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A B S T R A C T   

The estimation of methane and hydrogen production as output from a pyrolysis reaction is paramount to monitor 
the process and optimize its parameters. In this study, we propose a novel experimental approach for monitoring 
methane pyrolysis reactions aimed at hydrogen production by quantifying methane and hydrogen output from 
the system. While we appreciate the complexity of molecular outputs from methane hydrolysis process, our 
primary approach is a simplified model considering detection of hydrogen and methane only which involves 
three steps: continuous gas sampling, feeding of the sample into an argon plasma, and employing deep learning 
model to estimate of the methane and hydrogen concentration from the plasma spectral emission. While our 
model exhibits promising performance, there is still significant room for improvement in accuracy, especially 
regarding hydrogen quantification in the presence of methane and other hydrogen bearing molecules. These 
findings present exciting prospects, and we will discuss future steps necessary to advance this concept, which is 
currently in its early stages of development.   

1. Introduction 

The concept of a hydrogen-based economy revolves around the uti-
lization of hydrogen as a viable source of fuel [1]. Hydrogen stands out 
as a highly promising energy carrier, renowned for being an excep-
tionally clean fuel since its combustion results solely in the production of 
water. Furthermore, when compared to traditional fossil fuels, hydrogen 
shows a higher energy yield per unit mass, underlining its potential 
significance [2,3]. 

Hydrogen has garnered significant attention, primarily for its ap-
plications in fuel cells and internal combustion engines, thereby paving 
the way for the establishment of a low-carbon hydrogen economy. One 
of its key advantages lies in the efficient conversion of hydrogen’s 
chemical energy into electricity and various other energy forms, all 
accomplished without the emission of greenhouse gases [4,5]. More-
over, hydrogen plays a pivotal role in the formulation of innovative 
approaches to transform industrial CO2 emissions into valuable plat-
form chemicals, representing a significant step toward sustainability. 

1.1. Hydrogen production 

Approximately 96 % of global hydrogen production, as per current 

data [6], is obtained through methods such as coal gasification, oil/-
naphtha reforming, and steam methane reforming (SMR). Nevertheless, 
these processes have a profound environmental impact due to the sig-
nificant volume of CO2 emissions they generate (Fig. 1). illustrates the 
CO2 footprint associated with various hydrogen production techniques 
[7]. 

While SMR has a high energy efficiency of ~75 %, it is undermined 
for its reliance on a carbon capture and storage system which simply 
translates to cost and potentially high carbon fottprint. 

Furthermore, the conventional methods designed for Carbon Capture 
and Storage (CCS) incur a substantial environmental footprint due to 
their elevated electricity consumption, which further amplifies the 
overall environmental impact of the process [8,9]. 

Significant efforts are currently underway to establish industrial 
strategies for hydrogen production while minimizing CO2 emissions. 
Two emerging technologies in this regard are thermochemical water 
splitting and water electrolysis [10,11], both of which yield hydrogen 
and oxygen as their sole products. 

Water electrolysis involves the decomposition of water into oxygen 
and hydrogen through the passage of an electric current. The production 
of hydrogen from water via electrolysis represents a completely carbon 
dioxide-free alternative, provided that the electricity required is sourced 
exclusively from renewable resources. However, it’s important to note 
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that if the electricity used is not 100 % emissions-free, water electrolysis 
can surpass the carbon footprint of SMR due to its high energy demands 
[10]. 

Thermochemical water splitting primarily employs redox-active 
metal oxide cycles, a method that necessitates exceptionally high tem-
peratures (exceeding 1300 ◦C), which can be achieved through large- 
scale solar concentration systems. This technology capitalizes on two 
essentially limitless resources, namely water and sunlight. The integra-
tion of solar energy concentration systems with water-splitting struc-
tures holds vast potential for transforming the energy landscape and 
bolstering the economy. Presently, this process faces challenges in terms 
of its industrial viability due to relatively low efficiency and substantial 
processing costs. When subject to economic evaluation for large-scale 
hydrogen production, the metal oxide cycle emerges with the highest 
product costs and demands a substantial investment [7]. 

On the other hand, another possible source of hydrogen is repre-
sented by methane, the primary constituent of natural gas, that stands 
out as an abundant and readily available raw material, thanks to the vast 
reservoirs of natural gas. However, as (SMR) is associated with sub-
stantial carbon dioxide (CO2) emissions, there is a pressing need to 
explore cleaner alternatives. One promising option is the thermal 
decomposition of methane, commonly referred to as methane pyrolysis. 
This process offers a viable alternative since it yields only hydrogen and 
solid carbon as reaction products, effectively preventing the generation 
of CO2 during the reaction itself [5]. 

Methane pyrolysis offers the advantage of being a one-step process, 
unlike (SMR), which requires an additional Water-Gas Shift (WGS) re-
action. The WGS reaction serves to convert the carbon monoxide (CO) 
produced during the methane and water reaction into carbon dioxide 
(CO2) while producing extra hydrogen [12]. 

In terms of energy efficiency, SMR outperforms methane pyrolysis 

when carbon dioxide sequestration via a carbon capture system (CCS) is 
not considered, boasting a higher efficiency rate (75 % compared to 58 
%). However, when factoring in the implementation of CCS systems, the 
net energy efficiency of both processes becomes quite similar, with SMR 
achieving 60 % efficiency and methane pyrolysis reaching 58 % [13]. 

Methane pyrolysis technology offers a compelling advantage in the 
production of hydrogen, combining cost-effectiveness with low or near- 
zero emissions. When compared to direct combustion, natural gas py-
rolysis has the potential to be significantly more efficient in reducing 
greenhouse gas (GHG) emissions [14,15]. 

In terms of emissions, alternative methane conversion technologies 
exhibit certain limitations. For instance, the (SMR) process yields 0.5 kg 
of hydrogen per kilogram of methane and emits 9–12 kg of carbon di-
oxide equivalent per kilogram of hydrogen [16]. One of the primary 
merits of methane pyrolysis is its capacity to produce hydrogen gas with 
a noteworthy 75 % reduction in GHG emissions compared to the SMR 
process (resulting in 2–3 kg of CO2 per kilogram of hydrogen when 
natural gas serves as the heat source). 

Additionally, the solid carbon byproduct generated through methane 
pyrolysis can take on various forms, ranging from amorphous carbon 
black to well-structured graphitic materials and even specialized carbon 
nanotubes and fibres. The value and pricing of the solid carbon are 
determined by its specific characteristics and grade, thereby creating the 
potential for generating additional revenue through the production of 
high-value carbon products [17]. However, this topic needs further 
considerations by experts in the field with respect to the quantitative 
market demand for carbon black products and the carbon black output 
via methane pyrolysis. 

The thermal decomposition of methane is an endothermic chemical 
reaction that necessitates temperatures exceeding 900 ◦C [18]. This 
process is also susceptible to various influencing factors, including 
pressure and the presence of catalysts. 

Alterations in the pressure of the methane pyrolysis reaction, espe-
cially at its thermodynamic equilibrium state, adhere to Le Chatelier’s 
principle (states that when you change conditions for a chemical reac-
tion at equilibrium, the system will adjust to counteract that change and 
restore equilibrium. This applies to changes in concentration, pressure 
for gases and temperature); resulting in reduced methane conversion 
and hydrogen yield. However, under real operating conditions that 
deviate from equilibrium, elevated reaction pressure decreases the rate 
of methane conversion but increases the quantity of reactants within the 
reactor. Consequently, this leads to a higher production of hydrogen. To 
achieve economically competitive results, it is crucial for the methane 
pyrolysis reactor to operate at an optimal pressure that balances desir-
able methane conversion rates with energy efficiency. 

Solid catalysts can be employed to lower the requisite temperature 
for the process. Enhanced methane conversion rates correspond to 
increased rates of hydrogen and carbon production. During this process, 
carbon particles may deposit on the surface of the solid catalyst and 
migrate through it, which eventually leads to the deactivation of active 
catalyst sites over time [19,20]. Consequently, the rate of hydrogen 
production is influenced by catalyst deactivation, and the recovery of 
the catalyst presents a costly endeavour. 

Without a solid catalyst, methane pyrolysis demands temperatures 
exceeding 1000 ◦C to achieve a substantial hydrogen yield. These 
elevated temperatures are essential due to the formidable and stable 
carbon-hydrogen (C–H) bonds found within symmetrical methane 
molecules [21]. 

To mitigate the need for such high temperatures, researchers have 
developed both metal (such as Fe, Ni, Co) and non-metal (carbon) cat-
alysts. These catalysts serve the purpose of reducing the reaction tem-
perature and enhancing the rate of methane conversion [22]. 

Research by Plevan et al. [23] and Geißler et al. [24] has highlighted 
the potential use of molten tin (Sn) and lead (Pb) to generate hydrogen 
and separable carbon through the methane pyrolysis reaction. However, 
their pyrolysis activities were found to be relatively low when compared 

List of abbreviations 

GHG Greenhouse gases 
SMR Steam methane reforming 
CCS Carbon capture system 
CNN convolutional neural networks 
ppm Parts per million  

Fig. 1. Cost vs CO2 footprint of various hydrogen production techniques [7].  
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to other molten metals like Ni–Bi or Cu–Bi alloys. 
Subsequent studies by Palmer et al. [25] and Chester et al. [26] 

indicated that Ni–Bi and Cu–Bi alloys could significantly enhance the 
methane conversion rate in comparison to using molten bismuth (Bi) 
alone as the medium. Meanwhile, Serban et al. [27] explored the per-
formance of mixtures involving molten Sn and silicon carbide (SiC) as 
catalysts for methane pyrolysis. It’s worth noting that carbon produced 
via molten metal and salt systems may contain impurities from the metal 
and salt that are challenging to separate [28]. 

In addition to molten metals, molten salts have also been employed 
in methane pyrolysis, particularly transition metal halides and alkali 
halides that remain stable under reducing conditions [29]. Rahimi et al. 
[28] employed an immiscible mixture of molten salt and metal to 
enhance the purity of the solid carbon. Kang et al. [29,30] demonstrated 
that transition metal halides, such as manganese chloride (MnCl2) and 
iron chloride (FeCl2), exhibit high activity in the methane pyrolysis 
process. 

To address the challenges associated with methane pyrolysis, re-
searchers have developed various reactor systems and explored alter-
native thermal sources [31]. A comprehensive report on these systems 
and details of the hydrolysis process are reviewed by Patlolla et al. and 
Bastardo et al. [32,33]. 

1.2. Methane detection and quantification 

Everything discussed so far in section 1.1 indicates the importance of 
being able to monitor and observe the reaction leading to hydrogen 
generation in a real time when industrial scale productions is consid-
ered. Irrespective of what system is to be implemented, ultimately at 
some point the efficiency of the hydrogen production needs to be 
assessed by monitoring the concentration of output hydrogen and 
possible leaking of the methane into the output gas if 100 % conversion 
is not achieved. 

In terms of methane detection, currently there are existing technol-
ogies available in the market, which can be considered: 

Optical sensors operate by detecting alterations in light waves 
stemming from interactions between the analyte and the receptor 
component. These sensors offer a non-destructive means of analysis, 
remain impervious to electromagnetic interference, and can function in 
environments devoid of oxygen. However, it’s essential to acknowledge 
certain limitations associated with optical sensors, including their rela-
tively high cost, substantial power consumption, and the challenge of 
achieving significant and distinctive results within the optical absorp-
tion region specific to methane [34–37]. 

Calorimetric sensors function by quantifying the heat generated 
during a reaction and then establishing a correlation with the concen-
tration of the reactant. These sensors come with several advantages, 
such as being cost-effective, featuring a straightforward design, porta-
bility, ease of manufacture, and robust selectivity for methane. They can 
also perform reliably in challenging environmental conditions. Howev-
er, it’s important to acknowledge some of the drawbacks associated with 
calorimetric sensors, including their limited detection accuracy, 
vulnerability to issues like cracking, catalyst poisoning, and over-
saturation, high power consumption, relatively short lifespan, and the 
necessity for operating at elevated temperatures [38–41]. 

Pyroelectric sensors operate by converting thermal energy into 
electrical energy, exploiting the phenomenon of pyroelectricity. These 
sensors offer several advantages, including non-destructiveness, the 
ability to function without the presence of oxygen, good sensitivity, high 
responsivity, a wide measuring range, and operation at room tempera-
ture. However, it’s worth noting that pyroelectric sensors come with 
certain limitations, such as their relatively high cost, significant power 
consumption, immobility, and the challenges associated with their 
manufacturing process [42–44]. 

Semiconducting metal oxide sensors operate by detecting changes in 
conductivity resulting from the gas’s absorption on the surface of a 

metal oxide. These sensors offer several advantages, including afford-
ability, lightweight and robust construction, a long lifespan, and resis-
tance to poisoning. However, there are certain limitations associated 
with semiconducting metal oxide sensors, including poor selectivity, a 
relatively small and narrow operational temperature range, a slow re-
covery rate, significant dependence on additives, sensitivity to temper-
ature fluctuations, susceptibility to degradation, and responsiveness to 
changes in humidity [45–48]. 

Electrochemical sensors offer a versatile means of quantifying target 
gas concentrations by initiating either oxidation or reduction reactions 
at an electrode and subsequently measuring the resultant electrical 
current. These sensors come in various forms, each with its unique ad-
vantages and drawbacks. Amperometry (AE) sensors, for instance, pro-
vide affordability but are susceptible to issues like leakage, evaporation, 
and slow response times due to their use of hazardous materials. Ionic 
Liquid (IL) sensors, on the other hand, employ non-hazardous materials 
and demonstrate good selectivity for gases like methane while being 
able to detect even minor leaks. Solid Electrolyte (SE) sensors stand out 
for their leak-proof design, safety, robustness, and sensitivity to small 
leaks, yet they require elevated temperatures for operation and may 
struggle with low gas concentrations or potential degradation of the 
electrolyte. Each type caters to specific needs but necessitates a careful 
consideration of their respective advantages and limitations in practical 
applications [49–51]. 

Gas chromatography, (GC) boasts several advantages, including 
exceptional accuracy, resistance to interference, visualization capabil-
ities, and adaptability for a variety of applications. A typical GC system 
consists of five crucial components: the carrier gas system, injector, 
separator (column oven), detector, and workstation. Within the GC 
system, the components present in the injected sample undergo sepa-
ration within the column. This separation process enables the simulta-
neous and rapid quantitative analysis of the various compositions within 
the sample. As a result, GC has found extensive application in multi- 
component analysis across diverse fields, including petroleum, chemi-
cal and biological engineering, environmental protection, and more. Its 
capacity to analyse complex mixtures makes swiftly and accurately it an 
invaluable tool in various scientific and industrial endeavours [52]. 

Recently, with the emergence of advanced computing and machine 
learning algorithms, some researchers have attempted to detect trace 
methane levels with plasma optical emission spectroscopy [53]. In this 
study, researchers conducted an analysis of emission spectra emanating 
from a radio frequency cold atmospheric plasma generated using helium 
and methane. They employed a low-cost and low-resolution spectrom-
eter to capture spectra across three independent experimental runs, each 
featuring varying methane (CH4) concentrations ranging from 0 ppm to 
100 ppm. Additionally, the model’s robustness and recovery capabilities 
were put to the test during and after methane saturation events, 
involving concentrations as high as 20,000 ppm. 

The analysis of these spectra adopted a data-driven approach with 
the objective of detecting methane concentrations at or above 2 parts per 
million (ppm). The results revealed an initial accuracy of 86 %, which 
was further improved to 96 % through the application of a custom 
alignment procedure. This research showcases a promising method for 
precisely and reliably detecting methane at low concentrations, holding 
significance for various applications requiring sensitive gas detection 
[53]. 

1.3. Proposed methane monitoring system 

In this study we propose a monitoring system based on frequent 
sampling of the product gas from a column reactor. Fig. 2 illustrates a 
representative molten metal/salt pyrolysis reactor, together with an 
example of how coupling with the proposed system for methane/ 
hydrogen quantification. The flow of the output gas into the system is 
controlled via a Mass Flow Controller (MFC) unit which are commer-
cially available and operates on the principle of thermal mass flow 
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measurement to precisely regulate the flow rate of gases in various in-
dustrial processes. The key components include a flow sensor, typically a 
heated element, and a temperature sensor. The MFC maintains a con-
stant temperature differential (CTD) between the heated element and 
the gas flow. As the gas flows over the heated sensor, the amount of heat 
required to maintain the CTD is directly proportional to the flow rate. 
The MFC incorporates a control valve that adjusts the flow by regulating 
gas pressure or altering the flow path. Operating within a closed-loop 
control system, the MFC continuously measures the actual flow rate 
and adjusts the control valve to maintain the desired setpoint. 
Communication interfaces enable integration into larger control sys-
tems, facilitating remote monitoring and control. MFCs find extensive 
use in semiconductor manufacturing, gas chromatography, research 
laboratories, and industrial processes requiring precise and stable con-
trol of gas flows. Calibration for specific gases ensures accurate perfor-
mance tailored to the application’s requirements. 

The image illustrated in Fig. 2 represents a simplified presentation of 
a future prosed concept, however in reality during methane hydrolysis 
processes, the potential presence of impurities can stem from various 
sources, including the feedstock and reactor conditions. Depending on 
the purity of the methane feedstock, trace hydrocarbons may be present, 
alongside by-products such as carbon monoxide (CO) and carbon diox-
ide (CO2) resulting from incomplete hydrolysis or side reactions. Water 
vapor (H2O) is a natural by-product of the hydrolysis process. Addi-
tionally, methane decomposition under certain conditions can yield 
various carbon-containing species. The specific impurity composition is 
influenced by factors like process parameters, catalysts used, and feed-
stock quality. Purification steps are commonly employed to eliminate 
impurities and obtain a high-purity hydrogen product. Careful control of 
process conditions is essential to minimize the formation of undesired 
by-products and impurities. Based on the setup illustrated in Fig. 2, the 
spectral data captured from the plasma in real time will be constantly 
evaluated by deep learning model, trained on similar spectral data 
associated with known quantities of hydrogen and methane. 

2. Materials and method 

It is imperative to underscore that the experiments presented in this 
article are deliberately simplified and focused on the introduction of 
hydrogen and methane into the monitoring system. The primary 
objective is to explore the capability of our technique for the quantifi-
cation of these specific gases. Acknowledging that in a real-life scenario, 
with the potential presence of various other molecules, further efforts 

are anticipated to involve enhanced data collection, as well as rigorous 
model training and testing. This strategic approach ensures a systematic 
and thorough investigation into the broader applicability of the pro-
posed methodology, laying the groundwork for future comprehensive 
studies. 

The experiments were carried out by modifying a small radio fre-
quency plasma generator with a cylindrical chamber. An optical colli-
mator was fitted on the chamber to capture the spectral emissions of the 
plasma and guide it via a quartz optical fibre into a spectrometer. The 
plasma generator is capable of intaking three different gasses via three 
independent mass flow controllers for precise injection of the required 
gas into the chamber. 

In our experiments, the machine was connected to a source of Argon, 
Methane and a 5 % (Hydrogen/Argon mix) source. The plasma was 
generated via a constant 120w of RF energy. The set up of our prototype 
is illustrated in (Fig. 3). 

By varying the flow rates of the three gas inputs, we can obtain an 
input mix with a varying range of ppm of methane and hydrogen, from 
pure argon to different mixed ratios of the three gasses. The concen-
tration of both gases in the plasma chamber was capped at ~5 % in 
terms of square cubic centimetre per minute (sccm) flow rate compared 
to pure argon flow rate. 

The data were captured at various flow rates selected on random 
basis over a timespan of four days ensuring that the plasma generator 
was switched on an off in between the days. This was done so to provide 
significant random approach toward our data collection. 

For each plasma condition associated with certain methane or 
hydrogen content, between 10 and 20 spectral data points were 
collected with an integration time of 100 ms. 

The spectral emissions in their raw form are an array of intensity 
values associated with emissions observed by the spectrometer starting 
at wavelength of 200 nm–1100 nm with 0.2 nm resolution. The emission 
intensity at each wavelength is associated with photons emitted during 
electronic transition of a particular atom or molecule present in the 
plasma. These transitions are related to various states of argon atoms or 
ions, hydrogen molecules or ions and methane derivatives. As such the 
spectral array can resemble a soup of numerous hidden data points that 
hold information on ingredients of the plasma and their quantity. 

The objectives of these experiments have been to generate a large 
data bank of plasma spectrums associated with various rations of argon, 
hydrogen, and methane. In the next step, we developed a deep neural 
network that can learn precise quantitative atomic or molecular pres-
ence from these spectral data. 

Fig. 2. Conceptual illustrative example of where our detection system will be placed for analysis. The hydrogen output from the column reactor is diluted with argon 
and is fed into a small plasma chamber for spectral analysis of the plasma. The flow of the input gas to the system can be controlled via a (MFC) device. 
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Upon training the model with spectral data associated with exactly 
known quantity of atomic/molecular presence we test the model by 
evaluating its performance on calculating the atomic content of the 
plasma from a set of spectral data that it has not been exposed to 
previously. 

Overall, a total of four thousand nine hundred and seventy-five 
(4975) spectral data were collected. Of this data, some were associ-
ated with only argon without any hydrogen or methane resembling a 
spectrum associated to only argon. Some were associated with argon and 
hydrogen; some were associated with argon and methane and finally 
some contained all three gases in the plasma. The distribution of the 
spectral data in accordance with the gas content is presented in (Fig. 4). 
Taking a data science approach, this distribution of the data points 
would be considered unbalanced as we can see for example the number 
of data points associated with only hydrogen present in the plasma are 
higher than other conditions. Data scientists would conventionally 
prefer a balanced distribution of the data, however in these experiments, 
because our main objective is to prove a concept at a very early stage, we 
intentionally tried to maximise randomness in our approach toward data 
collection. 

Regarding imbalanced datasets in regression, while the term 
“imbalanced” is more commonly associated with classification prob-
lems, it can apply to regression scenarios where there’s a significant 

skew in the distribution of target values. In such cases, deep learning 
models can still be beneficial. They can capture the nuances of both the 
majority and minority target values, enabling better predictive perfor-
mance across the entire range of the target variable. Careful consider-
ation of data preprocessing, loss functions, and evaluation metrics 
tailored to regression problems will help leverage the potential advan-
tages of deep learning when dealing with imbalanced datasets in this 
context. As such, preparing a well-balanced dataset was not our objec-
tive; rather, the objective was to prove the concept using a challenging 
dataset. 

In terms of the actual parts per million (ppm) contents of each gas 
present in the argon plasma, we tried to take the same approach and 
make it as random as possible. Given the limitation of our mass flow 
controllers feeding the gas into the plasma which was at 0.1 square cubic 
centimetre per minute and our source gas concentrations we could 
achieve the following minimum values; Minimum hydrogen content 62 
ppm and we went to a maximum of 50,000 ppm. With regards to 
methane the min methane content we tested was ~1230 ppm and 
maximum of 41,970 ppm. The distribution of the hydrogen and methane 
contents are presented in (Fig. 5). 

Fig. 3. Experimental set up. The plasma unit was fed with three separate gases via three separate MFC controllers. By varying the ratio of the gas input (min flow rate 
of 0.1 sccm) numerous spectral emission data from the plasma was captured and stored. 

Fig. 4. The total number of spectral data and their association with the gas content. Argon only indicates no hydrogen or methane. This visualization delineates the 
distribution of spectral data across different gas compositions, including Argon only, Argon and Hydrogen, Argon and Methane, and a mix of Argon, Hydrogen, and 
Methane. Assessing the balance in these scenarios is pivotal for optimizing model training, ensuring a diverse dataset that enhances the model’s adaptability to 
various gas combinations. 
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3. Theory and calculations 

3.1. The deep learning model 

Our deep learning model is based on the residual network structure 
that was originally developed by Kaiming He [54] as a deep residual 
learning for image recognition. 

ResNet-50, short for Residual Network with 50 layers, represents a 
pivotal advancement in deep convolutional neural networks (CNNs) that 
has revolutionized image recognition and computer vision tasks. At its 
core, ResNet-50 utilizes residual blocks as its fundamental building 
blocks. These residual blocks address the vanishing gradient problem 
encountered when training extremely deep networks. Instead of striving 
to learn the underlying mapping directly, as in conventional networks, 
ResNet-50 introduces shortcut connections or skip connections within 
each residual block. These skip connections allow the network to learn 
residual functions—deviations from the identity mapping—making it 
easier to optimize the training process. By stacking multiple residual 
blocks, ResNet-50 creates a deep architecture while maintaining trac-
table training. The ResNet-50 architecture consists of five stages, 
contributing to the network’s capacity to capture intricate patterns and 
high-level features in input images. The original ResNet50 was tailored 
and trained for identifying image content (computer vision 

classification), thus we modified the output layer to make the model 
adaptable for regression analysis rather than a classification task. The 
remarkable depth of ResNet-50, with its 50 layers, allows it to excel in 
various computer vision tasks, including image classification, object 
detection, and segmentation, achieving state-of-the-art performance. Its 
ingenuity lies in the ability to train deeper networks with increased 
accuracy, thus making ResNet-50 an indispensable tool in modern deep 
learning for image analysis. 

Additionally the model is designed to take as input images which are 
technically 2D tensors. However, the spectral data obtained from the 
spectrometer is a single array (a 1D tensor). As such our single array 
spectral data must be converted into 2D tensors prior to model training. 
In order to reshape the spectral data into a 2D tensors, we trimmed the 
spectrum so to have 4500 data points. For simplicity we illustrate the 
process of single array to 2D conversion in (Fig. 6) where an array for 
length 24 is converted into a tensor of size (6 x 4). It’s important to 
ensure that the final matrix dimension needs to be a multiple of the 
single array’s size. Hence, we trimmed our single arrays so that data 
points from 195 nm to 1105 nm were selected at 0.2 nm resolution. This 
means every single array of our data contained 4500 data points and as 
such they were converted to 2D tensors of shape (50 x 90). 

Once the arrays are converted into 2D tensors they can be used for 
training the model. While the ResNet-50 takes a complex set of pro-
cedures during the image processing, fundamentally two main processes 
are vital during model training; the images undergo numerous convo-
lution and pooling steps. A very simplified representation of the model 
training steps is presented in (Fig. 7), however the actual model we used 
is significantly more complex than the illustration and reflects the 
original ResNet-50, except that the output neuron is modified to output a 
single number for complex regression analysis rather than a 
classification. 

The following steps are carried out in our model’s algorithm. 

3.1.1. Convolution process 
In deep convolutional neural networks (CNNs), the convolution 

process is a fundamental operation that plays a pivotal role in extracting 
meaningful features from input data, typically images. Convolution in-
volves the use of small, learnable filters or kernels to scan the input data. 
These kernels slide over the input image in a systematic manner, 
computing a weighted sum of pixel values within their receptive fields. 
The key idea is that these learned kernels act as feature detectors, 
detecting specific patterns or features such as edges, textures, or shapes. 
During the convolution operation, the kernel’s weights are shared across 
the entire input, which significantly reduces the number of parameters 
compared to fully connected layers. This parameter sharing property 
makes CNNs computationally efficient and capable of learning hierar-
chical representations of features. In essence, the convolution process 
gradually transforms the input image into a set of feature maps. Each 
feature map represents the response of one kernel to a specific feature in 
the input. By stacking multiple convolutional layers, the network can 
capture increasingly complex and abstract features, enabling it to 
recognize intricate patterns in the data. Mathematically convolution 
process can be described as such: 

C[i, j] =
∑M− 1

m=0

∑N− 1

n=0
I[i+m, j+ n] • K[m, n]

where C[i,j] is output feature map value at position [i,j], I is the input 
feature map, K is the filter and m and n are the dimensions of the filter. 

3.1.2. Max-pooling process 
Max-pooling is another crucial operation in CNNs that contributes to 

feature extraction and spatial dimension reduction. After each con-
volutional layer, max pooling is often applied to the feature maps. Max- 
pooling involves dividing the feature map into non-overlapping regions 
(typically 2x2 or 3x3 grids) and selecting the maximum value from each 

Fig. 5. The distribution frequency of hydrogen and methane contents in the 
plasma. Minimum hydrogen content was 62 ppm and minimum methane con-
tent was 1,663 ppm. 
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region, discarding the rest. This process effectively reduces the spatial 
dimensions of the feature maps, down sampling the information. Max- 
pooling serves multiple purposes. Firstly, it enhances the network’s 
translation invariance, making it more robust to small shifts and dis-
tortions in the input data. Secondly, it reduces the computational burden 
by reducing the number of parameters and the spatial dimensions, 
which is especially important in deep networks. Thirdly, max pooling 
helps to focus on the most salient features by retaining only the strongest 
activations in each region. In summary, convolution and max pooling 
are integral processes in CNNs that enable the network to automatically 
learn and extract hierarchical features from raw input data, facilitating 
the network’s ability to perform complex tasks such as image classifi-
cation, object detection, and segmentation in various scientific appli-
cations. The pooling process can be described as follows: 

P[i, j] =max
m,n

I[i+m, j+ n]

3.1.3. Artificial-neural network stage 
Ultimately the output of the above steps is then converted into a 

single array which is fed to the artificial neural network part of the 
model. During the training of a neural network using the Mean Squared 
Error (MSE) loss function and the Adam optimizer, a series of crucial 
processes unfold. Initially, network weights and biases are randomly 
initialized. In each training epoch, input data is forwarded through the 
network, generating predictions (of methane or hydrogen content). 
Subsequently, the MSE loss function calculates the average squared 
difference between these predictions and the actual target values, 
serving as a measure of the network’s performance on the training data. 
The backpropagation algorithm computes gradients of the loss with 
respect to network parameters, indicating the direction and magnitude 
of necessary adjustments. The Adam optimizer utilizes these gradients to 
efficiently update the weights and biases, optimizing the network’s 
performance. This iterative process continues for a set number of 
epochs, with ongoing monitoring and validation to ensure generaliza-
tion to new data. The final trained model is saved for future predictions 
on unseen data. Ultimately, this combination of MSE loss and the Adam 
optimizer is highly effective for regression tasks, enabling neural net-
works to learn and predict continuous values while minimizing the 
mean squared error between predictions and true values. 

3.1.4. Optimization algorithm 
We used the Adaptive Movement Estimation (Adam) optimizer for 

stochastic gradient descent algorithm to adjust the weights of the neural 

connections. The Adam optimization algorithm combines the benefits of 
both the Momentum and Root Mean Square Propagation (RMSP) 
gradient descent methods [55,56]. The key equations in the Adam al-
gorithm involve the update of the moving averages, the bias correction 
step, and the weight update step. 

The momentum method is an optimization algorithm that takes into 
consideration the exponentially weighted average and accelerates the 
gradient descent. 

The weight at time t+1 is given by: 

wt+1 =wt − α • mt  

where α is the step size or learning rate, the hyperparameter that con-
trols how far to move in the search space against the gradient each 
iteration of the algorithm and mt is the aggregate of gradients at current 
time t (initially, 0), given by: 

mt = βmt− 1 +(1 − β)
⌊

∂L
∂wt

⌋

Where mt− 1 is the aggregate of gradients at current time t-1 (previous), β 
is a moving average parameter, ∂L is the derivative of Loss Function and 
∂wt is the derivative of weights at time t. 

RMSP is an adaptive learning algorithm and an improved version of 
AdaGrad. Instead of taking the cumulative sum of squared gradients like 
in AdaGrad, it takes the exponential moving average. 

The weight at time t+1 is given by: 

wt+1 =wt −
α
̅̅̅̅̅̅̅̅̅̅̅̅
vt + ε

√

⌊
∂L
∂wt

⌋

where ε is a small positive constant (added to avoid division by 0) and vt 

is the sum of square of past gradients at time t (initially, Vt = 0), given 
by: 

vt = βvt− 1 + (1 − β)
(

∂L
∂wt

)2 

Taking the equations used in the both optimizers, we get: 

mt = β1mt− 1 + (1 − β1)

[
∂L
∂wt

]

vt = β2vt− 1 + (1 − β2)

(
∂L
∂wt

)2 

Fig. 6. The process of converting a single array into a 2D tensor.  

Fig. 7. A simple representation of training a CNN model with our spectral data.  
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Where β1 and β2 are the decay rates of average of gradients in each 
method with values ≈ 1. 

Since mt and vt have both initialized as 0, both tend to be biased 
towards 0, as both β1 & β2 ≈ 1. Adam optimizer corrects this problem by 
computing bias-corrected mt and vt. The equations are as follows: 

m̂t =
mt

1 − βt
1  

v̂t =
mt

1 − βt
1 

Introducing this the bias-corrected weight parameters in the original 
equation we get: 

wt+1 =wt − α
(

m̂t
̅̅̅̅̅̅̅̅̅̅̅̅
v̂t + ϵ

√

)

The algorithm effectively adapts the learning rates of individual 
parameters by considering both the first moment (mean) and the second 
moment (uncentered variance) of the gradients. This helps the optimizer 
converge faster and handle different scales of gradients in different 
dimensions. 

3.1.5. Learning rate 
In deep learning, the learning rate is a critical hyperparameter that 

determines how much a neural network’s weights should be adjusted 
during training. It plays a pivotal role in the optimization process, 
affecting the speed and stability of convergence. A large learning rate 
can lead to faster convergence but may risk overshooting the optimal 
solution or causing instability. On the other hand, a small learning rate 
provides stability but may result in slow convergence. Selecting an 
appropriate learning rate often involves experimentation and hyper-
parameter tuning to find the balance between rapid convergence and 
steady progress towards an optimal model. The choice of learning rate 
significantly influences the training effectiveness and final performance 
of deep neural networks. 

3.1.6. Training epoch 
In deep learning, a training epoch is a complete pass through the 

entire training dataset during the training phase of a neural network. It 
represents one iteration of the training process, where the model makes 
predictions on all the training examples, computes the loss (error) be-
tween the predicted values and the actual targets (labels), and updates 
the model’s parameters (weights and biases) to minimize this loss. 

We conducted multiple epochs. In each epoch, the entire training 
dataset is used to update the model’s parameters, and this process is 
repeated for a predefined number of epochs or until a certain conver-
gence criterion is met. Increasing the number of training epochs can lead 
to better model performance, but it can also risk overfitting the model to 
the training data. Therefore, finding the right balance between the 
number of epochs and model generalization is a crucial part of training 
deep neural networks. 

3.2. Model training 

As discussed previously all the spectral data were converted into 2D 
tensors of shape (50,90). Prior to model training, all the training 2D 
tensors were also normalised using min max scaling which is repre-
sented below: 

x(min maxscaled)=
x − min(x)

max(x) − min(x)

Normalization is a crucial step in the realm of deep learning, offering 
numerous advantages that enhance the training process and the per-
formance of neural networks. Firstly, it ensures stability and accelerates 
convergence, mitigating the risk of slow training or non-convergence 

that may occur when input features have varying scales. Secondly, 
normalization contribute to improved gradient flow within the network. 
This is vital for avoiding issues like vanishing or exploding gradients, 
which can severely hinder the training of deep neural networks. Lastly, 
normalization serves as a regularization technique, aiding in preventing 
overfitting and promoting better generalization of the model to unseen 
data (Fig. 8). demonstrates the conversion of the single spectra into a 2D 
image as was previously explained in (Fig. 6). 

4. Results 

Ultimately, we proceeded with training our deep learning model 
with the data. In our model training we carried out three separate 
protocols.  

1. Training the model with the whole data set including spectral data 
where both hydrogen and methane were present together as well as 
present separately.  

2. Training the model with a limited section of data ONLY containing 
either hydrogen or methane, as such avoiding the spectral data 
associated with presence of both gasses at the same time.  

3. Increasing the training time of the model in terms of number of 
epochs of training to explore the potential of model performance 
with extended training. 

4.1. Protocol 1 

According to protocol one, the model was trained with 80 % of the 
total data (hydrogen and methane present together in plasma). The 
remaining 20 % of the spectral data was kept aside for testing and 
evaluating the model for its performance assessment after the training. 

The model was trained at three stages with an ADAM optimizer al-
gorithm and mean squared error loss function with learning rates of 
0.0001 for 200 epochs, followed by a learning rate of 0.00001 for 50 
epochs, followed by a learning rate of 0.0000001 for 50 epochs. After 
training the model was tested with the remaining 20 % of the data which 
was about 995 spectral readings associated with various hydrogen or 
methane contents randomly selected during the splitting of the data into 
train and test section. The results of this protocol are presented in 
(Fig. 9) where the actual real methane or hydrogen content is in the x 
axis and the predicted content by the model is presented by the y axis. 
An ideal perfect prediction should form a perfect straight line when 
plotting the predicted values against the real values. 

While from (Fig. 9), we can see the potential of the model in terms of 
performing a reasonable regression operation, our objective is to gain 
maximum accuracy. It seems that at low ppm values for hydrogen and 
methane the model is struggling to make accurate predictions while it 
performs better as the gas content increases. We can see that the model is 
performing significantly better dealing with spectral features associated 
with methane compared to hydrogen. 

4.2. Protocol 2 

In this protocol, we trained the model with limited spectral data only 
associated with presence or absence of either ONLY hydrogen or 
methane separately (both instance of both gases being present together 
at the same time in the plasma). In a sense, during this model training, 
only part of the data associated with only one of these gases being 
present or absent was used for model training or testing. As before 80 % 
of the limited data was used for model training and 20 % was used for 
evaluations. These results are presented in (Fig. 10). 

From the results presented in (Fig. 10), we can see significant im-
provements in terms of model’s performance. This indicates that when 
both gases are present in the plasma simultaneously, the emission peaks 
associated with the plasma can become more complex and more difficult 
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for the model to train on. 

4.3. Protocol 3 

Here, protocols one and two were repeated, however with doubling 
the number of training epochs during model training. After training the 
model was evaluated with the test data and these results are presented in 
(Fig. 11 &12). 

We can immediately see improvements. However, from the results 

observed in (Fig. 11), while a significant improvement in methane 
quantification is observed, the hydrogen quantification by the model 
almost seems unchanged. This indicates that the extended training has 
not improved the model in terms of dealing with the spectral data 
associated with hydrogen presence. However, we can see significant 
improvement in terms of methane quantification. Especially, we can see 
improvements in the lower ppm content section. 

The results presented in (Fig. 12), indicate that extended training of 
the model has made significant progress on both hydrogen and methane 

Fig. 8. Steps in converting a spectral data into an image. The spectral data is normalised using min max scaling which leads to a normalised spectral data (green 
path). The single array spectral data is converted into a matrix with 50 rows and 90 columns. The matrix is then used for training the deep learning model. Without 
normalising the spectral data (red path), the model was incapable of being trained. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 

Fig. 9. The trained model was tested with 995 spectral data to predict the hydrogen or methane content of the plasma. The real values associated with ppm content 
of each gas is presented on the x axis and the model predictions by the y axis. 
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quantification. In fact, the methane quantification (prediction) pre-
sented in (Fig. 12) is almost resembling a straight line. 

5. Discussion 

In these experiments, the objective was not to prepare a well- 
balanced dataset but rather to demonstrate the feasibility of a chal-
lenging dataset. The potential of the proposed concept for monitoring 
the performance of a methane pyrolysis reaction by quantifying 
methane or hydrogen is evident while significant challenges remain to 
be addressed. Especially that in a real-world methane hydrolysis pro-
cess, the output of the process can have other hydrogen containing 
molecules which will influence the spectral emissions of plasma which 
will impose significant challenge on the AI model structure and learning 
curve. 

The process of methane pyrolysis can lead to formation of large 
polycyclic aromatic hydrocarbon (PAH). Methane pyrolysis is in essence 

the dehydrogenation process of different hydrocarbon compounds to a 
condensed phase, initiated through rupture of C–H bonds. Higher mo-
lecular weight alkene and alkyne particle precursors then form. Acety-
lene (C2H2), particularly stable at high temperature, appears as a major 
precursor [57,58]. 

Tao et al. have addressed the formation of large polycyclic aromatic 
hydrocarbon. The conclusion of Tao’s paper summarizes the key con-
tributions and findings of the study. The authors propose a refined 
mechanism of C2H2-PAH coupled in a serially connected plug-flow 
reactor model to address the complex chemical kinetics associated 
with the formation of seven light-weight EPA-PAHs during acetylene 
pyrolysis at different temperatures. The mechanism combines kinetic 
databases from existing mechanisms, incorporating sensitivity analysis 
and rate-of-production analysis. Missing reactions are added, and rate 
constants are updated for better predictions of the temperature effect on 
the formation of two-to four-ring PAHs. The study significantly improves 
the accuracy of fuel consumption and PAH formation predictions, 

Fig. 10. The performance of the model trained on limited section of the data. With focus on only either hydrogen or methane. The real values associated with ppm 
content of each gas is presented on the x axis and the model predictions by the y axis. 

Fig. 11. Model performance on protocol one approach, after significantly extended model training.  
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achieved through the adoption of a reactor module comprising pre-
heating, heat release, and isothermal zones [59]. 

More recently, Khrabry’s proposed model for gas-phase methane 
pyrolysis represents a significant advancement in understanding the 
formation of large (PAH) molecules during the synthesis of carbon 
nanostructures like carbon black and graphene flakes. The model is 
specifically tailored for studying soot growth kinetics in a two-stage 
process involving the conversion of methane to acetylene followed by 
the growth of PAH molecules from acetylene. The chemical mechanism 
is comprehensive, integrating an older mechanism [60] with key reac-
tion pathways from Tao’s mechanism for small (PAH) molecules and 
incorporating the Hydrogen-Abstraction-C2H2-Addition (HACA) path-
ways for larger PAH molecules, extending up to 37 aromatic rings. 

HACA) mechanism is a chemical reaction pathway involved in the 
formation of polycyclic aromatic hydrocarbons (PAHs) during high- 
temperature pyrolysis or combustion of hydrocarbons, particularly 
acetylene (C2H2). It describes a series of steps in which hydrogen atoms 
are successively abstracted from acetylene molecules, followed by the 
addition of the resulting radicals to form larger aromatic hydrocarbons. 
The HACA mechanism is essential for understanding the complex ki-
netics of PAH formation, as it provides insights into the molecular 
pathways leading to the growth of aromatic structures. These mecha-
nisms play a crucial role in various high-temperature processes, such as 
flames, soot formation, and pyrolysis reactions, where the formation of 
PAHs is of interest [61]. 

This approach allows the model to accurately describe both stages of 
methane pyrolysis. The mechanism’s validity is confirmed through 
comparisons with multiple sets of experimental data, demonstrating 
good agreement for both conversion processes. The model’s perfor-
mance is evaluated in methane-rich mixtures under extended residence 
times, emphasizing the importance of including larger PAH species (up 
to A37) for precise predictions of carbon conversion to PAH molecules 
and the residual fraction of acetylene in the mixture. The mechanism 
file’s availability upon request highlights its potential for contributing to 
further research in the field. Khrabry’s model provides a valuable tool 
for researchers studying methane pyrolysis and the synthesis of carbon 
nanostructures [62]. 

As such, it is apparent that these studies ultimately need to be carried 
out with a variety of input gases into the plasma, capturing spectral data 
followed by extensive model training and evaluating model’s perfor-
mance metrics to conclude the method applicable for commercial 
consideration. 

Apart from the above-mentioned extensive studies required as a 
follow up on what has been reported here, our proposed system, in its 
current early stage, requires significant improvements. Most notably, as 
evident from the results, in a conceptual scenario depicted in (Fig. 2), 
the system would dilute a small sample stream of hydrogen product and 
assess it for the presence of methane. In an ideal methane hydrolysis 
reaction, the goal would be to convert 100 % of methane into hydrogen. 
Therefore, the system should ideally be capable of quantifying even 
trace amounts of methane. This necessitates quantifying methane at 
very low levels, such as parts per million (ppm) or billion quantities. 
While the results in (Fig. 11) associated with methane quantification 
show promise, achieving significantly higher accuracy is essential. We 
should aim for quantification accuracy close to what was observed in 
(Fig. 12) in relation to methane. At the same time, due to the early stage 
of our experiments and resource limitations, the lowest methane dilu-
tion tested was approximately 1230 ppm, which may be considered 
relatively high. A hydrogen tank containing 1200 ppm of methane 
would still be considered 99.87 % pure. To achieve purities in the range 
of 99.999 % or 99.99 %, the methane impurity should ideally be be-
tween 1 and 100 ppm. While we have demonstrated the great potential 
of this concept ‘s approach at its early stage, ongoing studies should 
continue to assess the precision and performance of the concept. 

One observation in our results that presents a challenge is the 
quantification of hydrogen in the presence of methane (in this study) 
and other hydrogen bearing molecules (in future studies). When 
comparing the results associated with hydrogen quantification in 
(Figs. 9 and 11), extended model training failed to make a significant 
improvement to the model’s learning. These results pertain to quanti-
fying hydrogen in the presence of methane. Methane, containing four 
hydrogen atoms, can potentially break into small molecular or atomic 
fragments when placed in a plasma, technically yielding hydrogen 
atoms. And extensive amount of research exists on decomposition of 
methane via plasma and the molecular break down of methane into 
various ions, radical or neutrals [63–67]. The presence of hydrogen, 
specially at low concentrations is impossible to be recognised by the 
naked eye as illustrated in (Fig. 13) compared to the elaborated effect of 
methane presence. 

According to the literature, the following reactions can cooccur when 
methane is exposed to the plasma environment [66].  

CH4 + e → CH3• + H• + e                                                                   

CH4 + e → CH4+ + 2e                                                                         

Fig. 12. Model performance on protocol two approach, after significantly extended model training.  
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CH4+ + CH4 → CH5+ + CH3•

CH5+ + C2H6 → C2H5+ + CH4 + H2                                                    

CH5+ + C2H4 → C2H5+ + CH4                                                             

C2H5+ + C2H6 → C3H7+ + CH4                                                          

C2H5+ + C2H6+CH4 → C4H9+ + H2 + CH4                                       

In each of the above reactions, the rate and efficiency of every individual 

conversion is dependent on the ration of the inert gas and the methane 
present in the plasma, the flow rates of the gases, the plasma power and 
chamber dynamics. 

This is further illustrated in (Fig. 14) where the three spectra data 
presented earlier in (Fig. 13) are converted in to 2D tensors and the 
intensity associated with the emission peaks is projected in the z axis. 

For example, molecules such as intermediate methanium (C2H5+) 
formation and subsequently its own further reaction with a methane 
molecule in the plasma has its own dependencies compared to an earlier 
reaction or a further reaction [66]. Atomic and molecular hydrogen ions 
also have been observed in these studies. The methane conversion and 
electron density/energy have been shown to be correlated while the 
electron density and energy will impact further ion formation and 
govern the stability of the plasma [67]. In fact, this topic is so exten-
sively vast for discussion that it will be beyond the scope of this article. 
However, one observation is mostly important in relation to the topic of 
this article, and that is the formation of varying amount of hydrogen 
when the methane is exposed to the plasma. This simply means that in 
all the experiments where we introduce ‘only’ methane and argon into 
the plasma, there will be hydrogen present in there. But when we are 
training our neural network model, according to our experimental input, 
our model assumes hydrogen not to exists in there. But spectral signals 
associated with hydrogen exist. So, the model is literally getting trained 
with a small dose of wrong information in relation to hydrogen content. 

Consequently, when spectral data is captured with a known flow rate 
of hydrogen into the plasma, there is an unknown quantity of hydrogen 
that may appear in the plasma when methane is present, leading to an 
error factor. Spectral peaks associated with hydrogen are limited and 
unique, whereas methane can exhibit significantly more complex spec-
tral features. This creates a potential challenge for the deep learning 
model because, during training, we provide a known quantity of 

Fig. 13. The standard spectral data associated with plasma emissions lacking or 
containing the stated amount of hydrogen or methane. The presence of methane 
results in significant alternation of the spectrum between 300 and 700 nm while 
the presence of hydrogen is impossible to be observed with naked eye. The 
subtle differences in these spectra, challenging to distinguish with the naked 
eye, underscore the exceptional sensitivity of our computer vision-based 
models. Further insights into this remarkable capability will be provided in 
the revised version, showcasing the precision of our methodology in capturing 
nuanced variations in gas composition. 

Fig. 14. Visualising the 2D tensors generated from the spectral data such that the intensity of each pixel in the 2D tensor is projected in z axis. Top row represents 
spectral data prior to normalization and the bottom row represents the spectral data after normalization via min max scaling. The bottom row images represent what 
the deep learning model is ultimately getting trained on for feature identification. The presence of methane clearly generates an image which is significantly more 
distinguishable than the one with hydrogen presence. 
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hydrogen to the AI model while simultaneously depriving it of the 
quantity of hydrogen that may arise from the presence of methane in the 
plasma. Consequently, the model is trained with an error in its learning 
curve. This can be observed in (Figs. 9 and 11), especially when 
considering the hydrogen content values predicted by the model (up to 
15,000 ppm), while the real values for the hydrogen content fed into the 
plasma were 0. While further training of the model resolves this issue for 
methane, it fails to do so for hydrogen quantification. 

5.1. The required improvements should be pursued through two parallel 
approaches 

Further enhancement of hardware: This refers to the plasma unit 
system. Many parameters in this hardware, such as the chamber size, 
plasma generator, plasma power, plasma pulse rate, chamber pressure 
controls, mass flow controller sensitivity, and collimator optics 
capturing plasma emissions, can be explored, and tested to achieve 
better performance. 

Further improvements in the neural network model: There is virtu-
ally no limit to what can be achieved in terms of neural network model 
improvements. Current advancements in deep learning and computer 
vision models offer exciting possibilities. While our experiments used a 
model resembling ResNet50, which is powerful but not the latest, many 
more sophisticated models are being developed by computer vision and 
AI scientists. Future iterations of this project can significantly benefit 
from implementing these advancements in AI and computer vision. The 
results presented in (Figs. 9–12). illustrate that even extending the 
model training epoch by a factor of two led to significant improvements. 
Therefore, it’s reasonable to assume that employing more updated and 
sophisticated computer vision models will guarantee further 
enhancements. 

6. Conclusion 

In this study, our primary objective was to explore the feasibility of 
integrating plasma analysis and deep learning to precisely quantify a 
specific set of molecules, namely hydrogen and methane, hypothetically 
resulting from methane pyrolysis reactions. While the developed model 
exhibits robust performance in quantifying this limited set of elements, 
it faces inherent challenges in accurately quantifying a broader spec-
trum of hydrogen-bearing molecules potentially present in the pyrolysis 
output. Despite showcasing promising outcomes, it is crucial to 
acknowledge the necessity of experimental setups that involve a diverse 
range of gases, facilitating spectral data capture for extensive model 
training. Recognizing the dynamism in deep learning advancements, the 
study emphasizes the potential of deploying sophisticated and complex 
models to overcome these challenges. Consequently, the project, in its 
current nascent stage, serves as a trailblazing endeavour, illustrating the 
convergence of plasma analysis, AI, and deep learning within the realm 
of industrial applications, particularly in the context of methane pyrol-
ysis. This multidisciplinary approach not only highlights the current 
achievements but also underscores the immense research opportunities 
lying ahead. 
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[8] Shu DY, Deutz S, Winter BA, Baumgärtner N, Leenders L, Bardow A. The role of 
carbon capture and storage to achieve net-zero energy systems: trade-offs between 
economics and the environment. Renew Sustain Energy Rev 2023;178:113246. 

[9] Von Wald GA, Masnadi MS, Upham DC, Brandt AR. Optimization-based 
technoeconomic analysis of molten-media methane pyrolysis for reducing 
industrial sector CO2 emissions. Sustain Energy Fuels 2020;4(9):4598–613. 

[10] Li Y, Zhang T, Ma J, Deng X, Gu J, Yang F, Ouyang M. Study the effect of lye flow 
rate, temperature, system pressure, and different current density on energy 
consumption in catalyst test and 500W commercial alkaline water electrolysis. 
Mater Today Phys 2022;22:100606. 

[11] Parkinson B, Tabatabaei M, Upham DC, Ballinger B, Greig C, Smart S, McFarland E. 
Hydrogen production using methane: techno-economics of decarbonizing fuels and 
chemicals. Int J Hydrogen Energy 2018;43(5):2540–55. 

[12] Harikrishna RB, Sharma S, Deka H, Sundararajan T, Rao GR. Thermochemical 
production of green hydrogen using ferrous scrap materials. Int J Hydrogen Energy 
2023. 

[13] Steinberg M. Fossil fuel decarbonization technology for mitigating global warming. 
Int J Hydrogen Energy 1999;24(8):771–7. 

[14] Dai H, Besser RS. Fluidization analysis for catalytic decomposition of methane over 
carbon blacks for solar hydrogen production. Int J Hydrogen Energy 2021;46(79): 
39079–94. 

[15] Keller M. Comment on ‘methane pyrolysis for zero-emission hydrogen production: 
a potential bridge technology from fossil fuels to a renewable and sustainable 
hydrogen economy. Ind Eng Chem Res 2021;60(48):17792–4. 

[16] Parkinson B, Balcombe P, Speirs JF, Hawkes AD, Hellgardt K. Levelized cost of CO2 
mitigation from hydrogen production routes. Energy Environ Sci 2019;12(1): 
19–40. 

[17] Sanchez-Bastardo N, Schlogl R, Ruland H. Methane pyrolysis for CO2-free H2 
production: a green process to overcome renewable energies’ unsteadiness. Chem 
Ing Tech 2020;92(10):1596–609. 

[18] Shah N, Panjala D, Huffman GP. Hydrogen production by catalytic decomposition 
of methane. Energy Fuels 2001;15(6):1528–34. 

[19] Bayat N, Rezaei M, Meshkani F. Hydrogen and carbon nanofibers synthesis by 
methane decomposition over Ni–Pd/Al2O3 catalyst. Int J Hydrogen Energy 2016; 
41(12):5494–503. 

[20] Bayat N, Rezaei M, Meshkani F. Methane decomposition over Ni–Fe/Al2O3 
catalysts for production of CO2-free hydrogen and carbon nanofiber. Int J 
Hydrogen Energy 2016;41(3):1574–84. 

[21] Ashik UPM, Wan Daud WMA, Abbas HF. Production of greenhouse gas-free 
hydrogen by thermocatalytic decomposition of methane - a review. Renew Sustain 
Energy Rev 2015;44:221–56. 

[22] Pudukudy M, Yaakob Z, Jia Q, Sobri Takriff M. Catalytic decomposition of 
undiluted methane into hydrogen and carbon nanotubes over Pt promoted Ni/ 
CeO2 catalysts. New J Chem 2018;42(18):14843–56. 

[23] Plevan M, et al. Thermal cracking of methane in a liquid metal bubble column 
reactor: experiments and kinetic analysis. Int J Hydrogen Energy 2015;40(25): 
8020–33. 

[24] Geißler T, et al. Hydrogen production via methane pyrolysis in a liquid metal 
bubble column reactor with a packed bed. Chem Eng J 2016;299:192–200. 

[25] Palmer C, et al. Methane pyrolysis with a molten Cu–Bi alloy catalyst. ACS Catal 
2019;9(9):8337–45. 

[26] Chester UD, et al. Catalytic molten metals for the direct conversion of methane to 
hydrogen and separable carbon. Science 2017;358(6365):917–21. 

[27] Serban M, Lewis MA, Marshall CL, Doctor RD. Hydrogen production by direct 
contact pyrolysis of natural gas. Energy Fuels 2003;17(3):705–13. 

[28] Rahimi N, et al. Solid carbon production and recovery from high-temperature 
methane pyrolysis in bubble columns containing molten metals and molten salts. 
Carbon 2019;151:181–91. 

[29] Kang D, et al. Catalytic methane pyrolysis in molten MnCl2-KCl. Appl Catal B 
Environ 2019;254:659–66. 

[30] Kang D, et al. Catalytic methane pyrolysis in molten alkali chloride salts containing 
iron. 2020. 

[31] Nnabuife SG, Ugbeh-Johnson J, Okeke NE, Ogbonnaya C. Present and projected 
developments in hydrogen production: a technological review. Carbon Capture, Sci 
Technol 2022;3:100042. 

[32] Reddy Patlolla Shashank, Katsu Kyle, Sharafian Amir, Wei Kevin, Herrera Omar E, 
Walter Mérida. A review of methane pyrolysis technologies for hydrogen 
production. Renew Sustain Energy Rev 2023;181:113323. 

A. Salimian and E. Grisan                                                                                                                                                                                                                    

http://refhub.elsevier.com/S0360-3199(24)00274-X/sref1
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref1
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref2
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref2
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref3
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref3
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref4
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref4
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref4
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref5
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref5
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref6
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref6
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref7
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref7
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref7
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref8
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref8
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref8
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref9
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref9
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref9
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref10
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref10
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref10
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref10
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref11
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref11
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref11
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref12
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref12
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref12
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref13
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref13
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref14
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref14
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref14
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref15
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref15
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref15
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref16
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref16
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref16
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref17
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref17
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref17
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref18
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref18
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref19
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref19
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref19
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref20
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref20
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref20
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref21
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref21
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref21
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref22
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref22
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref22
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref23
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref23
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref23
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref24
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref24
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref25
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref25
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref26
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref26
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref27
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref27
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref28
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref28
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref28
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref29
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref29
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref30
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref30
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref31
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref31
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref31
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref32
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref32
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref32


International Journal of Hydrogen Energy 58 (2024) 1030–1043

1043
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micro-calorimetric detection of hydrocarbons. Sensor Actuator B Chem 2017;247: 
617–25. 

[39] Alpert B, Ferri E, Bennett D. Algorithms for identification of nearly-coincident 
events in calorimetric sensors. J Low Temp Phys 2016;184:263–73. 

[40] Shen G, Zheng X, Zhang Y, Wang R. The designed MEMS methane sensor based on 
pulse power supply. IOP Conf Ser Earth Environ Sci 2019;300:42029. 

[41] Gardner EL, Luca AD, Falco C, Udrea F. Geometrical optimization of diode-based 
calorimetric thermal flow sensors through multiphysics finite element modeling. 
Proceedings 2017;1:280. 

[42] Hu L, Zheng C, Zhang M, Yao D, Zheng J, Zhang Y, Wang Y, Tittel FK. Quartz- 
enhanced photoacoustic spectroscopic methane sensor system using a quartz 
tuning fork-embedded, double-pass and off-beam configuration. Photoacoustics 
2020;18:100174. 

[43] Liu H, He Q, Zheng C, Wang Y. Development of a portable mid-infrared methane 
detection device. Optoelectron Lett 2017;13:100–3. 

[44] Dong M, Zheng C, Miao S, Zhang Y, Du Q, Wang Y, Tittel F. Development and 
measurements of a mid-infrared multi-gas sensor system for CO, CO2 and CH4 
detection. Sensors 2017;17:2221. 

[45] Moalaghi M, Gharesi M, Ranjkesh A, Hossein-Babaei F. Tin oxide gas sensor on tin 
oxide microheater for high-temperature methane sensing. Mater Lett 2019;263: 
127196. 

[46] Shaalan NM, Rashad M, Moharram AH, Abdel-Rahim MA. Promising methane gas 
sensor synthesized by microwave-assisted Co3O4 nanoparticles. Mater Sci 
Semicond Process 2016;46:1–5. 

[47] Oleksenko LP, Fedorenko GV, Maksymovych NP. Platinum-containing adsorption- 
semiconductor sensors based on nanosized tin dioxide for methane detection. 
Theor Exp Chem 2017;53:259–64. 

[48] Oleksenko LP, Fedorenko GV, Maksymovych NP. Highly sensitive to methane 
sensor materials based on Nano-Pd/SnO2. Theor Exp Chem 2019;55:1–5. 

[49] Wan H, Yin H, Lin L, Zeng X, Mason AJ. Miniaturized planar room temperature 
ionic liquid electrochemical gas sensor for rapid multiple gas pollutants 
monitoring. Sensor Actuator B Chem 2018;255:638–46. 

[50] Yang B, Xu J, Wang C, Xiao J. A potentiometric sensor based on SmMn2O5 sensing 
electrode for methane detection. Mater Chem Phys 2020;245:122679. 

[51] Gross PA, Jaramillo T, Pruitt B. Cyclic-voltammetry-based solid-state gas sensor for 
methane and other VOC detection. Anal Chem 2018;90:6102–8. 

[52] Liu X, et al. Establishment of analysis method for methane detection by gas 
chromatography. IOP Conf Ser Earth Environ Sci 2018;113:012023. 

[53] Vincent J, et al. Detecting trace methane levels with plasma optical emission 
spectroscopy and supervised machine learning. Plasma Sources Sci Technol 2020; 
29:085018. 

[54] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: 
Proceedings of the IEEE conference on computer vision and pattern recognition 
(CVPR), Las Vegas, NV, USA, 27–30 june 2016; 2016. p. 770–8. 

[55] Cornell University Computational Optimization Open Textbook. (n.d.). 
Optimization in machine learning and data analytics. Retrieved August 28, 2023, 
from https://optimization.cbe.cornell.edu/index.php?title=Adam. 

[56] Kingma DP, Ba J. Adam: a method for stochastic optimization. In: 3rd international 
conference on learning representations; 2014. 

[57] Fulcheri L, Rohani V-J, Wyse E, Hardman N, Dames E. An energy-efficient plasma 
methane pyrolysis process for high yields of carbon black and hydrogen. Int J 
Hydrogen Energy 2023;48(8):2920–8. 

[58] Frenklach M, Clary DW, Gardiner WC, Stein SE. Detailed kinetic modeling of soot 
formation in shock-tube pyrolysis of acetylene. Symp (Int) Combust 1985;20(1): 
887–901. 

[59] Tao H, Wang HY, Ren W, Lin KC. Kinetic mechanism for modelling the temperature 
effect on PAH formation in pyrolysis of acetylene. Fuel 2019;255:115796. 

[60] Appel J, Bockhorn H, Frenklach M. Kinetic modeling of soot formation with 
detailed chemistry and physics: laminar premixed flames of C2 hydrocarbons. 
Combust Flame 2000;121(1–2):122–36. 

[61] Mebel AM, Georgievskii Y, Jasper AW, Klippenstein SJ. Temperature- and pressure- 
dependent rate coefficients for the HACA pathways from benzene to naphthalene. 
Proc Combust Inst 2017;36(1):919–26. 

[62] Khrabry A, Kaganovich ID, Barsukov Y, Raman S, Turkoz E, Graves D. Compact and 
accurate chemical mechanism for methane pyrolysis with PAH growth. Int J 
Hydrogen Energy 2024;56:1340–60. 

[63] Sugai H, Kojima H, Ishida A, Toyoda H. Spatial distribution of CH3 and CH2 
radicals in a methane rf discharge. Appl Phys Lett 1990;56(26):2616–8. 25 June 
1990. 

[64] Tachibana K, Nishida M, Harima H, Urano Y. Diagnostics and modeling of a 
methane plasma used in the chemical vapor deposition of amorphous carbon films. 
J Phys Appl Phys 1984;17(8):1727. 

[65] Sun J, Chen Q. Kinetic roles of vibrational excitation in RF plasma assisted methane 
pyrolysis. J Energy Chem 2019;39:188–97. 

[66] Bae J, Lee M, Park S, Jeong M-G, Hong D-Y, Kim YD, Park Y-K, Hwang YK. 
Investigation of intermediates in non-oxidative coupling of methane by non- 
thermal RF plasma. Catal Today 2017;293–294:105–12. 

[67] Sun H, Katayama K, Oya M. Contribution of electron density to plasma 
decomposition rate of methane. Fusion Eng Des 2023;194:113885. 

A. Salimian and E. Grisan                                                                                                                                                                                                                    

http://refhub.elsevier.com/S0360-3199(24)00274-X/sref33
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref33
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref33
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref33
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref34
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref34
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref34
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref34
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref35
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref35
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref36
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref36
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref37
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref37
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref38
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref38
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref38
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref39
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref39
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref40
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref40
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref41
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref41
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref41
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref42
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref42
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref42
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref42
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref43
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref43
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref44
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref44
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref44
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref45
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref45
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref45
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref46
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref46
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref46
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref47
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref47
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref47
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref48
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref48
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref49
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref49
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref49
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref50
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref50
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref51
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref51
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref52
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref52
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref53
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref53
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref53
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref54
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref54
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref54
https://optimization.cbe.cornell.edu/index.php?title=Adam
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref56
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref56
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref57
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref57
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref57
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref58
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref58
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref58
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref59
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref59
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref60
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref60
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref60
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref61
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref61
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref61
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref62
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref62
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref62
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref63
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref63
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref63
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref64
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref64
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref64
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref65
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref65
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref66
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref66
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref66
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref67
http://refhub.elsevier.com/S0360-3199(24)00274-X/sref67

	Deep learning analysis of plasma emissions: A potential system for monitoring methane and hydrogen in the pyrolysis processes
	1 Introduction
	1.1 Hydrogen production
	1.2 Methane detection and quantification
	1.3 Proposed methane monitoring system

	2 Materials and method
	3 Theory and calculations
	3.1 The deep learning model
	3.1.1 Convolution process
	3.1.2 Max-pooling process
	3.1.3 Artificial-neural network stage
	3.1.4 Optimization algorithm
	3.1.5 Learning rate
	3.1.6 Training epoch

	3.2 Model training

	4 Results
	4.1 Protocol 1
	4.2 Protocol 2
	4.3 Protocol 3

	5 Discussion
	5.1 The required improvements should be pursued through two parallel approaches

	6 Conclusion
	Declaration of competing interest
	Acknowledgments
	References


