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Abstract— Meteorological conditions such as air density, 

temperature, solar radiation etc. strongly affect the power 

generation from solar, and thus, the prediction and estimation 

process should consider weather conditions as critical inputs. 

The nature of weather forecast is highly unpredictable, so many 

applications use meteorological data from in-place on-site 

sensors to add to the forecast and some use complex networks 

with complicated mapping. The in-situ sensor approach and 

dense mapping methods, however, present several drawbacks. 

First, the use of sensors give rise to extra operational, 

installation and maintenance cost. Second, it requires significant 

amount of time to capture and accumulate data for various 

occasions and scenarios, and in addition, sensor itself can be the 

cause of error measurements. The complex methods are 

computational inefficient and may present suboptimal 

convergence. This paper presents a sensorless solar output 

power forecasting based on historical weather (publicly 

available from met office) and PV data. The algorithm uses 

simple to implement neural networks with few neurons and 

hidden layers for its training and allows for day a head forecast. 

The proposed methodology presents a guideline on how to select 

the relevant data from weather and how it affects the accuracy 

and training time of neural network. The benefit of developed 

method is an improvement on the energy management, 

utilization and reliability of the microgrid. 

Keywords—Solar forecasting, microgrid control, energy 

management, neural network 

I. INTRODUCTION 

The increasing installation and integration of renewable 
energy sources (RESs) and their intermittent and largely 
unpredicted nature along with their dependence on weather 
conditions affect the power flow and overall operation and 
control of electricity grid, especially at microgrid level. Thus, 
it is important to have appropriate monitoring and control 
system for the effective operation, control, management and 
distribution of energy sources, maintaining in this way power 
balance and stability of the network. In microgrids, this may 
also help in attaining significant energy autonomy and savings 
[1, 2]. Appropriate algorithms are therefore required to 
provide knowledge of future power generation from 
renewables so as to decide in advance on the switching of 
back-up systems, e.g. demand side management, and also 
defer costly system upgrades by effective and intelligent 
utilization of available energy sources. 

Forecasting thus plays a very important role for the 
optimal scheduling of energy management and power flow 
and consequently, the control and automation of energy 
sources in a microgrid. It helps in improving the efficiency 
and reliability of the microgrid. Several forecasting methods 
are published in the literature and these are mainly divided 

into statistical, physical, machine learning and hybrid 
techniques [3, 4]. In physical methods (PMs), the physical 
state (such as features of topographical site) and 
environmental variables (such as atmospheric and climate 
parameters) are used along with historical data to predict and 
estimate the forecasted solar radiation [5, 6]. The accuracy and 
stability of these methods are directly affected by the weather 
conditions [7] and are computationally inefficient [8]. The 
statistical methods, such as exponential smoothing [9], 
multiple-regression [10], auto-regressive integrated moving 
average (ARIMA) [11] and auto-regressive moving average 
(ARMA) [12] provide good performance accuracy in the 
range of few mins to hours of forecasting horizon. However, 
due to fixed parameters they are not robust to sudden changes 
in weather conditions and are not equally accurate for long 
term forecasting. There have been several attempts to increase 
the estimation accuracy and reduce the demand on 
computational power by considering current weather input 
data and errors from past predictions by using feedback. The 
Statistical Methods (SM) are still improving to achieve better 
accuracy and lower computational memory. Machine learning 
(ML) algorithms (such as neural networks and space vector 
machine [13]) are becoming widespread methods in several 
applications.  

In this paper, the focus is employing artificial neural 
network (ANN)-based solar power forecasting. The neural 
network estimation techniques can be divided into sensor and 
sensorless approaches. The authors in [14] uses the onsite data 
for temperature and solar radiation (recorded for 30 days) to 
predict the solar power forecasting for one-hour ahead. The 
model used consists of a prediction network based on ANN 
and wavelet transform. Likewise, Elman network-based day-
ahead solar forecasting is used in [15] and utilizes the 
temperature and total solar irradiance measured on-site. A 
feedforward neural network in [16] predicts the solar 
irradiance for a horizon of one month using a 10-neuron based 
single neuron layer. The dataset used for training is based on 
on-site historical irradiation accumulated for the past 15 days. 
The authors in [17] uses lidar and in-situ camera to record and 
accumulate the information for wind and cloud cover for 
training a feedforward ANN. This method predicts the solar 
for a forecast horizon of up to 15 mins. The cleansing and pre-
processing of on-site metrological data for high-frequency 
disturbances based on wavelet decomposition and later using 
it to train a single layer neural network is presented in [18]. A 
backpropagation 3-layered neural network trained and 
updated using in-situ 25-days scrolling window data for 
temperature, solar irradiance, and humidity is discussed in 
[19]. The hidden layers use 50, 30 and 1 neurons respectively 
and is suitable for forecasting over a year.  



Work relying on in-situ sensors is also published in the 
literature. The authors in [20] uses a combination of Fuzzy and 
recursive NN for enabling the prediction of solar based on 
month of weather training data such as humidity and cloud. A 
PV forecasting for 24-h horizon using online weather forecast 
service has been discussed in [21] where each weather type 
uses a self-organized map and 3-layer radial basis function 
along with a single hidden layer. Prediction of PV power for 
day-ahead using historical weather data and clear sky model 
has been discussed in [22]. A comparison among single and 
double layered ANN showed that the single layer having 120 
neurons presented better performance than double layer. 
Furthermore, authors in [23] combined social network 
optimization (SNO) with ANN using the clear sky model 
enhancing in this way the prediction accuracy. The Deep 
Neural Network (DNN) suggested in [24] uses neural network 
with many number of hidden layers and neurons to predict the 
PV forecasting, which makes the system complex. In addition, 
five weather inputs are used (month of year, hour of the day, 
cloud cover, temperature and relative humidity) and also the 
input representing the solar irradiation is ignored. However, in 
this paper, the number of inputs have been reduced with an 
increased accuracy measured in terms of MAE (compared to 
one in [24]). 

The work presented in this paper does not rely on in-situ 
sensors and uses only the historical data for network training 
and prediction of solar power. Furthermore, a feedforward 
network with less inputs (2) and lower number of neurons (20, 
30, 10) in three hidden layers are employed. The intermittent 
nature of weather is captured by training the network using 
historical data with a time resolution of 1-h and 1-year of data 
length. 

The rest of the paper is organized as follows: Section II 
discusses the conventional approach for solar forecasting. The 
proposed algorithm is presented and discussed in Section III. 
Section IV presents and analyse the results obtained. Section 
IV gives a brief discussion on the impact of forecasting on the 
automation and control of microgrids. Finally, the paper 
concludes in Section VI. 

II. CONVENTIONAL APPROACH FOR PREDICTION 

The conventional systems typically uses a two-level 
methodology [21]. In the first stage, the measured on-site data 

for irradiance ( 𝐺𝑡
ℎ ) is used to develop its mapping and 

relationship with the historic weather forecasted data (𝑊𝑡
ℎ) 

for a particular region and specific forecasting horizon, h. This 
results in a trained irradiance forecast model 𝐺𝑚𝑑𝑙

′  at time t 
given in (1).  

𝑇𝑟𝑎𝑖𝑛𝑒𝑑 𝑚𝑜𝑑𝑒𝑙 ⟹ 𝐺𝑚𝑑𝑙
′ = 𝐺𝑚𝑑𝑙

′ (𝐺𝑡
ℎ, 𝑊𝑡

ℎ) (1) 

In the second level, at time 𝑡” > 𝑡 , the developed 
relationship is used conversely to estimate the forecasted 

irradiance 𝐺𝑡"
ℎ′ based on the weather forecast at the new time 

𝑡" and results in the irradiance from the best match to the 
historical data. 

𝐺𝑡"
ℎ′ = 𝐺𝑚𝑑𝑙

′ (𝑊𝑡"
ℎ) (2) 

Finally, once the forecasted irradiance 𝐺𝑡"
ℎ′  is estimated, 

the PV output power is calculated using the PV physical 
model [25]. 

𝑃𝑡"
ℎ′ = 𝑓𝑠𝑎𝑠𝐴𝑠𝑓𝐺𝑡"

ℎ′𝜂𝐶𝜂𝑐𝑒𝑙𝑙 (3) 

where, 𝑓𝑠𝑎𝑠  represents the surface area fraction for active 

solar cells,  𝐴𝑠𝑓 is the solar panel total surface area (𝑚2), 𝜂𝐶 

is the conversion efficiency of DC to AC converter and 𝜂𝑐𝑒𝑙𝑙 
is the efficiency for cell. 

The conventional method uses sensory data in order to enable 
training of 𝐺𝑚𝑑𝑙

′ , thus it requires installing various on-site 
sensors at each facility resulting in installation, operation and 
maintenance costs [26, 27]. Furthermore, another issue with 
conventional method is that it requires efforts and long time 
for the accumulation sufficient data and its pre-processing for 
the accurate and desired training of forecasted model. In this 
paper, using neural network, fast and accurate of estimation of 
solar output power is enabled with fewer number of inputs 
from the weather and without employing on-site sensors. 

 

Fig. 1: Conventional approach towards forecasting. 

III. PROPOSED FORECASTING ALGORITHM 

The proposed neural network based sensorless concept for 
solar power forecasting also considers PV historic data and 
weather parameters, but is much less-complex than 
conventional methods, hence it is called Less-Complex Neural 
Network (LCNN). The algorithm employs a smaller number 
of inputs as well as exhibits less implementation complexity 
than the intelligent methods, and does not involve sensor and 
hence lower cost as compared to conventional forecasting. 
The reduction of inputs to the neural network is desirable to 
overcome the various issues for the developed algorithm that 
arises from using excess input parameters. These issues 
include the training of neural network that requires excessive 
time, especially for fully interconnected neurons in the 
network. Also, it increases the risk of suboptimal convergence 
for error function due to the presence of large number of local 
optimum values [28]. Further, to enable the precise 
interconnection and mapping of  involved parameters, densely 
populated data sets are required [29]. The proposed algorithm 
uses less inputs and small data sets, which makes the 
computational requirement less complex and implementation 
more viable whilst improving the forecasting accuracy. 
Therefore, the analysis presented focuses on choosing the 
most dominant weather input parameters that affect the 
performance of algorithm and present better accuracy with 
less complexity. The proposed algorithm provides increased 
accuracy with smaller size and minimal data. 

Solar power generation is heavily influenced by weather 
conditions, which have coarse granularity and unpredictable 
nature, and this is critical to the prediction performance. Thus, 
to make the algorithm robust to variations in weather, a design 
methodology is suggested to determine the best combination 
of weather inputs for desirable estimation performance and 
accuracy based on historical data. In other words, an 
intelligent training, using the most dominant weather 
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parameters, is incorporated in the training phase to increase 
accuracy and present good estimation to future variations. 

A neural network is developed and trained for several 
inputs, year information, and different data sizes. The model 
of neural network presents a non-linear behaviour with a set 
of input, output and hidden layers, as shown in Fig. 3. The input 
layer is used to capture the incoming data (such as weather 
and PV historic data) and the hidden layers involve the process 
of learning from the captured data with several interconnected 
neurons. The output layer uses the information from input 
parameters, via hidden layers, and generates the 
corresponding output for a specific set of input values. A 
linear ‘pure line’ neural unit is used as an activation function 
for the output layer to calculate the output from the net input, 
whereas, all the hidden layers employ hyperbolic tangent 
sigmoid for transfer characteristics, shown in Fig. 2. 

𝑡𝑎𝑛𝑠𝑖𝑔(𝑎) =
2

(1 + 𝑒−2𝑎) − 1
 (4) 

The expression in (4) is equivalent to using hypertangent 
𝑡𝑎𝑛ℎ(𝑎). The implementation of 𝑡𝑎𝑛ℎ (𝑎) is slightly slower 
in processing as compared to (4) and thus, using (4) is a good 
trade-off when the exact shape of hypertangent is not very 
important and hence this is ignored, for faster processing 
speed. 

 
Fig. 2: The activation functions for hidden and output layers of the proposed 

network. 

The training of neural network is enabled using the 

Levenberg-Marquardt (LM) backpropagation algorithm 

where the bias values and weights are updated according to 

LM optimization. The LM method is often the fastest 

algorithm in the backpropagation domain and is considered 

as the primary selection for supervised learning. The learning 

process is accompanied by performance threshold limits to 

stop the training process (such as the MAE and MSE). The 

LM method aims to achieving the training speed of network 

without involving the calculation of Hessian matrix. Instead, 

an approximate Hessian matrix, given in (5), is used by LM 

and is replaced in the original quasi-Newton approach. 

𝐻 = 𝐽𝑇𝐽 (5) 

Likewise, the gradient is given as 

𝑡∇= 𝐽𝑇𝑒 (6) 

where, 𝐽 represents the Jacobian matrix having the first order 

derivative of error vector in the network with respect to bias 

values and weights; 𝑒 signifies the errors vector. The solution 

of Jacboian matrix can be enabled using standard 

backpropagation technique. This presents less complexity as 

compared to finding 𝐻. The quasi-newton update for the LM 

algorithm using Hessian approximate is given as: 

𝑦𝑘+1 = 𝑦𝑘 − [𝐽𝑇𝐽 + 𝜇𝐼]−1∇     (7) 

where, 𝜇 is a scalar factor adaptively increased or decreased 

after each successful iteration and results in the reduction of 

performance function throughout the iterative process of the 

algorithm. The value of 𝜇 is decreased after each iteration to 

shift the training towards the quasi-newton which is more 

accurate and faster. The only instant when 𝜇 is increased is 

the scenarios where performance function starts increasing 

after a certain iteration. 

The flow diagram of proposed method for PV output power 

forecasting is presented in Fig. 4 and the proposed LCNN 

algorithm is shown in Fig. 5  

 

Fig. 3: The multilayer neural network for solar power estimation using 

historic PV and weather data. 

N represents the number of inputs and                    

M represents the number of hidden layers. 

Historic PV and weather data from previous years is 
obtained available publicly [30] and is used for offline training 
of neural network. The aim would be minimizing estimation 
error but at the same time lowering the computational 
complexity involved in the execution of the developed 
algorithm. The impact of various weather inputs affecting the 
estimation response is analysed, presenting thus a design 
guideline. Alongside, training data sets are arranged as 
combinations of different year and its impact on the 
performance of neural network is examined. The performance 
accuracy is measured using several indices such as Mean 
Absolute Error (MAE), Mean Absolute Percentage Error 
(MAPE), Mean Square Error (MSE) and Root Mean Square 
Error (RMSE). These indices are always positive, and close to 
zero values are considered to provide better estimation [31, 
32]. The MAE calculates the average significance of the entire 
dataset, giving equal weights to all errors of model, giving and 
giving information about long-term accuracy. RMSE gives 
high weight to large errors, more useful when large errors are 
particularly undesirable, and thus robust in dealing with large 
deviations. The mathematical expression representing the 
errors indices are presented in Table 1.The proposed method 
targets increased accuracy and lower implementation 
complexity in terms of forecasting measured as MSE and 
MAE. The algorithm starts with an initial setting of neural 
network and trains it for a specific length of data with different 
inputs, whilst the MSE and MAE are recorded and saved. 
When the number of inputs is reduced to one, the initial 
training phase ends and inputs with lower MSE and MAE are 
chosen as providing the best estimation. Thereafter, the 
parameters of neural network are varied to get the optimal 

Input layer

Weather 1 W1

Weather 2 W2

Weather 3 W3

Weather 4 W4

Weather 8 W8

1

2

3

N1

1

2

3

N2

1

2

3

NM

Output layer

Forecasted 

PV Power
Output

Hidden layer 1 Hidden layer 2 Hidden layer M

Hidden layers

H
is

to
ri

ca
l 

w
e
a
th

er
 d

a
ta



accuracy. The detailed analysis along with the measurements 
and prediction results are discussed in the section IV.  

The learning process is affected by the number of hidden 
layers (M) and neurons therein (N), training data, batch size 
(B), number of epochs (E), and the input parameter 
combination. Therefore, these parameters are carefully 
determined for better prediction performance. The initial 
parameters for the selection of suitable weather inputs for the 
estimation process are chosen as: the number of neurons in the 
hidden layers 1, 2 and 3 are selected as 20, 30 and 20 
respectively; number of epochs is 1000; the training algorithm 
as discussed previously is LM; the performance function is 
mean square error (MSE); and the data division is random. 
After the selection of best inputs, the appropriate final 
architecture for microgrid and control may be defined. 

 
Fig. 4: The proposed LCNN algorithm for PV output power forecasting. 

IV. RESULTS AND DISCUSSION 

The validation of proposed algorithm is carried out using 
several cases where the best input and data size are chosen 
based on the accuracy indices and training time. The PV and 
weather data (1 hour resolution) for Newcastle upon Tyne, UK 
have been acquired from [30] for 2016, 2017 and 2018. 
Results are presented in this section for various inputs and data 
sizes.  

The estimation accuracy is analysed using the indices 
listed in Table 1. Analysis of the impact of inputs on the 
performance of NN shows that the weather inputs, such as, air 
density and solar surface irradiance highly influence the 
prediction accuracy among the various combination of inputs 
used. Results obtained are presented in Tables 2 and 3. As can 
be noticed, the temperature and solar surface irradiance give 
best results, as compared to other combinations. It is worth 
mentioning that using 8 inputs provides better accuracy, but 
this is at the expense of increased implementation complexity 
of forecasting algorithm as more data and inputs would be 
needed for making an estimate of solar power. On the other 
hand, the two combination inputs (which is least for achieving 
convergence) results in almost similar accuracy. As can be 

seen from Table 2, one input is not sufficient for training the 
neural network so as to imitate the solar model. 

Thus, the air density and surface irradiance are selected as 
weather inputs and the neural network is retrained by varying 
the number of neurons and hidden layers. Finally, the 
parameters resulting in even better accuracy are chosen and 
utilized further for estimation and prediction of solar output 
power (to be used for microgrid operation and control). 

Second analysis presents the performance of neural 
network when it is trained using one-year data and used to 
predict and estimate the PV power for 6-months. Likewise in 
this case, the network performance is analysed for several 
weather inputs and its impact is studied on the estimation 
accuracy and training time. Similar to previous case, the air 
density and solar surface radiation are the most dominant 
inputs affecting the performance of algorithm and presents 
better accuracy with least number of inputs. Thus, these two 
inputs are selected and the neural network is then fine-tuned, 
based on the selection of best input.  

A further analysis using the two selected inputs is carried 
out where the number of neurons in hidden layers are varied 
and the type of training algorithms is changed to get even 
better accuracy and faster training time. The analysis showed 
that the number of neurons in the hidden layer 1, layer 2 and 
layer 3 are respectively equal to 20, 30 and 10. This 
arrangement of neural network reduces the MSE, MAE and 
RMSE to 0.0012, 0.0171 and 0.0343 respectively, as 
compared to results presented in Table 3, with a reduction of 
80 s in training time. Thus, the proposed methodology 
presents a guideline on how to select the relevant data from 
weather and how this selection affects the accuracy and 
training time of neural network. The benefits of the proposed 
method are improved accuracy and reduced computational 
complexity, which are important for efficient and reliable 
control and automation of the microgrids. 

V. IMPACT OF FORECASTING ON THE CONTROL AND 

AUTOMATION OF MICROGRID 

While clean technologies address the need for a 
sustainable energy, their inherent variability and dependence 
on weather conditions introduces challenges to their 
integration into electricity grid and complications to 
microgrids dynamic control. Forecasting plays a very 
important role for the optimal scheduling of power and 
consequently, the control and automation of microgrids, 

Historic weather data Historic PV data

Data processing (normalization/format adjustment/cleansing)

Training sets Validation sets

Initial neural network 

formation and training
Forecasted pv power

Error calculations 

(MSE, MAE)

NO

Weather input 

selection

 

Save results, 

reduce inputs and 

retrain

Select best 

inputs
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w.r.t NN design?

Retrain neural network
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data splitter

Best input selection

Weather input=1
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Table 1: The performance evaluation indices for estimation accuracy. 

Evaluation indices Equations 

Mean absolute 

error (MAE) 
∑ (|𝑒𝑡|)

𝑡𝑢=24

𝑡𝑙=0

𝑡𝑢⁄  

Mean absolute 

percentage error 

(MAPE) 

( ∑ (|𝑒𝑡 𝑃𝑝𝑣,𝑡
𝑎⁄ |)

𝑡𝑢=24

𝑡𝑙=0

𝑡𝑢⁄ ) × 100 

Mean square error 

(MSE) 
∑ (𝑒𝑡

2)

𝑡𝑢=24

𝑡𝑙=0

𝑡𝑢⁄  

Root mean square 

error (RMSE) 
√ ∑ (𝑒𝑡

2)

𝑡𝑢=24

𝑡𝑙=0

𝑡𝑢⁄  

Note: 𝑒𝑡 is forecasting error and 𝑃𝑝𝑣,𝑡
𝑎  is actual PV power 

 



whether these are grid connected or operating in islanded 
mode. Forecasting of renewable energy generation (and in 
some cases load demand) helps in energy management, power 
flow control and supply-demand balance by providing 
knowledge of future power potential and deals with the 
inherent intermittent nature of renewables (PV in this case). 
This is demonstrated in the simple schematic diagram in Fig. 
5. 

 

Fig. 5: Schematic illustration of forecast-based microgrid operation and 

control. 

With the use of smart meters, microgrids are able to 
communicate with the central control (back-office) and 
receive weather forecast data from the meteorological 
agencies and then use this data with the proposed tool to 
predict future local PV power generation. Based on this 
prediction, the microgrid controller can determine how best to 
optimize the energy available to meet the expected local 
demand. Hence, the proposed prediction method can aid 
micorgrid control and automation by providing improved 
energy management and dynamic power flow control during 
normal continuous variations in weather conditions. 
Therefore, allowing better use of local renewable energy 
generation to meet local energy demand (energy self-
sufficiency), minimize grid losses and avoid the need for 
additional grid capacity. 

VI. CONCLUSION AND FUTURE WORK 

Forecasting plays a very important role for the optimal 
scheduling of power and consequently, the control and 
automation of microgrid. This paper proposes a neural 
network-based forecasting of solar power aimed at utilizing 
historic weather and PV data for the prediction. The algorithm 
uses a smaller number of inputs from weather data in order to 
reduce the computational complexity of having several input 
variables to the neural network. In addition, the proposed 
method uses a simple neural network with few neurons and 
hidden layers for its training and allows, with reasonable 
accuracy, for day a head forecast. The proposed methodology 
presents guidelines on how to select the most relevant data 
from weather data available and how this selection affects the 
accuracy and training time of the neural network. The benefits 
of developed method is an improvement in the dynamic 
energy management and control of microgrids, thus better use 
of local renewable energy generation to meet local energy 
demand. 
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Table 3: The impact of various weather input on the prediction/estimation accuracy and training time of neural network. The network is 

trained using one year data (2018) and tested for 6 months data (2016 data is used as base for comparison) 

Number of 

inputs 
Input type MSE MAE Mean RMSE 

Training time 

(secs) 

8  1 2 3 4 5 6 7 8 0.0012 0.0185 -0.0081 0.0349 45.2474 

5 
1 5 6 7 8 0.0011 0.0163 -0.0072 0.0327 128.3599 

1 2 5 6 8 0.0013 0.0192 -0.0105 0.0364 61.2623 

4 1 2 5 6 0.0013 0.0195 -0.0088 0.0361 66.7609 

4 1 2 5 7  0.0053 0.0389 -0.0077 0.0729 95.4979 

 4 1 5 6 8 0.0013 0.0184 -0.0085 0.0354 125.8869 

 4 1 5 7 8 0.0053 0.0389 -0.0046 0.0729 111.3945 

3 1 2 6 0.0015 0.0189 -0.0087 0.0392 85.9601 

3 1 2 8 0.0290 0.1134 0.0330 0.1702 56.7494 

3 1 6 8 0.0014 0.0195 -0.0088 0.0368 60.6337 

2 1 6 0.0013 0.0198 -0.0101 0.0357 134.8992 

2 6 8 0.0017 0.0194 -0.0022 0.0413 119.3282 

2 5 6 0.0013 0.0189 -0.0077 0.0367 183.8711 

2 1 2 0.0347 0.1239 0.0365 0.1864 47.3152 

2 6 2 0.0021 0.0213 -0.0030 0.0457 106.9602 

1* 6 0.0311 0.1092 0.0054 0.1764 34.0761 

Note: 1=Temperature, 2=Precipitation, 3=snowfall, 4=snow mass, 5=air density, 6=solar surface radiation, 7= top of atmosphere radiation, 8=cloud 

cover, *non-converging. 

 


