion


image193.emf
  IFBMReturn          501   -.0003954    .0178707  -.0624927   .0687679

 GARCHReturn          501    .0004771     .009231  -.0362856   .0308257

HistoricRe~n          501    .0002916    .0083881  -.0353427   .0287896

                                                                       

    Variable          Obs        Mean    Std. Dev.       Min        Max


image194.emf
                                                                  

         bic   -3424.7499   -3455.9885   -3449.6732   -3350.5808  

         aic   -3441.6163   -3477.0716   -3470.7562   -3371.6639  

Statistics                                                        

                                                                  

       _cons    1.590e-06    1.508e-06   -.37607745    .00013186  

              

         L1.                                           .00065431  

      saarch  

              

         L1.                              .96099624               

      egarch  

              

         L1.                              .04946947               

     earch_a  

              

         L1.                             -.20280296               

       earch  

              

         L1.                -.21110774                            

       tarch  

              

         L1.    .91971171    .95541939                -.92120702  

       garch  

              

         L1.    .05807547    .12442005                 .01839697  

        arch  

ARCH          

                                                                  

       _cons    .00047819    .00014295    .00010397    .00021905  

HistoricRe~n  

                                                                  

    Variable     GARCH       GJRGARCH      EGARCH       AGARCH    

                                                                  


image195.emf
                                                                             

      AGARCH          501         .   1690.832       5   -3371.664  -3350.581

      EGARCH          501         .   1740.378       5   -3470.756  -3449.673

    GJRGARCH          501         .   1743.536       5   -3477.072  -3455.989

       GARCH          501         .   1724.808       4   -3441.616   -3424.75

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             

Akaike's information criterion and Bayesian information criterion


image196.emf
                                                     

         bic   -3317.5588   -3311.5277   -3311.4115  

         aic   -3334.4253   -3332.6108   -3332.4945  

Statistics                                           

                                                     

       _cons    3.146e-06    3.231e-06    3.188e-06  

              

         L1.                              .00008513  

      saarch  

              

         L1.                 .02079426               

       tarch  

              

         L1.    .85037706     .8490492    .85111594  

       garch  

              

         L1.    .11468024    .10412734    .11330276  

        arch  

ARCH          

                                                     

       _cons    .00059379    .00063579    .00062646  

GARCHReturn   

                                                     

    Variable    SIMGARCH    SIMGJRGA~H   SIMAGARCH   

                                                     


image197.emf
                                                                             

   SIMAGARCH          501         .   1671.247       5   -3332.495  -3311.411

 SIMGJRGARCH          501         .   1671.305       5   -3332.611  -3311.528

    SIMGARCH          501         .   1671.213       4   -3334.425  -3317.559

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             

Akaike's information criterion and Bayesian information criterion


image198.emf
                                                                  

         bic   -2645.5687   -2653.2546   -2591.3465   -2649.6081  

         aic   -2662.4352   -2674.3377   -2612.4295   -2670.6911  

Statistics                                                        

                                                                  

       _cons    9.002e-06    3.218e-06   -15.828159    7.188e-06  

              

         L1.                                          -.00160362  

      saarch  

              

         L1.                             -.95847505               

      egarch  

              

         L1.                              .07156892               

     earch_a  

              

         L1.                             -.02670954               

       earch  

              

         L1.                -.12510536                            

       tarch  

              

         L1.    .87223724    .92964385                 .90875232  

       garch  

              

         L1.    .10013652    .12769224                 .07092086  

        arch  

ARCH          

                                                                  

       _cons   -.00058192   -.00115769   -.00026579   -.00119673  

IFBMReturn    

                                                                  

    Variable   IFBMGARCH    IFBMGJRG~H   IFBMEGARCH   IFBMAGARCH  

                                                                  


image199.emf
                                                                             

  IFBMAGARCH          501         .   1340.346       5   -2670.691  -2649.608

  IFBMEGARCH          501         .   1311.215       5    -2612.43  -2591.346

IFBMGJRGARCH          501         .   1342.169       5   -2674.338  -2653.255

   IFBMGARCH          501         .   1335.218       4   -2662.435  -2645.569

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             

Akaike's information criterion and Bayesian information criterion


image200.emf
  IFBMReturn          504   -.0001683    .0306568  -.1209499   .1154013

 GARCHReturn          504   -.0002294    .0220425  -.1234198   .1392105

HistoricRe~n          504   -.0005172    .0219829  -.0946951    .109572

                                                                       

    Variable          Obs        Mean    Std. Dev.       Min        Max


image17.wmf
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image201.emf
                                                                  

         bic   -2632.9572   -2646.0356   -2648.0309   -2650.6588  

         aic   -2649.8475   -2667.1485   -2669.1437   -2671.7717  

Statistics                                                        

                                                                  

       _cons    2.689e-06    3.032e-06   -.13662769    8.888e-06  

              

         L1.                                          -.00313548  

      saarch  

              

         L1.                              .98341666               

      egarch  

              

         L1.                              .12047974               

     earch_a  

              

         L1.                             -.14949719               

       earch  

              

         L1.                -.16682116                            

       tarch  

              

         L1.     .8953071    .92798013                 .90665056  

       garch  

              

         L1.    .09893383    .14396186                 .07245474  

        arch  

ARCH          

                                                                  

       _cons    .00023251   -.00032065   -.00030257   -.00057817  

HistoricRe~n  

                                                                  

    Variable     GARCH       GJRGARCH      EGARCH       AGARCH    

                                                                  


image202.emf
                                                                             

      AGARCH          504         .   1340.886       5   -2671.772  -2650.659

      EGARCH          504         .   1339.572       5   -2669.144  -2648.031

    GJRGARCH          504         .   1338.574       5   -2667.149  -2646.036

       GARCH          504         .   1328.924       4   -2649.848  -2632.957

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             

Akaike's information criterion and Bayesian information criterion


image203.emf
                                                                  

         bic   -2595.4362   -2602.0568    -2600.362   -2597.4235  

         aic   -2612.3265   -2623.1697   -2621.4749   -2618.5364  

Statistics                                                        

                                                                  

       _cons    2.559e-06    3.133e-06   -.06399916    3.063e-06  

              

         L1.                                          -.00109605  

      saarch  

              

         L1.                              .99220209               

      egarch  

              

         L1.                              .13988634               

     earch_a  

              

         L1.                             -.08410664               

       earch  

              

         L1.                -.10903839                            

       tarch  

              

         L1.    .90350314    .92756484                 .91905671  

       garch  

              

         L1.    .09322913    .11675567                 .07352937  

        arch  

ARCH          

                                                                  

       _cons    .00056317    .00005575     .0001049    .00006045  

GARCHReturn   

                                                                  

    Variable    SIMGARCH    SIMGJRGA~H   SIMEGARCH    SIMAGARCH   

                                                                  


image204.emf
                                                                             

   SIMAGARCH          504         .   1314.268       5   -2618.536  -2597.424

   SIMEGARCH          504         .   1315.737       5   -2621.475  -2600.362

 SIMGJRGARCH          504         .   1316.585       5    -2623.17  -2602.057

    SIMGARCH          504         .   1310.163       4   -2612.327  -2595.436

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             

Akaike's information criterion and Bayesian information criterion


image205.emf
                                                                  

         bic   -2201.3224   -2196.1918   -2192.3131   -2195.6545  

         aic   -2218.2128   -2217.3047    -2213.426   -2216.7674  

Statistics                                                        

                                                                  

       _cons    6.363e-06    4.025e-06   -.02540016    5.385e-06  

              

         L1.                                          -.00063337  

      saarch  

              

         L1.                              .99672632               

      egarch  

              

         L1.                              .15219938               

     earch_a  

              

         L1.                             -.03113492               

       earch  

              

         L1.                -.04080175                            

       tarch  

              

         L1.    .90677268    .91604443                 .91290479  

       garch  

              

         L1.    .08613145     .1014697                 .08157967  

        arch  

ARCH          

                                                                  

       _cons   -.00083616    -.0010999   -.00140041   -.00110147  

IFBMReturn    

                                                                  

    Variable   IFBMGARCH    IFBMGJRG~H   IFBMEGARCH   IFBMAGARCH  

                                                                  


image206.emf
                                                                             

  IFBMAGARCH          504         .   1113.384       5   -2216.767  -2195.654

  IFBMEGARCH          504         .   1111.713       5   -2213.426  -2192.313

IFBMGJRGARCH          504         .   1113.652       5   -2217.305  -2196.192

   IFBMGARCH          504         .   1113.106       4   -2218.213  -2201.322

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             

Akaike's information criterion and Bayesian information criterion


image207.emf
  IFBMReturn          503   -.0011621    .0219711   -.080865    .072185

 GARCHReturn          503    .0003639    .0148457  -.0768794    .060823

HistoricRe~n          503    .0002074    .0131344  -.0689583   .0463174

                                                                       

    Variable          Obs        Mean    Std. Dev.       Min        Max


image208.emf
                                                                  

         bic   -3048.9354   -3073.0839   -3070.2504   -3070.4942  

         aic   -3065.8178   -3094.1868   -3091.3534   -3091.5972  

Statistics                                                        

                                                                  

       _cons    3.348e-06    3.981e-06   -.48007931    8.636e-06  

              

         L1.                                          -.00268493  

      saarch  

              

         L1.                               .9458429               

      egarch  

              

         L1.                              .14007437               

     earch_a  

              

         L1.                             -.20279929               

       earch  

              

         L1.                -.24969728                            

       tarch  

              

         L1.    .86087009    .89913872                 .87110198  

       garch  

              

         L1.    .12391474    .19371581                 .07745635  

        arch  

ARCH          

                                                                  

       _cons    .00076053    .00022326    .00008392    .00004595  

HistoricRe~n  

                                                                  

    Variable     GARCH       GJRGARCH      EGARCH       AGARCH    

                                                                  


image209.emf
                                                                             

      AGARCH          503         .   1550.799       5   -3091.597  -3070.494

      EGARCH          503         .   1550.677       5   -3091.353   -3070.25

    GJRGARCH          503         .   1552.093       5   -3094.187  -3073.084

       GARCH          503         .   1536.909       4   -3065.818  -3048.935

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             

Akaike's information criterion and Bayesian information criterion


image210.emf
                                                                  

         bic   -2898.2914   -2893.8205   -2897.6178   -2894.5986  

         aic   -2915.1737   -2914.9235   -2918.7208   -2915.7015  

Statistics                                                        

                                                                  

       _cons    3.748e-06    3.739e-06   -.17090892    3.928e-06  

              

         L1.                                          -.00096314  

      saarch  

              

         L1.                              .97922809               

      egarch  

              

         L1.                                 .21107               

     earch_a  

              

         L1.                             -.07956009               

       earch  

              

         L1.                -.08014309                            

       tarch  

              

         L1.     .8766639    .88246855                 .88827137  

       garch  

              

         L1.    .11310715    .14675944                 .10109696  

        arch  

ARCH          

                                                                  

       _cons    .00031902    .00013045   -.00008109    9.331e-06  

GARCHReturn   

                                                                  

    Variable    SIMGARCH    SIMGJRGA~H   SIMEGARCH    SIMAGARCH   

                                                                  


oleObject2.bin

image211.emf
                                                                             

   SIMAGARCH          503         .   1462.851       5   -2915.702  -2894.599

   SIMEGARCH          503         .    1464.36       5   -2918.721  -2897.618

 SIMGJRGARCH          503         .   1462.462       5   -2914.923  -2893.821

    SIMGARCH          503         .   1461.587       4   -2915.174  -2898.291

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             

Akaike's information criterion and Bayesian information criterion


image212.emf
                                                                  

         bic   -2436.3265   -2435.6165   -2385.7732    -2437.612  

         aic   -2453.2088   -2456.7194   -2406.8762   -2458.7149  

Statistics                                                        

                                                                  

       _cons     .0000224    .00001819   -14.927281    .00002032  

              

         L1.                                          -.00205313  

      saarch  

              

         L1.                             -.95070534               

      egarch  

              

         L1.                              .03711575               

     earch_a  

              

         L1.                              -.0094644               

       earch  

              

         L1.                -.11829469                            

       tarch  

              

         L1.    .84658531    .87055783                 .87068235  

       garch  

              

         L1.    .10659179    .15143018                 .08731665  

        arch  

ARCH          

                                                                  

       _cons   -.00053634   -.00118809   -.00130128    -.0012359  

IFBMReturn    

                                                                  

    Variable   IFBMGARCH    IFBMGJRG~H   IFBMEGARCH   IFBMAGARCH  

                                                                  


image213.emf
                                                                             

  IFBMAGARCH          503         .   1234.357       5   -2458.715  -2437.612

  IFBMEGARCH          503         .   1208.438       5   -2406.876  -2385.773

IFBMGJRGARCH          503         .    1233.36       5   -2456.719  -2435.616

   IFBMGARCH          503         .   1230.604       4   -2453.209  -2436.326

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             

Akaike's information criterion and Bayesian information criterion


image214.emf
  IFBMReturn          501   -.0006091    .0177007  -.0741896   .0616916

 GARCHReturn          501    .0001474    .0080392  -.0210096   .0207476

HistoricRe~n          501     .000738    .0074983  -.0253284    .025086

                                                                       

    Variable          Obs        Mean    Std. Dev.       Min        Max


image215.emf
                                                                  

         bic   -3472.3669   -3509.4824   -3516.9839   -3520.4497  

         aic   -3489.2333   -3530.5654   -3538.0669   -3541.5327  

Statistics                                                        

                                                                  

       _cons    8.003e-06    4.781e-06   -.75912218    4.509e-06  

              

         L1.                                           -.0017894  

      saarch  

              

         L1.                              .92278911               

      egarch  

              

         L1.                              .01208713               

     earch_a  

              

         L1.                             -.28092816               

       earch  

              

         L1.                -.32330011                            

       tarch  

              

         L1.    .75079398    .84362809                 .93355564  

       garch  

              

         L1.    .11090902     .2434127                -.00203785  

        arch  

ARCH          

                                                                  

       _cons    .00092191    .00058294    .00037316    .00037813  

HistoricRe~n  

                                                                  

    Variable     GARCH       GJRGARCH      EGARCH       AGARCH    

                                                                  


image216.emf
                                                                             

      AGARCH          501         .   1775.766       5   -3541.533   -3520.45

      EGARCH          501         .   1774.033       5   -3538.067  -3516.984

    GJRGARCH          501         .   1770.283       5   -3530.565  -3509.482

       GARCH          501         .   1748.617       4   -3489.233  -3472.367

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             

Akaike's information criterion and Bayesian information criterion


image217.emf
                                                                  

         bic   -3393.2608   -3387.5387   -3385.7304   -3387.0445  

         aic   -3410.1272   -3408.6217   -3406.8134   -3408.1275  

Statistics                                                        

                                                                  

       _cons    5.860e-06    3.922e-06   -14.380701    5.895e-06  

              

         L1.                                           4.402e-06  

      saarch  

              

         L1.                             -.48867008               

      egarch  

              

         L1.                              .19271932               

     earch_a  

              

         L1.                              .02261237               

       earch  

              

         L1.                -.03193722                            

       tarch  

              

         L1.     .8545722    .89785254                 .85378143  

       garch  

              

         L1.    .05532408    .05798224                 .05559273  

        arch  

ARCH          

                                                                  

       _cons    .00010816    .00009415    .00017044     .0001086  

GARCHReturn   

                                                                  

    Variable    SIMGARCH    SIMGJRGA~H   SIMEGARCH    SIMAGARCH   

                                                                  


image218.emf
                                                                             

   SIMAGARCH          501         .   1709.064       5   -3408.127  -3387.044

   SIMEGARCH          501         .   1708.407       5   -3406.813   -3385.73

 SIMGJRGARCH          501         .   1709.311       5   -3408.622  -3387.539

    SIMGARCH          501         .   1709.064       4   -3410.127  -3393.261

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             

Akaike's information criterion and Bayesian information criterion


image219.emf
                                                                  

         bic   -2703.4426   -2707.4424   -2615.7568   -2707.6152  

         aic    -2720.309   -2728.5255   -2636.8398   -2728.6983  

Statistics                                                        

                                                                  

       _cons    5.628e-06    4.105e-06   -15.718205    6.267e-06  

              

         L1.                                          -.00164257  

      saarch  

              

         L1.                             -.93558142               

      egarch  

              

         L1.                              .14440689               

     earch_a  

              

         L1.                              -.0303224               

       earch  

              

         L1.                -.13645203                            

       tarch  

              

         L1.    .88355404    .91403336                 .90886485  

       garch  

              

         L1.    .09797043    .14306088                 .07029793  

        arch  

ARCH          

                                                                  

       _cons    -.0005205   -.00099441   -.00113716   -.00099838  

IFBMReturn    

                                                                  

    Variable   IFBMGARCH    IFBMGJRG~H   IFBMEGARCH   IFBMAGARCH  

                                                                  


image220.emf
                                                                             

  IFBMAGARCH          501         .   1369.349       5   -2728.698  -2707.615

  IFBMEGARCH          501         .    1323.42       5    -2636.84  -2615.757

IFBMGJRGARCH          501         .   1369.263       5   -2728.525  -2707.442

   IFBMGARCH          501         .   1364.155       4   -2720.309  -2703.443

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             

Akaike's information criterion and Bayesian information criterion
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-----------------------------------------------------------------

* Ljung-Box LM Test     AR(1) =    0.0001   P>Chi2(1) 0.9940

* Rho Value for         AR(1) =    0.0001

-----------------------------------------------------------------

 Ho: No Autocorrelation - Ha: Autocorrelation

=============================================

* Ljung-Box Autocorrelation LM Test         *

=============================================

                                                                              

       _cons    -3.45e-07   .0002514    -0.00   0.999    -.0004934    .0004927

                                                                              

       SPRES        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    .428881391     2,604  .000164701   Root MSE        =    .01283

                                                   Adj R-squared   =    0.0000

    Residual    .428881391     2,604  .000164701   R-squared       =    0.0000

       Model             0         0           .   Prob > F        =         .

                                                   F(0, 2604)      =      0.00

      Source         SS           df       MS      Number of obs   =     2,605
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-----------------------------------------------------------------

* Ljung-Box LM Test     AR(1) =    0.0000   P>Chi2(1) 0.9997

* Rho Value for         AR(1) =   -0.0000

-----------------------------------------------------------------

 Ho: No Autocorrelation - Ha: Autocorrelation

=============================================

* Ljung-Box Autocorrelation LM Test         *

=============================================

                                                                              

       _cons     .0000907   .0016452     0.06   0.956    -.0031354    .0033168

                                                                              

     ABCPRES        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    18.3612564     2,604  .007051174   Root MSE        =    .08397

                                                   Adj R-squared   =    0.0000

    Residual    18.3612564     2,604  .007051174   R-squared       =    0.0000

       Model             0         0           .   Prob > F        =         .

                                                   F(0, 2604)      =      0.00

      Source         SS           df       MS      Number of obs   =     2,605
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-----------------------------------------------------------------

* Ljung-Box LM Test     AR(1) =    1.0505   P>Chi2(1) 0.3054

* Rho Value for         AR(1) =   -0.0201

-----------------------------------------------------------------

 Ho: No Autocorrelation - Ha: Autocorrelation

=============================================

* Ljung-Box Autocorrelation LM Test         *

=============================================

                                                                              

       _cons    -5.36e-06   .0006143    -0.01   0.993    -.0012099    .0011992

                                                                              

      OISRES        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    2.55959561     2,604  .000982948   Root MSE        =    .03135

                                                   Adj R-squared   =    0.0000

    Residual    2.55959561     2,604  .000982948   R-squared       =    0.0000

       Model             0         0           .   Prob > F        =         .

                                                   F(0, 2604)      =      0.00

      Source         SS           df       MS      Number of obs   =     2,605
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-----------------------------------------------------------------

* Ljung-Box LM Test     AR(1) =    0.0583   P>Chi2(1) 0.8091

* Rho Value for         AR(1) =   -0.0047

-----------------------------------------------------------------

 Ho: No Autocorrelation - Ha: Autocorrelation

=============================================

* Ljung-Box Autocorrelation LM Test         *

=============================================

                                                                              

       _cons     .0000463   .0010648     0.04   0.965    -.0020416    .0021341

                                                                              

      TEDRES        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    7.69042369     2,604  .002953312   Root MSE        =    .05434

                                                   Adj R-squared   =    0.0000

    Residual    7.69042369     2,604  .002953312   R-squared       =    0.0000

       Model             0         0           .   Prob > F        =         .

                                                   F(0, 2604)      =      0.00

      Source         SS           df       MS      Number of obs   =     2,605
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N Max Min mean St.Dev. Skew Kurt

SP 481769 4.2E+09 10 2960634.458 3005295759.03976 5225.896

SP[I] 43777 6.22E+08 100 1337851.73 7078499 48.39564 3493.235

SP[II] 43627 2.18E+08 20 1291795.8 4701174 18.94481 494.0839

SP[III] 43811 3.63E+08 10 1266582.459 5427073 28.55081 1205.904

SP[IV] 43616 1.02E+09 10 1297670.937 6799391 86.48689 12005.56

SP[V] 43974 4.89E+08 12 1362372.299 5376974 31.92958 1961.572

SP[VI] 43962 1.67E+09 10 1670889.479 1106713696.73525 12846.45

SP[VII] 43571 3.27E+08 10 1717914.938 5774646 19.97705 629.3606

SP[VIII] 43903 1.55E+09 10 1506236.022 9513069 107.0766 16309.08

SP[IX] 43816 3.86E+09 10 7532342.282 6938314626.61981 1024.99

SP[X] 43842 4.2E+09 10 8879210.379 6745228826.99799 1075.984

SP[XI] 43870 4.64E+08 10 4688044.82 7948371 18.67532 627.7873

LRV 481768 15.19274 -15.64407072 2.61E-07 0.708392 1.980201 67.91988

LRV[I] 43776 12.89232 -15.64407072-0.0001743810.648274 2.354792 60.70871

LRV[II] 43626 9.893966 -9.528349083 4.12E-06 0.645821 2.475107 54.02409

LRV[III] 43810 9.830661 -8.965684472 2.12E-05 0.639063 2.307561 54.89632

LRV[IV] 43615 12.09402 -13.86113736 -4.93E-05 0.663941 2.217857 57.55134

LRV[V] 43973 13.38781 -15.40271334 -1.07E-05 0.652614 2.178846 68.72599

LRV[VI] 43961 9.962043 -9.177114971 1.74E-05 0.643388 2.300972 60.95281

LRV[VII] 43570 9.86715 -12.15627823 7.12E-05 0.676752 1.733379 72.60465

LRV[VIII] 43902 11.3921 -10.17079114 -3.36E-06 0.677626 1.442287 66.62071

LRV[IX] 43815 13.16892 -12.33125289 0.00011881 0.87639 1.008806 51.07572

LRV[X] 43841 15.19274 -15.01197311 -4.83E-05 0.900972 1.393355 61.30563

LRV[XI] 43869 14.33912 -11.68501719 5.62E-05 0.704441 3.661229 98.60206
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