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Abstract—Online video broadcasting platforms are distributed,
complex, cloud oriented, scalable, micro-service based systems
that are intended to provide Over-The-Top (OTT) and live
content to audience in scattered geographic locations. Due to the
nature of cloud VM hosting costs, the subscribers are usually
served under limited resources in order to minimize delivery
budget. However, operations including transcoding require high
computational capacity and any disturbance in supplying re-
quested demand might result in Quality of Experience (QoE)
deterioration. For any online delivery deployment, understanding
users QoE plays a crucial role for rebalancing cloud resources.
In this work, a methodology for estimating Quality of Experience
is provided for a scalable cloud based online video platform. The
model will provide an adeptness guideline regarding limited cloud
resources and relate computational capacity, memory, transcod-
ing and throughput capability and finally latency competence of
the cloud service to QoE. Scalability and efficiency of the system
are optimized through reckoning sufficient number of VMs and
containers to satisfy the user requests even on peak demand
durations with minimum number of VMs. Both horizontal and
vertical scaling strategies (including VM migration) are modelled
to cover up availability and reliability of intermediate and edge
Content Delivery Network (CDN) cache nodes.

Index Terms—QoE, Cloud, Virtual Machines, Dockers, Scal-
ability, Availability, Reliability, Mathematical Modelling, Online
Video Platform, Content Management Systems.

I. INTRODUCTION

Online video market has been growing exponentially for
the last decade. Globally, IP video traffic will be 82 percent
of all consumer Internet traffic by 2021 [1]. Internet video
will continue to grow at a rapid pace, increasing 3.6-fold
by 2021. Each day, users request for more content and new
services are being launched to confront the growing demand.
More demand necessitates a parallel advance in scalability,
availability and reliability requirements. Depending on the
system implementation, it is generally quite easy to meet these
demands by running more Virtual Machine (VM) instances [2].
However this might trigger a corresponding increase in cloud
hosting costs [3].

Since the introduction of Content Delivery Networks (CDN)
[4], the architecture of video delivery systems has evolved to
keep the requested content cached in the nodes that are closer
to the users. This has leaded to breakthrough in efficiency
by many aspects, including service capacity, reduced latency
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and better cache management [6]. The procedure starts with
the first request from the user and the caching follows a pull
model [7] unless a pre-push model [8] is either configured
or scheduled via Content Management System (CMS) [9].
The requests trigger the intermediate and edge nodes to copy
the content which sorts it in a better accessible state for the
users. The content that is frequently used and accessed stay
in the cache longest time in alignment with a special purpose
priority queue [10]. Depending on different CDN deployments,
the distributed cache nodes may have the capability to search
other nodes caches [11] for a requested content and copy it
from a closer and cost efficient neighboring node. Current
academic research viewpoint [5,7] and state of art technology
point of view [3, 8, 9] provide an understanding that only
relies on objective network metrics and cloud resource con-
straints where this paper introduces a brand new foundational
understanding of the impact of QoE on load balancing and
resource optimization.

Fig. 1 presents an overall visual of the propagation of origin
content throughout a CDN. Following the triggering action of
content being requested by the user, the origin [12] copies
(before copying, an on the fly transcode might take place
in order to support other resolutions or codec profiles) the
content to the intermediate CDN node. According the size of
the deployment of the requested content catalogue the number
of intermediate cache layers might vary. Conclusively, the edge
CDN cache pulls the content, and end-users get the service via
their video players [13].

Fig. 1. Diagram for scalable online video delivery platform



TABLE I
LIST OF NOTATIONS

Notation Meaning
uA(t) Average number of users across all VMs where ∀v ∈ V .
ui(t) Number of users getting service from VM v, ∀v ∈ V .
SD(t) Standard deviation for number of user vs average.

S Average abnormality in number of users for each VM v.
uL(t) Lower limit for # of users for a VM v,∀v ∈ V to be added into a termination priority queue.
Bi(t) Bandwidth requested by a single user ∀U ∈ V .
Ti(t) Total throughput used by the VM v, ∀v ∈ V .
LMin Minimum throughput limit for a VM v, to exist.
LMax Maximum throughput limit for a VM v to operate and the limit to trigger system to scale up.
Tpi(t) Total prioritized throughput for different ranked users getting service from a VM.
p(t) Prioritization parameter for a user.
CM (t) Total computational power used by a VM v, ∀v ∈ V .
Ci(t) Computational power required from VM by a single user u, ∀U ∈ U .
MM (t) Total memory used by a VM v,∀v ∈ V .
Mi(t) Memory required from VM by a single user u, ∀U ∈ U .
Lc Maximum CPU power limit for a VM v to operate and the limit to trigger system to scale up.
LM Maximum memory usage limit for a VM v to operate and the limit to trigger system to scale up.
Sc Scalability parameter
µc Ratio for system wide Cpu capacity vs System wide Cpu limit to trigger scaling.
µm Ratio for system wide memory capacity vs System wide Cpu limit to trigger scaling.
µLC Ratio for single VM ∀v ∈ V Cpu capacity vs Cpu limit to trigger scaling.
µLM Ratio for single VM ∀v ∈ V memory vs memory limit to trigger scaling.
µv Ratio for current # of users vs users limit for each VM.
D Evaluated vector for hybrid decision approximation on scaling.
di Components of the vector D
αi Weights for each hybrid decision parameter of vector A

Qu(t) Quality of Experience (QoE) for single user
numstalls Number of stalls during in a watch session for a user
totalbuflen Total buffer duration during in a watch session

bufdur Initial buffering duration in a watch session.
s1, s2, s3 Weights for objective video metrics for QoE.
Qv(t) QoE for a VM v, ∀v ∈ V
QoE(t) System wide QoE

QoELIMIT The QoE limit for triggering a scaling incident
∆Qv Delta of VM QoE between two Q instances.

Mweb, Cweb, Sweb Total amount of memory and cpu power and storage that is required for a web server to operate.
aM , aC , aS Base required memory and cpu power for a web server to execute
λMλC Weight representing the impact of memory and cpu power for each user taking service from web server.
Vbitrate Bitrate required for a single video stream
cencoding Constant corresponding encoding type for h264.
uTrans(t) Number of concurrent transcoding activities running in a VNF

The architecture of the working mechanism of edge content
nodes [14] involves cache content copy that resides in a VM
that is pulled from origin and containers that mount to this VM
via Network File System (NFS) [15]. Actual contact points for
the users are these front line load balancers [16] that redirect
requests to the containers [17], which deliver the chunks of
video data to the players executing on user consumer devices.
The number of web servers must vary in time due to the
variations in number of users that try to access the service.
Correspondingly, any of these VMs running in the system
increases the cloud associated costs. Therefore, optimizing the
number of running instances [18] in the cloud plays a crucial
role in lowering the cloud hosting costs.

Considering the procuring of broadcasting rights [2] for
major events (such as Super Bowl or Eurovision) which
require a huge budget, livestreaming companies try to avoid
any additional costs whenever possible [13]. On the other
hand, any unexpected peak in user requests result in a parallel
unforeseen scalability demand and equivalent un-predicted
costs on cloud. An attempt to confront this demand by redun-
dancy requires other additional investment on redundancy [3]
which is also usually neglected. On the other hand, the whole

system might still not conclude as an error prone service in
terms of user satisfaction, considering the main foundation of
the scalability might not rely on QoE but other indicators such
as network metrics or resource restrictions only [5], [7], [9].

To overcome the limitations that has been addressed, the
primary intention of this paper is to cover the demands of state
of art scalable online video delivery systems by comparing and
presenting different load balancing strategies [19] to provide
a guidance for rebalance the limited cloud resources and
maintain QoE while keeping delivery budget constraints [20]
in consideration. Finally, a set of equations will be presented
which relates video metrics with cloud resources including cpu
power, memory and throughput.

The remainder of the paper is organized as follows: Section
II discusses related works and provides a literature review. Sec-
tion III presents various types of scaling algorithms. Section
IV introduces a scalability point of view against QoE. Section
V explains warming up and cooling down and compares
performance of scaling strategies for each session. Section VI
formulates computational resource constraints for online video
streaming via VNFs. Finally, Section VII concludes with the
results and future work.



II. RELATED WORKS

Defining a scalable methodology for cloud based services
has attracted a lot attention due to the demand for dis-
tributed applications that provide reliability [21], duration
[22] and availability [23]. In their recent work, Kesevaraja
et al has modelled [24] single VM instance as Eq. 1, where
γPN is the success rate of a physical node in percent-
age, RProcessor current utilization of the processor in GHZ,
CProcessor the maximum capacity of the processor in GHZ,
RMemory current utilization of primary memory in MB,
CMemory the maximum available capacity of primary memory
in MB, RDatabits the data bits transferred among time interval
TInterval, CBandwidth the bandwidth of the network in bits.
Although, this model provides a good understanding of the
single local node, still, it lacks the impact of video metrics
related parameters like number of stalls or initial buffering
duration as it is formulized with Eq. 13 & Eq. 14.

γPN = K
(RProcessor

CProcessor
+
RMemory

CMemory
+

RDatabits

CBandwidth ∗ TInterval

) (1)

Chunlin et al has proposed multiple context based service
scheduling model [24] that adopts network utility maximiza-
tion framework to maximize total system utility. When the
mobile device applications job is accepted by the cloud system,
it is scheduled and assigned to the cloud resource according
to the system context. The utility function U for multiple
context based service scheduling optimization is denoted in
Eq. 2, where rij refers to mobile users unit cost and qij
requirement of mobile device for storage, CPU, RAM and
bandwidth respectively. Although this proposition offers a
good understanding of cloud resource efficiency, nevertheless
it does not consider the impact of QoE. Hence, the competence
of the model cannot fulfil the demands of a state of art online
video platform where QoE based load balancing Algorithm IV
shows superior performance.

U =

I∑
i=1

(
rstorageij log xstorageij + rcpuij log xcpuij +

rramij log xramij + rbandwidth
ij log xbandwidth

ij

) (2)

Bilal et al has provided a formula [25] for cloud costs with
Eq 3, where Costt is refered on computational instances, ct
is Amazon c4.large instance price, second double sum D is
total amount of data in bits per second required for server
v viewers watching a specific channel, Costd is total cost
for D data per second. This formulation gives an illustration
of cost, bandwidth and QoE analysis for delivering online
video; yet, it provides a picture of single video server and
lacks the representation of scalability through microservices
and distributed systems.

Cost =
∑
rεR

ct + costd.
∑
rεR

∑
vεV

dr.IvεV (3)

In ITU-T P.1203.3 recommendation [26], a media session
quality score is formulated based on number of stalls, total
stall duration, buffering duration. This provides a basis for

a single users watching experience in terms of simple video
player metrics.

OOE = e−
numStalls

s1
.e−

( totalbuflen
T )

s2
.e−

( bufdur
T )

s3
(4)

As opposing the works that are available in academic
literature [20], [22]–[25], this paper provides a hybrid
scalability model that considers cost, resource efficiency
and more importantly QoE aspects of online video delivery
through cloud computing. Comparison of pros & cons
for different scaling strategies is presented to cover up
various scenarios. Additionally, formulization of memory and
computation demand related to video parameters clarifies the
usage of cloud instances with real life scenarios on cloud [27].

III. LOAD BALANCING STRATEGIES FOR MOBILE EDGE
COMPUTING

For solving a limited resource vs cluster of user problem,
load balancers usually provide the most efficient solutions.
There are several load balancing strategies widely employed
in web based services based on random-access, number of
users, throughput, cpu usage, memory efficient. In this section
these strategies are going to be clarified.

Fig. 2. Edge CDN Cache Architecture (This figure represents right-top square
of Fig 1)

A. Random-access (aka Round-Robin)

Random-access load balancing technique works on the
assumption that the users should connect randomly to any
server through a list of available servers.

As depicted with Fig. 3, statistically (with the increasing
total number of users) all the nodes will congregate to have
equal number of users [28]. In this case, the definition of
randomness or the range of random generation capability
becomes an important fact and strictly related to the expected
number of users that intent to use the service.

uA(t) =

∑v
i=0 ui(t)

v
(5)



Fig. 3. Random-Access Load Balancing Strategy

Average number of users across all VMs where ∀v ∈ V
”uA(t)” can be defined as ”ui(t)” sum of number of users
getting service from v as given by Eq 2.

SD(t) = (ui(t)− uA(t))2 (6)

Standard deviation of the average number of users is given
by Eq. 3 and calculated from each VM separately statistically
converges to zero due to the random distribution of the users
during ”warming up” session.

S2 =
∑ (ui(t)− uA(t))2

i− 1
(7)

In case of growth of either the number of users or number
of VMs will result in this convergence of sum of standard
deviation of load to zero as given by Eq. 4 & Eq. 5.

lim
v→∞

s2 = 0 (8)

Cooling down procedure for random access load balancing
is reasonably straightforward. Nonetheless, as none of the
servers are informing a central decision mechanism where
all the information regarding the server capacity statistics are
stored and analyzed, early termination of instances is generally
impossible to establish unless the number of requests hit the
total number of running VMs.

B. Number of users

For this load balancing technique, the number of users is
the main decisive parameter to determine the capability of
a VM instance. If the capacity of the first VM is overrun,
following this activity, a new VM instance is run to meet the
demand. When the demand from the users tends to decrease,
subsequently, the same pattern may be practiced for a cool

down session. This refers to a state where all the running VM
instances to have less number of users when compared to their
max capacity. New requests will be handled by the already
running instances that are in the highest rank in the queue,
so the demand can be met by less number of VMs and the
remaining VMs can be terminated when they are not serving
any more users. Obviously, relying only on number of users
will also result in treating each user equally and not having
capability to classify users as premium or with prioritized QoE
levels.

Algorithm 1: Load Balancing Algorithm Based on The
Number of Users

PREREQUISITES:
NUMBER OF USERS AT INSTANCE T FOR
VIRTUAL MACHINE V; uv(t), U ∈ U .

0.WHILE (TRUE FOR ANY v ∈ V uv(t) > 0)
1.CALCULATE EQ. 2, SD(t) = (ui(t)− uA(t))2 FOR
EACH v ∈ V,

2. FIND MAXNSD(t), GET SERVERID N.
3. ROUTE USER U ∈ U TO NTH SERVER.
4. FOR EACH v ∈ V, uv(t) ≤ uL(t) ADD V TO THE
COOLING DOWN QUEUE, WHERE uL(t) REFERS
TO THE LOWER LIMIT FOR # OF USERS FOR A
VM V, ∀v ∈ V TO BE ADDED INTO A
TERMINATION PRIORITY QUEUE.

5. ROUTE NEW USERS TO THE SERVERS
EXCLUDING uv(t) AND THE REST OF THE
TERMINATION QUEUE.

6. CHECK IF uv(t) = 0 , TERMINATE uv(t)
8. ENDWHILE

C. Throughput Based

Most of the load balancer implementations that are based
on network metrics contrive relying on the efficiency and
adequateness of throughput, goodput, bandwidth and latency
[18, 25].

Fig. 4. Throughput Based Load Balancing Strategy



Algorithm 2: Throughput Based Load Balancing Algo-
rithm
PREREQUISITES:
NUMBER OF USERS AT INSTANCE T FOR

VIRTUAL MACHINE V; uv(t), U ∈ U .
CPU AND MEMORY LOAD ON INSTANCE
v ∈ V;Ci,Mi, CPU AND MEMORY

LIMIT FOR uv;LC , LM , SCALABILITY PARAMETER
SC .

0. WHILE (TRUE FOR ANY v ∈ V uv(t) > 0)
1. ESTIMATE µ =

∑n
i=1 Ci(t)/(n,Lc); ∀v ∈ V

2. FOR ∀v ∈ V , IF (Ci(t) > LC &&
Mi > LM )COUNT + +;

3. IF (COUNT > SC) SCALE HORIZONTALLY.
4. ENDIF
5. ENDFOR
6. END WHILE

Comparing the maximum carrier bandwidth, routing ca-
pability and throughput capacity of a single or a cluster of
instances for the requested service by the users, a decisive
mechanism could trigger new instances to meet the demand.

Ti(t) =

n∑
j=1

Bj(t) (9)

LMin ≤ Ti(t)
LMax ≥ Ti(t)

(10)

The difference of throughput based load balancing from the
other techniques is the easy capability to prioritize any user
according to the origin of connection or application which uses
a particular prioritization API. The prioritization factor that is
represented in Eq. (7) refers to QoS parameter which refers
to the service type.

TABLE II
NETWORK THROUGHPUT QOS PRIORITIZATION PARAMETER TABLE

Service Type Prioritization Factor
Standard User 0.7

Silver User 0.75
Gold User 0.80

Premium User 0.87
Guaranteed Service 0.99

Tpi(t) =

n∑
j=1

p(t)Bj(t) (11)

Warming up and cooling down sessions may rely on the
demand of the highlighted throughput based on the content
request which results in a relatively easier judgment for a
cooling down practice when compared to random-access based
load balancing methods.

D. CPU or Memory capacity based

This is usually most frequently implemented and used load
balancing technique, where the requested CPU or memory

load caused from the users do not meet the total capability of
the running VM instances, which will be met by instantiating
new VMs. Moreover, in order to serve more users from the
same machine, there is another technique called VM migration
where the container or VM is migrated to another cloud
resource that has more cpu or memory capacity available.

CM (t) =

n∑
i=0

Ci(t) (12)

MM (t) =

n∑
i=0

Mi(t) (13)

In order to keep the down time at minimum, migration
must take place including all necessary memory, latest cache
state. Until all this information is moved to the new machine,
previous VM should continue to serve and this will keep the
down time at minimum. Beneficial side of VM migration is to
keep legacy systems working without a modern load balancing
technique. However, it is obvious that most of the online video
platforms are micro-service based and VM migration would
not suit a geographically distributed content delivery.

Fig. 5. Physical Resource (CPU and Memory) Based Load Balancing Strategy

E. Hybrid Scaling Strategies

Hybrid scaling strategies are load balancing mechanisms
that are based on a collaborated understanding of network
and cloud resource oriented objective metrics. To act as a
flexible solution that can suit to various circumstances, the
importance of any parameter will be represented by corre-
sponding weights. The range and the values of these weights
can differ fundamentally according to the deployment strategy,
corresponding usage scenarios and marketing requirements.

B(T ) <

n∑
i=1

T (t)

Lc <

n∑
i=0

Ci(t)

LM <

n∑
i=0

Mi(t)

uv(t) ≤ uL(t)

(14)

The constraints that are given with Eq. (11) anticipates the
concurrent availability of following items; required bandwidth
should be correlated and satisfy the required throughput for
each VM, computational power and memory resources should



be more than the requested limits LC & LM and furthermore,
number of users assigned for each VM should be less than
the limit serving capability of a VM. Any of these unmet
conditions might trigger a scaling activity.

Fig. 6. Hybrid Load Balancing Strategy

Fig. 6 visualizes the hybrid scaling strategy where the
impact of the constraints might trigger a new VM instance.
In Eq. 1, Kesevaraja et al [23] has formulized the picture in
a similar manner. Cooling down in a hybrid load balancing
environment shows comparatively better performance when
compared to previous strategies due to the possibility of
multiple termination triggers which shuts down underused or
unused VMs faster.

Algorithm 3: Hybrid Load Balancing Algorithm
PREREQUISITES:
NUMBER OF USERS AT INSTANCE T FOR

VIRTUAL MACHINE V; uv(t), U ∈ U .
LIMIT NUMBER OF USERS FOR A VM AT

INSTANCE T ;uL(t). CPU AND MEMORY LOAD
ON INSTANCE v ∈ V;Ci,Mi, CPU AND MEMORY
LIMIT FOR uv;LC , LM , SCALABILITY
PARAMETER SC .

0. WHILE (TRUE FOR ANY v ∈ Vuv(t) > 0)
1. ESTIMATE µc =

∑n
i=1 Ci(t)/(n,Lc);∀v ∈ V;

2. ESTIMATE µM =
∑n

i=1Mi(t)/(n,LM );∀v ∈ V;
3. FOR ∀v ∈ V, µLc = Ci(t)/Lc µLM = Mi/LM ;
4. ∀v ∈ Vµv = uv(t)/uL(t);
5. COMPARE αi TO di COMPONENTS OF THE

DECISION VECTOR D.
6. IF (|αi − di| > SCi) THEN SCALE

HORIZONTALLY.
7. ELSE FIND MIN DI , ADD IN PRIORITY QUEUE

FOR TERMINATION.
8. ENDIF
9. ENDFOR
10. END WHILE

Algorithm 3 provides the step by step operational procedure
for hybrid load balancing technique. Estimation of the system
parameters against constraints and comparing the current state
of the system resources to components of the decision vector
forms the foundation of the decision mechanism for this
procedure. If the VM meets the underused condition then it
will be queued for termination.

Fig. 7. QoE oriented Load Balancing Strategy

IV. SCALING AGAINST QOE PERFORMANCE

In this section, a methodology will be provided to recalibrate
limited cloud resources to handle any case of QoE deteriora-
tion. The repositioning of the resources will be realized by
using different load balancing techniques and a comparative
resulting scheme will be provided with regards to QoE. QoE
for a user that is receiving a service from online video delivery
system can be based on video player related parameters. These
parameters correspond to the subjective feeling of continuity
and subsequently uninterrupted watch. For any HTML55 or
mobile app based online video player, it is easy to retrieve
objective video statistics such as; initial buffering duration,
number of stalls, total stall duration and resolution. There are
many approaches to use these parameters and evaluate QoE
for a single user [23], [25], [26]. Moreover, QoE for a cluster
of users uv can also be calculated that can be used as a basis
to a subjective user experience oriented scalability strategy as
given with Eq. 15. Conclusively, each corresponding Qv(t)
value for particular VM for ∀v ∈ V QoE for overall system
can be estimated.

Qv(t) =

uv∑
i=1

Qu(t)

uv
(15)

Conclusively, each corresponding Qv(t) value for particular
VM for ∀v ∈ V QoE for overall system can be estimated as
given by Eq. 16.

QoE(t) =

uv∑
i=1

Qv(t)

n
(16)

Algorithm 4 gives a lucid understanding of the scaling
triggering mechanism which takes QoE as basis. In this
methodology, each users experience creates an impact on the
overall behavior of the scaling attitude.

The primary benefit of a QoE based load balancing strategy
for an online video service is the attitude of prioritizing cus-
tomer satisfaction. Any degraded customer satisfaction across
a cluster of subscribers will trigger a scaling incident which
will result in optimized QoE under any circumstance.

Cooling down sessions will act in parallel; the mechanism
responsible for the termination of active VM sessions will
still keep QoE in consideration of primary importance. Unless
objective video metrics across the cluster of users do not meet
required minimum QoE constraints, termination of underused
VMs will not take place.



Algorithm 4: QOE Based Load Balancing Algorithm
PREREQUISITES:
NUMBER OF USERS AT INSTANCE T FOR

VIRTUAL MACHINE V; uv(t), U ∈ U .
0. WHILE (TRUE FOR ANY v ∈ Vuv(t) > 0)
1. MEASURE
Qu = e− numStalls

s1 .e−
( totalbuflen

T )

s2 .e−
( bufdur

T )

s3 , for
∀u ∈ U .

2. EVALUATE QV for ∀v ∈ V;
3. CALCULATE QOE FOR THE WHOLE SYSTEM

QoE(t).
4. CONTROL IF A SYSTEM WIDE QoE

DETERIORATION IS AVAILABLE OR NOT BY
CHECKING IF %50 OF THE QV FOR ∀v ∈ V MEET
FOLLOWING CRITERIA : QV < |QoELIMIT |

5. IF (COUNT > %50 OF ∀v ∈ V SCALE
HORIZONTALLY.

6. ENDIF
7. FOR EACH Qv WHERE ∀v ∈ V
8. IF ((∆Qv = Qv(t1)−Qv(t2)) & &(∆Qv <
0) & &(|∆Qv| < |SQ|))

9. ADD VM ∀v ∈ V TO TERMINATION QUEUE.
10.END WHILE

A. Details of the Simulation

In previous sections, an overall understanding of the load
balancing strategies and their particular performance details
for various circumstances has been presented. Subsequently, to
test these methodologies in a controlled test bed environment,
a simulation technique is going to be proposed and the details
of the simulation will be clarified.

The simulation technique is built using a cluster of small
sized VM bots that consist of a light-weight Linux distribution
(Ubuntu 16.04 LTS) including html5 web browsing capability
(Firefox 58.0.2, Google Chrome 65 & Opera 51) which will
request online content from the video service. QoE grading
of each individual VM bot will be measured through QoE
equations which are related to initial buffering time, number of
stalls, total stall duration and average resolution quality of the
content [26] through individual session. The number of these
bots will change through the testing period based on real-life
data that is originated from Broadcasters Audience Research
Board (BARB) [30] which provides user access statistics and
rating information for a 60 minutes period. According to
the performance of the load balancers and harmoniously, the
performance of the online video platform, QoE deterioration
handling approach and the cost success rate of the strategies
can be compared objectively.

Fig. 8 visualizes the test bed environment, the rela-
tionship of bot users, load balancer, VMs responsible for
streaming and QoE database. The example streaming capa-
ble VM is accessible at www.utkubulkan.co.uk/cloudqoe.html
and the corresponding QoE statistics database regarding
the simulation information is publicly available through
www.utkubulkan.co.uk/cloudqoedatabase.php via username
and password publicbot.

Fig. 8. Details of the Simulation Method consisting of Bot Users and the
introduction of measuring the success via parameters of resource optimization,
QoE and cloud costs

V. COMPARISON OF LOAD BALANCING STRATEGIES AND
DISCUSSIONS OF SCALING PERFORMANCE

The bot based load balancing testing technique that has
been introduced in the previous section has been executed
for each scaling strategy including Kesevaraja et al, Chunlin
et al [24], random access, user based, throughput based, cpu-
memory based, hybrid resource and QoE based. The results for
warming up and cooling down has been separately presented
due to the foundational differences regarding the demand of
instantiating and terminating the VM instances. The data that
has been collected and presented with cloud QoE database
constitutes the foundation of these inductions and figures 9 &
10.

A. Warming Up Performance

The scaling strategy of a load balancer implementation
has a significant impact on warming up performance where
reliability of a new VM instance can be the main bottleneck
against the requested QoE levels. When the requests reach
to an unexpected peak on a geography which does not have
the required content already cached, to serve the users within
expected time frame, the number of servers should scale
proportionally in correspondence with the demand. If this
request is not met, overall response quality is not acceptable
from a deployment point of view.

The Fig. 9 shows the comparison of scalability strategies
shows that scalability based on random-access and number
of users load balancing shows good warming up performance
against QoE. However, random-access implementation must
be aware of the average or total number of users that are
accessing the system to be able to scale horizontally. Through-
put and other resource based strategies also shows good
performance especially for scenarios where the systems are
optimized for prioritized user schemes. The scaling algorithms



that proposed by Kesevaraja et al [23]& Chunlin et al [24]
shows similar performance as network oriented throughput
based algorithms, however they lack to meet the demand of a
QoE related degradation.

Fig. 9. Resource Usage Efficiency for Different Scaling Techniques during
Warming Up

B. Cooling down Performance

Cooling down strategy of an online video delivery system
is as important as the warming up, because this is one of the
main parameters that the success rate of this implementation
defines the budget estimation.

In terms of cooling down, random-access shows the worst
performance along with Chunlin et al [24] and QoE based
scaling, The bottleneck for random-access for this metric
results due to the circumstance when any of the VMs are
instantiated, the average number of users that are connected
to any instance cannot be zero (unless all instances have zero
connections), and without having any other indicator, the users
are going to continue to connect to all random servers. So
shifting the load from one server to another would not be
easily achieved.

The performance of QoE based methodology guarantees
customer satisfaction and prioritize QoE which leads to late
termination of VM instances. Although this results in higher
cloud costs, the impact of customer happiness can be regarded
as future investment and long term customer engagement.

Due to the nature of throughput based scaling strategies,
any significant drop in the throughput or minus delta between
two time epochs might be interpreted as cooling down, and
these instances can easily be marked as low chance of selection
in priority queue for the load balancers decision mechanism
and as soon as the load reaches zero where the users totally
stop getting the service from that instance, the VM can
be terminated. Also resource based strategies shows good
performance on cooling down cases.

In terms of costs, although Kesevaraja et al [23] & Chunlin
et al [24] shows good performance along with throughput and
resource based scaling strategies while cooling down, still, a
conspicuous QoE degredation takes place during some of the
VM termination incidents.

Fig. 10. Resource Usage Efficiency for Different Scaling Techniques during
Cooling Down

C. Scalability Strategy vs Availability

For any online video broadcasting system, availability is
a critically important concept. Degradation in system wide
average availability may cause increased initial buffering du-
ration and impact expected number of stalls which will cause
QoE deterioration. Scaling strategy changes the influence of
availability over QoE.

Although scalability usually sounds quite flawless in many
perspectives as a micro service architecture terminology, it
comes with many deficiencies. One example is the trans-
mission of the system wide distribution of all server status
which obviously depends on the strategy, either centralized
or distributed load balancer. Another one is the availability
and average downtime due to new instance creation or VM
migration.

Fig. 11. Availability Comparison for Scalability Strategies during Warming
Up & Cooling Down

Due to its simplistic nature random-access shows the best
performance in terms of availability, where users keep on
trying new servers in the list unless a successful connection is
established. Any new instances that are created will be added
to the simple DNS like server list, and users that requests
to join the service, will continue to randomly try to access
any of the servers in the list. Resource based load balancing
methods will also show similar availability performance to



the strategies where number of users are taken as the main
decision parameter. Statistics for the downtime of a cache
or webserver VM instance generally provides the average
availability level for the system.

D. Scalability Strategies vs Costs

Cloud service providers supply the needed infrastructure for
the video content delivery by making available the necessary
VMs instance running capability. Obviously, this brings the
corresponding cost for each hosted VM. Proceeding with a
tight delivery budget and keeping QoE for all customers in
expected levels can be a challenging task. Different scaling
strategies that are provided in previous sections result in
different VM costs and different budget consumption.

Fig. 12. Cloud Hosting Costs comparison for Scaling Techniques

Due to simplistic nature of random access implementation,
VM termination during cooling down is quite difficult which
leads to the worst cost performance when compared with other
strategies. Following that cpu-memory & throughput based
strategies provide acceptable warming up and cooling down
strategies concurrently. Still, this may cause a tradeoff between
QoE degradation and cost on some cases. Hybrid methodology
that is provided in this paper offers both QoE optimization and
cost maintenance. Although costs seems lightly higher than
average, avoiding QoE degradation is guaranteed hence user
satisfaction is considered as a main scaling indicator.

E. Scalability Strategies vs QoE

In terms of QoE and user satisfaction, user based scaling
methodologies shows better performance when compared to
resource maintenance strategies like throughput or cpu &
memory. Especially for cases where users are not prioritized
and behaved equally, scaling against users provide an accept-
able performance which is generally above average. However,
for any prioritized implementation, resource based models can
scale better providing better response to the demand in peak
moments. The hybrid method introduced in this paper shows
the flexibility to recover through QoE degradation and shows
better performance when compared with the rest of the scaling
strategies.

VI. FORMULATION OF COMPUTATIONAL RESOURCES
CONSTRAINTS FOR ONLINE VIDEO STREAMING VIA VNFS

In this section, a formulization for memory and cpu power
required to serve video through a VNF that will operate in an
online video platform will be presented.

A. Web Server as a VNF

From a general point of view, the bitrate of any video
stream increases when the resolution increases considering the
encoding type same. For streaming a main profile h264 video
content using apache web server, required memory Mweb(t),
computation power Cweb(t) and required storage space to
operate Sweb can be formulized with Eq 17, 18 & 19 as a
function of bitrate, encoding type and number of users where
the arguments have following values: aM = 175MB and
λM = 0.2, aC = 0.3, λC = 0.08, cencoding = 266 (main
profile), 133(high profile), 75 (baseline profile). Vbitrate corre-
sponds to 8mbit, 4mbit, 2mbit, 1mbit, 0.5 for 4K, 1080p, 720p,
480p, 360p accordingly. The induction has been evaluated
using Amazon Cloud Linux Distribution with kernel version
4.9.43-17.38.amzn1.x86 64 running Apache/2.4.27 (Amazon).

Mweb(t) = aM + λM .e
uv(t).Vbitrate

cencoding (17)

Cweb(t) = aC + λC .e
uv(t).Vbitrate

cencoding (18)

Sweb = λS .
Vbitrate
cencoding

(19)

Obviously, it is easily expected that any online video plat-
form will be capable of state of art adaptive bitrate streaming
while supporting different bitrates and encoding types. Table
III represents a standard user scheme where each user is
behaved as equal and expected to watch a conventionally
standard encoded content. Fig. 13 reflects the capability of
a single web server against content bitrate (which is related to
content resolution) and number of users.

Fig. 13. Memory requirement vs Number of users to serve Online Video for
varying resolutions (bitrates) via Web Server as a VNF



TABLE III
CLOUD INSTANCE RESOURCE COMPARISON AGAINST MAX SUPPORTED #
OF USERS FOR STREAMING MAIN PROFILE H264 4MB 1080P CONTENT

Amazon
Cloud Vm
Standard
Instance
Flavors

VCPU Memory
(in
GB)

Dedicated
Bandwidth
(Mbps)

Max
Supported #
of Users

T2.NANO 1 0.5 up to 250 8
T2.MICRO 1 1 up to 250 26
T2.SMALL 1 2 up to 250 38
T2.MEDIUM 2 4 up to 500 59

T2.LARGE 2 8 2250 111
T2.XLARGE 4 16 4500 145

T2.2XLARG 8 32 9000 248

B. Transcoder as a VNF
Transcoders establishes one the major foundations of online

video platforms. Any uploaded mezzanine content through
CMS needs to be real time encoded to be able to support all
connected screens at a time. The availability for these VNFs
shows crucial importance for the success rate of the whole
delivery system. However, transcoding requires considerably
excessive amount of computational power due to the mathe-
matical background of Fourier transform based processes that
take place to transform spatial domain into frequency domain.
Major encoding schemes mpeg4, hevc and vp9 shows different
performance in terms of bitrate and storage size considering
a wide range of encoding parameters.

Mtrans(t) = aM + λM .uTrans(t)
Vbitrate
cencoding

(20)

Ctrans(t) = ac + λC .utrans(t)
Vbitrate
cencoding

(21)

Equations shows the necessary amount of cpu and memory
required for transcoder VM running ffmpeg on Amazon Linux
where the transcoding should keep up with live streaming.
Obviously, for such a task, performance degradation can be
crucial and ruin QoE of the whole system.

Fig. 14. vCPU required for VNF vs # of Concurrent Transcoding. The
estimations correspond to physical 2.9Ghz i5 processors that are being used
in AWS.

TABLE IV
CLOUD INSTANCE RESOURCE COMPARISON AGAINST MAX SUPPORTED

# OF CONCURRENT TRANSCODING MAIN PROFILE HEVC 8MB 4K
CONTENT

Amazon Cloud
VM Standard
Instance Flavors

VCPU Memory
(in
GB)

MAX Supported # of
Concurrent Transcod-
ing

T4.NANO 8 16 2
T4.MICRO 8 32 4
T4.SMALL 16 64 7
T4.MEDIUM 16 128 11
T4.LARGE 32 256 14
T4.XLARGE 64 512 15
T4.2XLARG 128 512 17

VII. CONCLUSION AND FUTURE WORK

In this work, an overview of scaling strategies for online
video systems have been presented with a range of compar-
ison metrics including warming up & cooling down perfor-
mance, cloud hosting costs and QoE efficiency. According
to the analysis, user oriented scaling methodologies shows
acceptable competence on warming up durations however
their cooling down efficiency lacks the adeptness to free
the underused resources when compared to resource based
approaches. Throughput and computational capacity based
scaling techniques shows above average performance in cloud
hosting costs and cooling down durations. However, they
generally lack the agility to comprehend QoE degradation.
To bring forward a solution for these circumstances, we have
provided QoE scaling technique which considers all aspects
of online video delivery that shows outstanding performance
when compared with conventional cloud scaling strategies.
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