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Driving a vehicle is a complex, multidimensional, and potentially risky activity demanding full mobilization and utilization of
physiological and cognitive abilities. Drowsiness, often caused by stress, fatigue, and illness declines cognitive capabilities that affect
drivers’ capability and cause many accidents. Drowsiness-related road accidents are associated with trauma, physical injuries, and
fatalities, and often accompany economic loss. Drowsy-related crashes are most common in young people and night shift workers.
Real-time and accurate driver drowsiness detection is necessary to bring down the drowsy driving accident rate. Many researchers
endeavored for systems to detect drowsiness using different features related to vehicles, and drivers’ behavior, as well as, physiological
measures. Keeping in view the rising trend in the use of physiological measures, this study presents a comprehensive and systematic
review of the recent techniques to detect driver drowsiness using physiological signals. Different sensors augmented with machine
learning are utilized which subsequently yield better results. These techniques are analyzed with respect to several aspects such as data
collection sensor, environment consideration like controlled or dynamic, experimental set up like real traffic or driving simulators, etc.
Similarly, by investigating the type of sensors involved in experiments, this study discusses the advantages and disadvantages of
existing studies and points out the research gaps. Perceptions and conceptions are made to provide future research directions for
drowsiness detection techniques based on physiological signals. AQ1
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Driver drowsiness detection
Heart rate
Respiration rate
Eye movement
Respiration rate
Muscle response
Brain function
Physiological signals

Introduction
Vigilance, mobilized physiological and cognitive resources and active cognitive performance are the needed traits while driving a vehicle.
Driving a vehicle is a complex, multidimensional, and potentially risky activity that demands prudence on the driver’s part. Safety is the
main factor that should be considered during driving. The drivers should play their part to keep the road secure for others and themselves
while driving a motorized vehicle. They should maintain concentration on the road to avoid accidents. With the advancement of
technologies, many motorized vehicle manufacturing companies have started to work on driver’s safety while driving, especially regarding
drowsiness. Drowsiness refers to a state of impaired awareness where the driver is inclined toward sleep than wakefulness (Slater 2008 ).
Often, fatigue and drowsiness are used interchangeably however fatigue is one of the factors that cause drowsiness. Drowsiness leads to
impairments such as reduced vigilance, slow reflexes, lack of decision-making capability, slow reaction time, etc. (Ashraf et al. 2019 ;
Khushaba et al. 2010 ). Several approaches focus only on fatigue detection using the image, physiological signals, and behavioral features
(Liu 2021 ; Yang et al. 2021 ; Du et al. 2020 ; Gjoreski 2020 ).

Driver drowsiness is associated with an increased number of accidents (Josephin et al. 2020 ). While driving on highways, a vehicle covers
a distance equal to a football field in 3 to 4 s which indicates that seconds of inattention can lead to severe outcomes (National Security
Council 2020 ). Drowsiness declines cognitive performance that affects drivers’ capability and causes many accidents. Driving without
sleep for more than twenty hours has an impact similar to having a 0.08% (US legal limit) blood-alcohol concentration level (National
Security Council 2020 ). According to the World Health Organization (WHO) report, deaths related to road accidents exceed one million
(World Health Organization et al. 2018 ). Recent studies show that 30% of fatal accidents take place due to drivers’ fatigue or drowsiness
(Martiniuk 2013 ). There are three times higher chances of road accidents if the driver is fatigued (National Security Council 2020 ).
Similarly, a study conducted by the American automobile association (AAA), a foundation for traffic safety, estimated 328,000 drowsy
driving crashes which caused a financial loss of $109 billion, not to mention the human loss (National Security Council 2020 ). National
highway safety traffic administration (NHSTA) states that 4111 people died while another 50,000 were injured in the US due to drowsiness
between 2013 and 2017 alone (National Highway Traffic Safety Administration 2017 ). The reports reveal that the night shift male workers
of 16 to 29 years of age and the highest risk of drowsiness is associated with people suffering from sleep apnea syndrome (National Center
on Sleep Disorders Research 2013).

Increased road accidents associated with drowsiness necessitated the design of drowsiness detection techniques and systems and recent
years have witnessed many systems to monitor and alert drivers drowsiness. Driver drowsiness detection system helps in timely fatigue and
drowsiness detection that can help decrease the number of accident rates, and financial loss and save lives. Driver drowsiness approaches
can be categorized with respect to several parameters. For example, considering the drowsiness detection technique, it can be grouped into
image-based, EEG-based, vehicle behavior-based, artificial intelligence-based techniques, etc. The more general categorization, however, is
regarding the features used for drowsiness detection which puts all the techniques under three groups (Sahayadhas et al. 2013 )

• Behavioral features,

• Vehicular features, and

• Physiological features

Fig. 1

Physiological features and sensors that can be used for drowsiness detection
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Vehicular features, also called environmental features, continuously monitor the vehicle movement patterns over time, detect abnormal
features like rapid line change, abrupt increase or decrease in the speed, etc. and attribute them to different causing factors (Sałapatek et al.
2017 ). Behavioral features represent the physical cues/features from the driver mostly detected through visual tools such as camera and
detect symptoms related to drowsiness like yawning, fatigue, eye movement, etc. (Saini and Saini 2014 ). Physiological features, on the
other hand, focus on signal measures using different devices like electrocardiogram (ECG), EEG, heart rate measurement, etc. for
drowsiness detection (Awais et al. 2017 ). An illustration of physiological features and the sensors to obtain such features is provided in
Fig. 1 .

Comparison	with	previous	reviews
LaRocco et al. (2020 ) conducted a systematic review analysis on low-cost, consumer EEG-based drowsiness detection systems. The
authors analyze the reliability of EEG headsets for drowsiness detection. A total of 47 articles are included in the systematic review and
conclude that spectral features are more significant for drowsiness detection. Similarly, Nemcová et al. (2020 ) present a comprehensive
review of multimodal features for detecting driving fatigue and stress. In this regard, the test datasets, testing environments, and stress
and fatigue detection methods are discussed. However, as pointed out before, drowsiness is different from fatigue, and fatigue is just an
indicator of drowsiness. The neuroimaging-based driver behavior detection methods are reviewed by Haghani et al. (2021 ). The EEG,
fMRI (functional magnetic resonance imaging), fNIR (near-infrared) spectroscopy, and MEG (Magnetoencephalography ) based methods
are reviewed for driver fatigue, distraction, intoxication, and decision-making capability tasks where the initial two methods are found to
be the most commonly adopted methods for this purpose. A systematic review of behavioral features-based approaches for drowsiness
detection is provided by Caryn and Rahadianti (2021 ). The study analyzes the use of various machine learning and deep learning models
and feature extractions approaches in this regard.

Tian et al. (2021 ) performs a systematic literature review using 80 articles on EOG signals. Especially the multi-feature fusion techniques
are studied with respect to their performance for fatigue and drowsiness detection. In addition, an analytical overview of the classification
technique is provided. A review of approaches covering the influence of age on driving performance is presented by Scarpelli et al.
(2021 ). The study includes a systematic review of 10 studies including studies using self-reported measures, behavioral tasks, and
objective measures with ECG signals. A review of different multi-sensors, smartphone-based, and cloud-based platforms for driver
fatigue and drowsiness detection approaches is done by Abbas et al. (2021 ). The problems related to machine learning and deep learning
techniques are also covered. Specifically, the models and architectures following multimodal features of the driver are discussed.
Similarly, Doudou et al. (2020 ) provide a review of commercial products available to detect drowsiness based on vehicle features, driver
behavior, and driver physiological signals. Different technologies are discussed regarding the methods and type of features along with
their advantages and disadvantages. Intrusive and non-intrusive techniques are discussed separately regarding their accuracy, intrinsic
limitations, and challenges.

Insights	on	existing	woks	and	research	gaps
Discussion of the existing works given in Table 1  reveals several important points. First, not all the reviews specifically focus on
different sensors, rather focus only on one kind of sensor. For example, LaRocco et al. (2020 ) study the use of EEG signals from
consumer devices while Tian et al. (2021 ) investigates EOG-based drowsiness approaches. Similarly, Abbas et al. (2021 ) delve deep into© Springer Nature
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the influence of age on drowsiness, and Doudou et al. (2020 ) analyze commercial products available for driver drowsiness detection.
Also, Haghani et al. (2021 ) follows the studies that leverage neuroimaging-based methods. Second, while analyzing these sensors and
approaches, inherent limitations and practical hindrances are overlooked or not very well described. Certain authors specifically focus on
the feature aspect of drowsiness detection models. For example, Nemcová et al. (2020 ) focus on those studies that make use of multi-
modal features while Caryn et al. (2021 ) consider those studies that analyze behavioral features like yawning, eye blink, etc. The current
study, on the other hand, analyzes approaches that utilize physiological signals like EEG, ECG, heart beat rate, respiration rate, etc. By
analyzing such recent works, the study provides a more comprehensive overview of recent works which have been missed by previous
studies. Also, a wide range of physiological signal sensors is covered in a single study which fills the research gaps in existing reviews.

Table 1

A comparative analysis of existing reviews/surveys on drowsiness detection

References Articles Covered topics Scope Findings

LaRocco et
al. (2020 ) 47 Consumer EEG Review of low cost consumer EEG headsets

Necessity of algorithmic optimization.

Approaches lack standard calibration and direct comparison is
difficult.

Spectral features are robust and more accurate.

Low-cost consumer devices have reliability issues.

Nemcová et
al. (2020 )

120 Multimodal features Review of test datasets, stress, and fatigue

Predominantly, experiments use simulation environments.

Data fusion increases the stress and fatigue classification.

Time pressure, work requirements, shift restrictions, long travel,
etc. push drivers to continue driving even while fatigued.

86 Neuroimaging
methods

Covers the approaches based on neuroimaging
technology like EEG and MEG, etc.

EEG and fNIRS use mobile equipment, fMRI and MEG need
fixed scanners.

Often, young and healthy drivers are used for experiments.

Driver with brain impairments is studied very less.

Caryn et al.
(2021 ) 41 Behavioral features Approaches based on driver behavioral

features like yawning, eye lid close, etc.

For the most part, machine learning models are used with
behavioral features.

For highly accurate classification, large datasets and training time
are required.

Lack of behavioral features based on publicly available datasets.

Tian et al.
(2021 ) 80 EOG approaches Analyzes EOG approaches including single

and multimodal features

Multi-feature-based techniques using EOG signals perform better

EOG approaches are low cost, low power, and low intrusion

EOG applications are limited regarding driver drowsiness

Scarpelli et
al. (2021 ) 10 Age impact on driver

performance Age based analysis for driver performance

Older drivers are less prone to sleep loss

The influence of sleepiness-related impairment is high for the
younger driver.

Older people avoid risky scenarios by self-regulating their driving

Abbas et al.
(2021 ) 146 Smartphone-based

hypervigilance
The study covers multimodal features based
mobile and edge computing architectures

Smartphone and edge-based hypervigilance systems provide low-
cost solutions.

Majority of the solutions utilize vision approaches.

Use of 5G can increase the efficiency of image-based approaches
for edge-based solutions.

Doudou et
al. (2020 ) 138 Market products for

drowsiness detection
The study covers commercial solutions based
on driver, vehicle, and behavioral features

Several approaches can not distinguish between the drowsiness
and band driving attitude

Using multiple physiological signals is expensive and difficult to
implement for real-time scenarios.

Physiological signals are difficult to get and are prone to many
challenges.

Major	contributions
Many researchers presented driver drowsiness detection systems that utilize different features related to subjective ratings, vehicle
characteristics, and driver behavior, in addition to physiological measures. Despite a large body of published material on physiological
signals-based drowsiness detection, a systematic review of physiological signals-based techniques is scarce. In this study, recent diverse
solutions to driver physiological signal-based drowsiness detection systems are explored and presented. Aiming to efficiently review the
recent progress in the said domain to make an understanding of physiological signal-based driver drowsiness detection for the readers, the
study provides insights on the recent developments in physiological signal-based driver drowsiness detection. This study presents a
survey in this regard and fills the gap by making the following contributions

• A comprehensive systematic literature review of the recent techniques to detect driver drowsiness using physiological sensors is
presented.

• Various physiological data collection techniques are analyzed with respect to several aspects such as data collection sensor,
environment consideration like controlled or dynamic, experimental set up like real traffic or driving simulators, etc.

© Springer Nature

http://www.springer.com/


• Respiration rate-based approaches are analyzed separately regarding their advantages and limitations for driver drowsiness detection.

• Sensors used for experiments are discussed regarding the advantages and disadvantages and research gaps are discussed. Perceptions
and conceptions are made to provide future research directions for drowsiness detection techniques based on physiological signals.

Table 2

List of acronyms used in this study

Acronym Details Acronym Details

1D-TDCNN 1D-temporal deep dilated CNN AAA American automobile association

ADB Alarm test driving database ANOVA Analysis of variance

ARTL Adaption regularization based transfer learning BCI Brain–computer interaction

BVP Blood volume pulse CNBSL Complex network-based broad learning system

CNN Convolutional neural network CSDF Class separation and domain fusion

CT Complex tree CW Continuous wave

CWGAN Conditional wasserstein GAN DBN Deep-belief network

DFA Detrended fluctuation analysis DFT Discrete Fourier transform

DL Deep learning D-LSTM Deep LSTM

DNN Deep neural network DOD Degree of drowsiness

DQN Deep Q networks ECG Electrocardiogram

EDA Electro-dermal activity EEG Electroenchyphlogram

ELM Extreme learning machine EMG Electromyography

EOG Electrooculography ESS Epworth Sleepiness Scale

fMRI Functional magnetic resonance imaging fNIR Functional near-infrared

FFBPNN Feed-forward backpropagation neural network FFT Fast Fourier transform

FIR Far infrared GAN Generative adersarial network

H-ELM Hierarchal ELM HF High frequency

HFD Higuchi fractal dimension HHT Hilbert–Huang transform

HOG Histogram of oriented gradients HRV Heart rate variability

IBI Inter-beat interval ICA Independent components analysis

I/E Inspiration and expiration IMF Intrinsic mode function

IoT Internet of Things IR-UWB Impulse radio ultrawideband

KNN K nearest neighbor KSS Karolinska Sleepiness Scale

LBP Local binary patterns LCD Liquid crystal display

LDA Least discriminant analysis LF Low frequency

LR Logistic regression LSTM Long short term memory

MEG Magnetoencephalography MI Magnetic induction

ML Machine learning MLP Multi-layer perceptron

MME MiniMax entropy MMSE Modified Multi-Scale Entropy

MS Microsleep MWRN Ultivariate weighted recurrence networks

NHSTA National highway safety traffic administration NN Neural networks

OP Oximetry pulse P+ Positive predictive value

PCA Principal component analysis PCB Printed circuit board

PERCLOS Percentage closure of eyes PPG Photo plethysmo graphy

PPG-PRS PPG pattern recognition system PSD Power spectral density

PSO Particle swarm optimization PSO-H-ELM Particle swarm optimization H-ELM

PSQI Pittsburgh Sleep Quality Index PVT Psychomotor vigilance task

RBFNN Radial basis function-neural network RRI R-wave Interval

PRISMA Preferred reporting items for systematic reviews and meta-analyses RDB Real driving database

RF Random forest RGB-D Red green blue-depth

RRV Respiration rate variability RRS Respiratory rate slope

RSA Respiratory sinus arrhythmia SC Skin conductance

SD Standard deviation SDB Simulated driving database

SDLP Standard deviation of lateral position SEED-VIG Simulated virtual driving drivers

Se Sensitivity SFFS Sequential forward floating selection

SIFT Scale invariant feature transform SFFT Short FFT
© Springer Nature
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Acronym Details Acronym Details

Sp Specificity SVM Support vector machine

SWA Steering wheel acceleration TEDD Thoracic effort derived drowsiness

THW Time headway TLC Time to lane crossing

VMD Variational mode decomposition WHO World Health Organization

WoS Web of science WT Wavelet transform

Table 2  provides the acronyms used in this study.

Organization	of	paper
The rest of this study is divided into nine sections. Section 2  presents the research methodology used in this study, followed by the

discussion of respiration-based drowsiness detection methods in Sect. 3 . Sections 4  and 5  presents the approaches based on the ECG
and EEG sensors. Various machine learning and deep learning models are discussed along with the commonly used features dir
drowsiness detection. Analysis of techniques related to GSR is given in Sect. 6 . Thermal camera-related approaches are presented in

Sect. 7  while the multimodal approaches are discussed in Sect. 8 . Section 9  provides the discussions and future directions. In the end,

the study is concluded in Sect. 10 .

Research	methodology
The most important step for a systematic literature review is to devise the search strategy for selecting the most appropriate research
papers. For this paper, most relevant, as well as, most recent research papers should be considered. This study selects two important and
prominent research databases/engines for this purpose and executes the search query on WoS and Google scholar. Google Scholar is a free
service that compiles results from throughout the Internet. As a result, it has gained a great deal of attention as a tool for searching the
literature, especially in searches for grey literature, as needed by systematic reviews. Shultz et al. (2007 ) discovered that Google Scholar
offered free access to nearly three times as many articles than PubMed. PubMed and WoS are human-generated databases which provides
accurate retrieval indicating that search results are reproducible and reportable. On the contrary, Google Scholar is a search engine of the
whole internet and can narrow down the results to ’scholarly’ articles based on machine automated criteria (Kendall 2019 ). Since this
review aims at analyzing the studies using the physiological signals only, the search query contains the physiological signals utilized for
driver drowsiness detection. The search query is executed on the Google scholar and WOS core collection that contains over 82 million
records and covers 21,894 journals, in addition to books and conferences. The WOS covers citation index for science, social sciences, arts
and humanities, conference proceedings, book citation, emerging sources, Chemicus, and current chemical reactions (Clariavate 2021 ).
The study follows the recommendations provided by PRISMA. A systematic review aims at providing an understanding of a specific
research area by discussing the current tools and techniques and their associated pros and cons (Alamoodi 2021 ). It also provides the
research gaps in the current literature and discusses comprehensive future directions (Dani et al. 2019 ).

Papers	searching	strategy
Research studies for this review are searched with the aim to obtain the relevant papers. To extract the papers, an efficient search query is
defined by considering the keywords found in the papers related to driver drowsiness. The following query is prepared

(TS=drows*) AND ((TS=physiological signals) OR (TS=ECG) OR (TS=EEG) OR(TS=UWB) OR (TS=machine learning) OR (TS=deep
learning) OR (TS=data analysis))

Papers	inclusion	criteria
We defined inclusion criteria to include a research paper in the review if it meets the following conditions.

• Research papers that utilize statistical tools and techniques for drowsiness detection.

• Studies that use machine learning and deep learning algorithms.

• Studies that evaluated drowsiness detection techniques using the physiological signals only such as ECG, EEG, EOG, respiration
rate, etc.

Exclusion	criteria
In addition to an inclusion criterion, the following exclusion criterion is used to exclude irrelevant studies.

• Studies focusing on problems that are not directly related to drowsiness detection. It is used to ensure that only the most relevant
studies are selected. Several studies focus on investigating the driver behavior while driving the vehicle and drowsiness detection is
not included in those objectives. Such studies are removed from the selection.

• Studies using subjective measures or behavioral features for drowsiness detection. Subjective measures include answering
questionnaires from the drivers or monitoring the drivers by external observers that use intensity ratings for driving drowsiness. Such
studies are excluded from the selected articles.

• Survey or review studies. A rich variety of survey papers are also available for driver behavior monitoring including drowsiness
detection. The surveys are not part of the analysis carried out in this study.
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Papers	selection
Search query results into 502 articles containing articles, conference proceedings, review articles, etc.; a distribution of retrieved papers
are presented in Fig. 2 . 8 research papers are excluded including 4 papers in Russian, 3 in Chinese, and 1 in the French language. Next,
the papers published from 2011 to 2021 are considered only, making it 161 papers. These papers are manually examined by reading their
abstracts to check their relevance to the topic under study. Several papers are found unrelated and removed. For example, papers covering
feature extraction approaches for image-based drowsiness detection are removed. Similarly, many conference proceedings with minor
contributions are not included in this study.

Fig. 2

Year-wise and paper type-wise distribution of the articles

Research	questions
Research questions help in determining the starting point of a systematic literature review and define the scope of the study. This review
defines the following research questions

• RQ1 What kind of physiological signals have been used for driver drowsiness detection?

• RQ2 What are the approaches used for different kinds of physiological signals-based methods?

• RQ3 What are the traditional machine learning and deep learning models used for physiological signal-based drowsiness detection?

• RQ4 What kind of experimental setup is used for validating the approaches?

• RQ5 What kind of environment/scenarios are used for experiments?

• RQ6 What kind of features are used for physiological signals-based approaches?

• RQ7 Which type of physiological signals provide high accuracy for driver drowsiness detection?

• RQ8 Which factors affect the performance of physiological signals-based drowsiness detection approaches?

• RQ9 What are the limitations of existing approaches?

Respiration	based	drowsiness	detection
This section contains the discussion of the research works that utilize respiration signals for driver drowsiness. Besides the discussion of
works that use respiration data, a few works that use heart rate in addition to the respiration data are also discussed. Since such works use
the data from a single and the same sensors for both respiration and heart rate measurement, they are discussed as single model approaches.
Respiration rate is one of the factors correlated to drowsiness as the respiratory system exhibit different patterns during drowsiness and
wakefulness. Several studies have analyzed the changes in the respiration rate for sleep and wakefulness (Helakari et al. 2020 ; Rodríguez-
Ibáñez et al. 2014 ). Additionally, significant changes are observed in the inhaling to exhaling ratio (Cai et al. 2020 ). Such features make
the respiration rate a suitable candidate for drowsiness detection. Consequently, a wide range of works can be found on approaches that
leverage respiration rate for driver drowsiness detection.

For example, a system is proposed by Sharma et al. (2015 ) to detect drowsiness using respiration signals. Respiration signals of the one-
hundred-fifty drivers are acquired for pre and post-driving states for three to five minutes in a real environment. The features from pre and
post-driving states are used to analyze the difference in the respiration signals. For this purpose, different feature sets are utilized where
feature set 1 has fifty-six features of DMeyer wavelet at level four decomposition, and feature set 2 includes thirty-seven features extracted
by Daubechies wavelet function of order six and a level three decomposition. K-means algorithm is used as a classifier in three different© Springer Nature
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versions implemented. K-means algorithm in three different versions is used for classification. Here, the fundamental notion of classifying
data based on the smallest distance between clusters was applied. In version 1, each column of the feature matrix was considered a separate
input to the K-means algorithm. In version 2, the variance of each dataset column was computed and utilized as an input for the K-means
algorithm. Version 3 processed data rows as object arrays rather than individual columns. The classification accuracy is obtained at specific
decomposition levels of the implemented filter. Experiments reveal that Daubechies wavelet can obtain a 100% accuracy when decomposed
at level 3. Similarly, when decomposed at level 4, the DMeyer wavelet can also provide 100% accuracy. The selected features can be used
for the fatigue classification.

Similarly, Guede-Fernandez et al. (2019 ) propose a system that uses a plethysmography belt to get the respiration rate for drowsiness
detection. Respiration signals of twenty healthy subjects (ten males and ten females) of ages ranging between 20 to 60 years are recorded
on two different days in a driving simulator. The simulator consists of a front screen and a car body that is equipped with the steering
wheel, pedals, and automatic transmission. Experiments are conducted at room temperature with low light and highway sounds. A video
camera is used to record the video of the experiment to validate the drowsiness signals by external observers. The noise from the
respiration signal is removed by using a 0.5 Hz cutoff frequency with a low-pass filter while the baseline signal is cleaned with a high pass
filter on a 0.05 Hz cutoff frequency. The RRV is obtained from the respiration signal. The ratings generated by the external observer are
used to validate the system. The TEDD index is used for the classification of the collected dataset that achieves a sensitivity of 90% and
specificity of 96.6%.

Respiration rate has also been used with the heart rate to increase the drowsiness detection efficiency, as by Leicht et al. (2017 ) which uses
a safety belt to monitor heart rate and respiration for driver state recognition. The belt is equipped with two types of sensors including an
optical sensor and an MI system. The former emits infrared light towards the body of the driver and the heart rate is detected by the
reflection of the infrared light while the latter comprises an oscillator and a coil embraided on the safety belt. The orientation of the
driver’s body changes concerning coil while breathing causes a change in the frequency. That change in the frequency can be used to detect
respirate. Keeping in mind regulatory and safety considerations, a textile cover comprising these sensors is made that can be positioned on
the safety belt using Velcro tape. Respiration and heart rate signals are sampled equipped with a seat belt having an MI sensor is used for
data acquisition. To validate the system, these ECGs and a piezoelectric sensor heart rate signal are processed using an FIR sensor of order
twelve. The comparison of safety belt and validation sensors shows that a better respiration rate can be obtained using the MI system but it
produces high-frequency noise in the signal which makes heart rate monitoring difficult.

The use of radar has been observed during recent endeavors for respiration-based drowsiness detection. An IR-UWB radar is used by Leem
et al. in Leem et al. (2017 ) for vital signs and mobile usage detection of the driving to prevent accidents. Vital signs like respiration and
heart rate are monitored in both moving and stationary drivers. The FFT is used to find respiration and heartbeat rate. The metals used in
mobile phone manufacturing make it easy to detect the mobile phone using radar. The short movements while driving which are not
dangerous for the driver should be ignored by any algorithm. For this dual-mode background subtraction method algorithm is used. When a
cell phone is detected, the background is removed before updating the signal to detect minimal movement of the cellphone. An alarm is
kept on beeping when the cellphone is detected. The clutter can be removed using a loopback filter. A sinusoidal fitting algorithm is used to
detect the sinusoidal motion caused by respiration and heart pumping. R  value can find the fit where the signals having low R square
values are discarded. The radar is set up in the car and the detection region is divided into two parts—mobile detection and vital sign
detection. Experimental results show that this proposed system detects mobile phones perfectly in most cases.

Gu et al. (2018 ) use a CW Doppler radar for fatigue detection. A CW radar placed on the car dashboard is used to acquire the respiration
and heart rate of the driver. The experiment is performed on the heart and respiration signals collected from three healthy subjects in
normal and fatigued states. Subjects face the digital Doppler radar placed 0.625 m away from the subjects. Data of normal state is gathered
in the morning when the subjects feel fresh and fatigued data is collected in the afternoon because that causes the subjects to get fatigued
easily Miao et al. (2017 ). The subjects have to sit in front of the radar for ten minutes. During the data collection, the status of the subject
is asked every five minutes that is recorded as a reference. A decision tree is used for classification due to its capability to process non-
linear characteristics and it shows an accuracy of 82.5% Lavanya et al. (2017 ).

The respiration signals can also be obtained from ECG signals. For example, the system proposed in Tateno et al. (2018 ) by Tateno et al.
used respiration rates derived from ECG signals. Two experiments are performed. In the first experiment, the accuracy of the respiration
rate is verified by calculating the respiration rate from the heart rate signal and by observing the actual respirations of four healthy subjects.
The study uses a fingertip pulse wave sensor for acceleration pulse data at a sampling rate of 50 Hz. The time interval between neighboring
peaks is calculated to form an RRI. Cubic spline interpolation is used to equal the sampling point intervals. The RSA information is
extracted from interpolated RRI data using DFT that maps the complex f(x) to the complex f(t). RSA includes the HF component of HRV
(0.15–0.4 Hz) so, a bandpass filter is used to remove the useless signal. An inverse DFT is applied to calculate RSA from the processed
signal. The second experiment is performed to detect drowsiness in the driver. In this experiment heart rate data of four healthy subjects
along with their facial expressions monitored using portrait recognition based on the android system is acquired. The heart rate signal is
sampled at 50 Hz with a constant temperature of 25 degrees. The RRS of the linear regression equation is calculated by the least square
method at a specific time. The DOD is associated with a pre-defined threshold (which is 3.0 in this case). The portrait recognition program
detected drowsiness eleven-time and gave an accuracy of 72.7% while the accuracy achieved by Tateno et al. (2018 ) is 64.4%.

In addition to using the radar and different physical sensors placed around the arm, a vision camera and optimal camera have potential
applications for acquiring the respiration rate. For example, Solaz et al. (2016 ) use two dynamic cameras to obtain videos that are
processed for breathing rate. Two experiments are performed for data collection. First, the experiment is carried out to validate Kinect for a
non-invasive breathing rate detector. Second, the experiment is performed to find the best position of the cameras for better results. Each
camera is equipped with a microcontroller that is responsible for video signal transmission. Data collected from these cameras are then
processed using a custom algorithm OCTAVE to find the breathing rate. The breathing rate is then compared with the results obtained from
a Plethysmography band, an off-the-shelf chest band for respiration rate detection. Respiration signals of five males with ages 18 to 38 for
normal sleep and deprived sleep are used for experiments in a driving simulator. Noise filter and image stabilization are leveraged to
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mitigate the impact of motion. Differential techniques are used to quantify motion levels. The solution Solaz (2016 ) is advantageous for
driver fatigue detection as a non-invasively based on respiration signal.

In a similar fashion, Tayibnapis et al. (2016 ) employ an optical imaging technique to collect brainwave, cardiac and respiration data. A
dashboard-installed IR camera is used to get facial images. From these captured images, fatigue is detected by visual behavior like eye,
mouth and head poses. The use of PPG is made to obtain physiological signals heart rate, HRV, etc. in Poh et al. (2010 ). PPG obtains
plethysmogram that can detect changes in blood volume. Viola-Jones algorithm is used to detect face region Viola and Jones (2001 ) while
SIFT key points are extracted from facial images and stored in a database Lowe (2004 ). These extracted facial features are used to detect
eye blinking, yawning, and head-nodding which helps in driver drowsiness detection. PPG extracts BVP from a sequence of facial images
Allen (2007 ). HRV is acquired from BVP while respiration rate is obtained from the center of frequency of HF that varies between 0.15
and 0.4 Hz of HRV. A multi-class SVM is trained with the extracted facial and physiological features to obtain drowsiness results. AQ2

A drowsiness detection system based on respiration rate acquired using UWB radar is presented in Siddiqui (2021 ) by Siddiqui et al. Chest
movement of 40 subjects is collected in pre (before driving) and post (after driving) driving states for five minutes using UWB radar. The
area under the curve is used to obtain noisy respiration signals from the chest movement. A low pass Butterworth filter with order 10 and
cutoff frequency of 0.04 is applied to obtain a respiration signal and subsequently, respiration per minute is obtained. The respiration rate
obtained from the respiration signal is verified by the commercially available device Pulse Oximeter. A structured dataset is maintained
comprising respiration per minute, age, and classes (drowsy/non-drowsy). Various ML classifiers are used for drowsiness detection
including SVM, LR, DT, GBM, ETC, and MLP. SVM shows superior performance as compared to other models with an accuracy of 87%
(Tables 3 , 4 , 5 , 6 , 7 , and 8 ).

Table 3

A comparative summary of respiration based drowsiness detection approaches

References Sub. Sensor Approach Pros Cons

Sharma et
al. (2015 ) 150 – K means Achieved 100% accuracy using signals

acquired in real-time environment
No explanation about signal acquisition. Also, the signals are only
acquired before and after driving, not during the driving

Guede-
Fernandez
et al.
(2019 )

20 Plethysmography
belt – Sensitivity of 90% is achieved by system Virtual environment is used for signal acquisition. Invasive belt is

used for signal acquisition

Leicht et
al. (2017 ) – Optical sensor &

MI coil –

A cover for seat belt is made for signal
acquisition that can be adjusted or removed
by Velcro tape. Non-invasive signal
acquisition is proposed

Data is collected in a controlled virtual environment. Heart rate is
not monitored correctly due to high noise during inspiration

Leem et al.
(2017 ) – IR-UWB –

Signals acquired in real environment when
driver is stationary or moving. Mobile
usage is detected

The acquired Signals are used for classification purposes. Mobile
usage is detected in a specific region

Gu et al.
(2018 ) 3 CW Doppler

radar
Decision
tree

Decision tree achieves an accuracy of
82.5%. A non-invasive method for signal
acquisition

Data collected in a controlled environment. The number of subjects
used in experiments is too low

Tateno et
al. (2018 ) 4 Fingertip wave

pulse –
Threshold system is designed that gives an
accuracy of 64.4%. Respiration signals are
acquired from ECG signals

Attachable sensor is used for signal acquisition. Time and resource
usage while extracting respiration signals from ECG. Signals
acquired in a controlled environment

Solaz et al.
(2016 ) 5 PAC16 and

FRCAM – Non-invasive method for acquisition of
respiration signal is proposed

A virtual controlled environment is used for signal acquisition.
Camera results can be affected by environmental factors in a real
environment. Signals acquired but not used for classification or
model training

Tayibnapis
et al.
(2016 )

– Infrared camera SVM

Non-invasive method for acquisition of
respiration signal is proposed and PPG is
used for physiological signal calculation
from images

Camera’s result can be affected by environmental factors in a real
environment. SVM is used for classification, but results are not
mentioned. There is no explanation about how many subjects are
used in the experiment

Siddiqui et
al. (2021 ) 40 UWB SVM Non intrusive drowsiness detection without

physical contact
The obtained accuracy is low as compared to other respiration
based approaches. Data is gathered in a controlled environment

The studies that utilized the respiration rate make use of several sensors for determining the respiration rate. Such sensors are utilized with
respect to the quality of provided data, nature of experiment portfolio, preference of features available for the data, and the desired
accuracy. For example, plethysmography data using the plethysmography belt provides higher accuracy than using the UWB radar data. For
the most part, the research is moving from contact-required approaches to contactless approaches where remote monitoring can be done
using IR-UWB radar, vision cameras, and Doppler radar. Such sensors do not require to place electrodes, as required for ECG approaches,
and can record the respiration rate and heart rate with moderate accuracy. DMeyer wavelet features at level 4 decomposition, FFT and DFT
are often used for radar-acquired data. The use of multiple-vision cameras is another development in this regard, however, it is a
computationally expensive approach and prone to error with small changes in the driver movement and is affected by lighting conditions.
Predominantly, the research works leverage radar data for contactless driver drowsiness detection and invasive and contact-required
approaches for higher accuracy.

Drowsiness	detection	using	ECG	signals
ECG-based drowsiness approaches fall under the banner of non-invasive technology. Comparatively ECG signals are less intrusive and can
easily be captured. Different internal states and pathological conditions can be obtained from the ECG signals to detect driver drowsiness,
among which is HRV which shows high resistance against noise. An illustrative process of ECG-based drowsiness detection is presented in
Fig. 3 .
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Fig. 3

A flow of typical ECG based driver drowsiness detection approach

Two different methods are proposed for drowsiness detection based on HRV signals by Vicente et al. (2016 ). The study uses three different
datasets including SDB, ADB, and RDB. SDB consists of ECG signals of nine volunteers and ADB consists of ECG recordings of eleven
volunteers. RDB consists of ECG signals of ten volunteers. HRV signal is acquired from ECG signal, the QRS complex is detected and
artifacts are identified to tune the dataset. The integral pulse frequency model and Wigner–Ville distribution are used for HRV signal
estimation and smoothness, respectively. To measure the performance of the system, Se, P+, and Sp are estimated. Seven features are
extracted from each minute of driving in the first method called drowsiness episode detector. The proposed method gives 0.96, 0.59, and
0.98 of P+, Se, and Sp, respectively. In the second method, sleep deprivation is estimated from the first three minutes of HRV data. This
method gives 0.80, 0.62, and 0.88 P+, Se, and Sp, respectively.

Along the same direction, Gupta et al. (2017 ) detect drowsiness using ECG signals acquired by a wearable computing system. The system
comprises a Zephyr BioHarness device and an Android application. Zephyr BioHarness is a device with a chest strap and BioHarness
module that is used to acquire and transmit ECG signals. ECG signals are transmitted to the Android application after establishing a
Bluetooth connection to determine the state of the subject (awake/sleepy). The actual sleep and awake driving dataset taken from
PhysioBank datasets is used to test the system. The dataset contains physiological signals of actual sleep and awake drivers. The
application is used to monitor the current activity of the driver and warning system. The system uses two algorithms. First, the algorithm is
used to set a threshold value based on the average heart rate of the awake dataset of the driver. If the heart drops below the threshold, the
algorithm categorizes it as drowsiness and an alert is generated for the user by the android application in the form of audio and vibration
alerts. While the second algorithm finds a ratio of low to high frequency from the ECG signal used to set the threshold instead of average
heart rate.

Driver fatigue detection based on ECG signals using deep learning and machine learning models is proposed by Bhardwaj et al. (2018 ).
This study is based on two datasets. The first dataset is acquired on driving simulation and the other is acquired in a real environment with
sleep deprivation and no sleep deprivation, respectively. In the dataset, ECG signals are collected from ten subjects of ages ranging from 22
to 31 years. The experiment is conducted on a driving simulator that comprises a steering wheel, feed pedals, gear shift lever, and LCD.
ECG signals are acquired with the silver/silver chloride electrodes at a sampling rate of 150 Hz from the subject’s chest and processed in
MATLAB. A fourth-order bandpass Butterworth filter with a cutoff frequency of 0.5–40 Hz is applied to the ECG signals to remove noise.
The time domain, frequency domain, and nonlinear HRV features are extracted for classification to ensure a high detection rate and
accuracy. For classification, different machine learning models such as SVM, KNN, LR, CT, ensemble (subspace KNN), and ensemble
(bagging trees) deep learning models such as stacked autoencoders are used. The study shows that deep learning models perform better
than machine learning models. For machine learning models, the highest accuracy is achieved by KNN which is 95% while the deep
learning model autoencoder achieved 96.6% accuracy which is better than ML models.

An accuracy of 91.4% and sensitivity of 91.5% is achieved by extracting new features from HRV signals to classify drivers’ state of sleep
by Babaeian et al. (2018 ). For this purpose, an annotated dataset of the driver’s actual sleep from ’Physio.net’ is used. Cyclic alternating
pattern sleep data is used to generate this dataset. A threshold of 45% of the maximum of the signal is used to detect R-waves. RR intervals
(time elapsed between two successive R waves) are extracted from these R-waves and time-domain features like standard deviation, NN50
(number of pairs of successive RR intervals after 50ms), PNN50 (proportion of NN50 divided by total RR intervals), root mean square,
standard error and standard deviation of difference are then extracted for RR intervals. The geometric features like density distribution,
triangular interpolation, and frequency domain features like resampling of linear interpolation, PSD, and frequency of PSD are used to
calculate the magnitude and phase of each point and to create new signals using a Poincare plot. A total of 66 features are extracted from
RR intervals and from new signals created using the Poincare plot. The T-test is used to reduce the number of features to 18. An MLP
neural network is used for classification.

Correspondingly, Babaeian et al. (2019 ) present an innovative technique based on machine learning that uses biomedical signal analysis
(HRV signals that are measured from ECG) to detect drowsiness in drivers. The dataset is collected for eight hours using three electrodes in
both awake and sleep states of twenty-five subjects (eleven females and fourteen males of ages ranging between 20 and 60 years). An
adaptive filter is applied to the acquired ECG signals for noise removal. Two machine learning algorithms KNN and SVM are applied to
two different feature sets extracted using WT and SFFT. SVM and KNN achieved an accuracy of higher than 80%. An accuracy of 85.5%
and 81.4% respectively for males and females is observed by KNN based on STFT features. While on WT features, the accuracy of 88.3%
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and 85.7% is achieved respectively for males and females. SVM obtained an accuracy of 83.9% for males and 81.1% for females on STFT
features. While on WT features, the accuracy of 87.6% is observed for males and 82.5% for females. Results show that KNN performs
better than SVM in drowsiness detection.

A microcontroller-based driver drowsiness detection based on HRV signal analysis is proposed by Hendra et al. (2019 ). ECG signals are
recorded during driving simulation. The system comprises an AD8232 ECG module, HC-05 Bluetooth, microcontroller Arduino Nano, and
an Android smartphone. Eight ECG signals are acquired from four participants using the AD8232 ECG module. The acquired signals are
processed in a microcontroller Arduino nano and then sent to a smartphone via HC-05 Bluetooth. HRV features from the time and
frequency domain are extracted in Android smartphones from ECG signals. RR intervals are segmented into 30, 20, and 10-s segments. To
classify drowsy and normal states, the RBF-NN is used. Features extracted from 30 sec RR interval segments performed better and
achieved an accuracy of 79.26%.

The system presented by Gromer et al. (2019 ) includes both software development and hardware design for drowsiness detection. The
PCB, an extension shield of Arduino, is used for hardware implementation. PCB contains a low pass filtering, double inverted ECG
channel, and two analog outputs for Arduino. Electrodes are attached to the body of the driver. Preprocessing of the signal is done before
QRS complex detection by discarding signals of 50 Hz or low. The QRS complex is used to drive HR and HRV. This makes it possible to
detect the fatigue of drivers using a machine learning algorithm.

A system using HRV-derived respiration measures to detect driver drowsiness is presented in Kim and Shin (2019 ). Euro Truck simulator
and FANATEC virtual hardware setup are used to create a virtual environment for drivers to collect datasets. A wearable ECG device is
used to detect RR intervals. Data is gathered from six individuals giving thirty-seven recordings from which 1% poorly monitored values
are excluded. Some constraints have been used to collect the dataset e.g. the participant should not have caffeine intake four hours before
the experiment and have to drive for one hour in the same virtual environment They are advised to keep the speed at about 80–90 km/h and
keep a steady lane. PolarH7 device is used to collect HRV data. The average running time of each recording is about 67 min. Two cameras
are used in the experiment setup video of the upper body of the driver and the screen. New RR interval data is acquired by performing the
cubic interpolation. Three different machine learning models are used including RF, KNN, and SVM to verify the performance of the
drowsiness detection. SVM shows better accuracy among these three models.

By the same token, driver drowsiness is detected by using ECG data by Murugan et al. (2020 ). Experiments are performed using a driving
simulator by putting ECG electrodes on both left and right wrists of the driver. A continuous two-hour driving session is carried out to
collect ECG data. First fifteen minutes the driver has to drive quietly without talking and then the driver has to respond to three SMS for
visual distraction and again drive quietly for the next fifteen minutes. Then while driving, the driver has to respond to mathematical
questions and after that, the subject is allowed to drive till s/he falls asleep or cannot control his/her sleep. To remove false R peak values,
the ECG signal reconstruction algorithm is used. FFT is used to decrease the complexity of the R-value. Sixth order Butterworth filter is
used with a cutoff frequency of 0.5 Hz for high-frequency cutoff. HRV information calculated by R-R interval difference is used for feature
extraction. Mean, mode, median, root mean square, second quartile, SD first quartile, third quartile, interquartile range, harmonic mean,
variance, skewness, kurtosis, energy, approximate entropy, maximum, Hurst, minimum, and power are the features extracted from the
signal. The PCA (Principal Component Analysis) is used for feature reduction and classified using SVM, ensemble, and KNN algorithms.
Ensemble gives better accuracy of 56.9% than the other two while classifying five different states of the driver.

HRV extracted from ECG signal to detect drowsiness is presented by Chang et al. (2021 ). ECG signals of twenty-one participants are
acquired using a chest belt in the morning and early evening for ninety minutes. A smart mobile device with low-powered Bluetooth
receives HR and RR intervals from the chest belt. Time domain, frequency domain, and nonlinear analysis are used to extract features from
the HRV analysis. KNN, NB, neural network, and DT are trained and evaluated on this data. Neural network and NB achieved an accuracy
of 98.65% outperforming other models.

Kundinger et al. (2020 ) worked on driver drowsiness detection using the wrist-worn sensors with a machine learning approach. The study
performed a comparison of the proposed approach with medical equipment ECG for drowsiness detection. Many machine learning models
are trained on wrist-worn sensors that collected data for drowsiness detection. KNN model achieved the highest 92% accuracy score. The
authors designed a smart steering wheel for drowsiness monitoring and inconspicuous health by Babusiak et al. (2021 ). The parameters
used for detecting drowsiness are heart rate, heart rate variability, and blood oxygenation for health and drowsiness detection. The study
uses ECG and oximeter integrated with the steering wheel.

ECG data has been reported to produce driver drowsiness detection with an accuracy of higher than 95%. Although it requires placing the
electrodes on the driver’s body, its efficiency is high as compared to contactless approaches. Studies utilizing the ECG signals primarily
focus on three different aspects to obtain high performance. First, data is cleaned by removing the noise through a high-order bandpass
filter which helps in better training of the models. The cutoff frequency is different; however, it is used between 0.5 and 40 Hz on the ECG
signals. Second, the use of features is multifarious where time and frequency domain and geometric features are acquired from the ECG
data. Time-domain features including standard deviation, NN50, PNN50, root mean square, standard error, and standard deviation of
difference are taken from RR intervals. Resampling of linear interpolation, PSD, and frequency of PSD are used from the frequency
domain. Similarly, geometric features like density distribution, triangular interpolation, mean, mode, median, root mean square, second
quartile, SD first quartile, third quartile, interquartile range, harmonic mean, variance, skewness, kurtosis, energy, approximate entropy,
maximum, Hurst, minimum, and power are used. Thirdly, feature reduction techniques like PCA are applied to reduce the dimensions of
the features to obtain better results. Deep learning approaches are reported to have better results using the ECG signals.

Table 4

A summary of ECG signals based approaches

References Sub. Sensor Approach Pros Cons
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References Sub. Sensor Approach Pros Cons

Vicente et
al. (2016 ) 30 ECG electrodes –

Signals are collected to make three datasets one in
real environment and two in virtual environment.
Achieved a 96% and 80% positive predicted value

Invasive electrodes are used for signal acquisition that
makes driver uncomfortable

Gupta et al.
(2017 ) – Zephyr

BioHarness –
Standard dataset from PhysioBank website is used.
A threshold-based system is designed. The system
alerts the driver by an alarm

Invasive chest strap is used for signal acquisition that
makes the driver uncomfortable. A threshold is set on
the average of ECG signals when the driver is awake

Bhardwaj
et al.
(2018 )

10 Electrodes ML, DL

KNN achieves an accuracy of 95% while an
autoencoder achieved 96.6% accuracy. Data
acquired in a real-time environment with no sleep
deprivation

Invasive electrodes are used for signal acquisition that
makes the driver uncomfortable. Signal acquired in a
virtual environment with sleep deprivation

Attarodi et
al. (2018 ) – – MLP MLP achieves an accuracy of 91.4% with standard

data set from ’Physio.net’
Dataset is used only to train MLP. No information about
subject sensors

Babaeian
et al.
(2019 )

25 Three electrodes KNN KNN achieves accuracy above 80% Signals acquired in controlled virtual environment.
Electrodes are attached to body for signal acquisition

Hendra et
al. (2019 ) 4 AD8232 ECG

module RBF-NN
HRV features from the time and frequency domain
were used to classify between drowsy and fresh
states. RBF-NN achieves an accuracy of 79.26%

Data is collected in simulation controlled environment

Gromer et
al. (2019 ) – Electrodes –

Hardware is design using Arduino and electrodes to
acquire ECG signal. Software is designed to detect
HR and HRV from ECG signals

Does not describe details about data collection and
experiments. Attachable electrodes are used

Kim et al.
(2019 ) 6 Polar H7 SVM Uses both signals and their combination and

achieved an accuracy of above 90% with SVM
Wearable strap used. Respiration signals are calculated
from ECG signals. A Virtual controlled environment is
used

Murugan et
al. (2020 ) – Electrodes – Data is acquired in real environment Electrodes are placed at the backside of the shirt for

data acquisition which makes the driver uncomfortable

Chang et
al. (2021 ) 21 Chest belt NN

Achieved an accuracy of 98.65 with neural network
and NB. A smart mobile device was used to receive
the signal from the belt

Physical contact using the belt causes discomfort and
introduces noise

Kundinger
et al.
(2020 )

30 Empatica E4 KNN Non-intrusive wrist watch usage Simulator data, noisy data is not considered

Babusiak
et al.
(2021 )

– Electrocardiograph – Unobtrusive monitoring No information about subjects, no reported accuracy

Driver	drowsiness	detection	using	EEG	signals
EEG is an objective method that can be used to evaluate the function of the brain. Although often used in auxiliary diagnosis, it has many
applications like illness detection, mental state detection, etc. A large body of work use EEG signals for driver drowsiness detection (Hu
2017 ; Nguyen et al. 2017 ; Awais et al. 2014 ). EEG electrodes are placed on the scalp, as shown in Fig. 4 , to record the electrical activity
of the brain. The recorded and processed signals can be divided into different frequency bands like alpha, beta, delta, etc. Papadelis (2007 );
Lin (2005 ). Further analysis is performed on these frequency bands to detect driver drowsiness.

Fig. 4

An experimental set up to detect drowsiness using EEG signals (left), placement of electrodes as per international 10-20 system standard
(right) (Hu 2017 )

Spectral and band power features extracted from EEG signals are used to detect drowsiness by Krishnan et al. (2020 ). ULg DROZY a
publicly available dataset comprised of EEG, EOG, ECG, and EMG signals is used in this research. All these signals are recorded at a
sampling rate of 512 Hz for a total of 14 subjects. Three trials of the test are carried out in a controlled environment. The individuals are
requested to have a decent sleep pattern for the previous week before the first session. The individuals are instructed to execute an action
while seeing the screen in the first trial. Following the first experiment, the subjects are advised to stay up for 36–38 h in order to maintain
their sleep deprivation. The volunteers repeated the prior experiment in the second and third trials. Following the last test, the individuals
are instructed to get a good night’s sleep before driving home. The raw EEG signals are recorded for 10 min for two states drowsy and non-
drowsy. Signals are split into 2 s epochs to extract features. KNN and SVM are trained and tested on the dataset with an accuracy of 96.1%.

EEG signals are used to detect driver drowsiness by Sarabi et al. (2020 ). The EEG signal of 600 people is gathered continuously for 117 s
using a neuroheadset emotive device. A total of fourteen features are received from the brain with leads and open and closed eyes are© Springer Nature
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considered classes. Perceptron and radial base neural networks are used to classify between closed and open eyes that achieved the highest
classification rate of 99.45% and 100%, respectively. A genetic algorithm is used to find the value of unknown coefficients and values of
the fitness function. Values of coefficients are then multiplied by the features matrix and a new matrix are obtained that are fed to
perceptron neural networks for clustering that achieved a classification rate of 98.38%. Optimized data with a Genetic algorithm is
considered to reduce computational complexity.

Yang et al. (2019 ) proposed the CNBLS to detect drowsiness from an EEG signal from eleven (seven males and four females) students of
Tianjin university. Subjects are advised to have proper rest of 7 h before data collection. EEG data is collected while subjects are driving
for ninety minutes on a driving simulator wearing a 40-channel recording cap. The 9-point KSS is applied and the driver’s state is
classified as ’alert’, ’mild fatigue’, and ’fatigue state’. The acquired raw EEG signal is filtered into 1–50 Hz by a bandpass FIR filter. ICA
is applied to remove artifacts from the signal and the signal is down-sampled to 200 Hz to reduce the computational burden. The first
20 min are considered alert and the last 20 min are considered fatigued data. The data of both categories are split into 1 s making a sample
total of 2400 for each subject and 1200 from each category. The MWRN is used to transform EEG data into a network matrix-like image
representation. CNBLS model is constructed and generalized on the data subsequently achieving an accuracy of 99.58%.

EEG signal of six healthy subjects in wakefulness and drowsy state is collected by Ma et al. (2020 ) to detect drowsiness. EEG device Brain
Products GmbH is used to acquire EEG signals of the subjects for twenty minutes while driving in a driving simulation. Subjects had to
sleep for at least 8 h before wakefulness data collection and 4 h (sleep deprivation) to collect drowsiness data. EEG data is collected from
32 electrodes positioned at the head of the subject at a sampling rate of 1 kHz. Raw EEG data is down-sampled to 200 Hz and a bandpass
filter with a cutoff frequency of 0.1–45 Hz is applied to reduce the artifacts. EEG signal is then filtered into five traditional frequency
bands that include Alpha (8–13 Hz), Delta (0.1–4 Hz), Beta (13–20 Hz), Theta (4–8 Hz), and Gamma (20–45 Hz). Filtered data is
segmented into 10-s frames making 240 samples for each subject and 1440 samples in total. Out of these 1440 samples 240 are kept for
testing and 1200 for training. A total of 160 PSD features are extracted from these segmented EEG frames. KNN, SVM, ELM, H-ELM, and
PSO-H-ELM are trained and evaluated on the collected data. PSO-H-ELM achieved an accuracy of 83.12% outperforming other classifiers.

Multi-channel EEG signals are acquired to detect drowsiness by Zhang et al. (2020 ). A total of sixteen subjects of ages ranging from 24 to
28 years take part in data collection. A 40-channel Neuroscan EEG acquisition device is used to acquire EEG signals at a sampling rate of
1 kHz while subjects are driving in a driving simulator. Subjects have to perform two driving tasks Task A ( driving on a 2-lane road) and
Task B (on a foggy road) for 20 min. Task A and B are considered favorable and non-favorable for driving, respectively. A bandpass FIR
filter with a cutoff frequency from 0.01 to 70 Hz to reduce artifacts, subsequently, signals are split into 1-s frames making a total of 800
frames for each class. Sample entropy is used to extract features from all channel data. PCA is applied to automatically select the optimal
feature set. Various ML classifiers that include SVM, LR, KNN, and DT are trained and evaluated with SVM with the cubic kernel. The
achieved accuracy scores for PCA and KNN are 97.25% and 92.19%, respectively.

A technique to detect drowsiness from alpha spindles of an EEG signal is presented by Houshmand et al. (2021 ). Nineteen male subjects
ages ranging between 26 and 52 years took part in the data collection process. Prior to experiments, a wakefulness test of the subject is
performed to measure the ability to stay awake without any activity. EEG data is collected from seven monopolar electrodes while subjects
were driving in a simulator. Three experts evaluated the predefined drowsiness level scale where 1 indicates the mean alertness and 5
indicates extreme drowsiness. Grabs outlier detection method is used to remove outliers from the raw EEG data. A Butterworth bandpass
filter with a cutoff frequency of 0.1–31 Hz is used. Alpha spindles are detected using the Morlet mother wavelet. Each signal is split into
30-s frames and each frame is analyzed by continuous wavelet transform to determine the intensity using frequency and time domains.
Neighborhood component analysis is used to detect channels with the highest potential of detecting drowsiness. CNN achieved an accuracy
of 94% while trained and evaluated on data of 14 and 3 subjects. Similarly, the alpha and theta band of EEG signals are analyzed to detect
driver drowsiness by Sivakumar et al. (2021 ). From 10 subjects, EEG signals are acquired with 21 channels to detect drowsiness. The
authors use the KNN for drowsiness detection using Alpha and Theta bands. KNN achieves 100% accuracy using the Theta band.

Zhu et al. (2021 ) present a drowsiness detection method based on EEG signal obtained by the wearable device. The EEG cap consists of
eight Ag-CL electrodes that collect data at a sampling rate of 256 Hz. EEG data of twenty-two subjects of age ranging from 22 to 42 years
is collected in a sleep-deprived state from 2 a.m. to 5 a.m. and after a normal night’s sleep at 10 a.m. on different days. A fatigue warning
system MR688 is used to verify and assist the fatigue state of subjects. The data is collected for 1 h in each state. Low and high-frequency
unwanted components are removed from a raw EEG signal using a 3rd order Butterworth bandpass filter with a cutoff frequency of 1–
60 Hz. Another Butterworth filter with a cutoff frequency of 50 Hz is used to remove the power frequency interface. Fast ICA is used to
remove the artifacts from the signal. Neural network with inception module achieved an accuracy of 95.59% and modified AlexNet
achieved an accuracy of 94.68%.

Single-channel EEG-BCI (EEG-bBrain computer interface) system coupled with deep learning is presented by Balam et al. (2021 ). For
classification in drowsy and non-drowsy states of drivers, SEED-VIG and PSAED data sets are used. SEED-VIG data set has data of
twenty-three subjects that is collected using 18 electrodes. PSAED data set comprises EEG signal of twenty-three subjects collected using
two electrodes. The EEG signals of both datasets are split into 1-sec epochs. Seven direct domain features are extracted from raw EEG
signal HFD Hjorth parameters such as mobility and complexity, DFA, energy, exponential energy, and log energy. A simple deep neural
network is trained and evaluated on the datasets that achieved an accuracy of 96.80% and 74.89% on PSAED and SEED-VIG datasets,
respectively.

Paulo et al. (2021 ) used two approaches for drowsiness detection; one using the EEG signal and one is EEG encoding signals as
spatiotemporal images. The dataset used in the study records the reactions-times of participants to different events that are related to
drowsiness. A CNN model is used for the classification in both approaches. Experiments are done on 27 subjects’ publicly available
datasets and CNN shows good performance with up to 75.87% accuracy with both approaches.

Similarly, Chen et al. (2021 ) proposed an approach for drowsiness detection using EEG signals and a deep learning model. The authors
proposed a deep CNN model with 12 layers that automatically extract significant features from ECG signals. A 4 s segment of ECG signals
are used to train and test the proposed CNN model for drowsiness detection which reports a 97.02% accuracy on test data. A method to
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detect drowsiness from single-channel EEG signal using wavelet packet transform to extract time-domain features was presented by
Chinara et al. (2021 ). Physionet dataset and dataset virtually recorded by Zheng et al. (2017 ) was used. 50 Hz notch filter and 0.1–45 Hz
band pass filter were used to remove artifacts from the EEG signal. Different ML and deep learning classifiers were trained and evaluated
on these datasets extra tree outperforming others with an accuracy of 94% and 85.36% on Physionet and (Zheng and Lu 2017 ) dataset
respectively.

A BCI is used for drowsiness detection by Dunbar et al. (2020 ). A total of 26 participants drove in a controlled simulated environment
with a BCI device mounted on the head. Both BCI and KSS data were gathered for experiments. Neither KSS nor BCI data differed
between individuals who show drowsiness. A CNN-based drowsiness detection method using a single-channel EEG signal was proposed by
Balam et al. (2021 ). A prerecorded EEG signals dataset acquired from Physionet was used. By manually verifying each epoch (i.e. 1 s
timestamp window) data, hardware artifacts were eliminated. The 50 Hz notch filter and 0.15–45 bandpass filter were used to remove
resonance noise and eye blink artifacts. Subject-wise, cross-subject-wise, and combined-subjects-wise validations were used to enhance the
performance of the suggested technique, yielding accuracy of 93%, 89%, and 94%, respectively. The MMSE approach is applied by Wang
et al. (2021 ) for driver drowsiness detection. Initially, the EEG signals are decomposed using VMD. Later, the best IMF and scale factors
are selected with the help of LSM (the least square method). The VMD-MMSE method is combined with a questionnaire where the driver
performance is reported under normal driving and auditory stimulation mode. Results indicate that VMD-MMSE can classify the driver
state efficiently.

Besides several medical applications like illness detection, mental state detection, etc. EEG data has been used for driver behavior analysis
as well. Data is recorded at high frequency, so the data for a second or two is enough to predict the driver’s state. EEG data for closed and
open eyes have different features and neural networks and machine learning models can be used to differentiate. Accuracy can further be
enhanced using noise filtering, and bandpass FIR filtering. Similarly, downsampling is also used to reduce the artifacts. Butterworth filter
and bandpass FIR are the most commonly used filters for cleaning the EEG signals. Signals can further be transformed into different
frequency bands to obtain refined results for driver drowsiness detection. Similarly, a large number of studies focus on using a 40-channel
EEG acquisition device for better accuracy. Neighborhood component analysis can be used to detect channels with the highest potential of
detecting drowsiness. Predominantly, signal features like DFA, energy, log energy, and exponential energy are used for EEG signals.
Studies also follow image processing techniques where the signals are transformed into matrix-like image transformations to obtain higher
accuracy. For the most part, the employed approaches are based on deep learning models for their superior performance. However, machine
learning models are also utilized. The driver drowsiness prediction is based on the data of 1–2 s frames and accuracy is higher than other
sensors.

Table 5

Comparative analysis of EEG based approaches for drowsiness detection

References Sub. Sensor Approach Pros Cons

Sarabi et al.
(2020 ) 600 Neuroheadset Perceptron Correctly classify between closed and open eyes No information about data collection. Only CR was

considered. An invasive device was used

Yang et al.
(2019 ) 11 – CNBLS High classification accuracy using only EEG signals Invasive device was used, and data was collected in

controlled environment

Ma et al.
(2020 ) 6 GmbH PSO-H-

ELM
Performance comparison from multiple machine and
deep learning models

Electrodes are placed on the body causing interference
during the driving and simulated environment

Krishnan et
al. (2020 ) 14 – KNN,

SVM Robust and high accuracy Experiments are performed in a controlled environment

Zhang et al.
(2020 ) 16 Neuroscan PCA,

KNN
Feature selection through PCA to obtain important
features

Simulated environment makes the approach less
practical for real scenarios

Houshmand
et al. (2021 ) 17 Monopolar

electrodes CNN Simple and robust model with 94% accuracy Low number of test samples, results are not
generlizable

Zhu et al.
(2021 ) 22 Ag-CL

electrodes
NN,
AlexNet

Used MR668 fatigue warning system to verify fatigue.
Achieved an accuracy of 95.59%

The data is collected in a controlled environment,
wearable electrodes are used

Balam et al.
(2021 ) 23 Electrodes DNN Statistical method to find best channel was presented.

Two datasets PSAED and SEED-VIG were used
Lower accuracy for SEED-VIG dataset, use of
electrodes for data collection

Sivakumar et
al. (2021 ) 10 Electrodes LDA &

KNN High accuracy using theta band of EEG The data is collected using a simulation setup

Paulo et al.
(2021 ) 27

Scan
SynAmps2
express

CNN Resolves low SNR and cross-subject disparities Comparatively low accuracy with data from simulated
driving

Wang et al.
(2021 ) 15 Emotiv

device MMSE Drowsiness detection under normal and auditory
stimulation modes Low no. of participants, simulation environment

Galvanic	skin	response	for	drowsiness
The GSR-based features have been utilized for driver drowsiness detection as well. GSR sensors record the electrical conductance of the
skin. It shows the response of the autonomic nerve which is used as a parameter of the sweat gland (Sharma et al. 2016 ; Bakker et al.
2021 ). A GSR is attached to the index and middle fingers and records the change in the electrical conductance while driving. The change
in GSR is associated with stimulation, emotional reaction, and actions related to alertness and attention (Khalfallah 2010 ). A schematic
diagram of GSR-based driver drowsiness detection is shown in Fig. 5 .

Fig. 5
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GSR placement set up (left), experiment set up for driver drowsiness (middle Darzi et al. 2018 ) and location for placing electrodes (right
Sharma et al. 2016 )

A real-time driver state detection using a wearable device is presented by Misbhauddin et al. (2019 ). Galvanic skin response (GSR) and the
heart rate of the driver are recorded for analysis. GSR is used for the detection of the relaxation of internal organs. HRV and GSR are
measured for a better classification of the driver status in terms of drowsiness and non-drowsiness. E4 wristband is used for the
measurement of HRV and GSR data. An android-based application is developed for drowsiness detection. The application includes user
management, monitoring, detection, and notification features. E4 link library is used by the application to access the data gathered by the
wristband. When the wristband is queried for data by the application, it receives IBI and EDA. EDA is a skin conductance signal value and
IBI is the time between two heartbeats. The frequency of forty seconds is set to ascertain the data. Five IBI and ten EDA values have been
collected at the completion of each epoch. This data is stored in temporary memory and calculation of HRV and GSR is started. HRV is
measured by taking square differences of IBI and the root mean square of these calculated differences. The absolute difference of EDA
values is calculated to find the GSR value. There are training and testing phases in the system. In the training phase, the user has to train
the system at four different times of the day before using it. The response of the user is recorded on a scale of 1–4. HRV and GSR data are
also measured and a threshold value is set. The monitoring phase triggers when the driver is driving the vehicle. In this phase, HRV and
GSR data are extracted from the wearable device acquired data. If both HRV and GSR values are less than the threshold, an alarm is
generated to alert the user. Testing of this system is conducted in a simulated environment on ten subjects. A total of forty data points, ten
from each out of four subjects are gathered at four different times of the day: in the morning, after a heavy meal, being awake for almost
18 h, and before sleeping. HRV and GSR values are gathered and the alert system is checked. The accuracy of the system is computed
using the confusion matrix. There were thirty-two true positive out of forty data points which shows the system is accurate about 80% of
the time.

Bartolacci et al. (2020 ) evaluate the role of sleep changes in driving behavior and vigilance levels. For this purpose, 80 healthy subjects are
included in the experiment to analyze the sleep quality, sleepiness, and vigilance using the PSQI, KSS, ESS, and PVT. The cognitive
abilities of drivers are assessed with the help of the Vienna Test System TRAFFIC. Results using the ANOVA test indicate that less
habitual sleep efficiency is associated with worse performances in PVT. Younger subjects report higher self-rated sleepiness while older
drivers show lower performance regarding attention and perception tests.

Similarly, Darzi et al. (2018 ) perform experiments with 21 healthy drivers in a sleep-deprived session. Skin conductance, respiration, and
body temperature are used for drowsiness detection. Using three features, the drowsiness detection accuracy is 98.8%, however, the
performance is degraded if a single sensor is used.

IoT-based fatigue and drowsiness monitoring system is implemented by Munir et al. (2020 ) that uses the GSR and heart rate variability.
Using the change in the heart rate and GSR when moving from wakefulness to drowsiness, can be used to detect the driver’s state.

Choi et al. (2017 ) designs a wearable device-based driver drowsiness detection. For better accuracy, signal processing and optimal feature
selection are performed. A fine-tuned SVM model is used for driver state classification that obtains a 98.43% accuracy.

GSR device records the electrical conductance of the skin which can be used for driver drowsiness detection. It is a contact-requiring
approach where the GSR device is attached to the hand of the driver. HRV and GSR are measured for a better classification of the driver
status in terms of drowsiness and non-drowsiness. Using features from GSR, heart rate and temperature, the prediction accuracy of higher
than 98% is possible which is not possible if a single sensor is used. The response in GSR varies as the driver moves from the state of
wakefulness to sleepiness. Both machine learning and deep learning models are used with GSR data for driver behavior prediction.

Table 6

Comparison of EEG-based studies

References Sub. Sensor Approach Pros Cons

Misbhauddin
et al. (2019 ) 10 E4 wristband –

A threshold-based system has presented that
set a threshold during the training phase. The
system achieves an accuracy of 80%

Data is collected in a controlled environment. User-
specific training was required before using the system.
The system uses a wrist band to record the data that
makes the user uncomfortable

Bartolacci et
al. (2020 ) 80 –

Vienna
test
system
TRAFFIC

Sleep quality, sleepiness, and vigilance of
elders and adults is tested

Different devices linked to the test system were used
to record the physiological signals. This test was
performed before driving
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References Sub. Sensor Approach Pros Cons

Darzi et al.
(2018 ) 21

Electrodes for ECG,
thermistor sensor for
respiration, Electrodes
attached to glove for GSR

–

ECG, skin conductance, respiration, and GSR
are used for drowsiness detection. Using
three features, the drowsiness detection
accuracy of 98.8% was achieved

Data was collected in a controlled and simulated
environment. On-body sensors are used that cannot be
used in a real environment

Munir et al.
(2020 ) 1 Electrodes attached to

Arduino –
IoT based low-cost system was presented.
The experiment was conducted in a real-time
environment

System uses on body sensor for predictions. A
threshold-based system is presented

Choi et al.
(2017 ) 28 Wearable device designed

by authors SVM
Wearable device was designed by authors to
collect data. System achieves an accuracy of
98.43%

Experiments were conducted in controlled simulation
environment. Wearable device was used that makes
user uncomfortable

Use	of	thermal	imaging	for	driver	drowsiness	detection
Thermal imaging-based driver drowsiness detection approaches follow a non-contact approach. The setup includes a thermal camera,
occasionally augmented with visible light or IR camera, as shown in Fig. 6 . The thermal camera captures the changes in the temperature of
the forehead, nostrils, and cheeks and the change can be associated with the driver’s state moving from wakefulness to drowsiness. The use
of the thermal camera is advantageous over contact measurement approaches like ECG, and EEG and non-invasive approaches like the
visible light camera as it is not affected by illumination conditions.

Fig. 6

A schematic setup of thermal imaging based drowsiness detection

Driver drowsiness is detected using thermal imaging-based respiration in Kiashari et al. (2020 ). Empirical analysis reveals that a change in
nostrils’ temperature is observed during drowsiness and wakefulness. Geometrical features can be used to detect the respiration region and
frames from a thermal camera can provide the respiration rate. The frequency of respiration of normal humans varies between 12 and 20
breathes per minute (Lindh et al. 2013 ). The maximum time interval is five seconds between two breaths so, the region of the image with a
high variation rate in the first five seconds is located as the respiration region. A canny edge detector is used to separate the respiration
region from the image. To get an accurate respiration region, the head of the driver should not move quickly in the first five seconds of the
thermal imaging process. A respiration signal can be formed using the respiration region. Environmental features can affect the
performance of the thermal imaging process so environmental variables are kept constant during the experiment. Respiration rate, I/E ratio,
standard deviation, and mean are the main extracted features from the respiration signal. Fused features are used with SVM and KNN
resulting in 90% and 83% accuracy scores by SVM, and KNN, respectively.

Similarly, a thermal image-based approach is adopted by Kiashari et al. (2018 ) for driver drowsiness detection using the respiration rate.
The respiration rate is extracted using the nostrils’ movement with physiological characteristics. In addition, the frame-to-frame mean
temperatures of the nostril are used. Experiments are performed using 12 subjects within a driving simulation environment. Results show
that the respiration rate from the thermal images is non-intrusive and reliable. The observations indicate that the respiration rate is
decreased while the standard deviation is increased while the driver moves from wakefulness to drowsiness.

Driver drowsiness is performed using the facial depth map by Forcamanski et al. (2018 ). The visual data is collected using the RGB-D
sensor. Several object detectors are trained like Haar-like features, HOG, and LBP. With face detected, a heuristic approach is applied to
estimate the drowsiness level. Using the depth features, the drowsiness analysis can be performed at a low level where the impact of
illumination can be minimized. Experiments show promising results with the feasibility of using depth features for drowsiness detection.

Along the same directions, Tashakori et al. (2018 ) use the thermal images for drowsiness detection. Facial temperature is measured from
thermal images and drowsiness level is associated with observer rating. The observations of four facial blood vessels show that facial
temperature is decreased from wakefulness to drowsiness. The change in the temperature is observed to be decreasing by 0.54, 0.33, and
0.32 °C for 12 subjects when their state moves from wakefulness to drowsiness and extreme drowsiness, respectively.
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Similarly, Moazen et al. (2021 ) employ a thermal camera for driver state detection using facial images. Facial features are extracted using
horizontal and vertical integration, along with projection, contours, etc. Four target areas have been used from the cheeks and forehead. A
total of 15 subjects are used for data collection in a driving simulator. Results using the observer rating confirm that the thermal facial
images can provide reliable results for driver drowsiness.

The study by Fofrcamanski et al. (2021 ) determines the driver’s state with the help of facial features using the thermal camera. The study
specifically utilizes the eyes and mouth state estimation. Using the Haar-like features with the AdaBoost classifier, eyes and moth regions
are detected. Gabor filter is used on the detected region and features are used to detect the drowsiness. Analysis reveals that the thermal
camera provides reliable results in diverse lighting conditions during day and night time.

The feasibility of thermoregulation features is tested by Gielen et al. (2019 ), which performs experiments using 19 subjects in a driving
simulation. During experiments, nose and writs temperature is recorded and analyzed for wakefulness to drowsiness. The study reports that
an initial increase in temperature is observed for drowsy drivers followed by a gradual decrease while no such patterns are observed for
non-drowsy drivers. Classification accuracy of 68.4%, 88.9%, and 70.6% can be obtained when using nose temperature, wrist temperature,
and heart rate, respectively. Using multimodal features, accuracy of 89.5% is achievable.

Similarly, Kajiwara et al. (2021 ) establish a driver’s condition with the help of eye blinks and yawning frequency. For this purpose, both
visible-light cameras and thermal cameras are used. Both vision cameras and thermal cameras are non-contact and the driver is not annoyed
and his movements are not hindered. Experiments show that using a visible-light camera, the accuracy of driver state determining is 90%
with well-illuminated conditions, however, bad light conditions can substantially decrease the performance. On the other hand, an accuracy
of 74% is obtained when a thermal camera is used.

Knapik et al. (2019 ) presented a system based on yawn detection to decide the drowsiness from thermal images. The proposed approach
continuously monitors the driver and initiates an alert when drowsiness is detected. The method is resilient to various light conditions. For
detecting yawning, eye corners are used for face alignment and face average temperature is used. Experiments performed in simulated and
real environments show promising results.

The authors analyze the changes in temperature of the forehead and cheeks to determine the drivers’ state by Tashakori et al. (2022 ). A
driving simulator is used where 30 participants drove the car in two sessions. Driver drowsiness is monitored and annotated at three levels
by human observers. The study employs KNN, SVM, and regression trees to classify driver drowsiness using the forehead and cheeks
temperatures. Observations show that a decrease in forehead and cheek temperature can be associated with drowsiness like a temperature
decrease of 0.46 °C and 0.81 °C for forehead and cheek, respectively. Results indicate that accuracy of 82% can be achieved using the
proposed approach. Cardone et al. (2021 ) used 10 sleep-deprived drivers on the driving simulator for drowsiness detection. Device Alab
SmartIr640 thermal camera is used to record the skin temperature along with the vision camera. Several regions of interest are used to
record the change in the temperature like nose tip, glabella, etc. Features extracted for 30 s are used with a three-level SVM to determine
the driver’s state to ’awake’, ’fatigue’, and ’sleepy’. The average classification accuracy of 0.65 is obtained with the thermal camera.

Thermal camera is a recent application in driver behavior analysis. It is a contactless approach and does not require any sensors to be
placed on the driver’s organs. Instead, it can remotely record the data, similar to the vision camera, however, the difference is that it records
the relative temperature of an item. The use of the thermal camera for driver drowsiness detection is multi-objective involving the use of
multiple features in this regard. For example, the change in the temperature of the driver’s facial parts is associated with states of
wakefulness and sleep. Similarly, the chest movement can be captured using the thermal camera which is later used for respiration rate and
heart rate measurement. Last but not least is to measure the breathing patterns by analyzing the change in the nostril positions of the driver
using the thermal camera. Also, several facial depth markers can be used for the same purpose. Eyes and mouth state estimation is also
possible with the thermal camera which in turn can be used for driver behavior analysis. Eye blinks and yawning are two important facial
markers for driver drowsiness detection regarding the thermal camera. Despite its contactless approach and better accuracy for driver
drowsiness detection, the thermal camera is sensitive to light and heat conditions. For experiments, the external environment needs to be
kept at a relatively constant temperature to get reliable results.

Table 7

Thermal camera-based driver drowsiness detection approaches

References Sub Sensor Approach Pros Cons

Kiashari et
al. (2020 ) – Thermal camera SVM,

KNN
Thermal camera was used. Environmental factors have no effect
on the camera. SVM achieved an accuracy of 90%

Driver has to remain still for five seconds.
Head movement affects the result of the
system

Kiashari et
al. (2018 ) 12 Thermal camera – A non-intrusive method that estimates respiration rate from

change in temperature under the nostrils
Head movement affects the results of the
system. Not feasible in a real driving
environment

Tashakori et
al. (2018 ) 12 Thermal camera – Facial temperature decreases from wakefulness to drowsiness.

Data was collected in a simulated environment
Head movement affects the results of the
system. Not feasible in a real driving
environment

Moazen et
al. (2021 ) 15 Thermal camera –

Four target areas are used from the cheeks and Forehead. Results
using the observer rating confirm that the thermal facial images
can provide reliable results for driver drowsiness

Data was collected in a simulated
environment. Head movement affects the
results of the system. Not feasible in a real
driving environment

Forczmanski
et al. (2021 ) 19 Thermal camera – Haar features were extracted from eyes and moth regions

Data was collected in a simulated
environment. Head movement affects the
results of the system. Not feasible in a real
driving environment

Gielen et al.
(2019 ) 19

VarioCAM
infrared thermal
camera, Empatica
E4 wristband

DT

Classification accuracy of 68.4%, 88.9%, and 70.6% can be
obtained when using nose temperature, wrist temperature, and
heart rate, respectively. Using multimodal features, and accuracy
of 89.5% is achievable

Data was collected in a simulated
environment. On-body sensors were used.
Head movement affects the thermal camera
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References Sub Sensor Approach Pros Cons

Kajiwara et
al. (2021 ) –

Visible-light
cameras and
thermal camera

– Both cameras were used separately. The vision camera achieved
an accuracy of 90% in illuminated conditions

Bad lights effects the vision camera results
and head movement affects the thermal
camera results. No information about
subjects

Knapik et al.
(2019 ) – Thermal camera – System is resilient to change in light. For detecting yawning, eye

corners are used for face alignment
Data was collected in a simulated
environment. Change in temperature affects
thermal camera results

Tashakori et
al. (2022 ) 30 Thermal camera KNN,

SVM
Change in forehead and cheek temperature is observed to detect
drowsiness. The system achieved an accuracy of 82%

Data was collected in a simulated
environment. The use of a camera is not
feasible in a real environment due to head
movement during driving

Cardone et
al. (2021 ) – Alab SmartIr640

thermal camera SVM

Change in temperature under the nose tip was collected to
respiration rate. A three-level SVM to determine the driver’s
state of ‘awake’, ‘fatigue’, and ‘sleepy’ which achieves an
accuracy of 56%

Data was collected in a simulated
environment. The use of the camera is not
feasible in a real environment due to head
movement during driving

Driver	drowsiness	systems	using	multiple	sensors
Although predominantly the driver drowsiness systems are based on a single sensor, yet, several research works experiment with multiple
sensors to increase the efficacy of detection and decrease the single sensor dependency. The objective of multisensor or multimodal
approaches is to combine the signals from multiple sources to overcome the limitations of a single sensor. Figure 7  shows a schematic
diagram of a multisensor approach.

Fig. 7

Schematic diagram of an approach that combines data from multiple sensors [adopted from Doudou et al. (2020 )]

For example, driver drowsiness is detected from the respiration signals acquired using a wearable clothing sensor by Yuda et al. (2020 ).
Respiration, ECG, and acceleration signals of seven healthy subjects are recorded while driving and wearing a smart shirt biometric sensor
(Hexoskin). Hexoskin is made up of a smart garment and data logger in a shirt pocket which is used to monitor respiratory movements.
ECG electrodes are placed at the back of the shirt. Respiration, ECG, and 3-axial acceleration signals are sampled at a rate of 128, 256, and
64 Hz, respectively. Respiration signals are analyzed by complex demodulation with amplitude and frequencies ranging from 0.05 to
0.45 Hz. In the previous investigation, drowsiness is accompanied by a typical heart rate pattern named Dip & waves. Changes in
respiration signals are compared with the traditional Dip & waves characteristic associated with driver drowsiness. Respiration amplitude
and frequency do not show significant changes in the Dip & wave. So, from the experiment, it is observed that the acquired respiration
signals can be used for drowsiness detection.

Another similar work that relies on multiple physiological signals by Wang et al. (2017 ) where OP, SC, and respiration signals are acquired
for fatigue detection by tagging respective sensors to the drivers’ body. Physiological signals are recorded using a piece of equipment
named Nexus-10 designed by B.V. Mind Media. Nexus-10 can record ten types of physiological signals by tagging the respective sensor to
the subject’s body. The physiological signals of ten drivers are recorded at a sampling rate of 256 Hz for three to five minutes. Baseline
drift and noise are removed using median filter and bandpass filter, respectively. The study combines Hilbert–Huang transforms with RF
using the GSR and pulse to detect fatigue and drowsiness. RF provides an accuracy of 99% as compared to 93% by the MLP.

The ECG and EEG signals and behavioral data are acquired for driver drowsiness detection by Gwak et al. (2018 ). ECG and EEG signals
of sixteen healthy male subjects ages twenty-four years are acquired using a driving simulator. The driving simulator comprises a display
screen, steering wheel, and pedals in a controlled environment having a temperature of 26 degrees. Two experts rated the drowsiness of the
drivers based on the recorded video every ten seconds. An infrared camera is used to record eye blink data at a sampling rate of 60.1 Hz.
EEG signals are acquired at a sampling rate of 500 Hz using EEG measuring instrument EEG-1200. The eye blinks are counted every ten
seconds from the raw data. ECG signals are acquired at a sampling rate of 1 kHz using WEB-7000. A bandpass filter with a cutoff
frequency of 1–40 Hz is used on EEG signals for noise removal. EEG, ECG, and eye blinking data are segmented into ten-second frames© Springer Nature
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and thirty-two features are extracted. Four machine learning models are used for classification including SVM, KNN, LR, and RF. RF
performs better with an accuracy of 81.4% than others that achieved accuracy scores of 72.3%, 78.6%, and 75.3% for LR, SVM, and KNN,
respectively.

In the same way, an efficient cross-subject transfer learning system is proposed for the driver’s drowsiness detection based on physiological
signals by Chen et al. (2019 ). Two data sets that are recorded in the simulated and real environments are used for validation of the
proposed system. Dataset ‘A’ contains physiological signals of nine healthy subjects in three different driving conditions including rest
period (low stress), highway section (medium stress), and city session (high stress). ECG, GSR, and respiration signals are acquired at a
sampling rate of 496, 31, and 31 Hz, respectively for thirty minutes. The acquired signals are then segmented into hundred-second
segments. Specific thresholds for each signal are set to remove the noise from the original time series. Data set B consists of EEG and EOG
signals of twenty-three subjects in a simulated driving environment. The route is designed in such a way that it can easily induce a drowsy
state. EEG signals are collected from the posterior, temporal, and forehead at a sampling rate of 1 kHz. EOG signals are captured from the
electrodes placed at the forehead. From the recorded twenty-three subject’s data, balanced physiological signals of fourteen subjects are
selected. After initial signal processing and feature selection, feature evaluation is applied to find the important feature for classification
purposes. Cross-subject feature evaluation is performed by both CSDF. After cross-domain feature evaluation and selection, the samples
from target and source domains are sent to the classifier. The ARTL is used and compared in Chen et al. (2019 ). ARTL optimizes structural
risk, joint distribution, and manifold consistency. ARTL achieved an accuracy of 94.44% and 88.67% on Dataset A and B, respectively
which is better than the seven base classifiers including SVM, ELM, and KNN.

Deploying the machine learning and deep learning techniques has been reported with higher performance. For example, Jiao et al. (2020 )
proposed an approach for driver sleepiness detection using EEG and EOG signals. They used a conditional CWGAN for data augmentation
and used the LSTM model for classification. The dataset size was insufficient to train learning models and this problem is resolved by the
CWGAN. LSTM achieved a 0.98 accuracy score after data augmentation.

Seok et al. (2020 ) proposed an approach of optimal feature search vigilance estimation using a machine learning approach. The deployed
reinforcement learning model DQN generated the more optimal features as two from ECG and two from EEG. According to the study, ECG
features were more impactful as compared to EEG.

Miao et al. (2017 ) proposed an approach to detect driver drowsiness using a custom-made device comprising a 2-axis accelerometer. The
accelerometer is used to detect neck bends which is a good indicator of driver drowsiness. The approach makes predictions using neck
posture and eye blinking duration.

Wali et al. (2020 ) proposed an approach for drowsiness classification using EMG and wavelet packet transform. EMG signals are
decomposed into approximations up to four levels. An FFBPNN model is used for drowsiness classification. An average accuracy of 75%
is obtained using a 3 s window. A PPG-PRS is proposed by Rundo et al. (2021 ) to capture the PPG signal for driver drowsiness detection.
It is used to obtain the drivers’ blood pressure and is augmented with eye dynamics to enhance detection accuracy. Classification is
performed using deep-LSTM and 1D-TDCNN which show a classification accuracy of 88.88%.

Similarly, Barua et al. (2020 ) used several machine learning models like KNN, SVM, and RF for driver cognitive load classification. The
authors used multi-component signals such as physiological measures and vehicular features and extract features using the SFFS method.
RF outperforms all models with a 0.80 F1 score.

Another study on the use of ECG signals is by Abbas et al. (2020 ) that uses hybrid features and a transfer learning approach for drowsiness
detection. The hybrid features are the combination of the visual features through PERCLOS measure and non-visual features by heart-beat
(ECG) sensors. CNN and DBN models are used for drowsiness detection which shows superior performance with 94.5% accuracy.

Wang et al. (2019 ) presented a combination of a driver monitoring system with an EOG for the localization of MS occurrences and the
study of EEG spectrum behavior during MS events. During the simulated flight, EEG, EOG, and facial behavior data were collected
concurrently from 16 commercially qualified pilots. Relative spectral power was measured in frontal, central, temporal, parietal, and
occipital brain areas for delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), and beta (13–30 Hz). The findings show the potential of the
EEG delta and alpha spectrum to classify MS occurrences; hence, application toward sleepiness detection through EEG electrodes
incorporated in a conventional aviation headset is feasible. A system to detect driver drowsiness based on image data, EEG, and Gyroscope
data was presented by Karuppusamy et al. (2020 ). Five subjects ages ranged between 21 and 30 years took part in the data collection
process. The system is made up of multimodal time series data collected from the driving simulator platform’s EEG, gyroscope, and image
processing modules. The data is analyzed in the EEG module, the gyroscope module, and the vision module for driver drowsiness, head
activity, and facial behavior, respectively. These modules’ predictions were then fed to DNN which then analyses the data and predicts. The
proposed DNN achieved an accuracy of 93.91% in detecting drowsiness.

EEG signal with eye blink data to detect drowsiness was presented by Kondapaneni et al. (2021 ). Neurosky Mindflex headset was used to
acquire brainwave data and the blink sensor linked to the goggles is a TCRT5000 IR module. One Arduino was used to gather data from
sensors, while another was used to receive the final output and sound an alert. A 433 MHz RF transceiver pair was utilized to wirelessly
transmit data from one Arduino to another to sound an alert. EEG band collects attention and mediation values as the attention values
decrease from the mediation value then the system proceeds to the eye state and if the driver’s eye state was closed for a longer amount of
time than the threshold, the driver was identified as sleepy, and an alarm was raised, and email warning was issued. The system predicts
correctly 89% from 500 samples.

Change in alpha waves extracted from EEG and EOG signals was used to detect drowsiness by Jiao et al. (2020 ). Twelve healthy subjects
took part in the data collection process in a controlled simulated driving environment. Features from frequency and time domains were
extracted using continuous wavelet transform. A GAN was used to augment the training dataset. LSTM was trained and evaluated on the
dataset that achieved an accuracy of 98%.

Vehicle, physiological, and behavioral-based features were used to detect drowsiness by Gwak et al. (2020 ). Data from sixteen male
subjects were collected in a simulated driving environment. The number of eye blinks and the PERCLOS over 10 s were estimated using© Springer Nature

http://www.springer.com/


data from an eye-marked camera. EEG-1200 and WEB-7000 were used to record EEG and ECG data respectively. The hybrid
measurements acquired throughout the experiment were used to create a dataset with 10 s segments of data. Various classifiers were trained
and evaluated on the dataset, RF outperformed others with an accuracy of 78.7% accuracy.

Multimodal information was combined by Sunagawa et al. (2019 ) to detect drowsiness. ECG and respiration data from professional 50
drivers were collected using a BIOPAC device in a simulated driving environment. The facial behavior of the subject was captured using a
camera. The results showed that posture information enhanced the accuracy of detecting mild sleepiness, and the suggested model
integrating the driver’s blink and posture information had an F1 score of 53.6%.

The objective of multisensor or multimodal approaches is to combine the signals from multiple sources to overcome the limitations of a
single sensor and increase the prediction accuracy of the system. The choice of sensors for fusion is relevant to the availability of sensors,
the capability of the fusion framework, the level of fusion like low-level or high-level fusion, and the desired accuracy, among others.
Often, ECG and EEG signals are good choices to be used together, along with the heart rate and respiration data to obtain higher accuracy
(Gwak et al. 2018 ; Jiao et al. 2020 ). Similarly, ECG, GSR, and respiration signals are reported to obtain 94.44% accuracy using the
machine learning approach (Chen et al. 2019 ). Accuracy scores higher than that are reported using EEG and EOG signals. A 98% accuracy
is reported for a hybrid system that uses EEG and EOG where both time and frequency domain features are combined for driver drowsiness
detection (Jiao et al. 2020 ). Of all the sensors used for multi-sensor systems, EEG, heart rate and respiration signals are among the most
commonly used data.

Table 8

A comparative summary of approaches using multiple sensors

References Sub. Sensor Approach Pros Cons

Yuda et al.
(2020 ) 7 Hexoskin – Data is acquired in a real environment Electrodes are placed at the backside of the shirt for data

acquisition that makes the driver uncomfortable

Wang et al.
(2017 ) 10 Nexus-10 RF Data is collected in real-time. RFT gives an

accuracy of 99%
Data is collected before or after the driving, not during the
driving. An attachable device is used for signal acquisition

Gwak et al.
(2018 ) 16 EEG-1200, WEB-

7000 RF RF shows an accuracy of 81.4% Signals acquired in a virtual controlled environment.
Attachable devices are used for signal acquisition

Chen et al.
(2019 ) 32 Electrodes – Accuracy of 94.44% and 88.67% achieve

using data sets A and B respectively

Signals in dataset B are acquired in a real environment.
Signals in dataset A are acquired in a controlled virtual
environment. Attachable electrodes are used for signal
acquisition

Jiao et al.
(2020 ) 12 Electrodes GAN,

LSTM
High accuracy with less number of

electrodes
Simulated environment is used for data collection,
electrodes placement on subjects

Seok et al.
(2020 ) 11 Electrodes Q

learning
Using DQN for analyzing biomarkers to

increase classification accuracy The data is collected in a simulation environment

Wali et al.
(2020 ) 40 Ag-AgCl

electrodes FFBPNN Using db2 wavelet that require less filter
coefficients, low processing time Low accuracy & data from simulated environment

Rundo et al.
(2021 ) 71 –

D-LSTM
& 1D-

TDCNN
Study of drivers with higher or lower than

average blood pressure Driving conditions are simulated, accuracy is slightly low

Barua et al.
(2020 ) – g.HIamp

electrodes
KNN, RF,

SVM Optimal feature selection using SFFS Use of driving simulator for experiments

Abbas et al.
(2020 ) 14 Pulse Sensor

Amped
CNN &

DBN Higher accuracy with less power Low number of participants, use of electrodes

Wang et al.
(2019 ) 16 Electrodes –

Alpha, Beta, Delta and Theta waves were
retrieved from EEG signal that were helpful

in drowsiness detection
On-body sensor was used that makes the user
uncomfortable and no ML was used

Karuppusamy
et al. (2020 ) 5

EEG module, the
gyroscope
module, and
vision module

DNN Time series data was used for classification
that achieves an accuracy of 93.91%

Simulation and a controlled environment were used in data
collection. On-body sensors and a camera was used that are
not feasible in a real environment

Kondapaneni
et al. (2021 )

500
samples

Neurosky
Mindflex headset – A threshold-based system was presented

that achieved an accuracy of 89%
Systems uses on-body sensor and no information about data
collection

Jiao et al.
(2020 ) 12 Electrodes LSTM Time and frequency domain features were

extracted. GA is used for data augmentation
Data was collected in simulation and controlled
environment. The on-body sensor was used

Gwak et al.
(2020 ) 16 EEG-1200 and

WEB-7000 RF

ECG, EEG, and eyeblink data were used to
make a dataset that was further used for

classification. RF achieved an accuracy of
78.7%

On body sensors was used for classification that makes user
uncomfortable. Data was collected in a simulated
environment

Sunagawa et
al. (2019 ) 50 BIOPAC, Camera – Posture information enhanced the accuracy

of detecting mild sleepiness
On-body sensors were used. The camera is not feasible to
use in a real environment. Data is collected in a simulated
environment

Discussions	and	future	directions
The recent investigations to detect driver drowsiness using physiological signals have been reviewed. In these investigations, different
sensors augmented with machine learning are presented, which subsequently yield in the driver drowsiness detection system aiming to
decrease accident rate, economic loss, and save lives.
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RQ1:	what	kind	of	physiological	signals	have	been	used	for	driver	drowsiness
detection?
The systematic review indicates that ECG, EEG, and multimodal sensors are predominantly the most widely deployed sensors in
physiological signals-based drowsiness detection. These sensors are deployed in various conditions with both male and female drivers.
Often the subjects are sleep-deprived for experiments, however, a few research studies involve long driving sessions to make the subjects
tired and fatigued. Predominantly, young and healthy drivers are used for experiments, and age and illness-related aspects are ignored in
existing approaches which necessitates the inclusion of drivers from different age groups.

RQ2:	what	are	the	approaches	used	for	different	kinds	of	physiological	signals-
based	methods?
Studies utilizing physiological sensors involve traditional approaches where the sensors are placed on the subject’s body, head, arms, and
hands. Such sensors are annoying and hinder the free movement of the drivers during the experiments. It also leads to subconscious
reactions and the driver feels irritated. Non-invasive methods are also investigated, however, the numbers are very low as the majority of
physiological signal capturing sensors are intrusive like EEG, ECG, GSR, etc. Similarly, very few studies utilize custom-designed wrist-
worn-based devices or smartphone-based approaches for driver drowsiness detection. Owing to the wide proliferation of IoT sensors and
smartphones with a large number of embedded sensors, such approaches should be adopted.

RQ3:	what	are	the	traditional	machine	learning	and	deep	learning	models	used
for	physiological	signal-based	drowsiness	detection?
Besides using the traditional classification methods, for the most part, driver drowsiness detection approaches utilize machine learning
and deep learning models. Often, the machine learning models are augmented with feature reduction and optimal feature selection
approaches to enhance the accuracy of drowsiness detection. SVM, LR, RF, and KNN have been widely used with physiological signals
for the task at hand. Furthermore, HoG, PCA, LDA, and Haar-like features are used with machine learning models. CNN, LSTM, MLP,
and DNN are widely adopted for driver drowsiness detection. Both machine learning and deep learning models produce good results, yet,
their wide use is limited by two factors. First, machine learning models require a large dataset and appropriate feature set to provide high
accuracy. The problem of feature optimality can be resolved using the deep learning models, however, they are data-hungry and need even
larger datasets to learn the complex relationships. Second, both machine learning and deep learning models require higher computational
power which limits their application in real-time scenarios. The concepts of distributed learning and transfer learning have not been
explored within the context of driver drowsiness detection.

RQ4:	what	kind	of	experimental	setup	is	used	for	validating	the	approaches?
A critical review of the existing approaches reveals the fact that an ample big part of the approaches utilizes simulated environments.
Several different kinds of driving simulators are used for experiments. Although a few research works utilize dynamic driving seats to
make the setup realistic, for the most part, a static seat is used for experiments indicating the gap between the simulated and real-world
environment. Despite the potential of such approaches to provide high accuracy, the gap in the simulated and real driving circumstance
reduce their wide application. To bridge this gap, experiments should be conducted in the real driving setup, although a specific driving
area can be utilized.

RQ5:	what	kind	of	environment/scenarios	are	used	for	experiments?
By and large, experiments involve multiple sessions involving driving conditions similar to the daytime. Despite the potential of
physiological sensors being prone to illumination conditions, most works use daytime light conditions. Only a few studies consider
multiple scenarios covering both day and nighttime conditions. However, other driving conditions and environments are mostly ignored
like rain, fog, and snow conditions. Similarly, studies lack driving behavior and drowsiness in busy traffic, road types, and long dangerous
routes. Without investigating such scenarios, the study of human behavior during driving is incomplete and the proposed systems can not
provide the reported accuracy in real-time situations. Thermal images utilize the change in temperature of the forehead, cheeks, and nose
to determine driver states of wakefulness and drowsiness.

RQ6:	what	kind	of	features	are	used	for	physiological	signals-based	approaches?
The analysis of the studies using EEG, ECG, GSR, and the infrared camera shows that the choice of feature depends on the sensors used
for drowsiness detection. However, many features are shared by different sensors. For example, respiration rate is widely used for driver
drowsiness detection with different sensors including ECG, radar and optical camera, etc. The majority of the ECG-based approaches
employ HRV for driver drowsiness detection. For EEG signals-based approaches, alpha and delta frequency bands are utilized to extract
features for driver state recognition. The use of multiple features from the single sensors has not been investigated in the existing works.
For example, the signals from multiple frequency bands of EEG signals can be investigated in this regard.

RQ7:	which	type	of	physiological	signals	provide	high	accuracy	for	driver
drowsiness	detection?
Although both EEG and ECG signals are advantageous over GSR and thermal cameras to provide high accuracy, they have several
limitations as well. Both EEG and ECG sensors are contact measurement approaches and require placing electrodes on the subject. A
thermal camera, on the other hand, offers a non-intrusive approach and monitors the subject remotely, however, the internal heat
conditions of a car can affect its performance. EEG and ECG signals show resiliency towards environmental conditions and prove to be
more accurate. Multimodal approaches that perform sensor fusion tend to show better accuracy, tolerance, and specificity, however, the
overall cost of the system is increased. For multimodal systems, the trade-off has to be made between complexity and accuracy.
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RQ8:	which	factors	affect	the	performance	of	physiological	signals-based
drowsiness	detection	approaches?
The choice of feature and classification model for physiological signals-based approaches affects the accuracy. The same data may
generate different results when used with different machine learning or deep learning model. Other than that different environmental
conditions can affect the performance of such sensors. For example, thermal camera-based approaches use the change in the facial skin
temperature that may be affected by the heat or cold in the car. GSR and thermal camera-based approaches often utilize empirically
derived threshold values which may not be suitable for different environmental conditions.

RQ9:	what	are	the	limitations	of	existing	approaches?
Many investigators collected data in a controlled and virtual environment on driving simulators for driver’s safety during experiments,
however, simulation conditions are very much different from real scenarios that may affect the efficacy of the proposed approaches. It is
observed that many of the investigators used invasive approaches in their investigation that make drivers uncomfortable while driving.
Many approaches utilize the publicly available datasets, however, such datasets are limited and do not include enough data to perform
exhaustive validations. AQ3  Also, the small-sized datasets are not appropriate to validate the performance of machine learning and
especially deep learning models. Similarly, the datasets lack the data from multiple sensors and multimodal approaches can not be tested
properly. Often the generalized machine learning and deep learning models are utilized which indicates the need for custom-built and
novel architectures for providing enhanced performance. Q learning and transfer learning-based approaches are not studied within the
context of driver drowsiness detection.

Conclusion
Driving is a complex task that requires the full mobilization of physiological and cognitive resources. AQ4  Driver drowsiness caused by
sleep deprivation, stress, and fatigue can lead to reduced cognitive performance that often leads to accidents. Drowsiness has been regarded
as one of the main factors for accidents and timely detection of driver drowsiness can save both human and financial losses. Many research
works have been presented to detect driver drowsiness using different kinds of features like driver features, car features, and driver-related
physiological features. In view of the wide application of physiological signals, this study presents a systematic literature review of recent
techniques and technologies for driver drowsiness detection. Literature shows that EEG and ECG sensors are widely used for obtaining
physiological signals followed by GSR and thermal cameras. AQ5  Both machine learning and deep learning models have been deployed
for driver drowsiness detection, predominantly in driving simulation conditions. AQ6  Often using the generalized models, research lacks
customized deep learning architecture, as well as, transfer learning. Multimodal approaches show high accuracy, yet are limited by the
complexity and real-time application. Predominantly, the existing datasets lack multi-sensor data which makes the validation of multimodal
approaches difficult. The use of heterogeneous hardware sensors makes it very difficult to compare the performance at a common standard.
It is observed that many of the investigators used invasive sensors in their investigation that make drivers uncomfortable while driving. The
research requires novel solutions comprising IoT and mobile devices, non-invasive sensors, transfer learning, and customized deep learning
architecture to provide robust, reliable, resilient, and real-time solutions for driver drowsiness detection. AQ7
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