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Abstract 
Hydrogen gas, H2 is generated when aluminium metal is reacted with water. Due to 

the protective oxide layer, the reaction does not take place at ambient conditions. 

Different activation schemes are possible however most are either expensive or not 

very practical for H2 generation. This work attempted to address this issue of 

activation of aluminium particles by means of a reactive ball milling technique. A 

number of studies based on the activation (preparing it to react with water without 

the aid of any external heat or catalyst) of aluminium Al, by this method, was 

reported previously where the energy investment was substantial. This gap in 

knowledge motivated us to perform milling with a different approach. Milling 

protocols were identified and devised and presented a milling programme which 

aided in reducing the energy investment considerably. The motivation behind this 

work is to use the Al powder prepared by milling in a hydrogen generator connected 

to fuel cells for in situ generation. Due to the sensitive nature of fuel cell, it was 

necessary to produce hydrogen gas at a steady rate. It was found that the powder 

made up of a mixture of metal oxides and salt prepared in-house, provided an 

excellent base to achieve this. It was also seen that milling of the Al particles to 40 

µm proved to perform the best for hydrogen production with yield reaching 85 % 

in 3 hrs reaction time using only 0.3 g of activated aluminium at ambient conditions. 

Reaction time can be improved by increasing milling time it would not be 

economically attractive. After reactive milling and reactions were examined/ 

inspected using SEM, EDX and XRD techniques for in-depth analysis of Al particle 

crystalline structure, morphology and size. Milling modifies the surface of the 

aluminium particles promoting hydrogen gas production. It was also noted that this 

reaction does not require any heat and that it can generate hydrogen gas at the 

ambient conditions. It was noticed that when the initial temperature of the solution 

is increased the reaction rate first improves up to 32 oC than it declines at 45 oC and 

beyond when larger Al particles are used. This work revealed that reaction requires 

agitation throughout the process in order to maintain a high yield of hydrogen. 

While this presented work used deionised water, it should be mentioned that other 

solvents (aqueous solutions) may be used for hydrogen production as shown in the 

research. However, the highest amount of yield was produced when deionised water 

and urea solution was used at 25 oC. 
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“If we had a hydrogen economy worldwide, every nation on earth could create 

its own energy source to support its economy and the threat of war over 

diminishing resources would just evaporate” - Dennis Weaver 

  

http://www.azquotes.com/author/15385-Dennis_Weaver
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Chapter 1  Introduction 

The goal of this research work was to develop a cost-effective method for activating 

aluminium particles for an on-demand hydrogen production. This chapter presents 

the main outline for this thesis and provides justification for the importance of 

hydrogen as an energy carrier. It provides a brief overview of the current hydrogen 

technologies, energy economics and efficiencies. It also puts forward the rationale 

for developing on-demand energy sources aimed at off-the-grid usage. Finally, the 

aims and objectives of this research are presented, alongside the structure of the 

thesis.  

1.1 Background  

The current technologies used for generation of hydrogen consuming traditional 

fossil fuel routes produce adequate amount and might be satisfactory for the current 

purposes. They are, nevertheless, not clean for the environment as they have a large 

carbon footprint.  

Increasing awareness of the climate change and growing energy demand has caused 

both political and economic debates on reviewing current technologies. This has 

led to a significant amount of research and development activities into alternative 

energy, which includes hydrogen production. A considerable part of today's energy 

is generated using fossil fuels in one way or another. Renewable energy alternatives 

are less polluting than fossil fuel nevertheless may still contribute to the 

environmental impact indirectly. Many ‘clean’ renewable energy technologies use 

fossil-derived energy in their production. Therefore, these clean technologies 

contribute to greenhouse gas emissions in their production, storage and during 

shipment. This is one example of why there has been a significant investment in the 

last decades in hydrogen for fuel cells development. These fuel cells do not 

contribute directly to pollution and their by-products are electric power and water.   

Another advantage of hydrogen as a fuel is that it has a high energy content, in the 

order of MJ/kg (1 MJ/kg = 1 x 106 J/kg) compared to other fuel sources. Table 1-1 

lists different fuel types and their energy contents in MJ/kg. One can see from the 
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Table 1-1, that hydrogen in the liquid state provides about 120 MJ/kg compared 

with liquefied natural gas (LPG) with 54.3 MJ/kg thus, making it a superior fuel.  

Table 1-1: Energy contents of available fuels [1]. 

 

The industrial production of hydrogen gas began in 1912, but it has never been 

properly utilised as a commercial product due to health and safety concerns. 

Hydrogen started to gain popularity in the world of science and engineering, 

especially in the developing countries [2]. More recently, both policymakers and 

researchers are working hand-in-hand to create a unique energy system based on 

hydrogen. Currently, the energy market has started to show a profound interest in 

the production, transport and storage issues around the hydrogen economy [3]. The 

development of hydrogen for fuel is part of a complex system beyond the 

generation. The complexity includes transporting hydrogen from the production site 

to the delivery point. It is also challenging to store hydrogen because it requires an 

extensive pressure of 300 bar to be liquefied for shipment. All these aspects have a 

direct impact on hydrogen economics. As a consequence; many safety and 

feasibility studies around hydrogen generation have been launched all over the 

Fuel Energy Content (MJ/kg) 

Hydrogen 120 

LPG (Liquefied natural gas) 54.4 

Propane 49.6 

Aviation gasoline 46.8 

Automatic gasoline 46.4 

Automatic diesel 45.4 

Ethanol 29.6 

Methanol 19.7 

Coke (Made from coal) 27 

Wood (Dry) 16.2 

Bagasse 9.6 
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world [4] along with the actual hydrogen generation technologies that do not 

depend on fossil fuels. Hydrogen can be used as either combustion fuel or as an 

energy carrier for fuel cells to produce electric power and heat [5]. Fuel cells 

convert the chemical energy from hydrogen into electricity through a chemical 

reaction together with oxygen. There are two types of the fuel cells which are 

widely used in various applications. They are proton exchange membrane fuel cell 

(PEM) and solid oxide fuel cells (SOFC) where the anodic and cathodic 

functionalities are quite different, refer to Figure 1-1.  In a PEM, the anodic (for the 

hydrogen reaction) and cathodic (for the oxygen reaction) can be seen below:  

  Anode reaction:  2H2    4H+ + 4e−            (1.1) 

  Cathode reaction:  O2 + 4H+ 4e−    2H2O
           (1.2) 

  Overall cell reaction:  2H2 + O2  2H2O
       (1.3) 

In these type of fuel cells, the hydrogen produces H+ ions that are transported 

through the membrane giving its name; a proton exchange fuel cell (PEM). PEM 

fuel cells can produce powers of between 0-500 kW with an estimate of 50 % 

efficiency using hydrogen fuel.  The fuel cells where this research targets the on-

demand hydrogen production up to 100 W [6]. Solid oxide fuel cells (SOFS) have 

a solid electrolyte, a nonporous metal oxide consisting of typically ZrO2 treated 

with Y2O3 and O2− ions are transported from the cathode to the anode (compare 

with transported H+ in PEM), see Figure 1-1, temperatures of operation are typically 

higher at 800-1000 °C. 

 

Figure 1-1: Principle of Proton membrane fuel cell (PEM) and solid oxide fuel cell 

(SOFC) using hydrogen gas as fuel when producing electric current [7]. 
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For SOFC, the anodic (where the hydrogen fuel is reacted) and cathodic reaction 

(where oxygen is reacted) can be described by: 

Anode reaction:   2H2 + 2O−   2H2O + 4e−       (1.4) 

Cathode reaction:   O2 + 4e−   2O2
−       (1.5) 

Overall cell reaction:    2H2 + O2   2H2O       (1.6) 

 

Figure 1-2: Estimated world hydrogen production and use 2008 where it is evident 

how electrolysis and steam reforming natural gases were the dominant technologies 

and hydrogen was dominantly produced for ammonia production [8]. 

The fuel cell market is growing rapidly and it is estimated that the stationary fuel 

cell market will reach 50 GW (1 GW = 1 x 109 W) by 2020 [9] making this hydrogen 

generation research very timely. For this research, the hydrogen generation is aimed 

to be used mainly in an on-demand PEM configuration. Hydrogen for fuel cells is 

currently produced via three basic routes; biomass, fossil fuel (natural gas) and 

water as shown in see Figure 1-3. 

 

Figure 1-3: Different pathways for hydrogen gas production aimed at fuel cells [10].  
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The demand for hydrogen is rapidly increasing and is forecasted to do so, Figure 1-

2 and 1-4, which points to its wide acceptance as a safe alternative fuel. Currently, 

hydrogen production is reaching 50 million tonnes per year [11]. One of the leading 

continents for hydrogen production is North America as shown in Figure 1-4 [12] 

followed by Europe and Asia, where China is currently investing billions of dollars 

in hydrogen securing hydrogen as a future fuel. Despite an increased interest in 

hydrogen generation for the large scale aimed at commercial and power generation. 

The small-scale production is not widely available for individual consumers, which 

would help it to be adapted to the modern lifestyle, i.e. in cars.  

 

Figure 1-4: Predicted hydrogen demand future forecast [12]. 

While hydrogen as a safe and clean fuel is gaining recognition, there is still cause 

for concern especially when one closely inspects the various current technologies 

that provide H2 to customers. A few of them are discussed below: 

Steam reforming is the group term for methods that are responsible for 95 % of the 

global hydrogen production today as shown in Figure 1-2 [11]. In this process, 

steam (gaseous water) reacts with methane at very high temperatures (700-1100 °C) 

in the presence of a metal-based catalyst (often nickel) as shown by the equation. 

CH4 + H2O (steam) ⇌ CO + 3H2 (gas)        (1.7) 

As the reaction equation 1.7 shows, hydrogen gas is produced together with carbon 

monoxide. A few things should be mentioned about this process. Firstly, carbon 

monoxide is a toxic gas which not only is dangerous but also contributes to 
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atmospheric pollution. It is known to affect the climate indirectly by reacting with 

hydroxyl radicals (OH) that otherwise react with the greenhouse gases. Thus, by 

reducing the OH radical abundance in the atmosphere Carbon monoxide, CO 

production causes environmental issues. Secondly, to produce steam to react with 

methane (itself a greenhouse gas), large boilers (steam reformers) are needed which 

require fuel to operate.   

Furthermore, these steam reformers are often based in close proximity of a refinery 

for access to steam and methane.  In other words, they are not found near where the 

hydrogen fuel is to be consumed and as such hydrogen has to be transported in a 

suitable form to locations where it will eventually get used. To make it 

transportable, hydrogen gas is compressed and stored in high-pressure tanks, which 

not only cost additional energy and money but also the storage is hazardous. By just 

reflecting on the hydrogen generation itself, the hydrogen produced by steam 

reformation costs approximately three times more than the natural gas if comparing 

it by a unit of energy produced. Therefore, hydrogen economics needs to be 

evaluated as cost per 1 litre of H2 in Section C and justified. Another hydrogen 

generation methodology worth mentioning is the electrolysis of water, where 

electric current is passed through water which causes it to decompose. As a result, 

O2 is produced at the positive electrode (anode) and hydrogen is given off at the 

cathode (negative electrode) see Figure 1- 5. 

In Figure 1-5, it can be seen how water reacts at the anode to form O2 (gas) and, H+ 

(protons). The released electrons flow through an external circuit and the hydrogen 

ions selectively move across the membrane to the cathode. At the cathode, the 

hydrogen ions combine with electrons from the external circuit to form hydrogen 

gas.  

The anodic and cathodic reactions are: 

Anode reaction: 2H2O    O2 + 4H+ + 4e-        (1.8) 

Cathode reaction: 4H+ + 4e-   2H2        (1.9) 
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Figure 1-5: Working principle of Polymer Electrolyte Membrane Electrolysers for 

producing hydrogen gas [13].  

Water electrolysis, despite being highly energy demanding, today offers significant 

benefits as it offers easy integration with renewable energy generation such as 

weather dependent solar and the wind. These benefits will increase as the proportion 

of renewable energies in the “mixed energy sources strategy” for the national grid 

is growing and would lead to a possible reduction in the cost of hydrogen produced 

by electrolysis by 20 % over the next decade, as shown in Figure 1-6 [14]. 

 

Figure 1-6: Development of hydrogen production capacities over time roadmap for 

the UK, comparing mainly steam reforming versus electrolysis [20]. 

Referring to hydrogen production from Biomass, even this process requires an 

external energy input (often fossil) for initiating the process and uses environmental 

unfriendly carbon dioxide for suitable process conditions. Other green biomass 
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routes are dark fermentation, photo-fermentation and biophotolysis. Dark 

fermentation is a fermentative conversion of organic substrates to produce 

biohydrogen and often employed by diverse groups of bacteria and a series of 

biochemical reactions (anaerobic conversion). Dark-fermentation differs from 

photo-fermentation, the latter being done in the presence of light and the former 

not. Bio-photolysis use the microbial production of hydrogen, often by algae. 

Although all these technologies mentioned above are environmentally friendly they 

do not deliver a good yield of hydrogen gas [15].  

To make hydrogen generation commercially attractive the production process 

should be inexpensive; utilise renewable sources or renewable materials and be 

effective whilst at the same time to produce a pure hydrogen gas efficiently [17]. 

More recent publications such as [16-19], emphasise using water as the source of 

hydrogen due to its wide availability. Also, water provides a broad range of optional 

routes from which hydrogen could be liberated and the processes can be made more 

environmentally friendly compared to the classic hydrogen generation routes. It is 

important that the processes should aim only to use renewable materials or such 

resources that do not produce greenhouse gases [20].  The majority of techniques 

discussed above produce hydrogen off-site which has to be transported where 

needed. Two of the major obstacles seen in the overall hydrogen economy is 

shipment and storage.  It is possible to store the hydrogen that is produced in three 

forms, i.e. gas, liquid and solid state. It can be stored as chemical hydrides such as 

MgH2, NaAlH4, LiAlH4, LiH, LaNi5H6 and TiF-H2 some of which are liquids at 

ambient temperature and pressure and others are solid, but none of these is ideal 

because of their environmentally hazardous properties. For example, in solid form, 

it is not very economical to store as 84 kg of metal hydride which can only carry 1 

kg of hydrogen gas [21].  

The major drawback regarding storage in the gas phase is the very high pressures 

required which further requires additional energy for compressors and the whole 

procedure come with a high-risk factor. Further to provide an idea compressing 

hydrogen is challenging, 1 kg of H2 gas in terms of volume is equivalent to 11200 

~11000 litres of H2 gas. This amount of gas would occupy a significant amount of 

space if stored at ambient pressure. Whereas for compressed hydrogen is stored in 
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tanks at 350-700 bar and at -285 °C, this process is energy intensive and challenging 

to maintain [10,22]. Once it is stored further disadvantage is associated with its 

shipment. Another concern is the fire hazard, hydrogen should be minimum 99 % 

pure when stored. If the purity decreases to 74 % or below, it can easily catch fire 

or explode in the presence of ignition source [23].  

Due to the importance of the overall hydrogen economy and avoidance related to 

storage and transport obstacles, this research work focuses on on-demand hydrogen 

generation via a cost-effective and convenient method. A simple but effective route 

involving metal (Aluminium) and water reaction would be adopted and applied for 

hydrogen generation aimed at portable fuel cells. The process will be developed as 

environmentally and economically friendly as possible with widely available 

aluminium-based particles that are activated mechanically and using naturally 

occurring water as the feedstock. The water source investigation will begin with 

pure deionised water and later proceed in the direction of various tap water and 

typical industrial wastewaters. Process methods will be explored in order to seek 

ways to improve the particle synthesis and in particular how to treat the unavoidable 

oxidation layer on the aluminium surface. The thesis will begin the aluminium 

particle processing and optimisation. Currently, most commonly aluminium reacts 

easily and a strong alkaline at pH 10+ such as KOH or NaOH forming hydrogen 

despite the protective aluminium oxide (Al2O3) layer. For an on-demand hydrogen 

production aimed at portable fuel cells, the use of such strong alkaline will cause 

risk of corrosion of piping and damage the seals. As a gentler method of aluminium-

water reaction, it has been found that using so-called “milling additives” that can 

cover the metal aluminium particles surface and rupture the Al2O3 surface layer, 

can promote the reaction to proceed at ambient conditions without strong acids or 

alkaline. Hydrogen can be produced from various processes as discussed above. 

There are a few technologies which have matured and have high efficiencies and 

they are some which are either in their development stages or early research and 

development work is ongoing. These can be seen in Table 1-2, therefore, a need for 

a more sustainable and environmentally friendly process is required. 



C h a p t e r  1 . I n t r o d u c t i o n                            P a g e  | 10 

 
 

Table 1-2: Listing of the cost and performance characteristics of various hydrogen 

production processes [24].  

Energy Required (kWh/Nm3) 

Processes Ideal Practical 
Status of 

Technology 

Efficiency 

[%] 

Cost 

Relative 

to SMR 

Steam methane 

reforming (SMR) 
0.78 2-2.5 Mature 70-80 1 

Methane/NG 

pyrolysis 
- - R&D 75-54 0.9 

H2S methane 

reforming 
1.5 - R&D 50 <1 

Landfill gas dry 

reformation 
- - R&D 47-58 ~1 

Partial oxidation of 

heavy oil 
0.94 4.9 Mature 70 1.8 

Naphtha reforming - - Mature - - 

Steam reforming of 

waste oil 
- - R&D 75 <1 

Coal gasification (GE 

Energy) 
1.01 8.6 Mature 60 1.4-2.6 

Partial oxidation of 

coal 
- - Mature 55 - 

Steam-iron process - - R&D 46 1.9 

Chlor-alkali 

electrolysis 
- - Mature - 

by-

product 

Grid electrolysis of 

water 
3.54 4.9 R&D 27 3-10 

Solar and PV-

electrolysis of water 

- - R&D to 

mature 
10 >3 

High-temp. 

Electrolysis of water 

- - 
R&D 48 2.2 

Thermochemical 

water splitting 

- - 
Early R&D 35-45 6 

Biomass gasification - - R&D 45-50 2.0-2.4 

Photo-biological - - Early R&D <1 - 

Photolysis of water - - Early R&D <10 - 

Photoelectrochemical 

cell decomp. Of 

water 

- - 

Early R&D 

- - 

Photocatalytic 

decomp. of water 

- - 
Early R&D 

- - 

 

http://www.netl.doe.gov/research/Coal/energy-systems/gasification/gasifipedia/ge
http://www.netl.doe.gov/research/Coal/energy-systems/gasification/gasifipedia/ge
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A method for this particle additive integration is through the use of high energetic 

milling technologies, such as planetary mills. The choice of active additives and the 

milling protocols planned will also be defended, including milling time and mill 

rotational speed, which have a direct impact on the cost used in the process in a 

hydrogen economic evaluation. In-depth particles material analysis will be 

employed such as particle size evaluation (morphology), scanning electron 

microscope (SEM), elemental analysis (EDS) and X-ray diffraction (XRD). 

Moreover, the hydrogen reaction mechanism will be considered. Initially, this will 

be done using deionised water and later commonly available surplus water such as 

domestic tap water and typical traces in wastewater such as urea, sucrose, anti-

freeze and ethanol mixed with deionised water will be analysed. All throughout the 

project, hydrogen generation cost (energy use and cost of materials) will be 

evaluated.  

1.2 Research aim and objectives  

The aims of this research are to investigate the generation of on-demand hydrogen 

for portable fuel cells focusing on aluminium particle activation for the water 

reaction while developing the technology both in an environmentally friendly and 

economically feasible way. The research is using the working principle of an 

Energy- pod by iHOD USA [6] as a guide to the research development. The 

research is, therefore, aimed to produce hydrogen for such fuel cells to provide 

power up to 90 W in a cheapest, purest and simplest way. 

iHOD USA’s energypod (or powerpods) uses a low-temperature, low-pressure 

chemical reaction to produce hydrogen without any harmful greenhouse gas 

emissions and this will be the main criteria for this research. 

Research objectives are broken down as follows: 

1 To produce hydrogen gas using economical and readily available recycled 

aluminium.  

2 To establish an activated particle process that is energy efficient, economical 

and environmentally friendly. 
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3 To establish a safe hydrogen gas generation by not employing hazardous 

chemicals such as alkaline solutions or elevated temperatures and pressure. 

4 To evaluate the hydrogen reaction by using different types of water and further 

waters available for customers of portable fuel cells such as tap waters and 

typical wastewater and compare with less available but purer deionised water. 

1.3 Structure of report  

Chapter 1: Introduction 

In this chapter, a brief outline was provided explaining the motivation of this study 

which includes why there is a need for an energy production change and relates to 

the growing demand. It will provide a description of existing hydrogen technologies 

and how hydrogen gas can be used for fuel cells. The term Hydrogen Economics is 

clarified, where it is seen that transport and storage are two important factors 

connected with both high cost and high risks. This is justifying the objective of 

finding a cheap and reliable on-demand hydrogen generation technique. Finally, 

this chapter provides an outline of study and stating the aims and objectives of the 

PhD Thesis. 

Chapter 2: Literature review of hydrogen generation 

This chapter provides a detailed insight into how aluminium-water reaction for 

hydrogen gas is generated and discussed the area that could be improved. It will 

explain the way of improving particle activation, reaction time and hydrogen yield 

by reviewing published data by researchers up to date.  

Chapter 3: Methodology 

This chapter provides a description of the proposed experimental setup and 

methodology used in this research. It will cover particle processing and analysis; 

reactor setup, gas analysis and different water analysis.  

Chapter 4: Results and discussion  

In this section, the outcomes and findings of the experiments will be discussed and 

concluded. Section A will cover the particle processing where the success is 

evaluated by hydrogen flow rate and yield. Section B will cover how the water 
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quality affects the reaction and finally, Section C provides a breakdown of the cost 

and the estimated process cost of hydrogen per kg in a hydrogen economy 

evaluation. 

Chapter 5: Conclusions 

A critical review and overall conclusion of this research are presented in this 

chapter, as well as future work. 

1.4 Chapter 1  Conclusion  

In this introduction chapter the current need for improving hydrogen generation 

aimed at small-scale on-demand power sources, to make it both economical 

attractive and simplified was presented.  It introduces the reason for choosing metal-

water reactions for the hydrogen reaction and reactive milling for particle 

processing. The content of the thesis chapters is described at the end. 
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Chapter 2 Literature review of hydrogen generation 
 

The research presented in this thesis focuses on how metal particles can produce 

hydrogen in an aqueous environment, aimed mainly at on-demand hydrogen fuel 

cells. This chapter provides a review of the current status of hydrogen generation 

technology as found in the literature and how the technology might be improved. It 

will review the current state of the art in this field and discuss the novelty produced 

in this thesis.   

The chapter also presents a review of different metals that can be used and explain 

why aluminium was chosen. Further, it will explain why additives are employed in 

the particle synthesis, review milling procedures for the particle synthesis and 

explore how these aluminium-based particles can be synthesised both 

environmentally friendly and economically viable. The chapter will go on to further 

review different on-demand hydrogen generator and types of aqueous solutions that 

can be used for the hydrogen generation reactor, i.e. effect of pH and temperature. 

Finally, methods for evaluating the reaction kinetics and activation energies for 

these types of hydrogen reactions are reviewed. Lastly, the chapter will establish 

the novelty of this research and which will provide a platform for the subsequent 

chapters. 

2.1 Challenges associated with hydrogen production in large scale 

and storage 

Hydrogen can be produced by different means, for example, from fossil fuels or 

from the water. As was mentioned in the previous chapter, steam reforming process 

is currently the most common method of produce hydrogen. While it may be the 

prime way of producing H2 in today’s market, in the context of on-demand 

production aimed at fuel cells which this research seeks to address, it is expensive 

and impractical.  

Two major obstacles have so far limited the widespread implementation of 

hydrogen-based energy systems; The first being storage which is an issue due to the 

extremely low density of hydrogen gas which requires that it be stored in large high-



C h a p t e r  2 .  L i t e r a t u r e  r e v i e w                                                   | 15 

 

 
 

pressure tanks. Even when compressed to its liquid form, the density of liquid 

hydrogen is only 0.081 kg/m3 [25].  In addition, for liquid hydrogen, there is a need 

for bulky insulated dewar storage tanks to prevent the rapid boil-off of the cryogenic 

liquid hydrogen (boiling point -252.9 C). The second major concern is safety as 

H2 when mixed with air, reacts with O2 in a chain reaction with a high-risk of the 

explosion. Therefore, H2 must be handled with great caution and care. 

Due to high compression, the energy demand is consequently high, making the 

process expensive which has a direct effect on both the hydrogen economics and its 

carbon footprint. Therefore, the overall energy requirements for a hydrogen 

generation require most consideration. These include all possible means of 

transportation, which are mostly powered by fuels like petroleum and its 

derivatives. It is clear that the one of disinclination with hydrogen production is 

embedded in the cost from “cradle to grave”. 

In order to reduce CO2 emissions from the cradle-to-grave, it may be possible to 

use hydrogen for transportation, e.g. in hybrid vehicles or fuel cell vehicles. 

Another alternative is to produce on-demand hydrogen for the fuel cell itself or 

simply focus on an on-demand hydrogen generation close to a fuel cell which it is 

aimed at. Hydrogen is mostly not a primary fuel but seen as an energy vector and 

produced from hydrogen-containing compounds. The chemical energy stored in H2 

molecule can be converted to other forms of energy such as by combustion in air or 

through the fuel cells. The cheapest and most abundant source of hydrogen is water, 

H2O. Therefore, this study focuses on a hydrogen generation from water which 

reacts with carefully synthesised metal particles.   

Metal-water reactions have had considerable attention over the recent years. In 

particular for its possibility to produce on-demand hydrogen gas for portable fuel 

cells up to kW range. Currently, researchers are trying to find the optimal metal 

particle composite or alloy for maximum hydrogen produced per gram particle. For 

commercial interest, the particle process, raw materials and amount of energy-rich 

hydrogen produced need to be balanced for a prospering hydrogen economics. 
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2.2 Strategies to improve the hydrogen generation 

Recently, hydrogen generated from metal and metal alloys reaction with water has 

garnered keen interest because of its low cost and simplicity [26]. This thesis 

focuses on a route particularly suitable for portable fuel cell application.  

For a given oxidation state, the theoretical amount of hydrogen produced from the 

metal-water reaction has no bearing on whether the reaction product is a metal 

oxide or metal hydroxide. 

xM + yH2O  MxOy + yH2 (metal oxide product)                    (2.1) 

xM + 2yH2O   xMxOH 2y/x + yH2 (metal hydroxide product)            (2.2) 

The above relations where MxOy is a metal oxide shows that the metal will oxidise 

and form either oxides or hydroxides and if using pure water only, pure energy-rich 

hydrogen gas is formed in an exothermic reaction. Due to the nature of the 

exothermic reaction, there will be an increase in temperature of the aqueous 

solution. This means on a larger scale that this principle can be developed as a 

combined heat and power energy source. The following section will review 

different methods that have been employed by researchers to improve further the 

water and metal particles reactions and how to avoid “passive layers” on the 

particles that prevent the reaction to proceed. 

2.3 Hydrogen generating metals 

Releasing hydrogen from water at the point of utilisation (on-demand) can be 

realised by reacting it with a metallic element. A number of environmentally-stable 

and widely-used metals such as aluminium, magnesium and silicon can be made to 

readily react with water releasing not only hydrogen but also a significant amount 

of heat, as mentioned above [29,30]. This means that many metals possess a 

volumetric energy density that is greater than that of gasoline if both the hydrogen 

and heat released from the exothermic reaction are utilised for energy conversion.  

In these systems, the metal powders effectively serve as secondary energy carriers, 

storing primary electrical or heat energy in a chemical fuel that can be converted to 

hydrogen and heat when needed. Therefore, both the choice of metal and their 
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character in the reaction process are essential information for the hydrogen 

production. The metals most commonly investigated are aluminium, zinc, 

magnesium, iron and copper, all share one common characteristic: all these metals 

are usually found in ores and are protected by their oxide layers preventing water 

molecules to interact with the surface and produce hydrogen [27]. This natural 

occurring and stable oxide layer must be penetrated by water for a robust and 

optimal hydrogen generation and therefore, several particle process methods have 

been developed to expose the non-oxidised surface to the water. Besides hydrogen 

and thermal energy, the only rest products of the metal-water reactions are solid 

metal oxides and hydroxides. These end products are, in most cases, chemically 

inert and easy to collect and store. Metal oxides/hydroxides can be reprocessed back 

to pure metals using metal smelters [28]. Some of the reactive metals are useful but 

do not provide economic viability, which later will be discussed in the section of 

hydrogen economics. Although the majority of published work on metal-water 

reactions has made use of aluminium powder, other metals have been used, see 

example in Table 2-1. 

Table 2-1: Example of metal–water reactions and enthalpy of reaction [29,30]. 

Hydrogen Production Reactions 

Mg (s) + 2H2O (l)   Mg(OH)2 (s) + H2 (g)                   △Hr = -354.6 kJ/mol 

Al (s) + 3H2O (g)     Al(OH)3 (s) + 1.5H2 (g)                  △Hr = -280 kJ/mol 

Fe (s) + 1.5H2O (l)  0.5Fe2O3 (s) + 1.5H2 (g)        △Hr = +34.1 kJ/mol 

Zn (s) + 2H2O (l)    Zn(OH)2 (s) + H2 (g)              △Hr = -64.5 kJ/mol 

Cu (s) + H2O (l)  CuO (s) + H2 (g)                          △Hr = +130 kJ/mol 

Most researchers have focused only on the hydrogen generation and very few on 

how to utilise the additional exothermic heat energy from the reactions. Owing to 

the aspiration to make the hydrogen generation process affordable and 

commercially attractive, the reaction conditions should not require stringent control 

measures, i.e. atmospheric pressure conditions and reasonable reaction 

temperatures. Several authors have investigated the optimal reaction conditions. For 

example, in 2013, Yavor et al. discovered that a combination of the elevated starting 
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temperature and the chosen particle size could help to increase the rate of reaction 

and hence the yield of hydrogen. The authors used a reaction temperature of 20–

200 °C and got a yield of 97 % using 2 µm particles at 200 °C. It was suggested 

that with an increase of the particle size, the hydrogen yield was decreased, i.e.        

93 % yield was reported for 4 µm particle [31]. The same author reported the 

maximum possible hydrogen yield obtained from various metal powders under 

same reaction conditions in 2015 [32], see Figure 2-1.  

 

Figure 2-1: Volumetric hydrogen yield (cm3/ cm3 metal) and gravimetric hydrogen 

yield (cm3/g metal) from a range of different metals [32]. 

Figure 2-1, displays a graph showing the generation of hydrogen gas per unit mass 

of the metal (cm3/g) and per unit volume of the metal  (cm3/cm3) for the investigated 

metals. The horizontal axis is arranged such that metal with smallest atomic mass 

(boron) appears on the left and the mass increases going to the right. At first glance, 

the chart appears to show that metals like boron (B), molybdenum (Mo), tungsten 

(W) and chromium (Cr) perform much better than other metals for hydrogen 

production, however, when taken into the account the viability, temperature of 

reaction (best achieved at 200 C in the study) and the energetic heat energy 

released, show that both the aluminium (Al) and magnesium (Mg) powders would 

produce more hydrogen per unit mass than any other metal powder. Copper (Cu) 

also seems to be promising, but it is expensive and hence less commercially 

attractive than Al or Mg. Boron (B) possesses the highest possible hydrogen yield, 

both gravimetrically and volumetrically, but presents more difficulties for use and 
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is not considered a suitable candidate for commercial on-demand hydrogen 

production. 

Table 2-2, shows a comparison of the yield of hydrogen obtained from various 

metals. Based on these figures, both aluminium and magnesium stood out as good 

candidates to be used in this research. Between the two, if one looks at the mass of 

metal required to produce 1 kg of H2 gas, aluminium is the obvious choice 

especially, if the hydrogen generator is aimed at small portable sized fuel cells. 

Magnesium (Mg) has a disadvantage that it reacts relatively slow with cold water 

but faster with hot steam. The reaction products are magnesium hydroxide, 

Mg(OH)2 and hydrogen gas, H2, where 1 mol Mg will produce 1 mol H2 gas.  

Table 2-2: Chemical properties of metals which potentially can produce hydrogen 

[33].  

Metal 

Atomic 

mass 

(g/mol) 

Density 

(g/cm3) 

Moles of 

hydrogen 

produced by 

1 kg of metal 

(mol) 

Hydrogen 

produced by 

1 dm3 of 

metal 

(mol) 

Metal 

required (kg) 

to produce 1 

kg of H2 gas 

Al 27.0 2.70 56 150 8.99 

Mg 24.3 1.74 41 72 12.00 

Fe 55.8 7.89 18 141 9.30 

Cu 63.5 8.96 16 141 31.75 

Zn 65.4 7.14 15 109 32.00 

 

In 1996, a US Patent was filed by Vladimir et al. describes how a magnesium alloy 

was capable of generating hydrogen when it reacts with water in the presence of 

chlorines salt. It explained how the presence of salt and a co-metal such as zinc was 

used to prevent unwanted corrosion [34]. In 2007 Yu et al. used magnesium scraps 

from recycled products in solutions of salts like the common sodium chloride, 

NaCl, to improve the hydrogen generation. It was pointed out by the authors that 

only high-grade Mg is suitable for a successful hydrogen production and caution 

should be taken if low quality recycled magnesium were to be used [35].  
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Low-grade recycled Mg is cheaper but often contains a high level of impurities such 

as iron, nickel or copper which hamper its reactivity with water. Pure magnesium 

for hydrogen generation in ambient conditions was investigated and described by 

Grosjean et al. [36] using 1 M acidic solution rather than pure water. Later 

researchers avoided using any corrosive acids and a magnesium hydride MgH2 was 

used instead for the hydrogen generation. Chemical-bonded metal hydrides are 

often used for hydrogen storage rather than hydrogen generation, but the principle 

of chemically bonded hydrogen can be utilised as a chemical catalyst to adjust 

hydrogen generation rate. Magnesium hydrates can be hydrolysed to produce 

hydrogen as:    

MgH2 + 2H2O  Mg(OH)2 + 2H2       ΔHr = -277 kJ/mol     (2.3) 

The above reaction is a very slow due to the rapid formation of a magnesium 

hydroxide layer and therefore, a general consensus has been reached amongst 

researchers that Mg for hydrogen generation works best in acidic solutions. Another 

disadvantage of using magnesium described by Lui et al.  is that when milled or as 

in powder form is very flammable with a low flame point [37].  

Aluminium, on the other hand, is safer and also abundant. Aluminium powder from 

recycled aluminium scrap to even foil has shown high efficiencies [38,39], as much 

as 89 % according to one report [36]. Aluminium has become one of the most 

popular metal to use in reaction with water to generate hydrogen gas [31,32,39-42]. 

It has many advantages over the other metals such as stability, its abundance in the 

earth crust as well as in different forms such as powder and scrap metal. It has an 

ever growing to recycle market from cans, scraped aeroplanes and lightweight 

vehicle providing a plentiful supply of cheap material for particle synthesis [43].  

When estimating the overall hydrogen economics for this type of technology, it 

must be beared in mind that producing aluminium from the earth crust is a very 

energy-demanding process in itself and therefore, recycled aluminium is preferable. 

Furthermore, aluminium is oxidised to the state 3+ in the reaction, meaning that 1.5-

mole hydrogen is formed for each mole of Al reacted. Magnesium on the other 

hand, which oxidises to Mg2+, produces only 1-mole hydrogen when reacted with 
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water which means that more hydrogen will be generated per mole metal when 

aluminium is used [44].  

In the last decade, researchers have shown how to improve the aluminium-water 

reaction by developing suitable metal particle processing techniques such as using 

high-energy ball milling with various additives or low melting metals for alloying 

[45]. The effective use of metal-additives and water to produce hydrogen was 

discussed in 2010 “Application of activated aluminium powder for generation of 

hydrogen from water” by Rosenband and Gany based on a similar study conducted 

by the same authors in 2008 [40].  Huang et al. in 2013 did a review titled 

“Feasibility of Hydrogen Generation from the Reaction between Aluminium and 

Water for Fuel Cell Applications” in which different activation of aluminium was 

described [46]. In the same publication, available hydrogen generators at that time 

were also reviewed. According to the book 'Alternative fuels-the future of 

hydrogen' , 2008 [47] using a starting batch of 8 kg Al can provide hydrogen with 

a mass flow rate of 1.6 g/s, meeting a target of 80 kW of power (or 140 kWh), which 

would be enough to run a car. These estimated values of energy and power are 

encouraging to develop this hydrogen technology further for everyday usage.  

However, aluminium like many other metals have the issue of a formed oxide layer 

on the surface, which hinders the reaction from taking place between water and the 

metal [48,49]. The oxide layer is only a few nanometers thick 4 nm according to 

Sundaram et al. [50], but enough to protect the surface so that no reaction with 

water takes place. The outermost electron shell in pure aluminium is not stable with 

only 3 electrons and this causes it to react readily with oxygen as suggested by 

Hatch et al. [51] but on the other hand, when no oxygen is present this also promotes 

a fast reaction with water. The breakdown of the formed hydroxyl and oxide layers 

on the metal surface is, therefore, necessary to achieve a high hydrogen yield and a 

fast rate of reaction. This can be done by either activation in the particle processing 

or by modifying the water solution conditions.  
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2.4 Synthesis of the particles 

Reactive ball milling is attractive for particle processing and has attracted huge 

interest for its utility in green engineering/ green technology [52]. Ball milling, 

mechanical ball milling, mechanical alloying or grinding describe the same 

technique in which usually a powder is crushed until ground using grinding balls. 

The milling balls can be of different material, such as ceramic or stainless steel and 

the number of balls size and type will affect the milling the quality of synthesised 

powder [19,41,53,54]. However, this process is energy intensive and therefore, can 

be ineffective. As a result, scientists and engineers alike have been trying to 

understand and, if possible, improve this technology of particle processing.  

For milling metal aluminium together with chosen non-metal milling additives, 

stainless steel balls would be the primary choice in a planetary mill. In a planetary 

mill, the milling jar containing metal balls and powders is placed inside the milling 

device fixture, which spins at a fixed speed. The milling jar is swung to 180 º 

producing a large centrifugal force. Due to this centrifugal force, the balls collide 

with each other and any powder caught in between the balls and furthermore, the 

balls also collide with the walls of the jar as shown in Figure 2-2.  

 

Figure 2-2: Influence of centrifugal force on the milling ball during milling [55]. 

It is suggested that powders ground in such mills experience up to 40 times higher 

acceleration than that due to gravity [34]. Such intensive energy causes changes of 

the metal particles as they undergo different phases as a result of plastic 

deformation, i.e. change in the particle shape, cold welding and fracturing seen in 

Figure 2-3 [55,56]. 
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Figure 2-3: Schematic of morphological changes of materials during the milling 

process [57]. 

Referring to Figure 2-3, the morphology of the metal powder often changes and 

goes through different stages. These steps include: a) beginning stage b) transitional 

stage and c) finishing stage. 

a) The beginning stage is when cold welding and process of agglomeration, i.e. 

increases in particle size takes place. Cold welding occurs when two particles join 

(also called immersing or enabling) at the interface due to significantly high 

centrifugal forces. 

b) If milling is continued after the cold welding has taken place, it will result in the 

irregular distribution of additives which are being milled with the metal. The 

additive distribution depends upon the properties of the additives and metal 

particles.  

c) At the last stage, the powder cannot be deformed any further. However, if milling 

is persisted with then it would then lead the particles to fracture (not shown in the 

diagram). Fractures in particles are produced as a result of particles splitting after 

the cold welding. These mechanisms are more profound when low melting 

additives are used with the aluminium. These include low melting metals such as 

bismuth and lithium or their hydrides, BiH or LiH forming alloys [58]. The 

fracturing of the particle occurs when a particle is stressed to a maximum limit of 

the plastic deformation [53,59,60]. The fracturing also reduces the particle size and 

increase the particle surface area. Furthermore, metal aluminium would be exposed 

again in the fracturing process and this is why the milling process is undertaken in 

the oxygen-free environment [60]. 
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The reason for the particle changes described above is from the high kinetic energy 

and elevated temperatures from the high-intensity collisions [61]. The temperature 

change may also alter the crystal structure of the particle [62,63]. However, the 

extent of cold welding and fracturing depends mainly on the metal properties as 

well the milling additives. Other factors that also play a role in the final milled 

particle are milling jar size, machine type, filling ratio, ball-to-powder ratio, rotation 

speed, the number of balls, the weight of balls, the density of balls, the material of 

balls, the direction of milling and break in-between the rotations [64]. Moreover, 

different machines can have different sizes (diameter) of the disc on which the 

milling jar is placed resulting in a change of the centrifugal force. High-speed 

millings have provided researchers with aluminium particles that are able to 

produce hydrogen at a reasonable rate without the need for any corrosive acids or 

alkaline solutions or heating to more 'reactive' temperatures [65]. In this research, 

the milling process used a planetary ball mill (RETSCH PM 100) to prepare 

activated particles for hydrogen generation, more details Chapter 3. 

Metal aluminium is usually not milled on its own because of the cold welding that 

makes the particles grow larger (and the effective surface area to be reduced). In 

order to prevent this, stearic acid is often used as it acts as a barrier between the 

particles reducing the particle fusion [66,67]. Zhang et al., performed high-speed 

milling up to 5 hrs not using any fusion prevention agent and reported an increase 

in particle size by 50 µm of both Al and Mg particles [68]. For the best hydrogen 

generation at ambient conditions milling additives are recommended [69]. Milling 

duration also plays a role, as milling times can affect the morphology, the shape of 

particles, size and lattice imperfections and grains orientation [18,41,56,59,66,70-

73]. It was suggested in 2013 by Tousi and co-workers they mixed 3 wt % stearic 

acid with aluminium and performed high-energy ball milling (with the ball to 

powder ratio of 30:1) of the powder with milling speed of 200 rpm that prolonged 

milling can cause the efficiency of hydrogen production to drop. The authors 

observed that the hydrogen yield increased at first as the milling time was increased 

up to 7 hrs, but after this, it started to decrease. After analysis of particles using 

XRD and SEM at different times in reaction, they attributed this tendency of first 

increase and then decrease the creation of pores. They suggested that the increase 
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in the number of pores at first increases the surface area of the particles leading to 

higher yields, but as the milling is performed for longer time, more impacts during 

milling can compress the particles so they are more uniform and have fewer pores, 

consequently lowering the yield [72].  

Work continues with processing the hydrogen generating aluminium powder using 

advanced milling methods to understand better their applications [20,52,53,74,75]. 

When high kinetic milling is used, high temperatures are reached within the milling 

jar. This raises the possibility of annealing, which involves exposing the metal 

particles to extreme temperatures and then allowing them to cool. The annealing 

causes plastic and elastic deformations, affecting lattice structure and these changes 

could have an effect on the hydrogen generation. For example, Abdoli et al. milled 

Mg-Al alloy particles for an extended period of time up to 25 hrs, where they found 

that the crystallinity of the particles had changed and affected their stability and 

reactivity of the particles [65]. They also pointed out that annealing (a result of the 

high temperature builds up in the jar) affects the hardness of the metal, whereas 

Ghadimi et al., proposed that annealing may help redistribution of the components 

in solid phase [73].  

It is important that ball milling of the aluminium particles be performed under an 

inert atmosphere [26,41,75-78] as the process produces a considerable amount of 

heat due to constant collisions of the balls and friction between them. If oxygen is 

present in the closed milling jar, the elevated pressure and temperature could result 

in spontaneous combustion. Also, air would soon re-oxides the exposed metal Al 

surface to Al2O3 and in order to avoid any unwanted reactions, it has been suggested 

that the oxygen levels should be kept to a maximum of 5 ppm [61] by purging with 

inert gases such as nitrogen or argon of 99.99 % purity prior milling [66]. 

2.5 Breakdown of barrier layers 

It is well-known that aluminium does not react with water at ambient conditions 

(room temperature, atmospheric pressure) due to the formation of solid and dense 

oxide film on its surface. Therefore, various activation methods aimed to dissolve 

or remove the oxide film are used in order to carry out the aluminium/water 
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reaction. Both in the actual particle processing and by immersing aluminium 

particles in water will soon create a passivation layer of Al2O3, AlO(OH) and 

Al(OH)x. Removing or destroying these passive layers before the reaction will 

make the hydrogen reaction happen quicker and will be seen as a reduction of the 

“lag-time”.  

In the subsequent section, the importance of milling metals with additives will be 

discussed together with a review of the various additives that researchers have 

explored to enhance the water-aluminium hydrogen generation. The milling 

additives alter the aluminium particles surfaces due to the high energies in the 

milling jar [79]. When the milled powder is immersed into water, the additives 

which are embedded on the surface of metal particles, i.e. salts and metal oxides, 

also react or dissolve in water which then releases reactive ions into the solution 

such as OH- and Cl- ions. Both of these ions in solution affect the barrier layers, too. 

The oxide film on metallic aluminium, Al2O3, is hydrophilic and with the 

interaction of water, it soon forms a more porous Al-Oxyhydroxide layer, 

AlO(OH). Sites in the Al2O3 layer that are particularly susceptible to this hydration 

will exhibit a higher electronic defect density. These non-uniformity sites could 

originate from the milling and these defect points will be more susceptible to 

breakdowns, leading to the formation of local pits in the oxide barrier layer and 

making it more permeable to water [79].  

Water penetrating through these defects will locally react with metallic Al 

generating hydrogen gas bubbles at the interface between the Al core and the 

protective surface layer. The growing H2-gas pressure will eventually rupture the 

protective layer, thus activating metallic Al for reaction with water. A less stable 

crystal structure or more porous structure of the protective barrier layer would, 

therefore, be beneficial for the evolution of the hydrogen gas. The more porous the 

layer, the more water can penetrate through to the metal aluminium core by mass 

diffusion and this increase in hydrogen yield would be more evident if agitation is 

used in the reactor vessel and/or salt-gates has opened, see later in this section for 

clarity. 
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It has been found that salt and metal oxide milling additives work together to 

damage the different passive layers [80] and if these passive layers are not removed 

or disrupted, it will affect the hydrogen yield negatively. The reaction product, 

(which would effectively act as a second barrier layer) aluminium tri-hydroxide can 

have different morphologies depending on the nature of the experiment and 

reactants used. The formed Al(OH)3 could be either crystalline gibbsite γ-Al(OH)3, 

bayerite β-Al(OH)3 or Nordstrandite Al(OH)3 or even be amorphous. The three 

different crystalline polymorphs have different structural arrangements as well as 

different crystal density. All are composed of layers of octahedral aluminium 

hydroxide units with the aluminium atom in the centre and the hydroxyl groups on 

the sides and hydrogen bonds holding the layers together. The difference between 

them is how the layers stack together and what bonds are between the layers, see 

an example of configurations in Figure 2-4. 

 

Figure 2-4: Different structure arrangement of Al(OH)3 with the octahedral 

aluminium hydroxide unit shown in the centre and different stacking arrangements 

shown around [81].  

In Figure 2-4, the octahedral aluminium hydroxide unit is shown and this octahedral 

is side sharing within the layers for all three common Al(OH)3, however, the bonds 

between the layers differ which results in different packing order and different bond 

strength and bond length. Example of the different stacking of Bayerite -Al(OH)3, 

Gibbsite γ-Al(OH)3 and Nordstrandite -Al(OH)3 can be seen in Figure 2-5. 
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Figure 2-5: Different octahedral layer stacking of bayerite, gibbsite and 

nordstrandite Al(OH)3 [82]. 

In this research, the aim is to understand which of these morphologies is formed. 

Different pH conditions and temperatures of the aqueous solutions used in the 

reaction as they affect the stability of the formed barrier layers will be tested.   

Aluminium oxide, Al2O3 found directly close to the Al-core is very stable and more 

or less impermeable to water. However, when it comes in contact with water it 

becomes hydrated and boehmite, γ-AlO(OH), is formed allowing water to diffuse 

into the metal core and react. At the end of the reaction, the aluminium 

Oxyhydroxide layer is transformed into a more stable hydroxide, which is also the 

end-product of the aluminium-water reaction. The most common morphology at the 

end of the reaction has been reported to be gibbsite γ-Al(OH)3 [51,83,84] which can 

be proven by XRD analysis but eliminate the proof of the existence of any 

amorphous Al(OH)3.  

2.6 Metal additives 

The reaction of water with metal alloys has been proposed for improvement of the 

hydrogen yield. Alloying can be either done by melting the metals together in a 

furnace or directly in a high-speed milling device due to the high energy and 

temperature reached. Milling aluminium together with low melting point metals has 

been studied for improving particle fracturing and particle size reduction in what is 

described as a mechanically alloying mechanism. Alloying is believed to prevent 

the formation of the barrier layer and is part of what is referred to as “activated 

aluminium”. Fan et al. tested the metal additives Zn, Ca, Ga, Bi, Mg and Sn milled 
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together with Al on the influence on hydrogen generation [42,85]. The authors 

found that the alloy Al-Bi and Al-Sn significantly improved the production of 

hydrogen. They also reported that their particle size was 13 µm which was milled 

for 5 hrs with CaH2 and Bi. However, when they reacted their sample in water it 

took a 30 min to achieve 80 % yield of gas [58]. 

Milling gallium together with aluminium was tested by Ilyukhina et al., they found 

that the reaction temperature for Al-Ga particles could be reduced down to room 

temperature [19]. Despite successfully using ambient conditions for the reaction, 

the particle processing is still high-energy demanding and usage of rare earth metal 

gallium will also add to the high overall cost. However, in the hydrogen production 

process, the gallium is essentially an inert mat that could be reused if need be. 

Alloying of Al-Ga for hydrogen generation at ambient condition has also been 

described in two patents by Woodall in 2008 [86,87]. It is often considered that 

molten aluminium-gallium alloys will not possess the coherent and adherent oxide 

barrier layer. From mechanically alloyed particles, the constant deformation (cold 

welding and fracturing) will achieve similar exposure for the reaction to progress. 

Metal-based additives in milling were further described by Fan and co-workers in 

2011 [88]. In their study, the authors used a series of Al-Sn-Zn-X mixtures, where 

X corresponded to either a metal hydride or halide. They reported a hydrogen 

generation of 790 ml/g in less than 5 min for an Al-Sn-Zn-MgH2 mixture. The 

powders were milled for as long as 20 hrs using a high-speed mill (speed not stated). 

Later on, Wang et al. in 2010 reviewed the available methods of making Al 

composites and alloys. The authors suggested that using low melting point metals 

in the milling helps in achieving higher activation of the aluminium, as more surface 

defects and grain boundaries are formed during the milling which promotes water 

reaching the Al core during the reaction [89].  

2.7 Metal oxides additives 

Metal oxides have also been used as milling additives to the Al particle process. 

Here it is not aimed at alloying or reducing melting temperature but to take part of 

the actual hydrogen generation reaction path. In 2002 and 2003 Chaklader et al. 
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produced two patents and proposing the use of -Al2O3 and -Al2O3 as metal oxide 

milling additives [90,91]. In the patent “Hydrogen generation from water split 

reaction US 6440385 B1”, 20 wt % additive ceramic powder and 80 wt % metal 

aluminium (80 μm average particle size) were milled and pressed as pellets and 

used in a reactor between 30 C to 70 C. It was described how the added Al2O3 

have a tendency to hydrate in water (highly hydrophilic) which would activate a 

water split reaction assisting the aluminium- water reaction. The authors also 

pointed out that the total amount of gas release does not vary significantly with the 

different type of alumina oxide additive, produced from different aluminium 

hydroxides, (or aluminium oxyhydroxide), but significantly depended on pH of the 

water. If using the same Al-oxide composition, the maximum rate of H2 depends 

majority on (i) nature of milling (ii) type of oxide additive (iii) temperature of 

reaction and (iv) pH of the water. 

In 2011 Wang et al., hand milled a series of nano-sized metal oxide additives 

including TiO2, Co3O4, Cr2O3, Fe2O3, Mn2O3, NiO, CuO and ZnO together with Al 

for 3 min and reacted the particles with both deionised water and tap water at 25 °C 

and 35 °C [92]. The authors reported that all the metal oxides additives gave off H2 

upon reaction with water, but their reactions were slow, e.g. ZnO took up to 25 hrs 

to achieve 95 % hydrogen yield and additive Cr2O3 reported to the produce highest 

yield of 100 % needed 18 hrs. Their major finding conveys two key points, one that 

the water quality plays an important role in the reaction, as well as the choice of 

additives. 

Wang and co-workers explored the effect of a more complex mixture of additives 

such as CaO, NaCl and low melting point metals such as Ga, In and Sn on the 

activity of Al-based particles in water. The authors prepared the Al-based mixtures 

using a high-speed planetary ball mill using a ball-to-powder ratio of 10:1 and 

milled for 8 hrs at 360 rpm. The composites were reacted with pure water at 25 °C 

and 60 °C. The authors reported that while all additives promote hydrogen 

production at both temperatures, the composite containing aluminium alloys, i.e. Al 

-CaO-NaCl performed much better than when using bare aluminium. They 

attributed this effect to a higher surface area for when alloyed Al was used (the role 
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of low melting point metal alloying) combined with NaCl in the milling, making 

the particle to fracturing and destroying the passive oxide layer more efficient [80]. 

Fan et al. commented in their 2008 paper that metal oxides additives, will result in 

high efficiencies of liberated hydrogen and at a fraction of the cost compared when 

low metal point metals are used [58]. Dupiano et al., [75] tested the oxide additives 

of Bi2O3, MoO3 and CuO and milled the Al-oxide mixture at 350 rpm in a high-

speed mill. Here it was reported that mixture containing the CuO additive was able 

to produce hydrogen at a rate of 3.8 mL/min.gram Al, however, at higher 

temperatures of 80 °C. While MoO3  and Bi2O3 produced 3.1 and 164.2 

mL/min.gram Al, respectively.  

Chen and co-workers [93] reaffirmed this notion in a study where they milled 

aluminium with CaO and NaCl (512 rpm between 30 min to 120 min) and reacted 

the mixture with water at temperatures between 10 °C to 80 °C. They reported their 

highest yield at 30 °C which produced 100 % of theoretical hydrogen yield in 2000 

sec. They suggested the best composition of the mixture to be 65 wt % Al–25 wt 

%, CaO–10 wt % NaCl. They also suggested that the metal oxide plays a critical 

role in making the reaction possible as metal oxides in water release OH- ions when 

reacted, which increases the pH in the solution, which in turn helps to break down 

the passive layer Al2O3.  

2.8 Salt additives  

Researchers have also tried salts as milling additives. Sodium chloride (NaCl) is 

arguably the most used salt additive for milling purposes. Nonetheless, potassium 

chloride (KCl), calcium chloride (CaCl2), magnesium chloride (MgCl2) and lithium 

chloride (LiCl) have also been employed. There has been significant work 

undertaken to understand the effect of milling time and speed using salt milling 

additives [26,48,58,94]. Tousi et al. work focus only on salt milled with aluminium 

[95], while Chen et al. work focused on salts dissolved into the reaction solution 

[93].  
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 Salt solutions  

In 2006 Grosjean et al. [96] prepared Mg and Ni and MgH2 with KCl by milling 

for up to 10 hrs (speed not stated). They reported the highest yield of just 20 % in 

60 min from powders that had been milled for just 0.5 hrs in 25 °C water. However, 

when the authors reacted the same sample with 1 M KCl solution at 25 °C instead 

of water, the yield reached 100 % in 60 min. While this may look like a good 

prospect, the use of nickel in the particle composite is not desired due to concerns 

for health and its negative environmental impact. Nevertheless, they rationalised 

the observed behaviour by suggesting that the chloride ions from dissolved KCl in 

solution cause pitting corrosion which damages the protective oxide layer making 

it more reactive towards the water. This claim about the salts (Cl- ions damaging 

the oxide layer was later supported by Li et al. in [97], Chen et al. in 2013 [93] and 

Meng et al. in 2011 [98] and Zhao et al. in 2012 [99].  

Using salt as milling agent was investigated by Liu et al.[94] where various salts 

such as the salts KCl, NaCl, NiCl2, LiCl2 and MgCl2 were milled with Al-LiH 

composite. They performed the milling up to 3 hrs at 400 rpm and reacted their 

powder with water at different temperatures (25 °C to 75 °C). The authors 

discovered that KCl performed better than NaCl at high temperatures despite their 

similar chemistry. They attributed this to the solubility of the KCl salts which 

increases with temperature more than NaCl and is higher by 20 g per 100 ml of 

water (g/100 ml) at 90 °C temperature [149]. 

The salt milling additive magnesium chloride, MgCl2 and NaCl were milled in a 

composite of; Al 80 wt %, Bi 10 wt %, MgCl2 10 wt %, for 5 hrs to 20 hrs, (milling 

speed not stated) by Chen et al. [93]. It was concluded that MgCl2 performed better 

than NaCl for the H2 production due to the high ionic concentration from the 

additional Cl- ions. Chai et al. in 2014, also suggested the reason for improvement 

of hydrogen reaction being that salt enhances the conductivity of the solution when 

dissolved. In their work, cobalt (II) chloride, CoCl2 and NiCl2 were added into the 

water in which Al was reacted. It was found that increasing the concentration of 

CoCl2 enhanced the reaction compared to NiCl2. It could be due to the solubility 

CoCl2 was higher, therefore, the authors proposed that by having more Cl- ions help 
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in the by penetrating the oxide film on the surface of aluminium to promote the 

aluminium corrosion [100].  

Zhao et al. [26] in 2011, milled aluminium with different ratios of Ca and NaCl 

varying the time from 10 min to 1 hr at 512 rpm. They reported that when the 

composition was Al 73 wt %, Ca 20 wt % and NaCl 7 % favourable hydrogen yields 

were produced. The authors also reacted their sample with various salt solutions 

containing CaCl2, NaCl and MgCl2 and reported that solution containing NaCl was 

more reactive and produced 100 % yield in 1400 sec. They explained that the 

presence of high concentration of Ca2+ ions will hinder the dissolution of Ca(OH)2, 

thus preventing the production of OH- ions and hence the complete hydrolysis of 

Al. The Mg2+ on the other hand, it was suggested to react with OH- ions to form 

Mg(OH)2 by the authors which again inhibits the reactions. They proposed that 

NaCl addition can be used to greatly improve hydrogen generation of Al–Ca alloys.  

In 2016, Tousi et al. [95] prepared aluminium powder by milling potash (KCl) and 

NaCl separately with 50 wt % for up to 7 hrs at 200 rpm. The milled samples were 

reacted with hot water (80 °C) and KCl was reported to be better than NaCl for H2 

generation. To understand the reason for this behaviour, they analysed their samples 

using SEM-EXD and reported that KCl affected the aluminium particles structure 

more by being more embedded on the surface of the metal than NaCl. 

Alinejad et al. [77] in 2009, presented a similar argument that salts milled with 

aluminium particles are easily broken down and adhere to the Al particles surface. 

When the prepared powders are reacted with water, the salt particles on them are 

dissolved. As a result, a fresh surface of aluminium metal is exposed to water for 

reaction.  Wang et al. in 2014, milled NaCl and CaO together with aluminium for 

8 hrs at 450 rpm. They found promising hydrogen production by using this 

combination of salt and metal oxide milling additive. They further reported that the 

salts and metal oxide ratio had a direct effect on reaction rate and reaction 

exothermic temperature. A ratio of 10 wt % of salt and 9 wt % oxide in the mixture 

provided the highest rate of hydrogen generation [80]. Furthermore, the additives 

CaO and NaCl are attractive to use as additive due to easy availability and 

abundance to keep the process economics low. Chen and his group [93] Chen and 
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his group in 2013 had reported similar findings for the case when aluminium was 

milled together with NaCl and CaO for 2 hrs at 512 rpm. More support came from 

other works [101-103]. Where it has been generally found that NaCl produces more 

reactive powders than CaCl2 and MgCl2. Therefore, it can be concluded that NaCl 

is the most favourable salt to mill with Al and that salt additives can play a major 

role in reaction kinetics and if used in an optimised composition will contribute 

towards getting a better hydrogen yield. Though salts are immediately dissolved in 

the water solution and soon form ions, the difference when using salts as milling 

additive is that it disrupts the mechanically the barrier layer during the milling and 

leave a so-called “salt-gate” when dissolved. An already dissolved salt will not 

provide this enhancing mechanism, though they will increase both the ion 

conductivity (electrolytic effect) and provide plenty of reactive Cl- ion.  

From above review, it is concluded that salt additives can play a major role in 

reaction kinetics and if used in an optimised composition can also contribute 

towards a better hydrogen yield.  

2.9 Hydrogen reaction conditions 

For a good hydrogen yield, pure water would theoretically be the best choice for 

the reaction. However, to make hydrogen generation technology more applicable 

different types of water needs to be tested as pure deionised water is not always 

available.  

As established earlier, there are many factors that can influence the hydrogen 

reaction. These factors can be the type of solution used, temperature and pressure, 

the ratio of particles to the solution, the pH of the solution and agitation. Another 

measure of the reaction that can be used to determine what reaction conditions work 

best is the lag time. The lag-time can be defined as the time taken for hydrogen gas 

to be produced and evolve out of the solution where it is measured. There are 

possible causes for the lag; it can be associated with the time taken for water to 

hydrate the passive layer and diffuse out to reach the surface of the metal or the 

time the formed gas bubble takes to escape the particle and enter the solution to 
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finally reach where it is measured. The lag-time is used when comparing salt in 

solution versus salts as milling agent [17,104].  

Some researchers have reported aluminium hydrogen reactions to seawater. 

Seawater is usually more corrosive than pure (deionised) water as salt water is a 

good electrolyte and promoting fast corrosion and dissolved salts (in particular the 

Cl- ions) helps in damaging the protective oxide layer. This occurrence was 

recognised by Gutbier and Karl [105], they registered a patent on it using 

magnesium alloys in hydrogen generation that sea water helps in the corrosion 

process as it contains about 3.5 % salt.   

Activated Mg-Ni-Co alloy particles and seawater were studied by Zou et al. [102] 

they reported a 97.1 % hydrogen yield in 10 min reaction time. However, the 

reaction demanded very high temperatures of ~ 800 °C which makes it unattractive 

from the commercial point of view. Huang et al. [106] milled Mg with activators 

MoO2, MoO3 and MoS2 and reacted the sample with sea water at temperatures 

ranging from 25 °C and 75 °C. A hydrogen yield of 91.7 % was achieved at 

temperature 25 °C after 10 min. Activated Al particles have also been reacted with 

sea water and reported by Ma et al. in 2011. An aluminium mixture of Al–NaOH-

Na2SnO3.3H2O was milled for 1 hr at 400 rpm in a high-speed mill reached a 

hydrogen yield of 90 % only in a couple of min and at room temperature of 25 °C 

[107]. Hydrolysis process can be made faster if the passive layer is removed or 

damaged prior to the reaction with water. As stated already, this can be achieved by 

the milling, but also, the metal oxide coating facilitates as it contributes to 

increasing OH- ions which enhance the pH of the solution which in turn improves 

the reaction as was discussed previously [18].  

 Temperature and agitation  

Both temperature and pressure can be used to adjust the reaction kinetics. Many 

researchers have used hot water from 50- 80 ºC for the reaction [75,95,108,109]. 

The use of temperatures around 80 oC for optimal reaction rate has been supported 

by many groups working on hydrogen production, including Tousi et al. [95] 
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IIyukhina et al. [19], Rosenband et al. [40] and Nie et al.[110] to reference a few 

publications.  

The reaction of aluminium with water is susceptible to temperature changes seen in 

the enthalpy of the reactions that occur. Al2O3, AlO(OH) and Al(OH)3 formed on 

the aluminium particles blocking access of water molecules to reach the surface of 

the metal and must be removed for the reaction to proceed [74]. The removal or 

shedding of the formed hydroxide layer can be facilitated when agitation is 

performed during the reaction. Therefore, agitation (stirring) is another significant 

factor affecting the rate of reaction. Agitation can also be used to ensure that the all 

the reactants are properly mixed and can also improve both the mass transfer and 

heat transfer rate in the reactor vessel. Stansbury et al. [111] described how 

agitation improved the reaction of aluminium metal as it removed the hydroxide 

layer thus improving water diffusion to the metal surface. Improved hydrogen 

reaction when using agitation has also been supported by other authors [112,113]. 

Generally, it has been found that both high temperatures and agitation improve the 

reaction yields. However, in order to maintain the temperature in the reactor vessel, 

a hot plate or water bath would be needed, which is undesirable for on-demand 

hydrogen generation for commercial interest. It was also reported by Elitzur et al. 

[69] and Dupiano et al. [75]  that it is possible to react synthesised Al powder with 

at 30 °C water to produce hydrogen gas.  

 Different aqueous solutions 

This research is exploring different types of water to use in the on-demand hydrogen 

reactor. A review of typically available surplus water or wastewater was, therefore, 

done. The most commonly used water for an on-demand hydrogen generator for 

fuel cells is domestic tap water. Tap water is far from as pure as deionised water as 

it contains minerals, dissolved salts and carbonates.  

Wang et al. [92] looked into the effect of the water quality on H2 production and 

focused their attention on tap water and deionised water.  The authors that the main 

difference between the two was in their conductivity, with deionised having higher 

conductivity than tap water. They reacted their aluminium powder, prepared by 
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hand milling, with the two different types of water. They reported that deionised 

water was more reactive and produced a higher hydrogen yield than tap water, 

which they attributed to higher solubility or greater dissolving capacity of Al2O3 

layers at 25 °C than tap water. They also indicated that higher temperature of the 

water, i.e. 35 °C, was ideal for hydrogen production. 

Rainwater can also be considered as an accessible water source and if used it is 

worth remembering that rainwater often contains formed carbonic acid due to a high 

level of CO2 in the atmosphere. Other types of water to consider is wastewaters 

from industry. Effluent waters. The first to be discussed is the sucrose solution. The 

starch industry, for example, is one of the largest in the world and it uses water for 

various processes, however, surplus water is often discharged without any 

treatment. This type of wastewater may contain carbohydrates, cellulose, protein, 

and nutrients [114]. Therefore, it was decided to explore this type of wastewater. 

Fermentation would be the best choice of hydrogen generation technology to use 

for hydrogen gas generation has been a practice. In this research work, different 

carbohydrate specimens like sucrose in water. Sucrose (C12H22O11) is made up of 

glucose and fructose linked together by glycosidic bonds [115]. A solution of 

sucrose will contain molecules forming hydrogen bonds with each other. The 

rationale for investigating this is the possibility of H2 to be given off upon breakage 

of H-bonds. 

Yet another possibility worth considering is alcohol. Alcohols sold in the chemical 

market such as methanol and ethanol, either come pure (100 %) or have some water 

added to them depending on the purity. The water content from them can be tested 

for H2 generation. Other carbohydrate specimens found in wastewater examined in 

this thesis are ethanol and ethylene glycol (anti-freeze). Grosjean et al. prepared 

(Al) powder by milling Mg and MgH2 for reaction with methanol and ethanol [96]. 

They reported that hydrogen could be detected by methanol reaction and that the 

rate was higher when pure methanol was employed instead of in diluted form. The 

reaction of the sample with ethanol, on the other hand, did not produce any 

hydrogen. The results of our investigation are reported in chapter 4. 



C h a p t e r  2 .  L i t e r a t u r e  r e v i e w                                                   | 38 

 

 
 

Ethylene glycol is an organic carbohydrate which belongs to the alcohol family and 

is used as an antifreeze, e.g. it can be easily mixed with water to reduce its freezing 

point. It is believed that there will be high concentrations of antifreeze in wastewater 

in the vicinity of industries. If the water that contains antifreeze can be utilised for 

hydrogen generation purposes, it could prove to be beneficial in remote and very 

cold areas. As for sucrose solution, no literature has been found using ethylene 

glycol solutions for this type of hydrogen generation.  

Another wastewater solution that represents an interesting type of wastewater is 

urine. Human urine waste consists of 94 % water (depending on the hydration of 

the subject) and urea (CH4N2O) 10.5 billion litres urine is produced worldwide by 

humans every day and therefore, there is a plentiful supply [116]. Using urine for 

hydrogen generation has been attempted by some investigation but using an 

electrolysis route [117]. Elitzur et al. prepared Al in 2016 with LiH and reacted it 

with human urine. Urine itself was considered not to be hydrogen-producing, only 

the water. A theoretical hydrogen yield of 90 % was reached within 10 min in a 

batch reactor at ambient room condition with a flow rate of 150-700 ml/min/g Al. 

The particles for the reaction were 9 m Al-activated with 2.5 wt % LiH in the 

particle processing [116].  

2.10 Hydrogen economy  

For many years supporters of green energy have proclaimed the hydrogen economy 

will soon be a reality. Some energy experts claim that hydrogen from renewable 

energy is excessively expensive whereas other companies (like ITM in the UK) are 

proving that this technology is already competitive as producers of hydrogen for 

use in cars. For hydrogen to become a common alternative to the traditional fuels 

and power generation, its complete cost needs to be considered. Hydrogen is an 

attractive alternative to the traditional fuels and currently, the two sectors 

consuming most fuels are transportation and electricity generation [118]. Hydrogen 

has increased its usage in the transport sector, meaning that produced hydrogen 

could be transported to the end user, by a hydrogen-fuelled mean of transportation.  

In recent years, hydrogen has seen an increase in its usage in the transport sector 

and it may be that in the near future the majority means of transportation is 
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hydrogen fuelled in one way or another. This can be either by hydrogen fuel cells 

or by a combustion engine. 

In 2005, Chevrolet introduced the Equinox, a car using hydrogen a fuel travelling 

up to 320 miles on a 4.2 kg hydrogen tank [119]. In the UK, H21 (Project LHNE), 

collected data from fuel cell powered delivery vans to observe the hydrogen 

performance in 2015 [120]. The EU project CUTE (Clean Urban Transport for 

Europe) studied fuel cells aimed at public transport across Europe, notably in 

London where fuel cell buses are extensively used.  The aim of all these incentives 

is to show hydrogen as a friendly and economical fuel for the future. However, for 

this to be integrated fully into society, more refuelling stations are required.  

Currently, the BOC Group plc is developing hydrogen refuelling stations in the 

cities across Europe, especially in London UK, to facilitate vehicles running on 

hydrogen. London had three refuelling stations in 2016 and more are being 

developed [7]. Cars that run on hydrogen fuel cells are designed in such a way that 

if the surplus amount of electricity is generated, it can be fed it into the national 

grid. This concept is known as Vehicle-to-Grid (V2G) [121]. As for the economy, 

hydrogen gas production still requires a significant capital cost making it an 

expensive source of energy. Additionally, coal reforming, natural gas reforming, 

biomass gasification and electrolysis still produce greenhouse gases indirectly 

which is detrimental to the environment [122]. Various techniques have been 

adopted by engineers and scientists around the world in order to develop 

straightforward and cost-effective processes while balancing safety concerns and 

running cost.  

Making hydrogen mainstream is also challenging due to safety concerns around 

production, transportation and storage as has been stated previously. Taking the 

route of preparing Al particles to produce H2 for fuel cells, every step in the process 

requires scrutiny regarding cost so that the overall hydrogen economics can be 

evaluated [123]. Electrical energy is utilised not only to produce hydrogen but also 

to compress, liquefy, transport, transfer or store and finally to be used (finally to 

make available for use, for instance, in a portable fuel cell device. There are no 

environmental or energetic advantages in producing hydrogen from natural gas or 
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other hydrocarbons sources for portable Fuel Cells. Therefore, this research work 

evaluates how the hydrogen can be produced at a relatively low cost and by using 

cheap (and often free) water sources.  

After the production, hydrogen tends to be made into a transportable form either by 

compression or by liquefaction; both demand high energy input. To compress 1 kg 

H2 adiabatically to 200 bar would need around 15 MJ/kg. Even more, energy input 

is required in the liquefaction of hydrogen because gas needs to be cooled down to 

20 K (-253 °C) [124]. Hydrogen may also be bonded chemically to metal hydrides 

for a possible transport state and stored in metal hydride cartridges. If this form of 

storage is undertaken, then it needs to be recognised that only two grams of 

hydrogen can be stored in a small 230 g metal hydride cartridge. This makes this 

type of hydrogen packaging impractical for the purpose of this research. Also, the 

energy needed to load hydrogen in metal hydrides is more than can be recovered 

from the metal hydrides later. However, the energy cost of a delivery of hydrogen- 

metal hydrides is lower than when hydrogen is compressed at 200 bar and delivered. 

Hydrogen economy evaluation also often involves the mean of transport, either by 

trucks or ships, to where it will be used, however, it would be most likely to be 

transported via road.  As an example, a road transportation can illustrate the cost 

evaluation where a 40-tonnes truck is designed to carry a maximum load of 

hydrogen limited to only around 300 kg of hydrogen at 200 bar per truck [125]. 

This is because of the low hydrogen density consequences and the weight of the 

necessary pressure vessels and safety armatures for transporting such highly 

compressed gas. The financial cost of such transport vehicle must, therefore, be 

added together with the hydrogen production cost and the compression cost. In 

March 2017, the Government announced additional funding to support the 

development of hydrogen for transport until 2020. The “Hydrogen for Transport 

Programme” (HTP) will provide up to £ 23 m to increase the uptake of hydrogen 

fuel cell vehicles and grow the UK hydrogen refuelling infrastructure [126]. 

It can be said when reviewing the current hydrogen economy that the overall cost 

of hydrogen should be as low as possible, using as little energy as possible for the 

overall process, transport and storage. The hydrogen economics can, therefore, be 
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drastically reduced if hydrogen can be produced on-demand, avoiding the need for 

costly transport and compression. In the next chapters, these costs would be 

investigated based on the choices of starting material for particle production, the 

particle process and the necessary experimental condition. 

2.11 Chapter 2  Conclusion  

Different technologies for hydrogen production as well as reactive particle 

processes were reviewed.  For the hydrogen production, it was found that majority 

of the technologies were not green processes and not economically feasible for 

small-scale hydrogen production. The current state-of-the-art for metal-water 

reactions was reviewed and it was found that optimal hydrogen yield was often 

achieved at elevated temperatures or using expensive components in the particles 

during the reactive milling process.  Reviewing the research in reactive particle 

processing it was often suggested that intensive milling energy input was asked for 

making the particle process expensive, in addition of the costly milling additives 

such as rare-earth metals, barium oxide or expensive metal oxides or salts were 

employed. These findings explain the reasoning to balance the cost of particle 

processing with the outcome of hydrogen production to make this type of on-

demand hydrogen generation effective and economical, while still achieving high 

hydrogen yield from the activated particles.   

In the literature review, it was also found that majority published data were using 

deionised water in the reaction.  Whereas deionised water should be used for 

comparison, other more accessible and readily available waters including 

wastewater should also be tested. From the literature review it was only found a 

small contribution using tap water and using sea water but no typical abundant 

waste waters or extended description how different types of water effect the reactive 

particle's components in their reactivity for obtaining the highest hydrogen yield.  

It was concluded that reactive ball milling using cheap recycled aluminium will be 

used for this research. While using affordable and easy accessible milling additives 

such as CaO and CuO along with salts including KCl, NaCl and CaCl2 would be 

used in this research work.
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Chapter 3 Methodology  

This chapter describes the different procedures undertaken in this research 

including synthesis of the particles, particle analysis and hydrogen reactor. 

Including how the generation of hydrogen was measured and the different aqueous 

solutions used for the reaction. The details of the methodology are crucial for 

repeatability in any process. Therefore, it is necessary that it be described in a 

manner which is easy to follow. A work flowchart demonstrating the strategy of the 

experiments can be seen in Figure 3-1. The flowchart shows the simultaneous routes 

for reactive powder preparation and the solutions that will provide the hydrogen. 

 

Figure 3-1: Work flowchart of the hydrogen generation research. 

3.1 Experimental setup 

In Figure 3-2a and Figure 3-2b, schematic and photographic description of the 

hydrogen reactor set-up can be seen. The setup was designed and constructed at 

LSBU and it was kept simple for ease of moving and adjusting when necessary.
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Figure 3-2: a) Schematic showing the working principle of the hydrogen reactor and b) Photograph showing the experimental set-up.
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A Pyrex glass tube (60 ml, inner diameter: 21 mm) was used as the reaction vessel. 

A rubber stopper with 2 openings acted as a sealant for the connections. One of the 

openings in the stopper provided the exit channel for the hydrogen that was 

liberated in the reaction whereas the other opening was used to insert a 

thermocouple (k-type) connected to a digital data logger (Picotech, Model: 2204) 

in order to monitor the real-time temperature.  

 

Before the start of the reaction, the vessel was thoroughly purged with pressurised 

argon gas (an inert gas) in order to keep the concentration of oxygen in the vessel 

as low as possible. A measured amount of prepared activated aluminium powder 

(0.3 g) was added to the reactor followed by water at 25 °C, 9 ml which were added 

using a syringe. The initial temperature of the water was varied only when analysing 

how it affected the hydrogen generation. In order to observe the developed 

temperature and prevent heat energy transfer, the vessel was wrapped with an 

insulating polystyrene sheet. The mixing of water and the powder was 

accomplished by agitation using a small capsule-shaped stirrer bar (5 mm, 1 g) 

added in the reactor. The vessel rested on the magnetic stirring plate (IKA-RH- 

Basic 2) used to control the agitation speed. In most of the experiments, the stirring 

speed was set to 700 rpm. When the effect of stirring speed was analysed it varied 

between 0-1100 rpm. The size and the weight of the stirrer allowed free movement 

of particles inside the reactor. Other sizes or shapes of the stirrer bar were not 

considered in the case as they proved detrimental to the success of the reaction.    

 

The generated hydrogen gas was passed through a series of stainless steel pipes 

(internal diameter: 7 mm) with three elbow compression joints and one push-fit to 

avoid any gas leakage. To ensure that dry gas entered the gas flow meter as a 

reinforced plastic tube joint (5 cm x 3 cm) containing a desiccant (silica gel) was 

attached to a gas mass flow meter (Aalborg GFM-17). The hydrogen produced was 

recorded via a data logger connected to a PC using the relevant Pico Logger 

software with sample intervals of 1 sec. The connections to the data logger enabled 

that both the hydrogen flow rate and temperature were read and recorded 

simultaneously. For monitoring the pH changes during the reaction, a pH meter 
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(Mettler Toledo 3311) was employed and inserted into the glass reactor in separate 

experiments using different stopper arrangements and the recorded manually. In 

order to analyse the produced gas quality, a gas-tight syringe was used to collect 

the formed gas and transported to a gas analyser (gas chromatogram, GC). While it 

is acknowledged that ideally the system should have been connected directly to a 

GC for real-time/in-situ analysis, this was not possible during the course of this PhD 

due to limitations of access, i.e. the inaccessibility of GC at the premises.    

3.2 Hydrogen flow metering 

Two means to measure the rate of hydrogen generation and the total amount of 

hydrogen generated were employed; inverted column method and a gas mass flow 

meter. The gas mass flow meter had ± 0.01 ml accuracy in the flow range of 0-10 

ml/min. The gas flow meter was pre-calibrated for hydrogen gas. The principle of 

operation of the mass flowmeter is described as the gas enters the mass flow 

transducer, the flow is split out of which a small portion goes through a narrow 

capillary stainless-steel sensor tube and the other portion goes through a primary 

flow pipe. Both pipe and tube are designed to allow laminar gas flow only. They 

are also aimed at having proportional flow rates which mean that the flow rate 

measured in the small sensor tube can be converted to the total flow reading. This 

means that the flow rate is measured only in the small capillary sensor tube. This is 

done by utilising the heat capacity Cp, of the gas and by a heat transfer mechanism.  

Heat flux is introduced at two sections by precision sensor coils (35 mm apart).  

As heat is carried by the gas from the first heater coil position to the next coil, a 

temperature depended resistance differential can be detected from the gas. The 

device is a configuration that the molecular mass flow rate output signal is a 

function of the amount of heat carried by the hydrogen gas in the fluid flow. 

Sometimes inverted column was also employed to measure the amount of hydrogen 

being formed. This was done to ensure the reading with a mass flow metre was 

coherent. Error and uncertainty estimation for hydrogen generation is found in 

Appendix as well as calibration certificate for the gas flow meter (GFM-17). 
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3.3  Particle synthesis 

For the synthesis of what is called “activated particles”, which will react with water 

readily, a high-speed ball mill was used to prepare them. In Chapter 2, different ball 

milling approaches were explained as was the expected role of adding various 

additives to the milling. Since one of the research aims is to estimate the energy 

consumption used in “particle activation” and then further to balance this energy 

consumption with the production of energy-rich hydrogen, the powder synthesis 

was worked out in detail to make it both highly reactive while using minimal 

energy. Prior to the reactive milling, all powders were dried in a vacuum furnace 

(Townson and Mercer Ltd) at 25 ºC for 24 hrs to remove any excess moisture. After 

drying, the powders were kept in a desiccator inside an oxygen-free glove box 

(Saffron Scientific Alpha) purged with 99.99 % pure argon gas to ensure moisture 

and oxygen-free environment. Inside the glove box, an oxygen sensor (SYBRON 

Taylor) was placed measuring to the oxygen level with ± 0.01 accuracy.  

Aluminium powder as received from iHOD USA was made from recycled 

aluminium and therefore, was blended with different particle sizes. It was decided 

that it should be sieved and 3 different particle sizes would be separated to establish 

the effect of different particle sizes. For this purpose (Endecott Test Sieve Shaker 

E.F.L Mark II with Endecott’s Ltd) sieves BS410/1986 with size, 3-300 μm were 

employed. In literature, nano-sized particles have been mostly used 

[50,62,65,76,77,89] for production of hydrogen. All the sieves were placed in 

descending order placed on top of each other and on the topmost sieve was 300 μm 

were received aluminium powder was dispensed. The sieving process was set on 

for 48 hrs for a better homogeneous distribution. After sieving was completed and 

share distribution of particle sizes was taken into account. After all the separation 

has taken place sieves from 40 μm, 70 μm and 100 μm were selected and later 

compared to the SEM for verification. It was confirmed that from SEM analysis 

(Not displayed here) that in 40 ± 5 µm. On the other hand, for other sizes, their 

average was found to be at 75 ± 5 μm and 105 ± 5 μm, respectively. These sizes of 

particles would also provide a more cost-effective and realistic solution for keeping 

the process of hydrogen production commercially attractive. High purity aluminium 
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particles (which represent an expensive alternative) were also purchased to compare 

with recycled aluminium. Below is the list and details of the components used 

including aluminium and milling additives. 

• Aluminium recycled (99.1 wt %, sieved from 3-300 µm to achieve 40 µm, 

75 µm and 105 µm, obtained from iHOD USA). 

• Aluminium pure (99.5 wt %, Alfa Aesar, 200 mesh, Fisher Chemical). 

• Calcium oxide (99.0 wt % CaO, 65 µm, Fisher Chemical). 

• Copper oxide (99.0 wt % CuO, nanoparticles, ACROS Organics).     

• Barium oxide (90.0 wt % BaO, nanoparticles, ACROS Organics). 

• Potassium chloride (99.5 wt % KCl, 65 µm, Fisher Chemical).  

• Calcium chloride (80 wt % CaCl2, 280 µm, VWR Chemical). 

• Sodium chloride (98.0 wt % NaCl, 150 µm, Fisher Chemical). 

All above-state additives, including metal oxides and salts, were blended 

with the metal particles as 25 wt % metal oxides and 10 wt% salt. Later it was 

discovered that two combined metal oxides (CaO and CuO) and a salt blend (NaCl, 

KCl and CaCl2) was optimised to improve the hydrogen yield. 

3.4 Milling setup 

Preliminary milling conditions were investigated prior to this PhD research (not 

reported in this Thesis) where milling speeds between 200-550 rpm for 0.5-5 hrs 

were tested and evaluated by hydrogen reactions. The results provided a starting 

guideline for suitable milling conditions.  As stated already, powder preparation for 

milling was performed under anaerobic condition inside a glove box. This was done 

for two reasons; one reason was to ensure that oxygen could not come into contact 

with the newly exposed surface of the aluminium metal during the milling process, 

which would otherwise cause the Al2O3 layer to form rendering the metal 

unreactive.  The second reason was to prevent oxygen entering the glove box for 

safety. Metal balls colliding with each other during the milling process can cause a 

spark and in the presence of a combustible gas (of which oxygen is one) could 

ignite. 
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For the synthesis, the ball to powder ratio was kept at 10:1. Where 8 milling balls 

(spherical stainless-steel balls 7 mm diameter) and 3 g of aluminium powder along 

with chosen additives were placed into the 50-ml stainless steel milling jar while 

inside the glove box, see Figure 3-2.  

 

Figure 3-3: High-speed plenary milling equipment used with a) stainless steel grinding 

pot and balls; b) fixture for stainless steel pot; c) the complete device with 

programmable settings and d) stainless steel pot locked. 

The sealed assembly from the glove box was then transferred to the planetary ball 

mill device (Retsch PM-100) seen in Figure 3-3c. The total weight of the milling 

jar was adjusted with a counter balance on the milling machine station to avoid 

imbalance and rattling during high-speed milling placed in the fixture, Figure 3-3b 

and locked jar in Figure 3-3d.  

(d) 
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Different milling programmes were setup in which the rotation direction of the mill 

and the milling speeds were altered. In milling programmes, a number of brakes 

and the duration of the breaks were varied. Milling programmes details are provided 

in Table 3-1. 

Programme 1a and 1b differed in milling speed only and consisted of 1 min milling 

(set as 59 sec on the device), 30 sec breaks and change of milling rotation for 

another min, 30 sec breaks and so on until a total milling time 1 hr and 40 min. 

Programme 2 was used to test the importance (if any) of the intermediate break time 

(so-called annealing time) where the break time was set to 5 sec instead of 30 sec 

as it was for Milling Programme 1a and 1b. 

Table 3-1: Different milling programmes were used in this research. 

Milling 

Programme 

Total 

milling 

time 

Time of 

milling 

set 

Speed of 

milling 

Break 

between 

milling set 

Directions of 

milling 

1a 
1 hr and 

40 min  
59 sec  260 rpm 30 sec  

Anticlockwise/ 

Clockwise 

1b 
1 hr and 

40 min   
59 sec  520 rpm 30 sec  

Anticlockwise/ 

Clockwise 

2 
1 hr and 

40 min  
59 sec  

260/520 

rpm 
5 sec  

Anticlockwise/ 

Clockwise 

 

After each milling, the jar was cleaned and washed with a dilute alkaline solution 

(NaOH) and dried thoroughly before milling again and placed back in the oxygen-

free glove box.  The milled particles were stored in air tight containers which were 

flushed with inert argon gas. A plug-in electricity cost monitor (Maplin) monitored 

the energy consumption during milling to be used for the hydrogen economic 

evaluation. 
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3.5 Particle analysis 

The particles were analysed before and after milling by conventional material 

characterisation tools such as X-ray diffraction (XRD) and scanning electron 

microscope (SEM) with elemental analysis detection (EDX). Furthermore, same 

types of analysis were undertaken on reacted particles to examine the extent of the 

reaction between water and metal and the formation of the hydroxide layer Al(OH)3 

the by-product. The results of the reacted particle analysis were then compared with 

the hydrogen generation data to determine which additives were best suited for 

milling with aluminium for well-matched for an economical hydrogen production.  

The reacted particles from the hydrogen generation, labelled as “after reaction”, 

were collected once the reaction had stopped and no more hydrogen was produced 

and was prepared for analysis. The wet slurry in the bottom of the reactor vessel 

(glass tube) was poured into a petri dish with a filter at the bottom to prevent dried 

particles from sticking to the glass. The petri dish was then placed in a vacuum 

furnace for evaporation for 12 hrs at 24 °C. Please note all XRD and majority of 

SEM-EDX analysis were undertaken at University of Nova Gorica, Slovenia. 

 X-ray diffraction  

X-ray diffraction was used to determine the crystallinity of the particles and for 

identification of the particle material. For the reacted powder, it was used to identify 

the different crystalline structure of Al(OH)3 and see if the formed barrier layer was 

amorphous or crystalline. The X-ray diffractometer used (MiniFlex Rigaku, Cu K-

alpha, 600W tube) could perform both qualitative and quantitative analysis.   

The working principle of XRD consists of three basic elements: An X-ray tube (the 

radiation source), a sample holder where the samples are placed and an X-ray 

detector to record the response of the sample to the incoming the response of the 

sample to the incoming X-ray beam. The crystal structure information of the 

particle is then read on plots showing diffraction peaks over incoming X-ray beam. 

Different material gives different diffraction peak patterns depending on crystal 

structure and these can be identified with reference to the established XRD 
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databases. The principle of obtaining diffraction peaks can be described using the 

Braggs law [127]; 

n = 2d sin                         (3.1) 

where  is the wavelength of the incoming radiation, d is the interplanar spacing 

within the crystal, n is positive integer and theta , is the angle between the 

incoming and scattered X-ray beam, see Figure 3-4. 

 

Figure 3-4: Working principle of XRD analysis of particle materials using Bragg’s 

law [127].  

The sample was placed evenly on a dedicated glass slide with a sampled groove for 

the sample (to assure constant distance, Z value). It was then irradiated with the X-

ray source (40 kW, 15 mA, Cu source). The X-ray source was rotated to span a 2  

theta angle between 20 and 100 degrees and the reflected beam from the aluminium 

powder mixture was detected for each angle incoming angle in the detector. 

 Scanning electron microscope 

For evaluation of particle size, shape and associated elementary analysis scanning 

electron microscopy (SEM) (JSM7100f TTLS, JEOL, Japan) equipped with an 

energy dispersive X-ray spectroscopy (EDXS) detector (X-Max80, Oxford, UK) 

was employed for providing both chemical and morphological information on the 

aluminium particle mixture.  

High-resolution images of surface topography were produced using a highly-

focused, scanning (primary) electron beam. The primary electrons enter the surface 

with an energy of 0.5 – 30 kV and generate secondary electron flow of a lower 

energy. The intensity of these secondary electrons is largely governed by the surface 

topography of the sample. An image of the sample surface can thus be constructed 
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by measuring these secondary electron intensities as a function of the position of 

the scanning primary electron beam. High spatial resolution is possible because the 

primary electron beam can be focused to a very small spot (< 10 nm). The working 

principle of an SEM can be seen in Figure 3-5 where the specimen to analyse is 

placed inside a vacuum evacuated chamber and bombarded with the highly focused 

electron beam (primary electron beam) by an electron gun. 

 

Figure 3-5: Working principle of scanning electron microscopy [128]. 

The focused beam (focused via different lens systems) is scanned over the specimen 

in a series of lines and frames called a raster. The raster movement is accomplished 

by means of small coils of wire carrying the controlling current (the scan coils). The 

sample inside an SEM chamber is bombarded with a highly focused electron beam 

(order of 10nm). The sample then absorbs some electrons and some are reflected 

back depending on the type of material and these reflections are detected by the 

suitably-positioned. The low energy secondary electrons are detected by creating 

an image analysis seen on a screen. The elemental analysis was conducted by 

energy dispersive x-ray spectroscopy (EDX) used in conjunction with SEM but by 
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using an EDX detector instead. In addition to the low energy secondary electrons, 

backscattered electrons and X-rays are also generated. The intensity of these 

backscattered electrons can be correlated to the atomic number of the element. The 

EDX analyses can identify elements within a specific area (mapping) or by spot 

sampling. Hence, in the SEM-EDX both qualitative/quantitative elemental 

information and image analysis can be obtained for the activated particles. For 

mapping EDX analysis, the powder was pressed do a flat prior analysis. 

3.6 pH measurements  

Both during the reaction and when preparing different water solutions, pH 

measurements were undertaken. The potential of hydrogen, (pH), is a numeric scale 

to specify the acidity or alkalinity of an aqueous solution. It is taken as the negative 

logarithm to the base 10 of protons and as such measures the concentration of 

hydrogen ions as [115]: 

pH = -log10 [H
+]          (3.2) 

Water dissociation is an equilibrium reaction shown below as: 

H2O ⇌ H+ + OH-               △Hr = 55.8 kJ/mol     (3.3) 

As the equation 3.1 shows, water is split into positive hydrogen ions and negative 

hydroxyl ions and this is an endothermic reaction with an enthalpy change of 55.8 

kJ/mol water. In aqueous solutions, the relative concentration of the two ions need 

not be equal, i.e. the solution may be acidic or alkaline. When the concentration of 

one ion is greater in the solution, the concentration of the other decreases and can 

be described by the following relationship: 

[H+] [OH-] = 1 x 10‐14 (mol/L) 2       (3.4) 

This is known as the ionic product of water, Kw and shows that it is always equal to 

1 x 10-14 (mol/L)2 By using this relationship and by measuring the pH, the level of 

OH- ions present at any time in the reaction mixture can be monitored. This is 

described in more detail in chapter 4. 
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3.7 Ion measurements 

Inductively coupled plasma mass spectrometry (ICP-MS) is a type of mass 

spectrometry which is capable of detecting metals and several non-metals at 

concentrations at very low concentrations. First, the sample (here; various water) 

needs to be ionised with the inductively coupled plasma and then the mass 

spectrometer is used to separate and quantify those formed ions. Varian 820-MS 

was used for the different water analysis during this research work. It was employed 

to identify ions in different tap waters as, in particular, South East England and 

London, is regarded as “hard water” with a concentration of calcium carbonate, 

above 200 mg/l [129].  

 

Figure 3-6: Working principle of inductively coupled plasma mass spectrometry 

[130].  

The ICP-MS instrument can be described by following components: torch, power 

supply and load coil, sample introduction system, a mass spectrometer and 

detection system. The inductively coupled plasma is plasma that is energized 

(ionised) by inductively heating the gas with an electromagnetic coil (RF coil). The 

plasma is sustained in an “ICP torch” that consists of three concentric tubes. The 

apparatus works using an inert argon gas, which carries the sample in vapour form, 

which flows inside the concentric channels, between the two outermost tubes of the 

ICP torch. When a spark is applied to the argon flowing through the ICP torch, 

electrons are stripped off of the argon atoms, forming argon ions. The sample to 
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analyse is typically introduced into this ICP plasma as an aerosol (for example by 

a nebuliser).  

Once the sample aerosol is introduced into the ICP torch, the elements in the aerosol 

are converted first into gaseous atoms and then ionised towards the end of the 

plasma. When the elements in the sample are converted fully into ions, they are then 

brought into (nickel CRI cones) and separated based on their mass to charge ratio. 

After this, they are transported towards detector ETP AF250 Discrete Dynode 

Electron Multiplier (DDEM) detects the ions and sends signals to the recorder on 

that information [130]. This analysis was carried out at LSBU in the Applied 

Science Department. 

3.8 Gas chromatography 

The analysis of the hydrogen gas was an important feature of this research work in 

order to determine its quality. A high purity hydrogen gas (99.99 %) is desired for 

an optimal functioning fuel cell. Therefore, the hydrogen gas formed during the 

reaction was collected and examined by the gas chromatography (GC). Gas 

chromatography is one of the most efficient methods for gas analysis. It can separate 

and identify a variety of different gases providing both quantitative and qualitative 

information.  

 

 Figure 3-7: Working principle of Gas Chromatography [131]. 
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The working principle of a GC can be seen in Figure 3-7. Gas samples are injected 

into the GC instrument via an injection port and are heated to temperatures of 250 

°C inside the GC oven.  

Owing to various thermal conductivities, different gases expand at different rates 

and are then transported towards the thermal conductivity detector, (TCD) detector. 

The thermal conductivity detector uses heating coils and two tubes running parallel 

to each other. Through one tube, a pure carrier gas (usually Helium) is passed and 

the other tube is used to pass the analyte of interest mixed with the carrier gas. The 

coils in each tube are heated by passing current through them and when a gas with 

high conductivity, e.g. He or H2 is passed through it, it takes heat away from it, thus 

lowering the temperature of the coil. The resistance of the wire is temperature 

dependent and goes down as the temperature is lowered. As the carrier gas such as 

He is highly conducting, it will lower the resistance of the wire in the reference 

tube. When mixed with an analyte, the thermal conductivity of the mixed gas will 

usually be lowered and the coil temperature and resistance will rise. A TCD will 

sense the change in the resistance of coils in the column with effluent and will 

compare it to a reference flow of carrier gas [131]. The result of a GC experiment 

is a gas chromatogram which is a plot of peaks against time. The time is related to 

the how long a substance takes to pass through the column. This retention time, RT 

for any substance can be compared with a standard reference data to help identify 

it. The height of the peaks represents the concentration of the species. 

The gas analysis in this research work was carried out using a gas chromatograph 

(TRACE 1310 Gas Chromatograph, Thermo Scientific) equipped with a TCD 

(Instant Connect Thermal Conductivity Detector, Thermo Scientific™) for 

specimen analysis and a column (Trace plot TG-Bond M sieve 5A) of approximate 

dimensions: 30 m x 0.53 mm x 50 µm for separation. The 5A molecular sieve for 

the column was chosen to provide good separation of light gas peaks and well-

defined peaks. For example, the Trace Plot column is designed to deactivate CO 

peak tails, making their detection clearer, if present. For manual injection of the 

gas, a dedicated GC syringe (10 µl, Hamilton™ 700 tight syringes) was used. 9 µl, 

Gas samples are injected into the GC where the injection port temperature was set 
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at 250 ºC and the thermal conducting detector at 200 ºC. The oven temperature 

where the column was located was kept constant at 32 ºC and 35 ºC on different 

occasions for 10 min for calibration purposes and later at 35 ºC for the same amount 

of time for most of the gas analysis. Argon gas was initially employed as a carrier 

gas for calibration. Nevertheless, it had some errors associated with retention times 

of the gases including for certain unknown reason, hydrogen was not detected and 

argon peaks were visible. Therefore, to eliminate any additional errors Helium gas 

was employed as a carrier gas and different high purity gas samples (used as 

standards) were used for calibration of the GC instrument. Each gas was injected at 

least 3 times to establish the protocol as listed in Table 3-2. The calibration sheets 

from Fisher Scientific were also consulted. 

The retention times of gases eluting from the column at 25 °C and at 35 °C were 

recorded. Three different types of standards were prepared for the hydrogen gas. 

One using the BOC gas and other two were prepared from the reaction of aluminium 

with HCl and NaOH as shown in the equations below. However, the oven for these 

two standards was set to 35 °C. 

Al + NaOH + H2O  NaAlO2 + 1.5H2        (3.5) 

2Al + 6HCl  2AlCl3 + 3H2             (3.6) 

Table 3-2: Gases used for creating standards. 

Gases Purity Supplier 

Hydrogen (H2) analytical grade BOC 

Nitrogen (N2) 
analytical grade BOC 

Oxygen (O2) 
analytical grade BOC 

Carbon Dioxide (CO2) 
analytical grade BOC 

Argon (Ar) 
analytical grade BOC 

 

Gases obtained from BOC and from HCl and NaOH were injected into the GC using 

a gas-tight syringe. The data collected was sent to the PC equipped with the 

software (Chromeleon™ 7.2) for analysis and stored. Afterwards, the gas to be 
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analysed from different H2 generation reactions was collected after an hour of 

reaction in a sealed gas syringe that had been purged with argon and injected into 

GC. The results of the measurement will be reported in chapter 4 of this thesis and 

discussed therein. The possible impurity gases to find in the hydrogen generation 

reactions were assumed to be the atmospheric gases found in the air, i.e. Oxygen, 

carbon dioxide, carbon monoxide, nitrogen, helium or argon might be present in the 

results.  

3.9 Aqueous solution preparation 

Part of this research was to investigate different types of water and their effect on 

the hydrogen generation. The first types of water investigated were readily available 

clean water such as deionised water and tap water. Tap water was selected because 

an on-demand hydrogen generation for power fuel cell is more likely to use this 

type of water rather than costlier deionised water. Furthermore, testing various 

types of water would help to observe the effect of dissolved ions and if they have 

any effect on hydrogen generation.  

Subsequently, different pH variations of water were tested which was executed by 

using various concentrations of HCl for the acidic solution and NaOH for the 

alkaline solutions. Finally, more complex molecules found in the typical 

wastewater were tested, such as ethanol, ethylene glycol, sucrose and urea. Below 

is a list of the chemicals and waters used for the aqueous solution study. To obtain 

pH values below the natural value of 7, hydrochloric acid was dissolved in 

deionised water until reaching a pH of 3 and 5. For pH values above 7, sodium 

hydroxide was dissolved in deionised water until pH of 9 and 11 was reached. 

Please note all the concentrations stated below were prepared in 1000 ml of 

deionised water. 

• Ethanol (C2H6O, Mw = 46.06 g/mol) concentrations were prepared by 

mixing 99.5 % pure ethanol with deionised water to 12.5 g (0.27 M), 18.9 g 

(0.41 M), 25.0 g (0.54 M) and 31.32 g (0.68 M). 
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• Different concentrations of sucrose (C12H22O11, Mw = 342.3 g/mol) 

solutions were made by dissolving sucrose in deionised water to 3.1 g (0.009 

M), 5 g (0.0145 M) and 7.5 g (0.021 M).  

 

• Anti-freeze is a good example of surplus water that may be used for an on-

demand hydrogen generation. The main component in antifreeze is ethylene 

glycol in the commercial product. Therefore, different concentrations of 

ethylene glycol were prepared and compared with a bought anti-freeze 

product. Ethylene glycol (C2H6O2, Mw = 62.07 g/mol) powder was mixed 

with deionised water to make the different concentrations of 13.1 g (0.21 

M), 31.7 g (0.51 M) and 47.8 g (0.77 M).  

• For the urea solution, the ingredients usually found in the human urine were 

prepared using the recipe reported by Putnam [132]. Urea (CH4N2O, Mw = 

60.05 g/mol) powder was mixed with deionised water to make solutions of 

concentrations 0.66 g (0.101 M), 0.9 g (0.15 M) and 3.5 g (0.05 M). As the 

concentration was increased, the salts weight percentage, i.e. NaCl and KCl 

wt % were also increased and were dissolved in the urea solution to 

represent the actual levels of human urine. Once the mixing had finished the 

beaker in which the solutions were kept were tightly sealed and stored in an 

inert atmosphere at 17 °C to avoid any oxidation and ammonia formation. 

3.10 Hydrogen yield 

The reaction setup was adequate for measuring the efficiency of hydrogen gas 

generation at a small and medium scale, however, due to a size of the glass reactor 

vessel and taking health and safety into consideration. It was decided that only 0.3 

g activated aluminium powder would be used for each experiment in 9 ml of water.  

For the hydrogen yield calculation, it was then assumed that only the metal 

aluminium was taking part of the hydrogen production and none of the milling 

additives. It was further assumed that in these temperature regimes used here 

following stoichiometric reaction is the most dominating. 

Al + 3H2O    Al(OH)3 + 1.5 H2          (3.7) 
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Equation 3.7, shows that for every mole of Al reacted 1.5 times more moles of H2 

is produced. Based on this information hydrogen yield from 0.3 g of activated 

aluminium can be calculated. It has to be reminded again that activated aluminium 

contains only 65 % of the Al. Therefore, 0.65 * 0.3 g = 0.195 g Al. In 0.3 g of 

activated aluminium, only 0.195 g is pure Al, which corresponds to 0.195 g / 

(26.981 g/mole) = 0.007 moles Al.  If a 100 % hydrogen yield is achieved it would, 

therefore, correspond to 1.5 * 0.007227 = 0.010 moles of produced H2. 

To estimate the volume of 0.010 moles of hydrogen, the Ideal Gas Law [133] can 

be used as hydrogen is a small molecule and the gas is in ambient conditions. 

Ideal Gas Law:   PV =nRT         (3.8) 

Where P (bar) is the pressure of the gas, V (ml) is the volume of the gas, n is the 

amount in moles, R (83.14 cm3 K−1) is the universal, gas constant and T is the 

absolute temperature of the gas. 

The volume can then be calculated as  

Assuming temperature of water at 20 °C = 293.15 K, 1 atm pressure and R constant 

= 83.14 cm3/K 

V = 
0.010840 ∗ 293.15 x 83.14

1
=  264 cm3 (ml) of hydrogen gas. 

Majority of the reactions produced the most of hydrogen gas possible within 3 hrs 

(10000 sec).  Since only 0.3 g of activated aluminium was used the total hydrogen 

possible was 264 ml~260 ml (depending on temperature) as shown above.  A few 

reactions data were terminated just under 17 min (1000 sec) as a large part of the 

initial reaction kinetics majority takes place within this timescale and could be 

compared with similar to published data [67,104]. 

3.11 Volume of water  

Based on to the stoichiometry, it was calculated that 9 ml of water which was used 

for each experiment are adequate for producing at least 5 litres of hydrogen gas. 

Nevertheless, only a maximum of 260 ml of gas was expected based on the yield 

calculations shown above. This extra volume of water would provide a cooling 

effect and avoid any temperature surge during the exothermic reaction.  
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3.12 Chapter 3  Summary  

The experimental set-up is described including all the components used in the ball 

milling, GFM, XRD, SEM, ICP and GC and their basic principles are also defined. 

All the chemicals and solvents used are also labelled and their respective 

preparation techniques are given. It was concluded that milling protocols would be 

used for milling and milling will be performed at 260 rpm and 520 rpm for a 

maximum of 3 hrs using 3 g of the powder mixture in which 65 wt % was pure 

aluminium, 25 wt % was metal oxides and 10 wt % was salt. For reactions, only 9 

ml of water was used with 0.3 g of activated aluminium.  
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Chapter 4 Results and discussion  
 

This chapter is divided into three segments. At first, this chapter covers metal 

particle synthesis using different additives including metal oxides (MO) and salts 

and their respective hydrogen generation using deionised water at 25 ºC and stirring 

speed of 700 rpm (section A). The second segment reviews the impact of various 

aqueous solutions such as different water types, various dissolved molecules and 

ions with a focus to represent typical industrial wastewater (section B). The third 

and the final section (section C) briefly provide an economic evaluation of the 

hydrogen generation. It has been suggested that the necessary reactive milling (by 

high-speed ball mill) should be performed at either at high speeds (rpm) for a short 

period or for an extended period at reasonable speeds to produce good aluminium 

particles that it may be used to generate hydrogen with high yields and fast reaction 

rates.  

It was noted in the literature [18,26,41,45,54,66,80,134-136] that authors of these 

publications have suggested milling procedures are often associated with an 

unfavourably high energy investment, see literature review section for more details. 

Therefore, as mentioned before, the focus of this research was to establish an 

optimised particle processing scheme which would aim to reduce the overall energy 

investment and at the same time achieve a high-quality synthesis of the Al metal 

particles that can be used to generate high hydrogen yield in a reasonable reaction 

time span. Reduced energy investment will further result in a greener process and 

be more cost-effective making this technology more attractive for commercial 

interest. In the next section, particle synthesis is discussed. Aluminium powder was 

synthesised using ball milling machine with salt and metal oxide additives. 

Different milling parameters were tested in order to measure the effect that it has 

on synthesised particles and these are discussed below in sections. 

A) Particle synthesis  

B) The effect upon hydrogen generation due to the varied solutions 

C) Economical evaluation of the research   
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4.1 Section A   Particle synthesis  

As received recycled aluminium particles and after sieving, 40 µm, 75 µm and 105 

µm were blended with metal oxides and the salt additive for conducting a variety 

of different studies, see chapter 3 for more details. 

 Effect of milling time and speed   

An investigation was conducted to improve the understanding of the effect of 

varying the milling speed and length (time). Different reactions and particle process 

parameters were explored. Here for this study, only Al 40 µm sized particles were 

employed because they will provide a better reaction due to their larger surface area. 

Samples were milled at 260 rpm or 520 rpm, for durations of  1.1, 1.77 or 2.4 hrs 

and then reacted with deionised water.  

 

Figure 4-1: Hydrogen flow rate over reaction time using aluminium based powder 

milled at 260 rpm for 1.1, 1.77, 2.4 hrs. 

Comparing the hydrogen flow rate in Figure 4-1 and Figure 4-2 (observe different 

y-axis scale), a significant difference can be seen between hydrogen production 

when using the two different milling speeds. Using a speed of 260 rpm appears to 

result in a favourable process that shows hydrogen generation is still ongoing and 

even increasing in some cases after 1000 sec. Whereas, In Figure 4-2 for the 520 

rpm, the generation rate shows a rapid decline with only 0.005 ml/sec after 600 sec 

reaction time. It was established that the different milling times were also seen to 

affect hydrogen flow rate regardless of the speed, however, the change was 
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negligible when using 520 rpm. The in-depth analysis of this occurrence will be 

discussed later. 

 

Figure 4-2: Hydrogen flow rate over reaction time using aluminium based powder 

milled at 520 rpm for 1.1, 1.77, 2.4 hrs. 

Aluminium reacts with water in an exothermic reaction to produce hydrogen as 

shown in the equation below.  

2Al + 6H2O  2Al(OH) 3 + 3H2         ΔHr = -280 kJ/mol      (4.1) 

Therefore, to understand the reaction kinetics it is essential that its temperature 

should always be taken into account. Figure 4-3, shows reaction temperatures, 

while in Figure 4-4 hydrogen production results of both sets of milling speeds can 

be compared. All experiments started at 25 ºC and ambient condition in this study. 

One can see in Figure 4-4, from the powder prepared from 260 rpm, when it was 

reacted with deionised water hydrogen generation occurs progressively across the 

whole 1000 sec and was still ongoing at 10000 sec regardless of milling durations. 

The hydrolysis reaction is exothermic, therefore, production volumes can be linked 

with the reaction temperatures as observed in Figure 4-3. The volume of the H2 (at 

1 atm) for 260 rpm were; 220 ml, 170 ml and 230 ml for the 1.1, 1.77 and 2.4 hrs, 

respectively. Corresponding to 85 %, 65 % and 88 % hydrogen yield, respectively.  
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Results for 520 rpm showed no progressive hydrogen generation and after 1000 sec 

(only ~13 ml H2 was generated), meaning that after 10000 sec no further H2 would 

be produced. As with the results for 260 rpm, the 520 rpm reaction can be analysed 

with respect to reaction mass temperature change. Unlike for the 260 rpm, there is 

no significant increase in the temperature after 1000 sec (all three milled samples 

at 520 rpm only rose from 25 ºC to ~ 31 ºC). The reason for this will be explained 

further, and discussed together with scanning electron microscope images, later in 

this chapter.   

 

Figure 4-3: Exothermic reaction temperature plot over reaction time using 

aluminium based powder milled at 520 rpm and 260 rpm for 1.1, 1.77, 2.4 hrs. 

 

Figure 4-4: Volume of generated hydrogen over reaction time for the two milling 

speeds over different milling times. Hydrogen volume is normalised to the mass of 

aluminium in the particle used as (ml/g Al). 
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It was noted that for 1.1 and 2.4 hrs milling using the lower speed showed better 

hydrogen generation than when 1.77 hrs milling was used. The test was repeated 

several times, but no further explanation of this deviation was established. 

However, in the 1.77 hrs test, it is possible different particle deformations are 

created. Effect of milling on the particles will be discussed further later in the thesis.  

 Comparison of different milling programmes 

In this study, three milling programmes were compared for their effects on 

aluminium particles and hydrogen production. Similar to previous study all the 

compositions of the additives (Al 65 wt %, MO 25 wt %, Salt 10 wt %) including 

particle aluminium particles size, i.e. 40 µm were kept constant. Milling 

programmes include: 

• Milling Programme 1a (30 sec intermediate break time) with a milling speed 

of 260 rpm. 

• Milling Programme 1b (30 sec intermediate break time) with a milling speed 

of 520 rpm 

• Milling Programme 2 (5 sec intermediate break time) with a milling speed 

of 260. 

 

Figure 4-5: Comparison of the hydrogen generation effect when using different break-

time and speed used in different milling programmes. 
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As seen in Figure 4-5, there is a striking difference in hydrogen production between 

the three different Milling Programmes. Milling Programme 2 produces far less 

hydrogen (total of 80 ml H2, yield of 30 %) after 10000 sec compared with Milling 

Programme 1a (220 ml H2, yield 85 %). However, Milling Programme1b produced 

the lowest volume with only 13 ml H2 (H2 yield of 5 %).  

Two reasons can be highlighted to explain the difference in the yield produced by 

these three milling programmes. One reason is that due to intensive energy 

investment the particles have been milled to a degree making the aluminium particle 

defective. The last reason can be said to be related to an insufficient break in the 

milling, due to the metallic characteristics. During high-speed milling method, a 

significant amount of kinetic energy is introduced into the milling jar.  Therefore, a 

significant heat is built up inside the milling jar. The extent of the break time allows 

the particles to cool down from the heat generated during the milling. The heat 

generated in the milling jar is a direct result of the collision of the balls both between 

themselves, colliding with the wall of the milling jar, and friction between additives 

and the aluminium particles may also contribute towards generating additional heat.  

The heat built up in the milling jar will be dissipated during the milling breaks and 

then heat will be built up again during next milling segment. The continuous 

expanding and shrinking mechanism results in elastic and plastic deformations, 

causing stress to the aluminium metal.  

This deformation can explain the differences in the hydrogen generation. Most 

researchers expose their aluminium synthesised powders to very high temperatures 

of excess 300 °C after milling [73,104,137] to change the characteristics of their 

prepared powder [41,138]. However, it was not practised during this research to 

keep the synthesis process cost-effective and environmentally friendly. It is 

important here to highlight the fact that the ball milling machine used in this 

research has a cooling fan installed in the milling chamber outside the jar and helped 

to cool the milling jar. The total milling time for Milling Programme 1a and 1b was 

in 1 hr 40 min (100 min). Due to the difference in break-time, the cumulative 

milling time for Milling Programme 1a and 1b was 1.1 hrs and 1.7 hrs for Milling 
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Programme 2. Thus, the milling machine was stationary for 34 min for Milling 

Programme 1a and 1b and only 8 min for Programme 2.  

This means that the total energy consumption using Milling Programme 1b is 

greater than using Milling Programme 1a and Milling Programme 2, indicating that 

it had the highest processing cost. In addition, aluminium powder produced from it 

failed to produce optimal hydrogen gas yield. 

 Effect of additives on milling  

The effect of adding additives to the metal powder during milling was investigated 

to observe its influence on the particle synthesis and overall hydrogen production. 

Milling aluminium metal powder without any additives results in large 

agglomerates (collect or form a mass or group) as shown in Figure 4-6. When 

aluminium was placed in water with an additive such as metal oxide and salt, no 

reaction was observed to give off hydrogen whether aluminium was milled or non-

milled. Likewise, when the non-milled Al sample (as-received) with no additives 

was introduced to water, it did not produce any hydrogen either at room 

temperature. From the literature review presented in chapter 2, it was concluded 

that additives including metal oxides and salts would be beneficial for breaking 

down barrier layers on Al particles. These additives will also help in changing the 

morphology of the particles during the milling.  

 

Figure 4-6: Particle size change with milling with and without additives. From right 

to left: aluminium powder non-milled, milled no-additives aluminium and aluminium 

powder milled with additives (metal oxide and salt). 
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4.1.3.1 Metal oxides additives 

Aluminium alone can theoretically react with water to produce H2, but, this reaction 

is hard to drive in pure water at ambient conditions for reasons that have been 

mentioned previously. Adding additives can help to overcome this obstacle and an 

in-depth investigation of them is, therefore, required. This is due to the protective 

layer formed on the metal surface; Al2O3 and then the Al(OH)3 after that when in 

contact with water.  

Activated aluminium used in this work contained 25 wt % metal oxide (MO) and 

10 wt % salt. Chen et al. 2010, used the same composition. They investigate 

different additive ratios and found using a composition of (Al 65 wt %, MO 25 wt 

%, Salt 10 wt %) the highest H2 yield. However, they applied external heat [93,104] 

to increase the starting reaction temperature to drive the reaction but failed to justify 

the reasons as to of why this ratio worked best [80,140].  

As with investigations on milling time, speed and break intervals in the previous 

segments, this study provided background to decide the most suitable metal oxides 

and salts to use in later millings. Inspiration was taken from Chen et al. 2012, and 

it was decided that the weight percentage of the component would be 10 wt % for 

salt and 25 wt % for metal oxides component. The selected metal oxides for this the 

study were Barium oxide (BaO), Calcium oxide (CaO) and Copper oxide (CuO), 

milled with Salt (NaCl) as shown in Table 4-1. The powders were milled using 

Milling Programme 1b (520 rpm mill speed for 1.1 hrs and 2.4 hrs, as was described 

in Chapter 3). A 0.3 g milled powder was used together with 9 ml deionised water 

with starting temperature of 25 °C. 

Table 4-1: Powder composition with different metal oxide additives. 

Powder composition (wt %) 

Al 65 %, BaO 25 %, Salt 10 % 

Al 65 %, CaO 25 %, Salt 10 % 

Al 65 %, CuO 25 %, Salt 10 % 
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In Figure 4-7a and b, it can be seen when using BaO, the hydrogen gas was 

produced instantly and generated a total of 12 ml H2 in 1000 sec (corresponding to 

only 4 % H2 yield). Whereas, for CaO and CuO, diminishes after 600 and 400 sec 

for, respectively. Overall, BaO additive appeared more reactive and extended the 

reaction time when compared to than the other metal oxides. After the reaction, the 

sample mixture was re-milled for 2.4 hrs using the programme 1b protocol and the 

test was performed again, the result of which is shown in Figure 4-8. Once again 

BaO showed a more favourable reaction compared with CaO and CuO. Also after 

1000 sec 17 ml, H2 was produced after the 2.4 hrs milling compared with 12 ml for 

the 1.1 hrs, showing that milling time does affect the hydrogen generation positively 

when BaO was used. However, for the CaO and CuO, no improvement was 

recorded despite several repeats of the experiments.   

However, one should be cautious as the 1.3 hrs extra milling would require far more 

energy input compared with the small gain (of a few millilitres) in the liberated 

hydrogen and is thus not very useful. The improved hydrogen generation when 

using BaO as the metal oxide additive can be explained by understanding the 

reaction mechanism between BaO and water. When BaO is mixed with water, it 

reacts and forms barium hydroxide Ba(OH)2 as: 

BaO + H2O  Ba(OH)2                                             (4.2)  

The formed Ba(OH)2 is dissociated in water into Ba2+ ions and OH- ions and 

therefore, an increase in pH occurs.  

Ba(OH)2    Ba2+ + 2OH-                                            (4.3) 

As already stated, when the reactive Al metal is exposed to air and water, a layer of 

Al2O3 is formed which is highly hydrophilic and form a hydroxyl surface layer, 

Al2O3–OH as; 

Al2O3 + H2O   Al2O3–OH                                                (4.4) 

The increased pH formed by the dissociated Ba(OH)2 may promote the dissociation 

of the Al(OH)3 layer and therefore, increase the possibility of water diffusion to 

reach the metal Al surface and as a result, more hydrogen can be produced [19]. In 

the above studies, the salt fraction in the particle composition was kept constant for 

the three batches. Different metal oxides used displayed a huge variation in the 
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reaction rate. Despite not having a very high yield after 1000 sec, the rate of reaction 

reflects the reactivity of the particle composition. Regardless of Milling Programme 

and time used, BaO always showed the highest reactivity, which was explained by 

its ability to increase pH in the water solution. While BaO showed high reactivity, 

this metal oxide was not pursued because of its relatively high price which is 

deviating from the aim of the research. 

 

Figure 4-7: Effect of metal oxide additives seen; a) hydrogen flow rate b) accumulated 

a volume of hydrogen for powers milled 520 rpm/ 1.1 hrs. 

A comparison of the metal oxide cost/kg can be made from a price estimation 

acquired from Fisher Chemicals [141] and is as follows: BaO = £ 345/kg,               

CaO = £ 77/kg and CuO = £ 179/kg.  As stated many times before, it is important 

that the hydrogen economics is kept commercially attractive. Therefore, selection 
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of the raw materials was given extra attention. As mentioned already, the cost of 

BaO per kilogram is much more than the cost of Cao and CuO per kg combined, 

which was a major factor to consider the other metal oxides. Furthermore, from the 

safety point of view, both CaO and CuO are much less toxic than BaO. Moreover, 

CaO can be produced from recycling eggshells and other cheap methods and 

therefore, is economically beneficial.  

 

Figure 4-8: Effect of metal oxide additives seen; a) hydrogen flow rate b) accumulated 

a volume of hydrogen for powers milled 520 rpm/ 2.4 hrs. 

To further analyse the role of the metal oxide additives in the overall reaction, an 

experiment was performed combining the above metal oxide additives. To focus on 

the line of the subsequent research, only the CaO and CuO are described below. It 
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was decided that CaO-CuO would be milled together with 50-50 ratio, but the total 

weight % was kept to 25 % of the total particle composition. Once prepared it was 

compared with the powders which only contained a single metal oxide, i.e. CaO 

and CuO.  For this study, all the powders were milled using Milling Programme 1b 

(using 520 rpm). As stated above that, this segment is providing background to 

explain the reasoning for the selection of additives, additionally, any effect caused 

by the additives would be the same under different milling programmes. From 

Figure 4-9, it can be seen that when the two metal oxides, i.e. CaO and CuO are 

combined in a 50-50 ratio, there was more of an immediate, albeit slower rise in the 

generation of H2 whereas there is a delay in production of H2 when CaO and CuO 

are used separately in the mixture. CuO was also observed to produce less volume 

of hydrogen.  

For the combined metal oxides, a total of 11 ml hydrogen was produced after 1000 

sec which is comparable to the previous use of BaO additive, seen in Figure 4-7a, 

demonstrating that a combined metal oxide additive of two cheaper alternatives can 

be investigated further for an improved hydrogen economics. The same experiment 

of the metal oxide effect of combining the metal oxide was conducted using longer 

milling time of 2.4 hrs. In Figure 4-10, the combined metal oxides produced 13 ml 

hydrogen after 1000 sec while the CaO and CuO produced only 6 ml and 5 ml, 

respectively. In addition, it was noted that the high reaction rate seen previously for 

the CaO sample when it was milled for 1.1 hrs had also been affected, with it, 

resulting in an inferior hydrogen reaction. Although numerous research has been 

conducted using CaO as a milling additive with aluminium particles [13,80,142], it 

has its drawbacks for generating H2  as these powders are aimed at portable fuel cell 

devices, the rapid exothermic reaction would increase the reactor vessel 

temperature towards water evaporation point. Water reacts with CaO strongly 

exothermically, see equations 4.6 below, which will add heat to the water-

aluminium exothermic reaction. 

For practical reasons, this water evaporation risk should be avoided as it could lead 

to damaging the on-demand fuel cell. The presence of water vapour inside the fuel 

cell causes the voltage to drop decreasing active surface exchange between the 
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gases resulting in current density which in result causes the temperature to increase 

leading to damage of membrane [143].  

 

Figure 4-9: Hydrogen generation when combining metal oxide additives in the 

particle process compared with each metal oxide separately when milled using Milling 

Programme 1a for 1.1 hrs. 

 

Figure 4-10: The hydrogen generation effect when combining metal oxide additives 

in the particle process compared with each metal oxide separately when milled using 

Milling Programme 1a for 2.4 hrs. 

Additionally, the increased temperature inside the reactor would promote the 

production of an Al(OH)3 with different morphology, which slows down the 

hydrogen reaction [109]. Also, CaO addition may lead to raised pH levels that could 

be corrosive to the metal piping and reactor vessel. To provide more control of the 

rapid reaction kinetics and its consequences, CuO was used together with CaO in 

the milling process. By using these two metal oxides, a new reaction occurs which 



C h a p t e r  4 .  R e s u l t s  a n d  d i s c u s s i o n               P a g e  | 75         

 
 

 
 

helps with the objective of keeping a controlled fuel-cell. One plausible explanation 

as to why this helps could be that when milling CaO and CuO together with the salt 

and Al in a high-speed oxygen free reactive milling procedure, there will be 

sufficient kinetic energy input to reduce the metal oxides to metal such as: 

Cu+2  + 2Al   Cu + Al2O3                                               (4.5) 

For verification of possible reduction of Cu(II) in an oxygen-free milling jar, only 

aluminium and CuO were milled, however, for an extended milling time of 20 hrs 

to improve the sensitivity of the analytical results. The milled sample was then 

analysed by XRD as shown in Figure  4-11, XRD was used to study the effect of 

the prolonged milling in aluminium lattice and orientation of crystallites.  

 

Figure 4-11: XRD results of prolonged milling of CuO and Al powder in the oxygen-

free environment. 

From the below XRD plot, it can be seen that sample produced peaks at different 

intensities and from all the peaks, the one at 37 ° indicates the formation of Al2Cu. 

Furthermore, on the XRD analysis, there is no detectable metal Cu peak was 

observed. This alloy formation reaction was triggered by the mechanical energy 

during high-intensity milling. CuO reacted with Al and formed the alloy Al2Cu. 

During the milling process, the powders are subjected to intense forces inside the 

milling jar in an inert atmosphere. The collision and fractures due to the collision 

of the metallic balls produce a substantial amount of heat. If the metal oxides, i.e. 

CuO is subjected to prolonged milling, it can result in reacting with aluminium 
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while being milled. XRD result provides support to that claim and Al2Cu was 

formed. Cu will be in in the metallic state, not an ionic state like in CuO.  

It cannot be verified that if any possible metal formations from milling could be 

taking part of a galvanic reaction while the milling salts are dissolved in water. Such 

galvanic reaction would most likely add to some kind of pitting corrosion of the 

Al2O3 layer.   

4.1.3.1.1 Metal oxide ratio 

To further explore the increased hydrogen yield when using combined metal oxide 

additives, different ratios of the metal oxides were tested. The hydrogen flow rate 

produced for samples with CuO: CaO ratio corresponding to 65 wt %: 35 wt % 

(sample 65-35) was compared to 50 wt % Cu and 50 wt % Ca (sample 50-50), as 

seen in Figure 4-12. Sample 50-50 displayed a higher flow rate than sample 65-35. 

This was sometimes almost twice as high, e.g. at 1000 sec, there is a rate of 0.04 

ml/s for sample 50-50 versus 0.02 ml/s for sample 65-35.  

The difference in volumes and flow rates between them can also be seen in Figure 

-4-12, where generated hydrogen volume on the right-hand y-axis, where the 

sample 50-50 produced 220 ml (85 % H2 yield) after 10000 sec compared with 140 

ml (53 % H2 yield) for sample 65-35. In both cases, the reaction was allowed to 

continue running beyond 10000 sec shown in the figure (Not displayed in the plot). 

As stated above, the increased pH was one of the key reasons enabling the reaction 

to take place, the influence of pH by combined metal oxides must, therefore, be 

considered. Figure 4-13 shows the pH during the first 1000 sec of a reaction. 

In Figure 4-13, it can be seen that as deionised water (pH 7) comes into contact with 

the powder its pH is raised to a pH of 12 within 100 sec for sample 50-50 and to a 

pH of 10.5 for the sample 65-35. This indicates that the aqueous solution becomes 

alkaline, i.e. more OH- ions are present in the solution than before. It is known that 

dissolved OH- ions will react with the passive oxide layer, Al2O3, on the aluminium 

particles and this is the main reason KOH is often added to promote the Al + H2O 

hydrogen generation reaction.  
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Figure 4-12: Hydrogen generation comparison when changing the CaO: CuO ratio 

additives. Hydrogen flow rate (y-axis to the left) and generated hydrogen volume (y-

axis to the right). 

 

Figure 4-13: The pH variation within the first 1000 sec reaction time when comparing 

metal oxide ratio samples 65-35 and 50-50. 

 

It should be noted here that KOH is another expensive component, especially when 

higher purity KOH is used which would be detrimental to the hydrogen economics 

as it costs £1100 per kg [141]. Referring to the pH change, here it is important to 

emphasise that simultaneous reactions are taking place with CuO and CaO in water. 

The proposed mechanism is presented below, is also suggested by Wang et al. [72]; 

however, the case of CaO will be discussed first. As a CaO, it is noticed that it reacts 

with water to form a solid calcium hydroxide as  : 

CaO + H2O    Ca(OH)2 (s)     Hr = - 64.8 kJ/mol                 (4.6) 
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The Ca(OH)2 will dissociates in the presence of water as: 

                      Ca(OH)2 (aq) ⇌ Ca2+ + 2OH-      Hr = -16.64 kJ/mol                   (4.7) 

Ca(OH)2 dissociation in water results in an increased concentration of OH- ions 

leading to increased pH as was shown in Figure 4-14. The solution with high pH 

reacts with the thin oxide film Al2O3. Despite only being a few nanometres thick 

the oxide film is adequate to prevent aluminium from reacting with water to form 

H2 [50]. Although, milling the powder with the additives most likely does damage 

the film, a part of the film remains. When the alkaline solution reacts with the thin 

film, it hydrates it and potentially forms a hydrophilic layer of aluminium hydroxide 

oxide, also known as aluminium Oxyhydroxide (boehmite γ-AlO(OH)) on the 

surface of Al2O3  as shown in Figure 4-13, a similar mechanism was suggested by 

Huang et al. [106]. 

 Al2O3 + H2O ⇌ 2AlO(OH)                                                 (4.8) 

Oxyhydroxides layer on the surface of Al, due to its high porosity, can further 

permit water diffusion into the Al particle and hydrogen diffusion out of Al particle 

through salt gates/tunnels as shown in Figure 4-14. 

2Al + 6AlO(OH)   4Al2O3 + 3H2                                    (4.9) 

Moreover, this reaction will possibly simultaneously produce H2 gas along with the 

metal and water reaction: 

2Al + 6H2O    2Al(OH)3 + 3H2          (4.1) 

Referring to the CuO reaction, it can be hypothesised that the salt in the milling has 

enabled Al to be exposed and hydrogen can be produced as: However, the CuO 

most likely be reduced to metal Cu if a formed H2 gas bubble is grown nearby as: 

Cu(II)O + H2  Cu(O) + H2O        (4.10) 

This possibly can explain the inferior reaction when CuO is used as the single metal 

oxide. On the contrary, CaO will not react similarly with the formed H2 and the 

fastest reaction when using CaO is to form the dissolved Ca+ and OH- instead. If 

CuO is reduced to metal Cu in the reactor, a new scenario needs to be investigated 

for better determination. Copper metal is, unlike Al, unreactive towards the water. 

The presence of oxygen in the water (dissolved oxygen in 20 C water is about 8-
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10 ppm), can result in oxidation of the metal Cu back to CuO, therefore more 

elementary analysis such as TEM would help to determine the mechanism better. 

 

Figure 4-14: a) Hydrated Al2O3 layer b) Hydrogen bubbles formation on Al2O3 layer. 

 

4.1.3.2 Salt additives 

It has been established that both salt and metal oxides are necessary as milling 

additives for prolonged hydrogen reaction (promoting higher H2 yield) and for an 

enhanced reaction rate. In the following section, the role of the salt additions is 

further investigated. Different salts; NaCl, KCl and CaCl2 were milled together with 

aluminium powder and MO (combined CaO-CuO as 50-50) as listed in Table 4-2 

and were synthesised using Milling Programme 1a.  

Table 4-2: Composition of additives in the sample. 

Powder composition (wt %) 

Al 65 %, MO 25 %, NaCl 10 % 

Al 65 %, MO 25 %, KCl 10 % 

Al 65 %, MO 25 %, CaCl2 10 % 

As Figure 4-15 shows, it is clear that by using 10 wt % CaCl2, hydrogen gas is 

generated both faster right from the start and more plentifully when compared to 

NaCl and KCl within the first 1000 sec of reaction. At 1000 sec the CaCl2 sample 

had generated 22 ml 8 % yield of hydrogen compared with 15 ml 5% yield for NaCl 

and 14 ml for the KCl sample. The small difference can be neglected as it falls 

within the error bar 1-2 ml for the analysis. One cause of the higher reactivity of 

CaCl2 is that it produces more ions when it dissociates than NaCl and KCl. It will 



C h a p t e r  4 .  R e s u l t s  a n d  d i s c u s s i o n               P a g e  | 80         

 
 

 
 

still produce the same type of “salt gates”, or tunnels, but will increase the 

conductivity of the water even more [93]. This conductivity helps to corrode the Al 

metal.   

 

Figure 4-15: Generated volume of hydrogen gas when using NaCl, KCl and CaCl2 in 

the particle milling using Milling Programme 1a. 

Inspired by the effect, when two different metal oxides were combined producing 

promising results, similarly, Similarly, different salts were mixed together to create 

a synergy effect. Synergy effect is an effect arising from two or more agents, 

entities, factors, or substances that produce an effect greater than the sum of their 

individual effects [133]. The salt mixture contained three salts; CaCl2, NaCl and 

KCl which from here on it would be known as PO (as in potash). The predominant 

salt in the mixture is NaCl, a commonly used salt additive in milling [40,74,77,95]. 

According to the authors of [42,135,136,140], Al metal particle size can be reduced 

if NaCl is employed during the milling. It is assumed that the three different salts 

would be able to etch, penetrate and damage the surface of Al particles 

simultaneously during the milling due to their different hardness and structure. The 

effect of salt on the Al particle will be discussed in the following section. In order 

to investigate if there is a synergy effect, salt additive PO was compared against 

CaCl2. For this purpose, Milling Programme 1a at 260 rpm was employed to mill 

both particle composites under identical conditions for 1.1 hrs. 

One can see in Figure 4-16, that the hydrogen formation is improved when using 

the PO sample compared with CaCl2. Already from the start, PO had generated 22 

ml, 8 % yield of hydrogen gas after only 600 sec compared to 13 ml, 5% yield by 
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CaCl2. This can be compared to 9 ml from NaCl or KCl from demonstrating its 

superiority over them.  

 

Figure 4-16: Effect of salt additives on the generated hydrogen volume when 

comparing sample PO with sample CaCl2. 

It is important to point out that this huge improvement of hydrogen generation by 

using a combined salt can be compared favourably with the results obtained when 

expensive BaO was used as an additive. This tells us that it is possible to source and 

select cheaper additives and with the appropriate mixture provide an advantage for 

the hydrogen economics. Different scenarios, described below, can describe this 

improvement. Salts were embedded in the metal aluminium as a result of the high-

energy ball milling and dissolved when exposed to water, leaving behind salt gates 

or tunnels as shown in Figure 4-17. Due to these changes on the surface of the 

particles, water can then diffuse to the Al metal where the H2 generation can take 

place as shown in Figure 4-24 and Figure 4-25.   

 

Figure 4-17: Illustration of salt gates and pitting corrosion mechanism [144]. 
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This is the major reason for hydrogen generation enhancement resulting from the 

addition of the sale additives for milling. This was verified by comparing a blended 

powder mixture that was not mechanically milled with a one that was milled powder 

to verify whether the hypothesis was correct or not, Figure 4-19a. Another 

contribution to the observed hydrogen generation enhancement is carried out by the 

dissolved Cl- ions from the salts used, which are highly aggressive anions and could 

possibly attack the passive Al2O3 film making it unstable and dissolving it. The salts 

NaCl, KCl and CaCl2, in the mixture are dissolved when particles are introduced to 

water. This would result in a passive film breakdown and is referred as to pitting 

corrosion, as shown in Figure 4-17.  

NaCl dissociates into Na+ and Cl- ions while 1 mole CaCl2 is dissolved into the 

water as 1-mole Ca+ ions and 2 moles of Cl-, which results in increased pitting 

corrosion, seen in Figure 4-15. The effect of the PO mixture on H2 generation can 

be explained by the different salts hardness and by their various dissolution 

reactions [26]. Dissolving salts in water can be either exothermic or endothermic. 

Potassium chloride, KCl absorbs heat from its surroundings when it dissolves in 

water (endothermic process) as does the commonly used NaCl, whereas calcium 

chloride, CaCl2 reaction is exothermic [149]. Therefore, using different salts in a 

combination could create synergetic reaction kinetics. To further explore the effect 

of salt additives it was decided that two powders would be prepared.  

 

Figure 4-18: Salt versus no salt additive effect on the generation of hydrogen. 
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One contained all the additives, i.e. (Al+MO+PO) and other was prepared that did 

not have any salt additive, i.e. powder (Al+MO). These are called “No PO” and 

“With PO” in the results, respectively.  Here it was necessary to adjust the weight 

% accordingly. The absence of salt in the sample No PO was adjusted by increasing 

the portion of metal oxides, i.e. (Al 65 wt %, CaO 17.5 wt %, and CuO 17.5 wt %) 

to keep the ratio 65-35. Powders were milled using Milling Programme 1a at 260 

rpm and reacted with deionised water at 25 ºC for 10000 sec. From the Figure 4-

18, it can be seen that milled NO PO powders only produced 48 ml of H2 in 4000 

sec and after that stopped producing any further. On the other hand, With PO 

powders displayed an increased hydrogen generation straight from the start. The 

sample With PO generated 130 ml (50 % yield H2 yield) while only 48 ml (19 % 

yield H2 yield) for the NO PO sample in 4000 sec. 

Another important observation is that for NO PO the reaction rate is slow for the 

first 1700 sec and then increases rapidly until 3000 sec reaction time where it comes 

to a halt. A plausible explanation for this is that the pH (and the dissociated OH-) 

from the CaO reaction has become sufficiently high to propel the reaction forward 

at 1700 sec, but at 3000 sec the barrier layer of Al(OH)3 is preventing any further 

H2 generation. 

4.1.3.3 Combined additive effect (MO + Salt) 

From above-described studies, it can be seen that several possible reactions can 

occur in the reaction vessel depending on the milling process and choice of 

additives used. As a continued study to highlight the importance of milling and the 

additives to the hydrogen production, it was decided to prepare three samples via 

milling. These included (Al+MO), (Al+PO) and (Al+MO+PO) and were compared 

with a non-milled sample of (Al+MO+PO). By doing this, a clearer picture of 

milling effect and additive effect emerges. As before, All powders were milled 

identically using Milling Programme 1a. From Figure 4-19a, it can be clearly seen 

that using both additives together with the milled sample (Al+PO+MO) is most 

beneficial for hydrogen generation producing a hydrogen volume of 1050 ml 

(corresponding to 220 ml out of 260 ml total) after 10000 sec corresponding to an 

approximate hydrogen yield of 85 % per mol of Al in the particles.  
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Without milling, the same composition produced only 700 ml (corresponding to 

135 ml out of 260 ml total) hydrogen after 10000 sec, corresponding to an 

approximate hydrogen yield of 54 % per mol of Al. The high amount of hydrogen 

by Non-Milled (Al+PO+MO) sample was unexpected.  

 

Figure 4-19: a) Generated hydrogen volume per gram Al for milled samples with 

various additives compared with a non-milled sample b) corresponding exothermic 

reaction temperature for the same samples. 

A possible explanation for this occurrence may be that the hydrogen reaction 

depends mainly on the CaO reaction with water and the subsequent pH increase 

associated with it, as was discussed previously. Once again it can be seen that 

milling with salt additives removes the observed incubation time known hereon as 

the lag time of the hydrogen generation the generation is efficient right from the 

start. It should be mentioned that powders which were not milled and had no 
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additives did not produce any hydrogen at all at room temperature (not shown in 

Figure 4-19). When samples milled with salt (Al+PO), metal oxide (Al+MO) were 

compared it was found that only when the salt additive was present was there any 

amount of hydrogen being produced with the liberated amount < 20 ml after 1000 

sec. Milled (Al+MO) samples yielded 100 ml/ g Al (corresponding to 17 ml out of 

260 ml total).  

The sudden rise in the rate of reaction for the milled (Al+MO) sample can also be 

seen in the temperature plot, see Figure 4-19b, where the exothermic reaction 

results in a temperature increase from 26 C to 44 C. Again, to emphasise the 

importance of salt additive in the mixture, when the (Al+PO+MO) sample is reacted 

with water, it could be seen that the lag time lag-time observed for (Al+MO) 

disappears. From the Figure 4-19b, it can be seen that the temperature at first rises 

from 26 C to 33 C and a then plateaus out after 750 sec for approx. 5000 sec (83 

min) indicating a more stable kinetics than for (Al+MO). When only metal oxides 

(Al+MO) were used, the generated hydrogen volume in 10000 sec was 250 ml, 

which is similar to when both metal oxide and salt additives, i.e. sample milled 

(Al+Salt+MO). Also for this sample, there was a 2000 sec lag time before the 

reaction accelerated dramatically. 

For the same reaction time, sample (Al+ MO+ PO) had already produced 400 ml/g 

Al (corresponding to 73 ml out of a maximum 260 ml). Furthermore, when 0.3 g of 

(Al+PO+MO) was allowed to react with 9 ml water for 12000 sec, it produced a 

total of 235 ml which correspond to a hydrogen yield of 90 % per amount of metal 

reacted. The mechanism and dynamics of the hydrogen generation appear more 

controlled when (PO+MO) is used which is evident in a stable reaction and 

furthermore a high hydrogen yield.  The effect of milling with various additives 

will be further explained with the aid of scanning electron microscope (SEM) and 

elemental analysis (EDX) in the later section.   
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 Effect of milling on Al particles size 

As this research is aimed at using recycled aluminium particles, which can have a 

significant variation in particle sizes depending on the supplier, a study of typical 

recycle alumina particle sizes was conducted. This was later compared with highly 

pure micron-sized aluminium. Recycled aluminium (provided by iHOD USA) with 

particle size 3-200 µm was sieved to obtain representative batches of 40 µm, 75 µm 

and 105 µm sizes prior milling. The different sized batches were then mixed with 

the additives (combined metal oxide 50-50 and salt PO) and milled by Programme 

1a. It should be mentioned that these were the average sizes before milling. 

In Figure 4-20, the results are plotted that reflect the effect that the particle size has 

on the production of hydrogen. It can be seen that the recycled particle size does 

have a profound effect on the hydrogen reaction. The smallest starting Al particle 

size, 40 µm, showed the highest hydrogen generation followed by 75 µm, whereas 

105 µm was considerably slower and produced the least amount of hydrogen of 

them all. After 500 sec, the larger starting batch of 105 µm slows down while both 

the batches 40 µm and 75 µm progress steadily. 

 

Figure 4-20: Effect of Al particle sizes (40 µm, 75 µm and 105 µm) used in milling and 

their corresponding hydrogen generation. 

At 10000 sec reaction time, the 40 µm batch had produced 220 ml and the 75 µm 

batches produced slightly less of 172 ml whereas using the largest sized recycle 

aluminium particle batch of 105 µm only produced 90 ml hydrogen corresponding 

to a hydrogen yield of 85 %, 66 % and 35 %, respectively. In what follows, the 
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SEM images will further explain the final particle size of these three batches after 

milling with additives. It is well known that a smaller particle size will provide a 

larger surface area notion also supported by the authors of [19,50,103,109] and it 

is, therefore, not unexpected to see that the three different starting sizes showed a 

similar trend. Smaller Al particles sizes used in the milling would provide a larger 

surface area to be tempered by the salt additives. This results in the higher ratio of 

salt-gates per mass of Al used in the process. An opened salt-gate through the 

barrier Al2O3 layer would facilitate water diffusion to Al particle core allowing 

faster corrosion. 

4.1.4.1 Comparison of fisher and recycled micro size Al particles  

To continue the study of raw material, particle size and purity, a 40 m recycled Al 

batch was compared to finer 10 µm aluminium particles (Fisher Chemicals, 99.9 % 

purity) named “Fisher Al”. For comparison, powder compositions were kept same 

as from previous experiments, i.e. (Al 65 wt %, CaO 12.5 wt %, CuO 12.5 wt % 

and PO 10 wt %) and was prepared using milling Programme 1a (260 rpm).  Shown 

in Figure 4-21a, b and c, one can see a strikingly similar trend in all figures.  

A distinctive reaction lag time of up to 2000 sec was observed in the case of Fisher 

Al particles, but a much shorter lag was witnessed for the Recycled Al 40 µm 

sample. For the Fisher Al particles, following the lag, the reaction temperature 

escalated rapidly from 26 ºC to 52 ºC and resulted in a massive increase of hydrogen 

flow rate as seen in Figure 4-21a. The flow rate of hydrogen generated from the 

Fisher Al particles continued to rise until the 2800 sec mark, after which a levelling 

off was observed which was outside the sensitivity range of hydrogen mass flow 

meter (GFM-17 for flow rates <10 ml/s), therefore, impossible to record the peak 

flowrate properly. The result of the higher flow rate is also be reflected in Figure 4-

21a, b and c. 
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Figure 4-21: Comparison between Recycle 40 µm and Fisher Al particles in; a) 

hydrogen volume flow rate, b) generated hydrogen volume and c) exothermic 

temperature development. 
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The same experiment was also performed using an inverted column due to the limit 

of GFM, which provided a more accurate hydrogen volume of 240 ml just after 

4500 sec of reaction. The amount of hydrogen generated by the Fisher Al 

corresponded to 92 % hydrogen yield compared to 220 ml by “Recycled Al 40 µm” 

corresponding to 85 % hydrogen yield, both after 10000 sec reaction time. From 

this study, it can be said that reactive milling had a variable effect on the two 

samples. At first, it was believed that different behaviour in reaction might have 

been caused by purity differences between the two samples however, that was not 

the case which was verified by the materialistic analysis. To verify this, analysis of 

these two different aluminium samples was conducted using SEM-EDX for an 

elementary evaluation.  

Table 4-3: Shows the of elemental analysis by EDX for Fisher aluminium 

Element Weight % Atomic % 

Aluminium 100.00 100.00 

Total 100.00 100.00 

 

Table 4-4: Shows the elemental analysis by EDX for iHOD USA. 

Element Weight % Atomic % 

Aluminium 98.22 98.79 

Calcium 1.78 1.21 

Sodium 0.00 0.00 

Total 100.00 100.00 

The result of EDX for batches of “Recycled Al 40 µm” and “Fisher Al” are 

presented in Table 4-3 and Table 4-4 and in Figure 4-22. As the two batches 

contained the same milling additives and identical reaction conditions were 

employed, it was concluded that the difference must be due to some other 

mechanism in the milling process. Therefore, the SEM-EDX was thoroughly 

studied. In Figure 4-23, Recycled Al 40 µm and Fisher Al are compared in a high-

resolution SEM image. It can be seen that the surfaces of the two particles appear 

different after the milling.   
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Figure 4-22: EDX spectra of the two types of aluminium particles:  a) Fisher and b) 

Recycled Al 40 µm. 

 

Figure 4-23: SEM zoomed in images of milled a) micro-sized Al Fisher b) 40 µm 

recycled Al.      
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The Recycled Al 40 µm shows clear evidence of additives covering the surface. For 

the purer micro-sized Fisher, the additives appeared scattered around as free 

particles. For the hydrogen generation, this would make a large impact as these 

unattached scattered additives will not take part in the hydrogen generation 

reaction. It should be said that similar lag time was observed when salt additives 

were not present during milling. Therefore, it was established that the salt additives 

used when milling Fisher Al particles do not generate the necessary “salt gates”. 

These salt gates are essential for the mass diffusion of OH- ions and for H2 evolution 

at the metal Al core as emphasised already. The conclusion of this investigation is 

that finer aluminium powders would not be suitable for small on-demand hydrogen 

generation. One important reason for this is that small particles sizes generate 

higher reaction temperatures, subsequently generating hydrogen at a higher flow 

rate in a short time span. Such a surge of reaction kinetics would not be appropriate 

for the portable fuel cell. Another important reason is pure and well-refined 

aluminium particles would be costly, especially if upscaling is considered.   

4.1.4.2 Particle characterisation  

To monitor how aluminium particles were affected after each step of the whole 

process, samples were collected at three different stages: before the milling (sieved 

without additives), after milling (with additives) and after the reaction with water 

had finished. Figure 4-24 shows, a collage of SEM images of recycled aluminium 

particles sieved to a range of 40 µm, 75 µm and 105 µm and compared with the 

pure averaged 10 µm (Fisher). They are arranged from left to right displaying 

different stages of the particle synthesis whereas; the rows represent different 

starting particle sizes. From the SEM images below, it can be seen that the metal 

particles before milling and after milling, underwent changes in the morphology as 

well as the milling additives.  
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Figure 4-24: Particle evaluation by SEM of sample 40 µm and sample Fisher at three different stages; aluminium not-milled, milled with additives  

and after the end of the reaction. 
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Figure 4-25: Particle evaluation by SEM of sample 75 µm and sample 105 µm at three different stages; aluminium non-milled, milled with 

additives and after the end of the reaction.
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Due to the high kinetic energy and softening of the metal particles during the milling 

process, it can be seen how the additives have adhered to the metal particle surface. 

Due to this occurrence, it is expected that at least the hard salt additive has damaged 

the Al2O3 layer and formed “salt gates”. This surface coating of crushed additives 

can be seen in all samples of 40 µm, 75 µm and 105 µm sieved recycled aluminium 

particles, but not in the smaller and purer Fisher aluminium powder. The particle 

size appears slightly larger after milling for the 40 µm, 75 µm and 105 µm particles, 

which is not the case for the Fisher sample. For instance, before milling sample, 40 

µm samples were found to have an average particle size of 40 ± 5 µm and after 

milling the average was found to be at 60 ± 5 µm. In normal practice, the metal 

particles size should reduce, however, it was not seen here. 

The powder size, in the beginning, was 40 µm and once it was milled it was again 

analysed using three samples under SEM, not shown here. This analysis was 

conducted for further verification purposes to observe powder size and ratio i.e. 

particle distribution.  

 

Figure 4-26: Particle distribution of 40 µm after milling for 1.1 hrs. 

From Figure 4-26, one can see that the particle size does vary after milling and it is 

between 40 ± 18 µm, however, the average particle size was 42 µm. It is important 

to recognise that different particle sizes would significantly affect reaction kinetics 

as it was verified and explained in the earlier tests. Therefore, to develop a more 

accurate kinetic model it is recommended that metal particles must be sieved in an 

inter atmosphere (argon) after the milling to reduce the average distribution.  
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An explanation that particle size distribution is large could be that during the milling 

processes the additive gets coats the metal particles making their overall size larger. 

A similar increase of the Al particle size was observed by the authors of [54] when 

authors do not employ a processing control agent which provides a lubricant that 

minimises the cold-welding effect (stearic acid) for milling. Throughout this 

research work, stearic acid was not used because it would have avoided any 

additives to be embedded on the surface of Al particles. From Figure 4-24 and 4-

25, the coating of the additive on the Al metal particles also appears to have altered 

the surface structure of the aluminium particles from uniformly smooth and 

spherical to more irregular and flaky in shape. This is intriguing as it was thought 

that to bring such morphological changes of aluminium particles would require 

higher speed or longer period milling. All samples were milled using Milling 

Programme 1a at 260 rpm, which is far less energy demanding than related research 

publications in which author also reported structural changes of the metal particles 

by additives [45,93,94,134,140]. Here it is concluded that a less energy demanding 

milling process was still able to integrate the additives successfully upon and in 

extreme cases within the aluminium particle and still provide excellent hydrogen 

generation yields.  

After the hydrogen generation reaction, the residue was carefully collected onto a 

filter paper and placed in a vacuum furnace for 24 hrs at 25 °C to dry. In the SEM 

images in Figure 4-24, it can be seen that following the reaction all particles of 

sample 40 µm, sample 75 µm and sample 105 µm have shrunk considerably. It can 

also be seen that the sample 40 µm decreased in size considerably more, compared 

to other samples. This shrinkage is due to the aluminium consumption during the 

reaction. Particles, during the hydrogen reaction, undergo a considerable amount of 

change especially when there are changes in temperature and pH. Changes in Al 

particle sizes can be explained by the shedding effect of the outer hydroxyl layer 

until all the aluminium particles are have been converted into aluminium hydroxide 

each. This shedding effect is further improved by reactor agitation.  Sample 40 µm 

had the smallest amount of Al(OH)3 and also produced the highest hydrogen yield. 

As each sample had an equal amount of additives (as confirmed by SEM and EDX), 
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the fact that sample 40 µm produced the most hydrogen means that higher number 

of salt gates are present. It can be said this is because more additive-assisted 

reactions take place on the particle surface for small particle sizes than for larger 

ones because of the additional surface area available on smaller size particles. The 

Fisher sample, which showed the characteristic lag-time in the reaction, was found 

to lack such a uniform outer layer of additives despite the same protocols being 

followed for milling as for sample 40 µm. One can see in Figure 4-24, that a lighter 

appearing coating has formed on the reacted samples. This coating is most likely to 

be by-product aluminium hydroxide which was later confirmed by XRD. Inspecting 

the SEM images shown in Figure 4-24 and Figure 4-25, it is concluded that the 

reactive milling is essential for greater hydrogen yield. This is particularly 

important if the hydrogen generation is aimed at ambient temperature and pressure. 

Therefore, it is important to understand the mechanism in detail. It was seen earlier 

in Figure 4-27, that the aluminium particles increase in size during high-speed 

milling by up to 0.8-0.9 mm in the absence of additives. Figure 4-27 shows the 

initially smooth aluminium particle surrounded by additives in a normal blended 

mixture, i.e. not milled.  
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Figure 4-27: a) SEM image of an additive + aluminium mixture showing the smooth 

Al particle surrounded by the crystalline structure of the additives b) SEM image of 

an additive + aluminium milled sample showing plastic deformed aluminium particle 

covered.  

Aluminium particles were divided into three batches as stated earlier 40 µm, 70 µm 

and 100 µm. However, their average was 40 µm, 75 µm and 105 µm. For these 

studies, the 75 µm sample was employed. From the SEM image, it could be 

interpreted that if such powder were reacted water, the additives (MO+PO) would 

be dispersed rapidly in water, the salt would dissociate and CaO will form Ca(OH)2. 

This additive will further contribute to the pH increase and dissolution of a passive 
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layer of Al particles that subsequently will aid the hydrogen reaction, e.g. as in 

Figure 4-19 where it was observed that some hydrogen generation at ambient 

conditions does occur when using an additive combination (PO+MO).  For further 

analysis purposes, Al particles of 75 µm were compared before and after milling 

using Milling Programme 1a at 260 rpm. In Figure 4-26b, one can see that the 

additives (MO+PO) have been crushed and subsequently surrounding the Al 

particles. Additionally, the shape of the spherical particle has also changed into an 

irregular sponge-like shape despite a relatively short milling time. This is a 

consequence of elastic deformation and softening of the metal, which results in 

more additives sticking to the surface, thus disrupting the Al2O3 layer. Since the 

reactive milling is very energy intensive, it was important to ensure that no chemical 

reaction took place while milling, for example, Al2Cu was produced during 

persistent and high-speed milling as stated previously. 

 

Figure 4-28: XRD of a milled sample showing only peaks from the additives and 

aluminium and none from products of possible reactions while milling. 

Furthermore, milling was carried out in an inert atmosphere to prevent this. In order 

to check whether a reaction occurred during milling or not, the milled sample Al 

with 75 µm size was also examined by XRD, see Figure 4-28. The separate 

component peaks were identified (using Peak Fit Software) and no reaction product 

such as Al composites was found to be present.  
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Figure 4-29: a) EDX analysis of sample 75 µm before milling b) Elementary EDX 

mapping after milling, c) EDX of the milled sample. 
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Figure 4-30: a) SEM image of 75 m particles after 3600 sec reaction showing the 

barrier layer and the unreacted Al after milling and b) the elemental EDX mapping 

of the sample. 

It has to be acknowledged here that the data collection and analysis was performed 

externally in Slovenia at the university of Nova Gorica. The same sample, before 

and after milling, was also subjected to elementary mapping analysis with SEM-

EDX pressing the powder flat prior analysis. As an additional measure to check if 

any products could be identified. Figure 4-29a, b and c, shows the elemental maps 

together with the EDX spectrum for milled and unmilled samples. In Figure 4-29a, 

relatively bare Al particles (shown here in red) can be seen with additives (shown 

here in various colours) only pressed around the borders indicating there is no 

physical attachment. After milling Figure 4-29b, there is clearly a homogenous 
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distribution of additives coating the aluminium particles. Figure 4-29c shows the 

presence of all the additives, however, there is a large quantity of oxygen also 

detected perhaps because of metal oxides.  

It can be hypothesised that the kinetic forces may have been strong enough to break 

the salt additives enabling the creation of salt-gates when immersed in water. After 

a 1 hr (3600 sec) reaction, when approximately 40 % hydrogen yield had been 

achieved with sample 75 m, the powders were sieved and dried for further 

analysis. In this instance, loose Al(OH)3 and AlO(OH) were assumed to be removed 

by filtering the slurry from the solution using a filter paper. Figure 4-30a, shows 

aluminium 75 µm particles have shrunk. An explanation could be the formation of 

Al(OH)3 impermeable barrier layer, which prohibited any further reaction. It is 

important to note that what is not shown in Figure 4-32 and 4-33 was the whitish 

loose products of by-product Al(OH)3. This analysis only represents a study as to 

why certain particle sizes and milling conditions appear to show a lower yield. The 

success of driving the reaction forward for complete formation of hydrogen depends 

on how the additives are interacting with aluminium core.  

From Figure 4-30 a homogenous spread of Al can be seen and a few spots of Ca 

and Cu originating from surface bound CaO and CuO additives. The small degree 

of shrinkage of Al particles indicates that the sieved and dried samples 75 µm 

consist of Al particles that do not optimally produce hydrogen. There is also no 

indication of the presence of salt additives which points to the possibility that they 

may have been dissolved in the aqueous solution. Therefore, it can be concluded 

what is seen here is the barrier layer of Al2O3 and Al(OH)3 distributed on 

approximately 50 m particles. When XRD was carried out on the stated sample, it 

showed a considerable amount of Gibbsite γ-Al(OH)3, see Figure 4-31. It was 

established in the investigation, “Effect of milling time and speed”, that higher 

milling speed is not favourable as it does not produce desired hydrogen yield. In 

order to understand the reason of this occurrence, synthesised powders after milling 

at 520 and 260 rpm were subjected to SEM before and after the reaction with water 

and their results can be seen in Figure 4-32 and Figure 4-33. 
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Figure 4-31: XRD analysis of the slurry by-product showing the formation of the 

surface-bound barrier layer of Al(OH)3. 

Based on the SEM images in Figure 4-32 and 4-33 one can understand why high-

speed milling during this research was not a suitable choice and why were Al 

particles prepared from higher speed failed to deliver a good reaction and hydrogen 

yield. It can be deduced from the SEM images that additives coated the aluminium 

particle surface. It was also discovered that some of the Al particles sizes have 

increased and were deformed after the milling. The increase in sizes could be 

associated with some additives which may have were encapsulated into Al particles.  

That meant when synthesised Al particles were reacted with water some of the 

additives were not exposed and thus were unable to dissolve. It is important that 

these additives be dissolved or dissociated in water as they help in the formation of 

salt-gates and increasing the conductivity of water. Whereas, CaO for the critical 

exothermic reaction and pH increase. Without these additives, the reaction would 

not be able to progress for long as the formation of Al(OH)3 would not permit water 

contact with the surface of Al.  
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Figure 4-32: SEM of Al + additives milled at 260 rpm a) 1.1 hrs and b) 2.4 hrs. 

XRD and EDX from the samples milled at 520 rpm and reacted for 3600 sec 

indicated the presence of NaCl, CaO and CuO. This further supports the additives 

encapsulation inside the enlarged particle. Studies conducted in this particle 

synthesis section provided confirmation that milling of the powder at 260 rpm for 

1.1 hrs proved to be a better for hydrogen formation and improving the overall yield, 

for Al 40 µm sample with (Al 65 wt %, MO 25 wt % and PO 10 wt %). The success 

of the synthesis can be associated with appropriate mixing and adequate milling 

conditions, i.e. sufficient temperature fluctuations and the less intensive collisions 
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during the milling allowing particles to expand and contract and thus helping the 

additive to form a coat on them. 

 

Figure 4-33: SEM of Al + additives milled at 520 rpm a) 1.1hr b) 2.4 hrs. 

In support of the proposition that milling of the powder at 260 rpm for 1.1 hrs can 

provide a better hydrogen formation and improve the overall yield, Al 40 μm with 

(Al 65 wt %, MO 25 wt % and PO 10 wt %) was prepared. After milling, the 

synthesised recycled Al powder was reacted with 25 °C deionised water. After 3 

hrs reaction time, the by-product was carefully collected and dried at room 

temperature in a vacuum furnace to avoid the continuation of the hydrolysis 

reaction. After all the water had evaporated (5 days), the residue was sent for XRD 
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analysis to Slovenia. The results obtained are presented in Figure 4-32, which 

provided a comparison of two different XRD’s; Red is for the reacted powder and 

blue for unreacted but milled powder. One can clearly see that majority of the 

aluminium is gone (note difference in scale). The by-product contained, to the 

largest extent, Bayerite followed by Nordstrandite and small traces of Gibbsite, all 

of which are different types of Al(OH)3 of different morphologies. Note, no salt was 

detected but the Ca(OH)2 has formed some residual CaCO3 that was detected. There 

are two plausible explanations for the detection of CaCO3 crystals; one being 

Ca(OH) 2, long exposure to air (CO2) in following step reactions: 

Ca(OH)2  Ca2+ + 2OH-           (4.7) 

CO2 + H2O   CO2.H2O       (4.11) 

CO2.H2O + 2OH-  
 CO3

2-+ 2H2O      (4.12) 

Ca2+ + CO3
2-  CaCO3        (4.13) 

This hypothesis was also presented by Shih et al. [145] and Wang et al. both 

identified CaCO3 from XRD analysis of their by-product, however, they did not 

comment further on its presence. Another possibility can be related to the purity of 

the CaO which was used for this research. It can be concluded that 40 µm Al 

particles when milled with the right combination of additives, (MO+Salt) and 

adequate milling parameters can achieve favourable results.  

As stated earlier in the literature review that, different crystals forms of Al(OH)3 

can be produced during the reaction. These different crystal structures and one of 

these crystal sutures and density reflects on their physical stabilities where it, which 

allows the water movement inside and out these layers. As it can be seen in the 

Figure 4-33, XRD, when it was performed after the reaction a large amount of 

Gibbsite and Bayerite, was found. Bayerite is slighted better as it holds the 

aluminium particles together, while a slower reaction continued to consume 

aluminium core while also dissolving and recrystallizing existing bayerite, forming 

a more porous layer [148]. 
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Figure 4-34: XRD of 10000 sec reacted particles showing the formation of the surface 

bound Al(OH)3 with various morphologies, Blue is representing unreacted and red 

reacted. 

During the complex course of the ageing of aluminium hydroxide, which is first 

formed in an amorphous form (and will therefore not be detected in XRD), still 

another aluminium tri-hydroxide, gibbsite or hydrargillite, can also be formed, 

especially if ions of the alkali metals, i.e. CaO are present, therefore, i.e. Na+ or K+ 

from the dissolved salts. From the XRD is was concluded that both Al(OH)3 

structures of Gibbsite and Bayerite were formed which can be described by the 

above discussion. 

 Conclusion for Section A     Particle Synthesis  

Based on the findings from section A, it can be concluded that aluminium particles 

on their own milled not milled do not produce any hydrogen at ambient conditions. 

During high-speed milling changes the particles morphologies and possibly 

physical properties because of the high temperature generated during the process. 

This was found to be beneficial for hydrogen generation. It was established that the 

metal oxide and salt milling additives synergistically were able to produce high 

hydrogen yield from 85 % to 92 %. It was found that a specially developed milling 

programme was able to produce highly reactive particles with a comparatively 

small energy input, with reduced milling time and milling speed. Importance of 
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metal oxides and salts was established as they help synergistically to produce high 

hydrogen yield. Salt additive helped in achieving a stable reaction rate for hydrogen 

fuel cell use. It was also established from the analysis that they were embedded in 

the outer layer and possibly within the surface of the softer aluminium particles. 

When reacted with water, Al particles were dissolved leaving behind salts gates 

created by a local aggressive electrolyte from the Cl- ions, through which water was 

able to reach the surface/core of Al metal particle. The combination of CaO and 

CuO was found to be ideal for hydrogen generation from both economical and 

efficiency point of view. PO employment encouraged a favourable reaction due to 

the chemical and physical properties of the different salts, and their combination 

enabling Al activation.   
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4.2 Section B   Effect upon hydrogen generation due to the varied 

solutions 

In section A, active particle synthesis was described and evaluated by reacting the 

synthesised product with deionised water. Section B will focus on the effect of 

water quality and different aqueous solutions on the hydrogen generation. Relevant 

parameters will be analysed for the aluminium–water reaction including the effects 

of agitation, particle loading, initial temperature and pH. As the raw material for 

the reaction was synthesised in-house, it was decided to independently explore its 

performance in terms of its potential to generate hydrogen under different 

conditions. 

 Effect of agitation 

Agitation is the process of stirring or mixing. It can improve the miscibility of 

phases and facilitate heat transfer. A study was undertaken to measure the effect of 

the agitation speed on the reaction kinetics. Agitation speeds of 0, 600, 700 and 

1100 rpm were employed. In Figure 4-34, it can be seen that agitation speed had a 

noticeable effect on the reaction kinetics. The best outcome was achieved when 

using 700 rpm followed by 600 rpm and 1100 rpm. Corresponding to hydrogen 

yields of 85 %, 62 % and 60 % of 10000 sec reaction time, respectively.  

As in section A, the reaction temperature was monitored to give an indication of its 

progress. As it is an exothermic reaction, higher temperatures would indicate more 

reaction is taking place and hence higher volumes of H2 are being generated. The 

reaction temperature as a function of time is plotted in Figure 4-34b. It can be seen 

that all three agitation speeds followed the same temperature increase trend. One 

can see in Figure 4-34b, that after ~2000 sec the exothermic reaction temperatures 

had peaked in the reactor presumably because of a change in the pH. It can be said 

that agitation speed and temperature of the solution are critical for the reaction 

efficiency and volume of hydrogen gas generation.  

This was verified when the non-agitated sample (0 rpm) exhibited significant 

slower hydrogen generation rate than the samples which were subjected to 

agitation. Additionally, the yield from non-agitated was only 21 % of a total (260 
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ml) possible from 0.3 g loading of activated aluminium. It was also observed that 

without agitation the temperature does not increase.  

 

Figure 4-35: a) Volume of hydrogen gas generated using different agitation speeds of 

0, 600, 700 and 1100 rpm and b) corresponding reactor fluid temperature. 

The plausible reason that temperature of the reaction decreasing can be associated 

with the presence of the salts in the system and lack of mixing. Since there was no 

agitation taking place resulting in less mass transfer to occur and due to that reason, 

this particular reaction was not dynamic. However, the reaction did take place 

indicating a certain amount of aluminium hydroxide layer would have been 

produced on the active sites on the surface of metal particles thus blocking 

continuation of the process. The temperature increase is linked with the exothermic 
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nature of reaction since no kinetic reaction or reduced reaction was taking place it 

resulted in no heat being generated. Additionally, salts absorb heat during the time 

when no kinetics were taking place. The salts were adsorbing the heat of the water 

and reducing the temperature. 

Heat generated from the reaction increases the temperature of the fluid in which 

reaction was taking place. During the reaction, aluminium hydroxide Al(OH)3 is 

formed and its formation is influenced by the pH as suggested by Prodromou et al. 

[146]. The pH can be affected by the formation of OH- ion from Ca(OH)2 

dissociation. This dissociation reaction is exothermic and which also depends on 

the temperature, i.e. decreases with increased temperature. The equation describing 

the reaction is: 

Ca(OH)2 (aq) ⇌   Ca2+ + 2OH-      Hr = -16.64 kJ/mol               (4.7) 

According to the Le Chatelier's principle [147], for an exothermic reaction an 

increase in temperature results in a shift of equilibrium to the left. Therefore, one 

can assume that as the temperature is increased, fewer OH- are formed from 

Ca(OH)2 reducing the pH of the solution, i.e. making it more acidic. This has a 

direct effect on the crystal structure (or even crystallisation) of Al(OH)3 that is 

formed in the Al+H2O reaction. The different structures of aluminium hydroxide, 

e.g. α-Al(OH)3, β-Al(OH)3 and -Al(OH)3 have different densities and porosities 

[148]. If, for example, the most porous hydroxide layer, i.e. -Al(OH)3 is favoured, 

it would permit increased mass diffusion (H2O and H2) than the more densely 

packed layer, i.e. α-Al(OH)3. Therefore, it is concluded that the depending on which 

type of layer of Al(OH)3 is produced, the effect of agitation will be different. For 

example, removal would be more efficient if -Al(OH)3 layer is formed compared 

to when α layer is produced.  

It was unexpected to see that the highest agitation speed of 1100 rpm performed 

inferior to lower speeds of 700 rpm and 600 rpm for hydrogen generation. It is 

possible that at 1100 rpm higher turbulence occurred inside the reacting mixture, 

compared to lower speeds stated above, adversely impacting the reaction rate. Here 

it is perhaps useful to compare with the temperature plot in Figure 4-34b and relate 

it to heat transfer effect. With higher agitation speeds, the velocity of the reactor 
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vessel fluid increases and an increased corrosive heat transfer will occur towards 

the colder outer surroundings of the reactor vessel. This reduces the local 

temperature and hence the reaction rate. It was found that 700 rpm provides the best 

agitation solution for the reaction. It must be reminded that the reactor vessel was 

well insulated with polystyrene street to avoid any heat loss during the reaction. 

Additionally, the improved hydrogen generation when agitation was employed 

compared to when it was not carried out can also be explained by sedimentation 

(settling). When the powder is added to the reactor vessel, it settles at the bottom, 

causing the particles to sit on top of each other. This reduces the necessary mass 

transfer of water through the salt gates and the formed hydrogen to escape as 

bubbles towards the hydrogen gas flow meter. Hydrogen bubbles are released when 

they build up a certain pressure and will diffuse out. The principle of the H2 

formation and the gas discharge is shown in Figure 4-35.  

 

Figure 4-36: Principle of hydrogen bubble formation inside the Al particle covered 

with Al/AlO(OH)/Al(OH)3 barrier layer. 

From the above, it can be concluded that agitation is essential for hydrogen 

generation. It promotes the shedding of porous hydroxyl layers, in particular, the 

formed -Boehmite, thereby helping the necessary mass diffusion to occur.  On the 

other hand, it was found that high agitation speed speeds (> 700 rpm) are 

detrimental for reaction as it leads to a reduction of temperature due to improved 

corrosive heat transfer towards the colder surrounding.  
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 Effect of particle loading  

Based on the agitation study and the observed mass transfer effect, it was decided 

to investigate the particle loading in the reactor vessel. As the reaction is 

exothermic, it can be argued that, if a small amount of water were to be added to 

0.3 g of activated aluminium, it would lead to a sudden increase in the reaction 

temperature. On the other hand, a surplus amount of water, due to its heat capacity 

would assist in controlling the reactor vessels temperature. The effect of loading of 

Al was studied by using three different loadings of 0.3 g, 0.5 g and 0.7 g and adding 

9 ml water corresponding to mass concentrations of 0.03 g/ml, 0.05 g/ml and 0.07 

g/ml, respectively. The powder composition was kept the same as before, i.e. Al 65 

wt %, MO 25 wt % and PO 10 wt %. Only a 40 µm Al particle size was used for 

comparison purposes. 

The results obtained from the experiments were normalised to the weight of 

aluminium (gram) in each batch. Normalisation was carried out for 0.3 g of powder 

which helped to determine the actual volume of hydrogen (ml) produced from the 

reaction. From the Figure 4-36, it can be seen that all three loadings followed the 

same trend but, 0.03 g/ml produced the highest volume of hydrogen from the three 

concentrations compared. This was confirmed after reproducible results were 

obtained upon repeating.  

It can be seen in Figure 4-36a, that there is a lag time for hydrogen formation when 

the experiment was conducted for the maximum loading of 0.7 g (0.07 g/ml). On 

the other hand, in Figure 4-36b, no such lag time is observed as the reaction 

temperature rose to 35 ºC from 25 ºC within 5 sec of the reaction.  

Al+ 3H2O  Al(OH)3 + 1.5H2,              Hr = -280 kJ/mol    (4.15) 

As shown in Figure 4-36b, it can be concluded that hydrogen gas is formed instantly 

as evidenced by a rapid increase in temperature (indicating exothermic reaction) 

recorded by the thermocouple, despite hydrogen gas, not been registered on the 

GFM. The observed lag time of 0.7 g (0.07 g/ml) loading can be explained with the 

help of Figure 4-37.   
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Figure 4-37: Loading effect on a) hydrogen generation and b) reaction vessel 

temperature, using 0.3 g, 0.5 g and 0.7 g particle loading in 9 ml water. 

 

Figure 4-38: Diffusion pathway of the formed hydrogen gas. Schematic shows 

clarification of the pathway from sediment particles. 

As stated in earlier discussions, the effect of sedimentation on the particles may 

prevent formed hydrogen gas to diffuse away from particles. A higher loading of 

the particles can hinder this further and will manifest in lag time. Another 
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observation made for 0.7g (0.07 g/ml), was that the reaction generated a higher 

temperature, which rose gradually from 25 ºC up to 55 ºC in 1000 sec. This can 

help to explain why more hydrogen is formed in shorter time, see Figure 4-36. From 

this study, it becomes apparent that using the correct ratio of powder to water for 

the reaction is important. Rosenband et al. have suggested that loading is an 

important factor for an H2 generation [40]. Therefore, an experiment was carried 

out to gauge the optimum ratio of powder to water. Although higher reactor 

temperatures improve the reaction rate, higher water to powder loading ratio brings 

an increased control of access heat formation.  

For further investigations, (results not shown in Figure 4-36), loading of activated 

aluminium was kept at 0.3 g, but only 2 ml of deionised water (0.15 g/ml) was 

added to the powder. This experiment was conducted to inspect what occurs when 

water ratio is kept close to the stoichiometric ratio. As soon as water came into 

contact with the activated aluminium, a sudden spike in the temperature inside 

reactor vessel was recorded. The temperature of water reached 91 °C from room 

temperature within the first few sec of the reaction. Also, with increased 

temperature, a surge of water vapour or hydrogen gas was given off, GFM was 

unable to record the flow rate and presented out of range error followed by an abrupt 

halt in the reaction. An explanation for this intense reaction (which abruptly 

stopped) and heat generation observed despite theoretically the same amount of 

exothermic heat would be released according to equation 4-15, that at this 

accelerated temperature rise, water will evaporate or even boil off too rapidly. If the 

reactor vessel is connected in-situ with a fuel cell, then the possible generated water 

vapours could cause damage to PEM membrane.   

It can be concluded from this investigation that using excess water not only provides 

the benefit of cooling the reactor vessel, but also helps to control of the reaction 

kinetics. Except for the 0.15 g/ml particle loading, the 0.03, 0.05 and 0.07 g/ml 

provided similar hydrogen yield per gram Al but at different time scale. 
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 Effect of initial reaction temperature  

Results reported in the previous section showed that an increase in temperature 

during the reaction improves the hydrogen generation and the overall hydrogen 

yield on a shorter timescale. Therefore, the initial reaction temperature was varied 

to determine whether it has any influence on the overall reaction and hydrogen 

yield. The results of this experiment are plotted in Figure 4-38. One can see that 

when an initial temperature of the water was 25 ºC and activated aluminium was 

reacted with it, the reaction between them was rapid. A steep slope can be viewed 

in the Figure 4-38 indicating a higher rate of hydrogen formation, but the rate slows 

down after 100 sec. Interestingly, the rates of the reaction from the other runs with 

32 °C and 45 °C initial water temperatures were slower than 25 °C before 100 sec 

but increased afterwards.   

 

Figure 4-39: Effect of initial reaction temperature of the water during hydrogen 

generation during 1000 sec reaction. 

The effect of initial reaction temperature has already been studied by a number of 

groups [52,75,93]. Chen et al. in 2013 pointed out that there is a correlation between 

the solubility of additives (salt and metal oxide additives) and temperature of the 

solution [93]. Haynes et al. suggested that any temperature change of the solution 

would affect the solubility of salt and metal oxides if they are present in that solution 

[149].  For example, CaO is a metal oxide and it forms Ca(OH)2. Its solubility would 

decrease with increasing temperature [93]. Therefore, a lower temperature could 

release more OH- ions into the solution originating from the CaO milling additive, 

which is beneficial for the hydrogen formation.  



C h a p t e r  4 .  R e s u l t s  a n d  d i s c u s s i o n              P a g e  | 116         

 

 
 

For salt additives such as metal halides, the dependence is more complex. This is 

because a small change in temperature does not influence NaCl solubility while 

KCl solubility increases slightly. Both these salts are dissolving endothermic, i.e. 

absorb heat energy from the water. On the other hand, the solubility of CaCl2 

increases by two times as the temperature rises from 25 °C and 45 °C [149].  

Figure 4-40: a) Effect of initial reaction temperature on hydrogen generation during 

10000 sec reaction. b) Temperature profile as the reaction happens. The first row is 

showing 40 µm, second row 75 µm and last 105 µm Al particles. 

The effect of initial temperature was also explored for different particle sizes. 

Although, in section A it was established that using 40 µm provides a better yield 

but for this study, Al particle sizes of 75 µm and 105 µm were also selected. It was 

conducted to observe their response to the initial temperature change and the 

105 µm 

75 µm 

40 µm 
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temperatures chosen for this study were 25 °C and 45 °C. Figure 4-39, presents the 

results obtained from the investigation.  

As the Figure 4-6 shows that when 40 µm Al particles were reacted with deionised 

water at the initial temperature of 45 °C, hydrogen generated after 3000 sec was 

marginally more than when water temperature was 25 °C. However, the yield of the 

reaction (> 10000 sec) for the case of 25 °C water was 85 %, but 73 % of water at 

45 °C.  

This result indicated that the initial temperature of 45 °C was not suitable for the 

reaction. When Al particles of 75 µm average size were independently subjected to 

these temperatures, a similar trend to that seen for particles of 40 µm size was 

observed. The results of this reaction are shown in Figure 4-39b. It can be seen that 

initially the reaction rate is faster with a temperature of 45 °C, but reaches a plateau 

after approximately 1700 sec. In contrast, when the temperature was 25 °C, the 

reaction starts gradually and continues on until the measurement is stopped (> 

10000 sec). At the end of the reaction, the yields that were recorded were 66 % for 

25 °C and 28 % for 45 °C water. On the contrary, when Al 105 µm was reacted 

with water, a real improvement at 45 °C was observed from the start until the end 

of the reaction, see Figure 4-39c. Yields from after 10000 sec was 46 % at 45 ºC 

and only 35 % when reacted at an initial water temperature of 25 ºC.  

It can be concluded that lower temperature helps in achieving a higher reaction rate 

and hydrogen yield. The variation in hydrogen production with initial temperature 

can be associated with both the gain of energy by particles to overcome the 

activation energy of the Al + H2O reaction and from the variation of additives (salts 

and metal oxide) solubility. Increase in temperature improves the rate of reaction 

as supports by many studies but it also affects the solubility [17,95]. It is suggested 

by Chen et al. 2013 where they reported that temperature of 30 ºC was favourable 

during their research. It can be said that this study provided an understanding and 

importance of the solubility of CaO and salts as milling additives. The type of 

surface-bound aluminium hydroxide formed during the reaction can also be 

influenced by pH and temperature [79]; amorphous α-Al(OH)3 β-Al(OH)3   γ-

Al(OH)3.  
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With regards to the larger particle size, after milling when it was presented in water, 

the metal oxide layers and salts on the surface of the particle would dissolve.  

However, due to the insufficient surface area, it may not get enough coverage of 

CaO during the milling. Therefore, less of Ca(OH)2 dissociation would take place. 

It is a possibility that high temperature would not influence Ca(OH)2 dissociation, 

since little quantity of CaO is coating the Al particle. On the other hand, the 

solubility of CaCl2 would increase, which will aid in the hydrolysis reaction. At the 

same time due to less coverage of Ca(OH)2, the pH would also be affected, which 

will consequently produce more porous Al(OH)3 which would help in the 

continuation of the reaction. 

 Effect of pH on activated aluminium  

As it has been mentioned already, one of the several factors that can also influence 

the reaction is pH. Therefore, the effect of pH on the hydrogen yield and reaction 

was studied by varying the pH (pH 3 to 11) of water by adding either NaOH or HCl. 

Since NaOH and HCl will be used for this study, it was decided that 75 µm particles 

will be employed. It was understood that 75 µm reaction rate will be slower than 

40 µm particles which will help would prevent a runaway reaction. Therefore, 75 

µm sized recycled Al particles were milled together with 25 wt % CuO/CaO and 

10 wt % PO salt additives. Milling programme 1a with speeds of 260 rpm was used. 

0.3 g of activated aluminium with 9 ml of water with an initial temperature of the 

water at 25 ºC and agitation speed at 700 rpm. 

It can be seen from the Figures 4-40 and Figure 4-41, that pH clearly has an effect 

on the production of hydrogen. In Figure 4-40a, the results of experiments using 

solutions with different alkaline strength, i.e. pH 9 and pH 11 are compared with 

deionised water (pH 7). It was seen that the solution containing pH 11 produced on 

average 20 ml of hydrogen gas in about 1000 sec, whereas the solution of pH 9 

produced approximately half the amount of hydrogen.  

 



C h a p t e r  4 .  R e s u l t s  a n d  d i s c u s s i o n              P a g e  | 119         

 

 
 

 

Figure 4-41: a) pH effect on the hydrogen formation using NaOH as an alkaline and 

b) Temperature reaction. 

Similarly, acidic solutions with pH 3 and 5 were also compared with water in a 

separate experiment and the results are displayed in Figure 4-41a. It can be seen 

that very acidic solution produces a higher yield than when the solution is only 

slightly acidic (pH 5). The yield was found to be again high when the solution was 

neutral. In both cases, when the pH was closest to the neutral value, i.e. pH 5 (acid 

solution) and pH 9 (alkaline solution), not only was the hydrogen yield relatively 

poor but also a lag time of 50-100 sec was observed before the onset of reaction.  

To explain this observation, it is important to recognise that aluminium is a metal 

whose oxides or hydroxides are amphoteric. An amphoteric species is capable of 

reacting with both acidic and alkali solutions. Under normal circumstances, 
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aluminium own its own does not react with water due to an impermeable protective 

layer of aluminium oxide as mentioned earlier. 

 

Figure 4-42: a) pH effect on the hydrogen formation using HCl as an acid agent and 

b) Temperature reaction. 

However, as additives are also present together with aluminium in the reacting 

mixture, a deviation from its inert nature is expected, especially when pH, 

temperature or any other parameter is changed. The effect of alkalinity can be 

understood by recalling from section A, that when CaO additive was added into 

water, it dissociates and forms Ca(OH)2 and the concentration of OH- and hence the 

pH increased as a result. In the same fashion, the addition of NaOH in water will 

release OH- ions raising the pH of the solution. There may, however, also be other 
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reactions that can occur in the presence of NaOH. For example, salt gates on the 

surface of particles and the variation of additives such as (MO+PO) can lead to 

different reactions with NaOH. To take an example, Sodium hydroxide, NaOH can 

react with Al/Al2O3 in the following way: 

Al + NaOH + H2O  NaAlO2 + 1.5H2      (4.16) 

Or 

Al2O3 + 2NaOH + 3H2O  2NaAl(OH)4      (4.17) 

where the latter reaction can be described by the formed Al(OH)3 outer layer 

reacting with the NaOH as: 

Al(OH)3 + NaOH  NaAl(OH)4       (4.18) 

Formed NaAl(OH)4 dissociate to aluminates, Al(OH)4
- and Na+ as; 

2Al + 6H2O   2Al(OH)3 + 3H2         (4.1) 

Al(OH)3 + NaOH Na+ + Al(OH)4
-       (4.19) 

This means that adding NaOH helps to dissolve the Al/ Al(OH)3. Whereas for the 

metal oxide additive CaO the reaction with NaOH is: 

CaO +2NaOH  Ca(OH)2 + Na2O      (4.20) 

, where Na2O rapidly reacts with water as: 

Na2O + H2O   2NaOH + O2       (4.21) 

At high pH, Ca(OH)2 dissociates to OH- ions and makes the solution more alkaline 

which helps corrosion of Al layer and thus in an H2 generation. pH 9 reaction 

temperature was declining faster unlike pH 11 (seen clearer in the temperature plot). 

Here it is important to revise the equilibrium equation 4.7, with an equilibrium 

constant of K= 5.0 x 106 = [Ca2+] [OH-] 2, meaning that if more OH- is added, the 

reaction will reverse until a point where Ca(OH)2 would precipitate from solution. 

To sum up, the NaOH addition will reduce the previous benefits which have been 

demonstrated by the CaO milling additive. With regards to the CuO, which is not 

soluble in water may react with NaOH as follows: 

CuO + NaOH  CuOH + NaO      (4.22) 

The reaction of CuO with NaOH is pH and temperature dependent, as described by 

Palmer and Benezeth in the study of solubility of copper oxides in water [150]. With 

regards to the salts present in the activated aluminium, they may also be affected 
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by the presence of NaOH. For example, CaCl2 salt NaOH may react in a high 

concentration of NaOH as: 

CaCl2 + 2NaOH   Ca(OH)2 + 2NaCl     (4.23) 

On the contrary, KCl and NaCl salts solubility is compromised in the presence of 

NaOH. This would affect the corrosion of Al surface and passive oxide layer Al2O3. 

If this were to happen then a significant lag time should be expected (pH 9) see 

Figure 4-40a. Therefore, it can be concluded that reaction with NaOH can generate 

hydrogen gas. To account for the observation made with an acidic solution, one can 

say that, when CaO is presented in deionised water, irrespective of the pH, it 

produces OH- ions and will work to neutralise the acid (HCl). The amount of 

neutralisation would depend on the wt % of MO (CaO: 12.5 %) in the mixture. This 

hypothesis could possibly be used to explain the difference in hydrogen yields pH 

of 3 and pH 5 when activated aluminium was reacted. Under highly acidic 

conditions, aluminium can react to undergo the following reaction to produce H2:  

2Al + 6HCl  2AlCl3 + 3H2          (4.24) 

The formed aluminium chloride, AlCl3 salt will dissociate in water as: 

AlCl3  Al3+ + 3Cl-         (4.25) 

Water molecules would rapidly attract Al+3 to form a complex (hydrated Al3+ ion) 

as proposed by Greenwood et al.[133]: 

AlCl3(s) + H2O    [Al(H2O)6]
3+(aq) +  3Cl -(aq)     (4.26) 

The formation of AlCl3 can thus be seen as beneficial because it dissociates into Cl- 

ions which improve the conductivity of the solution and promoting corrosion as 

was explained in earlier chapters. Moreover, if Al(OH)3 is present then HCl will 

also react with it in the following manner: 

Al(OH)3 + 3HCl  AlCl3 + 3H2O      (4.27) 

This reaction again favours H2 formation for the same reasons mentioned above. 

Therefore, the temperature increase observed in Figure 4-41b for reactions with 

HCl can be attributed to the above reactions. In addition, HCl can also react with 

metal oxides, CaO and CuO that are present in the mixture to produce CaCl2 and 

CuCl2, respectively as: 

CuO + 2HCl  CuCl2 + H2O         (4.28) 

CaO + 2HCl  CaCl2 + H2O       (4.29) 
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The above reaction with HCl dissolved in water is highly exothermic and will 

happen more vigorously when the pH is lower (more acidic conditions). This and 

the synergy effect can help to explain why HCl at pH 3 produces more H2 and leads 

to high-temperature jump than a solution with pH 5. 

As stated in the literature review that aluminium metal is covered with the thin layer 

of the oxide layer approximately 50 µm, which prevents it from reacting with water. 

However, when aluminium metal is presented in water containing corrosive 

chemicals which can affect the pH of the liquid. The metal comes into contact with 

an oxidising environment, such as water which means the “salt-gates” will very 

soon be re-oxidised again. These can the partially dissolve the oxide layer resulting 

in creating tiny pores from where water is able to penetrate through the oxide layer 

and reach the surface which seen also in these types of hydrogen reactions 

investigated here.  

The physical-chemical stability of the aluminium oxide film determines the 

corrosion resistance and therefore seen from the reactivity of the aluminium 

particles. This stability is dependent upon the pH value since the oxide film is stable 

within the pH range of about 4 to 8.  

Far below (pH 3) and well above neutral pH (pH 11) instability of the barrier oxide 

layer is most pronounced. Example of oxide breakdown would be; acid leads to the 

dissolution of the Al2O3 and yields Al3+ ions whereas an alkaline dissolution of the 

alumina may lead to the formation of Al(OH)4
-  ions as a result of the dissolution. 

At a low pH such as in pH 3, the most dominant effect observed will be breakdown 

of the oxide barrier layer but also the oxide milling additives, whereas, in medium-

low pH of 5, the added HCl will act as a buffer solution and neutralise the OH- ions 

released from the Ca(OH)2.   On the contrary, in very high pH such as in pH 11, the 

dominant reaction is a breakdown of oxide barrier layer and oxide additives but also 

have an effect on the Al(OH)x formations. At the less pH 9, the dissociation of oxide 

barrier layer is less and the dissolved OH ions from NaOH will affect the dissolution 

of Ca(OH)2 in a negative way. 

The reaction in aqueous solution (seen as corrosion of Al) involves oxidation 

(anodic reaction) of the Al and reduction (cathodic reaction) of a species in solution 
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(here water), with consequent electron transfer between the two reactants. See both 

half reactions below; 

Oxidation (anodic reaction)   Al   Al3+ + 3e-      (4.30) 

Reduction (cathodic reaction)  H+ + e-   
1

2
 H2      (4.31) 

The exposed Al metal undergoes intense oxidation if aggressive ions are present 

(such as Cl-), resulting in potentially galvanic cells corrosion to take place, however, 

the chances of this happening depends on the presence of another metal (like 

reduced CuO to Cu invested in this Thesis). Further to elaborate on the point Figure 

4-44, a Pourbaix diagram can be used [134]. The figure explains how aluminium 

behaves under different pH conditions, going from acid to alkaline can be seen.  

From Figure 4-43, one can see that how different pHs effect the corrosion at two 

different extremes. The passivation region shown in the diagram is the region where 

aluminium oxide is formed. 

 

Figure 4-43: The Pourbaix diagram for corrosion of Aluminium at different pH [134]. 

To future understand in a separate experiment, it was decided to mill CaCl2 together 

with Al and 25 wt % metal oxides with MO with the composition of the salt being 

10 wt %. The aim of this experiment was to observe the effect on hydrogen 

production under variable pH conditions 
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Figure 4-44: Hydrogen flow rate comparison between powder batches with different 

salt addition and exposed to different pH (NaOH and HCl solutions).  

The results of the study are presented in Figure 4-42. Four plots are displayed: for 

acid or alkaline reaction of CaCl2 and PO salt. The result from reaction with 

deionised water (denoted pH 7) is also displayed for comparison without going into 

any detail regarding the reaction mechanisms here in this thesis because they are 

beyond the scope of this research. However, it is clear to see from the plots the 

variations in the flow rate of hydrogen with respect to the pH in cases of metal oxide 

and the chloride salt. Furthermore, CaCl2 is more sensitive to change in pH when 

the solution is acidic (pH < 7). Sodium hydroxide mostly reacts with metal oxide 

additive and not with CaCl2. However, it has to be stated that purity of hydrogen 

gas can be jeopardised if solutions containing NaOH and HCl are reacted with 

activated aluminium. Therefore, if the reactor vessel is in situ with the fuel cell, the 

gas must pass through a stripper or adsorbed which can remove if any other 

contaminants from hydrogen gas. 

PO 

CaCl2 
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 Effect of water quality on activated aluminium 

A study was conducted to mimic the more realistic operating conditions of the on-

demand fuel cell. Water quality is one of the most important factors which can 

influence the hydrogen generation process. It must be recognised that deionised 

water may not be available readily or be cost-effective. Therefore, the following 

segment shows the results from the reaction of aluminium with different solutions. 

These include deionised water, tap water, sucrose solution, ethanol solution, 

antifreeze solution and lastly urea solution. As per the previous investigation, the 

75 µm particle size batch was used again. It was again employed as a precaution to 

control the rate of reaction if any undesired gas is formed and the focus was to 

compare the different water types. Al was milled with additives 25 wt % CuO/CaO 

and 10 wt % PO salt mix using Milling Programme 1a (260 rpm). The initial 

temperature was kept at 25 ºC and agitation speed at 700 rpm. 

4.2.5.1 Domestic water  

Initially, domestic tap water was collected from two different locations, i.e. from 

East London and South London as this contained the highest amount of calcium 

carbonate and tested for performance towards hydrogen generation. Their results 

were compared with deionised water as shown in Figure 4-43. One can see that 

hydrogen formation from tap water was considerably slower than of when activated 

aluminium was reacted with deionised water.  At the same time, it was noticed that 

water from East London was liberating more hydrogen than water than from South 

London, though the difference is only 5 ml. In 1000 sec reaction time the deionised 

water produced 35 ml H2 gas at a higher rate of reaction. Whereas, the two tap water 

samples showed a 100 sec lag time and only generated an average of 20 ml H2 in 

1000 sec. As has been stated previously, the reaction of hydrogen is exothermic and 

will result in heat release. Monitoring the change in temperature can help identify 

when the reaction is starting. In Figure 4-43b, that in case of deionised water, the 

temperature starts to increase from the start, but not in the case of tap water from 

two regions in London, in agreement with the observed hydrogen evolution plots. 

This observation will be explained shortly, but it is understood from this study that 
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deionised water is a better choice than tap water for hydrogen generation in 1000 

sec reaction.   

Indeed, similar findings have been reported already by many researchers and a 

rationale has been given that due to dissolved ions in tap water, side reactions can 

take place before the hydrogen generation reaction can occur which can cause a lag 

and also affect the overall yield [80,92,103]. In order to test this theory for our 

study, samples from tap water were analysed using ion chromatography. Recall, 

that ion chromatography can separate and detect traces of ions in a given sample. 

The concentrations of ions in parts per million (ppm) detected in tap water from 

two regions in London are tabulated in Table 4-5. Referring to Table 4-5, one can 

see that there is little difference in the amount of dissolved ions between the two 

tap water samples. However, higher Ca2+ ions concentration was detected in tap 

water sample from East London. This is due to the typically high level of CaCO3 

and MgCO3 found in some UK waters. The ICP-MS analysis only detected the 

dissolved metal ions and did not find any carbonate, CO3
-2. It can be said that if in 

case of high concentrations of calcium carbonate, CaCO3 and magnesium 

carbonate, MgCO3 in tap water, a possible reaction between the formed hydrogen 

gas (produced via Al and water reaction) and CaCO3 or MgCO3 can occur to give 

Ca(HCO3)2 or Mg(HCO3)2. 

Table 4-5: ICP-MS analysis of East and South London tap water. 

   Cations (ppm)    

Location Na+ K+ Ca2+ Mg2+ Zn2+ Cu+ Sr2+ 

East 

London 
24.29 3.25 99.47 7.29 0.00 0.06 0.43 

South 

London 
23.39 4.89 69.67 6.05 0.01 0.03 0.32 
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Figure 4-45: Domestic tap water and deionised water comparison on the effect on the 

hydrogen generation. 

Calcium Carbonate, CaCO3 reacts with H2 as shown in the equation below. In this 

scenario, the liberated hydrogen would be consumed in the stated reaction and 

therefore, GFM would not record any H2 amount.  

2CaCO3 + H2   2Ca(HCO3)2       (4.31) 

It is likely that no such reaction took place. It was suggested by Wang et al. that 

Al2O3 layer is not very soluble in tap water as compared to deionised water as tap 

water contain dissolved minerals. This could also be used to explain the reduction 

in hydrogen yield and reaction rate from tap water. Some reports in the literature 

are present in which reaction yields from sea water have been shown to be higher 

than from deionised water [40,107].    
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4.2.5.2 Effect of OH group containing solutions 

In chapter 2, ethanol, ethylene glycol, and urea from urine and sucrose solution 

were identified as potential candidates for the portable hydrogen generation device. 

A common feature amongst them is the presence of OH group in their chemical 

structure. The results of measuring the generation of hydrogen from these sources 

are reported and discussed in this section.  

The said chemicals can be found in wastewater and their concentration can vary 

depending on the location from where wastewater is collected. For example, in 

close vicinity to the dairy industry, a significant amount of sucrose as well as 

ethanol (conventional solvent), may be found in the wastewater. Similarly, 

antifreeze concentration in wastewater would be higher close to an automobile 

industry. These chemicals are of interest because hydrogen could be liberated from 

their reaction with activated aluminium. These stated solutions were prepared at the 

university, for more information see chapter 3. First wastewater type to examine 

was ethanol in water. In Figure 4-44, the results of hydrogen formation reactions 

with different concentrations of ethanol solutions are displayed. One can see that 

regardless of the concentration, ethanol solutions were able to produce hydrogen 

gas. With the highest concentration of 0.68 M, 25 ml of hydrogen gas was liberated 

in a 1000 sec reaction. The trend observed in the figure favours higher 

concentrations of ethanol solution for an efficient reaction. However, when 

compared with deionised water, it was 10 ml less. An independent test was also 

performed where pure ethanol was reacted with activated aluminium and no 

reaction was observed. It was observed that heat was given off in the reaction as 

indicated by the temperature rise. 
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Figure 4-46: Hydrogen production using a range of 0.27-0.68 M ethanol solution when 

reacted with activated aluminium.  

In order to account for the reaction behaviour observed here with the hydrogen gas 

liberation, different possible reactions of ethanol in the mixture that can take place 

need to be discussed. Firstly, some of the ethanol molecules in the presence of metal 

Al can react as shown below:  

Al + C2H5OH   Al(OC2H5)3                        (4.32) 

This reaction is possible because Al is milled which exposes the reactive surface. 

The product of the reaction is aluminium-triethoxide, C6H15AlO3 which 

decomposes into aluminium hydroxide and ethanol only. This reaction, therefore, 
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does not contribute to hydrogen production. Aside from that, at room temperature, 

this reaction is not very favourable. Ethanol also can, under certain conditions, act 

as a weak acid. If this is considered as a possibility, then it will simply react with 

OH- ions formed from the following reaction: 

CaO +H2O  Ca(OH)2   Ca2+ / OH-                   (4.6) 

Lastly, it was observed that pure ethanol did not produce hydrogen and only diluted 

solutions gave off a measurable amount. This indicates that the water contents in 

diluted solutions may have been playing a role. Grosjean et al. reported a similar 

observation when their milled sample of Mg and MgH2 was reacted with ethanol 

solutions. They also reported that increasing the concentration of ethanol in water 

helped improve H2 formation. The authors also reasoned that the presence of water 

in the mixture solution might modify the acido-basicity of ethanol. While this 

assertion requires a more thorough investigation, one can discard the possibility of 

the Al and ethanol reaction contributing to hydrogen production and conclude that 

diluted ethanol solutions are able to produce hydrogen gas from their reaction with 

our prepared powder [96]. 

 

Next, ethylene glycol (antifreeze) was reacted with aluminium. Again, solutions of 

different concentrations were prepared for this investigation. Moreover, 

commercially available antifreeze (Q8 antifreeze) was also obtained to compare its 

performance to the prepared solutions. One can see in Figure 4-45a, increasing 

concentration of ethylene glycol in deionised water up to 0.77 M appears to improve 

the hydrogen formation. In contrast, commercial antifreeze produces the least 

amount of H2. A temperature rise was observed in all cases indicates the exothermic 

reaction took place. Moreover, with a higher concentration of ethylene glycol the 

rise was higher, but the commercial (denoted as industrial in the plot) antifreeze 

solution produced the largest initial temperature jump.  
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Figure 4-47: Hydrogen production using 0.21-0.77 M ethylene glycol solution 

compared with industrial anti-freeze when reacted with activated aluminium. 

Commercial antifreeze contains the highest content of ethylene glycol (> 90 % 

according to the product specification) and from the trend observed from prepared 

solutions, it can be said that it plays a role in the exothermic reaction. The reason 

why hydrogen production is not very high for this chemical is due to the presence 

of inhibitors such as propylene glycol and oxidation prevention agents which make 

up the rest of 10 wt %. As antifreeze is used to protect engines from corrosion and 

rust despite initially a fast reaction due to the inhibition of corrosion of Al the 

reaction does not continue. 
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Figure 4-48: Hydrogen produced using 0.008-0.020 M sucrose solution when reacted 

with activated aluminium. 

Lastly, sucrose solutions were also reacted with activated aluminium to assess their 

ability to generate hydrogen. Solutions of concentrations ranging from 0.008 mol 

to 0.02 mol were used for this study. Higher concentrations than this were avoided. 

This is because sucrose has larger molecular structure relative to water and it was 

reasoned that more molecules of sucrose in reaction mixture could block the access 

of water molecules reaching the surface for the reaction. The results of reactions 

are plotted in Figure 4-46 and show that while sucrose reaction with aluminium 

releases H2, the volume of the gas decreases as the concentration of solution 

increases.  



C h a p t e r  4 .  R e s u l t s  a n d  d i s c u s s i o n              P a g e  | 134         

 

 
 

This is not a surprise as when the concentration becomes high, the channels for 

water to the reach the reactive surface become increasingly blocked and thus the 

amount of production goes down [151]. One way to describe the reaction between 

OH- containing groups and Al is shown in the equation below: 

                            Al + ROH  Al(OR) + H2        (4.33) 

, where ROH corresponds to species containing OH groups. However, this reaction 

is, in fact, slow particularly at these temperatures. Therefore, it can be disregarded. 

A better explanation of why the activated aluminium reaction with ROH took place 

to produce H2 could be as follows.  

                                       

     Ethanol                          Ethylene-glycol                           Sucrose 

Figure 4-49: Molecular structures of ethanol, ethylene glycol and sucrose [44]. 

If one looks at the chemical formulas of ethanol, ethylene glycol and sucrose (see 

Figure 4-47, for a reminder of their structures) they all contain OH groups. When 

these compounds are mixed in water they completely or partially get submerged 

forming H- bonds with the water molecules which form due to fluctuating charges 

creating transient dipoles. When activated aluminium particles are presented in the 

solutions, water is attracted towards to aluminium particles due to polarity effect, 

thus breaking these H-bonds with alcohol specimen to give of H2.  

With regards to the synthesis of Al particles, it shall be remembered from section 

A, that PO (potash), the in-house salt additive, helps in creating salt gates on the 

surface of Al particles during milling. When activated aluminium is reacted with 

these solutions, the additives including PO dissociate into the solutions releasing a 

large amount of Cl- ions and damaging the passive oxide layer, Al2O3.This allows 

the embedded salts to dissolve creating salts gates and permitting species in 

solutions to access the surface of Al particles. Milling also affects the Al particles 
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and create grain boundaries, which can have contributed towards the corrosion sites 

of the Al particles, consequently helping the formation of H2 gas [26]. 

4.2.5.3 Urea solution  

For the final investigation, a series urea solution was prepared at the university. As 

was mentioned previously, urea solution is of particular interest because it is the 

main by-product of human urine and 97 wt % is water. There is a plentiful supply 

of it and so it is a potential replacement for water to be used in the fuel cell. The 

level of urea found in wastewater is typically in the range of 1-10 mg/L [152,153]. 

Therefore, to mimic real-life scenario, different concentrations of 0.15, 0.10 and 

0.05 M of urea solutions were prepared with deionised water, refer to chapter 3 for 

more details. As one can see from the Figure 4-49a, that all of the urea solutions 

were able to generate H2 when reacted with activated aluminium at 25 °C. 

As shown in Figure 4-49a, the highest concentration of urea, i.e. 0.15 M liberated 

43 ml of H2 in a 1000 sec reaction. It exceeded the amount of H2 given off by 

deionised water by approximately 10 ml. These results are very encouraging for use 

in the fuel cell for the formation of H2. To explain the reaction of urea solution with 

aluminium, the following hypothesis is suggested. As stated in chapter 3, the urea 

solutions were prepared following the guidelines provided by Putnam [132].  All 

the additives including urea powder and salts, including NaCl and KCl, were added 

into deionised water. When more concentrated solutions were prepared a number 

of salts, i.e. NaCl and KCl were added to deionised water were also increased. Due 

to the high concentration of salts present in more concentrated solutions, the number 

of Cl- ions must also be high. This increase of Cl- ions in the solution in addition to 

what milling additives would release into the solution would create a high 

electrolytic solution synergy promoting electro-conductivity in reactions such as 

corrosion. 

 

Figure 4-50: Chemical formula of urea [44]. 
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Figure 4-51: Hydrogen production using 0.05 - 0.15 M urea solution when reacted 

with activated aluminium. 

This argument was also made by Elitzur et al. where the author reported that when 

they used urea solution and reacted their sample with deionised water and seawater, 

they observed an increase in the reaction rate and yield of H2 [116]. Therefore, it 

can be concluded that increased salt content wt % in solution was likely an 

important the major factor in liberating more H2. In this work, the attention was 

mainly given to assessing the performance of the said solutions to produce 

hydrogen. The rationale for the observed behaviour of each solution was given by 

reference to literature when possible or a hypothesis was presented. It must be said 

that the detailed investigation of various mechanisms via which different species 

react with aluminium was beyond the scope of this thesis. 
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 Gas Analysis 

The on-demand hydrogen technology must be both economically attractive and 

safe. Therefore, it is important to ensure that no unwanted or potentially harmful 

products or gases are produced inside the portable cell from the reaction which can 

compromise the fuel cell itself or be dangerous to the consumer. This is especially 

important in this particular case because the water for the reaction can come from 

various sources (as is the aim to use the fuel cell in many places).   

Should the water contain contaminants, harmful gases may be produced when 

reacted with activated aluminium. The measurement reported thus far have been 

mainly sensitive to the production of H2 as the GFM was calibrated for H2. This, 

unfortunately, does not guarantee that H2 is solely produced in the reaction. In order 

to properly analyse the contents of the evolved gas, gas chromatography was carried 

out. The principal gas chromatography as described in chapter 3. Hydrogen gas 

produced from the various solutions including deionised water, ethanol solution, 

ethylene glycol solution (antifreeze), sucrose solution and with urea solution 

(mimicking urine) was collected and investigated separately.  

The results of the analysis are presented in Table 4-7 and Figure 4-51. However, 

for full GC results see appendix. Only the readings of retention time (in min) and 

full peak widths at half maximum (FWHM) for each of the 5 reactions are listed in 

Table 4-6. One can see that that the retention times obtained for the gas evolved 

from the reactions agree well with those from the standards. Allowing for a small 

difference of ± 5 sec this indicates that the gas measured from the reaction is indeed 

pure hydrogen. Moreover, FWHM values are not very different from each of the 

solutions. It should be mentioned that analysis of the gas also produced peaks from 

oxygen, nitrogen and argon in all cases. 
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Table 4-6: GC Retention times and peak width. 

Reaction run sample 
Retention time 

(min) 
FWHM (min) 

Deionised water* 1.52 0.017 

Deionised water 1.54 0.025 

Ethylene glycol solution 1.49 0.020 

Ethanol solution 1.43 0.018 

Sucrose solution 1.43 0.018 

Urea solution 1.40 0.020 

Standard Gases   

Hydrogen (Al+NaOH) * 1.79 0.022 

Hydrogen (99 %) 1.51 0.027 
   

Nitrogen 3.36 0.030 

Oxygen 2.00 0.033 

Carbon Dioxide 2.88 0.034 

Argon 1.89 0.038 

Please note *Column temperature setting at 35 °C. 

 

The reason for their presence is due to the insufficient purging of the gas syringe, 

so traces of nitrogen and oxygen from air remained inside. Ideally, the reactor 

should be connected directly to the GC, thus avoiding the need to transport the gas 

in a vessel like a syringe and introducing traces of 'impurities'. However, as was 

mentioned earlier this was not possible in this case due to locality issues. But, based 

on this study, one can say with confidence that H2 was released even when various 

complex molecules and ions were mixed with deionised water. Moreover, no 

harmful gases which can damage the fuel cell were detected from this investigation. 

Nevertheless, it is recommended that gases produced from other than the deionised 

water must pass through a stripper or absorber prior to being fed into a fuel cell.   
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Figure 4-52: Hydrogen gas peaks generated when different solutions were analysed 

with GC, a) deionised water (35 °C), b) deionised water, c) Ethanol, d) Ethylene glycol, 

e) Sucrose and f) Urea. 
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4.2.6.1 Evidence for hydrogen gas formation 

• To further confirm that only hydrogen gas was liberated in the reactions and 

that the peaks of atmospheric gases in the GC did not come from the 

produced gas, a dry run was performed using a gastight syringe to analyse 

the air present in the room where GC was stationed. Analysis of the results 

obtained from the dry run (not reported here) showed that no hydrogen peak 

was discovered. Peaks of oxygen, argon and nitrogen were detected. 

Moreover, the retention time of these atmospheric gases also matched that 

of air signatures recorded during the H2 gas analysis.   

• Activated aluminium was subjected to SEM analysis before and after 

reaction with deionised water. After the reaction had finished, a significant 

shrinkage of Al particles was observed indicating that the particles had 

indeed have reacted with water, in the following reaction, 

2Al + 6H2O  2Al(OH)3 + 3H2           (4.1) 

• A further analysis was carried out on the reacted aluminium particles using 

XRD to verify the by-product Al(OH)3 presence. The results displayed in 

Figure 4-33, that confirmed Al(OH)3 was produced in different forms, i.e. 

Gibbsite, Bayerite and Nordstrandite. Formation of these morphologies 

Al(OH)3 is only possible if the reaction between activated particles and 

deionised water takes place showed in temperature plots. 

• Hydrogen formation reaction is exothermic and all the reaction runs 

produced a significant amount of heat.  

• Finally, the last analysis was conducted in a fume cupboard to avoid any 

unfortunate circumstances. The produced hydrogen gas was collected in the 

inverted column and popped. At first, the gas was not ignited. However, 

when a little amount of argon was mixed in the glass column carefully. This 

time when gas was ignited, it popped with a high pitch sound chipping the 

glass column.   
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 Conclusion of Section B      Effect upon hydrogen generation due 

to the varied solutions 

Based on the findings from section B, it was discovered that activated aluminium 

particles require constant agitation at 700 rpm for achieving desirable hydrogen 

yield. However, if agitation speed is high, then it would reduce the possible 

hydrogen yield. Loading also plays a curial role in achieving desirable hydrogen 

yield. Increased loading of activated aluminium does not help to achieve high yield 

due to smothering. Starting temperature can influence the overall yield. Al particle 

size of 40 µm and 75 µm when employed produced lower yield compared to 105 

µm, as starting temperature increase was found to be favourable for the largest 

particle size.  

When pH of the solution is changed and activated aluminium is reacted with a 

solution containing either acid or alkali, it will produce hydrogen, however, an 

absorber or stripper must be used before the gas is sent into the fuel cell.  In this 

research work, it was shown that wastewater could potentially be used as a source 

of hydrogen gas. Urea solution proved to be the best alternative as compared to 

wastewater tested. However, the gas may require treatment before it can be used in 

a fuel cell. Gas analysis was carried out on the gases given off when activated 

aluminium was reacted with simulated wastewater containing, ethanol, sucrose, 

urea and antifreeze (ethylene glycol). From the GC results, contaminants gases were 

detected which could potentially damage the fuel cell membrane.   
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4.3 Section C   Economical evaluation of the research   

This section presents the final instalment of the results and discussion chapter. It 

will highlight the importance of the overall hydrogen economics for this research 

work. It will include; the cost of raw material, particle processing, balanced against 

the hydrogen produced. The notion of this research project was to present a 

convenient and cost-effective process for preparing the reactive powders for an on-

demand hydrogen generation aimed at fuel cells. Currently, there is no established 

market for on-demand hydrogen technology for fuel cells. The most common on-

demand hydrogen is found in the automobile sector, where produced hydrogen is 

mixed with fuel in the combustion engine to reduce the fuel cost and CO2 emissions.  

These on-demand hydrogen generators produce H2 through electrolysis process 

driven by the car battery. Although it is an intriguing idea to improve the mileage 

on the vehicle, nevertheless it is not very efficient and requires the engine to be 

constantly running in order to generate hydrogen. In other words, fossil fuel is still 

consumed during the process does contribute to greenhouse gases. Currently, there 

are a few portable power units based on fuel cell technology on the market, but all 

of them depend on hydrogen gas which needs to be fed via compressed hydrogen 

cartridges or cylinders. As stated, the on-demand hydrogen technology from this 

research work is aimed at power-producing fuel cells working off the grid and in 

rural areas. This would, therefore, mean that the transport and storage cost of the 

hydrogen can be eliminated.   

This research work provides an alternative approach to the options available in the 

market. The concept is provided where the hydrogen generation works in-situ with 

the fuel cell, removing the need for any external hydrogen supply. The core and the 

main driving force for this research work are based on the aluminium and water 

reaction. However, aluminium metal needs to be activated before it can react with 

water efficiently in ambient conditions, i.e. atmospheric pressure and standard 

temperatures 25 °C. This is because aluminium forms barrier layers of Al2O3 when 

exposed to air, which prevents the water from reacting with the surface of the metal. 

Thus no reaction takes place when aluminium is reacted with water without the use 



C h a p t e r  4 .  R e s u l t s  a n d  d i s c u s s i o n              P a g e  | 143         

 

 
 

of any catalyst such as KOH or NaOH. For more information consent the Chapter 

2.  

 Proposed milling protocols  

After reviewing different possible techniques in the literature review, which can 

damage the aluminium barrier layer. It was decided that reactive milling would be 

employed for the research. However, for keeping the economics commercially 

attractive and to achieve desirable activation, special attention was given to the 

processing cost as well as additives which would be used to synthesise Al metal 

particles. 

Aluminium particles would be milled in the presence of metal oxides and potash, 

PO and called (MO+PO), which provide a comprehensive balance of inexpensive 

and non-corrosive raw materials. Although selected raw materials would keep the 

overall cost down, the reactive milling technique itself is energy intensive, meaning 

a considerable amount of electricity may be consumed. The high processing cost of 

this technology is not mainstream in the commercial industry, although it is 

extensively used for research purposes. The electricity consumption can jeopardise 

the purpose of this technique which is to keep the process cost-effective. However, 

it is suggested by authors of [53,54,88,93,94,109,140] that in milling process 

electricity consumption can be altered by varying the functional parameters. The 

parameters include; milling speed, the duration of milling, ball to powder ratio, 

loading of powder and lastly it also depends on the type of ingredients being used 

during the milling.  

Researchers mentioned above claimed that their samples produced higher hydrogen 

yield when they milled their samples for an extended period of time or at high 

milling speeds. In order to avoid the similar obstacles discussed, distinctive and 

tailored milling programmes were designed for this research. To record the energy 

usage of the milling machine during the processing of the metal particles, an energy 

reader (13 A plug-in energy saving monitor, Maplin) was connected to the milling 

machine. This energy meter provided the energy usage of different milling 

programmes which was used to calculate the processing costs. One can see from 
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Figure 4-51 that there is a significant difference in energy consumption between 

Milling Programme 1a and 1b, with the speeds of 260 rpm and 520 rpm, 

respectively. Likewise, Milling Programme 1a and 2 (different break times) also 

have a significant difference with regards to energy consumption. After Milling 

Programme 1a, 1b and 2 consumed 0.29 kWh, 0.72 kWh 0.55 kWh, respectively.   

 

Figure 4-53:  Energy consumption for three different milling programmes using 

device Retsch PM 100. The dotted line marks the active milling time used.  

Synthesised samples produced from these three milling programmes were 

compared in section A. Where it was seen that Milling Programme 1a, produced a 

higher quality of the synthesised powder. When reacted with deionised water at 25 

°C it produced approximately 85 % hydrogen yield in 3 hrs. Whereas powders 

synthesised using Milling Programme 2 and Milling Programme 1b were compared, 

they produced hydrogen yield of 34 % and 5 %, respectively when reacted with 

deionised water. It was established from this investigation that milling for an 

extended period of time or at high speed is not necessary nor even justifiable when 

activation of particles can be achieved with lower energy investment.   

Throughout this research work, milling was carried out for 1 hr and 40 min (100 

min) out of which the actual milling time when break times were deducted was only 

66 min, as shown in Table 4-8. It is important to point out the fact that milling for 

the shorter period of time still provided encouraging hydrogen yield results thus 

further reaffirms the claim that milling for long duration does not help. 
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One can see from the Table 4-8, Milling Programme 1a and 1b both milled for just 

66 min whereas Milling Programme 2 milled for 92 min. As stated earlier, that 

powder prepared from Milling Programme 2 had a reduced H2 yield as compared 

to powder prepared from Milling Programme 1a. However, It could be argued that 

powder prepared from milling for an extended period of time, i.e. 2.4 hrs can 

provide a faster reaction rate and possibly marginally higher yield as compared to 

the powder which was prepared by milling for 1.1 hrs. It is essential that the 

hydrogen production rate is stable, this because hydrogen reactor vessel would be 

connected to fuel cell in-situ and damage the fuel cell if there is no flow controller 

present.  

Table 4-7: Milling Programmes and their respective power consumption. 

Name of 

programme 

Milling 

Programme 

1a 

Milling 

Programme 

1b 

Milling 

Programme 2 

Total time of 

milling 
1 hr 40 min 1 hr 40 min 1 hr 40 min 

Mass of 

powder 
3 g 3 g 3 g 

Actual 

processing 

time 

66 min 66 min 92 min 

Actual power 

consumed 
0.29 kWh 0.72 kWh 0.55 kWh 

Cost of 

processing 
£ 0.02 £ 0.08 £ 0.06 

 

From Figure 4-4, it can be seen that powder prepared from 2.4 hrs milling, does not 

exhibit a stable reaction when it is reacted with deionised water as compared to 

powder prepared from 1.1 hrs milling. As stated above that fuel cell requires a 
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constant and stable flow rate of H2 gas to operate; therefore, powder prepared from 

2.4 hrs milling might not be suitable. 

 Cost estimation  

It was imperative that during the economic evaluation industrial scale aluminium 

activation process should be considered as well as the small scale (Laboratory). 

Since the powder activation process would be at the industrial level and all the raw 

material would be purchased in bulk, therefore, the overall activation process would 

be cost effective as compared to a university laboratory condition. Furthermore, the 

benefactor company is based in the United States. Therefore, a cost evaluation for 

the US market would also be provided.  

With regards to the electricity utility, Milling Programme 1a would cost 

approximately £ 0.02 for activating 3 g of powder (mixture) at the university. This 

estimation was calculated in compliance with academic electricity rates of £ 0.09 

per kWh and climate change levy of £ 0.005 [154].  

Table 4-8: Raw material used for the activation of aluminium. 

Material used Amount (kg) Cost (£) 

CaCl2 0.0009 £ 0.07 

KCl 0.0009 £ 0.05 

NaCl 0.0012 £ 0.03 

CaO 0.0037 £ 0.67 

CuO 0.0037 £ 0.40 

Al 0.0195 £ 2.77 

Total amount 0.0299 £ 3.98 

 

It is important to state here that 3 g of powder contained 65 wt %, 25 wt % and 10 

wt % of (Al, MO and PO), respectively. Based on the weight percentage of all the 

ingredients in 3 g of powder, it would cost £ 3.98 collectively, based on the 

quotation from Fisher Chemicals [141]. Using 3 g of activated aluminium 
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(recycled) powder is reacted in water at 25 °C see Table 4-8, it is capable of 

generating 2600 ml or 2.6 l of H2 for approximately £ 4.00 at a university laboratory 

if the raw materials are acquired from Fisher Chemicals. 

The presented cost also accounts the electricity consumed by electric stirrer/agitator 

and the cost of water consumed during the reaction. The overall cost of the 

suggested process is noticeably high even though the cost of raw material and the 

processes were carefully taken into consideration. The high cost of the overall 

process at the university can be justified as industrial tariffs and cost of raw material 

purchased in bulk amount will be considerably cheaper than used for academic 

purposes. 

4.3.2.1 Forecasting large scale  

This research work is aimed at proposing a milling protocol which would be 

employed in the activation of Al used for industrial purpose. Although the cost of 

production is presented here is for a research university scale activation. Some 

information would be taken and extrapolated to forecast the economics of the 

process. When a process is upscaled, the cost of raw material and electricity does 

not increase in linear rate. However, for this research estimation purposes cost of 

electricity for milling 3 g of powder was linearly increased based on the used 

planetary milling device.   

It was calculated that to produce 1 kg or 11000 litres of hydrogen gas; it would 

require 12.70 kg of activated aluminium. Based on the data from Alibaba for all the 

raw materials and if they are brought in in the UK, it will account for only £ 5.71 ~ 

£ 6 [155]. Whereas, the electricity usage would account for £ 68 per kg or £ 0.006 

per litre. This estimation was drafted using the electricity rates used by medium 

scale industry in the UK. This cost estimation would be accurate assuming if 100 

% efficiency of H2 is to be achieved. However, during the research work, when the 

40 µm aluminium particle was employed, hydrogen yield attained was 85-92 %. 

Based on the yield taken into account, it would cost approximately £ 80 per kg H2. 

It has to be remembered again that this forecast estimate is based on energy 

consumed if a number of Planetary Ball Mill PM 100 RETSCH were to be 

employed.  



C h a p t e r  4 .  R e s u l t s  a n d  d i s c u s s i o n              P a g e  | 148         

 

 
 

This does not represent the actual cost linked with the upscaling process, as the 

larger scale process would not follow a linear trend.  However, still assuming the 

cost for the USA using Planetary Ball Mill PM 100 RETSCH, the estimate would 

be $ 90 per kg or $ 0.008 of hydrogen gas. This cost will be reduced if the large-

scale miller is employed. Below, Table 4-9 shows the cost comparison for both UK 

and USA large scale in their respective currencies.  

Table 4-9: Projected large-scale cost. 

Scale / Location  

United 

Kingdom 

(London) 

United States 

(Cleveland, OH*) 

Cost of raw material £ 6 £ 7 

Energy cost (medium scale) £ 0.050 kWh $ 0.067 kWh 

Climate levy £ 0.005 kWh N/A 

Energy usage based on Retsch 

PM-100 
1226 kWh 1226 kWh 

Cost of processing  £ 68.49 $ 83.00 

Total cost per kg (100 % yield)  £ 74.22 $ 90.00 

Total cost per litre £ 0.006 $ 0.008 

 

 Conclusion for Section C      Economical evaluation of the 

research   

The proposed milling protocol presented and utilised throughout this research 

studies has considerably less energy investment than to methods presented in the 

literature. As stated at the beginning of section A, high speeds or longer milling 

times were employed by serval authors [18,26,41,45,54,66,80,134-136], including 

Tousi et al. for achieving high flow rates of hydrogen and its yield. They also 

attempted to mill a rare earth metal and an expensive LMP (low melting point 

metal) together with aluminium and succeeded in producing hydrogen, albeit at a 

much higher cost than this work. These factors, which include power consumption 

and usage of raw materials, contribute towards an increase in the overall cost of 

hydrogen production, whereas, as mentioned already, this thesis work aimed to 
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circumvent that and demonstrated an efficient use of resources to produce high 

yields of hydrogen (over 85 %).  

The above point could be elaborated as a comparison was drawn between the work 

presented here against that of Tousi and co-workers [104] for the consumption of 

energy and the yield of hydrogen gas. Tousi and co-workers milled aluminium and 

potassium chloride (potash) at 200 rpm for 7 hrs and immersed the resulting mixture 

in water at 80 °C. The authors reported a yield of (> 90 %) for hydrogen after a 

reaction time of 4500 sec [72]. Whereas, Wang et al. [80] also prepared aluminium 

with calcium oxide and potassium chloride, but also used gallium as LMP and 

moreover, milled the mixture for 8 hrs at 360 rpm. Afterwards, the powder was 

introduced into 60 °C water to generate hydrogen whose yield, Wang claimed to be 

roughly 68 % in 4500 sec. This research work showed the achievable yield of 

hydrogen to be 61 % in 4500 sec when the prepared mixture was milled for 1.1 hrs 

at 260 rpm and added to 25 °C water and 80 % when milled for 2.4 hrs. 

Table 4-10: Comparison of saving of energy, yield and reaction conditions. 

 Tousi 2013 Wang 2014 This research 

Processing time (hrs) 7 hrs 8 hrs 1.1 hrs 

Milling speeds (rpm) 200 rpm 360 rpm 260 rpm 

Temperature of 

water (°C)  
80 °C 60 °C 25 °C 

Yield (%) (after 4500 

sec) 
90 % 68 % 61 % 

Temperature of 

water (°C)   
25 °C 25 °C 25 °C 

Yield (%) (after 4500 

sec) 
N/A 29 % 61 % 

Although, Tousi and Wang's high hydrogen yields suggests rather due to reactor 

design factors. that their prepared powders were more reactive in water than ours. 

However, it is important to emphasise that hydrogen yields from their work may 

have been higher due to the longer milling time which would have provided their 

powder with better mixing and would have reduced their powder particle size. In 
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addition, both Tousi and Wang reacted their prepared samples in water at high 

temperatures, i.e. 80 °C and 60 °C, respectively. Wang reported that with water at 

25 °C, the hydrogen produced after 4500 sec was substantially lower (29 % yield).  

This comparison provided an insight that not only there is cost saving in the 

proposed technique, but the quality of powder synthesised using Milling 

Programme 1a achieved a high reaction yield. 

4.4 Chapter 4   Conclusion  

A number of the different experiments were conducted in this chapter including the 

particle process effect on the hydrogen generation. The importance of the milling 

additives and their subsequent importance in the hydrogen production are described 

in detail. Furthermore, it is clarified how the choice of aluminium metal, type of 

milling additive (salt and oxides) and composition plays an important role in the 

final processed particle. For the optimal composition, it was found that a shorter 

milling programmes duration and lower milling speed produced promising 

hydrogen yield. 

  

To the best knowledge of the author, no research has examined and described the 

details of the milling additives effect. In particularly when either combining two 

metal oxides additives or combining salt additives which in both cases appeared to 

create a synergy effect on the hydrogen yield. It was identified that using both CaO-

CuO metal oxides over one, does have a significant effect on the hydrogen 

production, similarly as the in-house salt mix (PO) improved the hydrogen reaction 

considerably explained both by the physical and chemical effects on metal 

aluminium particles. Furthermore, the starting metal particle size effect proved to 

be sensitive to the milling programme conditions and the additive choice. 

The 40 μm recycled Al particles provided the best hydrogen yield compared to 

larger particle sizes which were described by a larger surface area to get integrated 

with the chosen milling additives (CaO/CuO + PO).  The best chosen starting 

temperature of the water was 25 °C due to a balance of less heat energy input needed 

and the achieved amount of hydrogen. Higher temperatures such a 45 °C of could 

provide high hydrogen yield but would have the disadvantage of added heat energy 
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need, which would not be feasible in a portable on-demand hydrogen 

generation/fuel cell device. 

For real-life scenarios, the activated particles were tested on various types of water 

as deionised water would not be obtainable nor cost-effective for users. It is in detail 

described the effect of different dissolved ions and molecules in a wide range of 

water types, on both the reaction with Al and with the milling additives. The choice 

of water types was estimated for availability in real life scenarios. As the types of 

water varied greatly from the ideal deionised water it was important to assure the 

purity of the hydrogen gas was high and acceptable for a fuel cell. From the typical 

waster waters, which would possibly produce a less pure H2 gas, it was found in 

GC gas analysis that only hydrogen was produced and no inferior gases. However, 

for device development, it is suggested that a post- gas treatment is required.  

 

Additionally, the activated powder might have some disadvantages associated with 

itself because it would be used in generator in-situ with a fuel cell. A considerable 

amount of controls system needs to be installed for controlling the temperature of 

the gas, flow rate, moisture content and purity of hydrogen gas before intake for the 

fuel cell. Controlling these parameters is very necessary for the fuel cell to operate 

at its maximum efficiency. However, there are also a few external factors which 

need attention such as keeping the activated powder in a sealed bag containing an 

inert gas (such as argon) and no moisture content must be present in it. Any leakage 

of the bag would result in contamination of the activated powder thus making it 

defective or less efficient.  

One of the major factors which can affect the fuel cell operation is the rate of 

hydrogen production and it must meet the demand of the fuel cell intake. Therefore, 

it is necessary that generator and controls are built for the fuel cell requirements. 

Taking an example from the fuel cell available from the iHOD USA [6], one of the 

fuel cells produces 15 W power, for estimation purposes, it is assumed that it 

produces 12 W electricity. Based on these statistics the fuel cell would potentially 

require 261 ml/min of hydrogen gas to work in optimum condition. During this 

research work, only 0.3 g of powder was used for the hydrogen and it delivered 260 
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ml in approximately 3hrs, therefore, it would not be suitable to be used directly for 

the fuel cell. However, some parameters have adjusted according to the need and to 

advance the process, such recommendations are, i.e. limiting the water content in 

the reaction to increase the reaction rate, as discussed earlier. Once all the necessary 

enhancements are made, this would then assure the activated powder prepared 

during this research would be adequate for the purpose.   

Overall cost evaluation was estimated for particle processing and hydrogen 

generation for both small laboratory scale and larger. It was estimated that it would 

cost around £ 4 per 260 ml H2 at laboratory small scale, while up-scaled it would 

cost around £ 70 per 1 kg (11,000 L) of H2 (£ 0.06 per litre hydrogen) if the same 

type of high-speed ball milling machine was to be employed. 

In order to make the process more sustainable for both commercial and 

environmental perspective, the by-product can be recycled. It was confirmed 

through XRD of the reacted powder see Figure 4-33, that considerable amount of 

aluminium hydroxide is present in different morphologies, to read more about the 

types and how do they differ please refer to chapter 2. The by-product, Al(OH)3 can 

be used for various purposes, i.e. it can be used to recover any Al metal using a 

Bayer process [44,115,147], although that is an expensive route a good recovery 

ratio is possible. It can also be used in paper and pharmaceutical industry; therefore, 

it can be proposed that either the aluminium hydroxide is used for recycling the 

aluminium or it is sold to the relevant industry, it is a commodity and contains 

protentional to still bring revenue and in an eco-friendly manner. 

It was concluded that by a thoroughly investigated milling protocols (milling 

conditions and additives) resulted in a reduced energy investment for an optimised 

activated aluminium particle able to produce high hydrogen yield in ambient 

conditions. Furthermore, it shows that the processed particles were able to produce 

high hydrogen yield when used in cheap and available types of wastewaters such 

as urea. 
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Chapter 5 Conclusion and future works  

5.1 Overview  

In this thesis, the activation of aluminium particles was investigated using reactive 

ball milling. The goal was to find optimised parameters for ball milling which 

would deliver improved activation of Al powder, as well as reduce the energy 

investment into the process. Activated powder from reactive milling would be used 

for generation of hydrogen gas. It was discovered that the elected method of 

synthesising the Al particles, i.e. reactive ball milling was an ideal method. Once 

the processing method was completed the quality of activation was adequate for the 

prepared powder to be reacted with water. Activated aluminium powder was able 

to produce a high yield of hydrogen gas in an exothermic reaction without the aid 

of any external heat or catalysts. This type of activation is both efficient and has 

good commercial value.  

According to authors of Dutta et al., activation via milling statistically seems more 

reasonable and environmentally friendly option than other processing techniques. 

However, a drawback of reactive milling is that it consumes a considerable amount 

of energy [10] and is expensive. Aluminium was milled together with two different 

types of metal oxides (CaO and CuO) and a prepared in-house salt. After a number 

of trials, a protocol was developed which was named as “Milling Programme 1a”. 

It provided both the comprehensive activation as well as a cost-effective solution 

to be used for hydrogen generation. The Milling Programme 1a was used with 

different milling periods and different particles sizes of Al powder. It was observed 

that milling for a longer period was better for hydrogen generation at the same time 

the processing cost also increases. The additives (MO+PO) were also deemed to 

have played a vital role in the reactive milling process. EDX and SEM confirmed 

that the morphologies of Al particles changed after the reactive milling process. 

This is because (MO+PO) was pressed on the surface of Al due to the collision of 

milling balls as a result of centrifugal force generated during the milling process.  
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Metal particles regardless of their sizes before milling showed surface damage after 

milling. These defects and role of additives on the surface permitted water to 

interact with Al particles thus allowing faster corrosion and production of hydrogen. 

Smaller size metal particles, i.e. 40 µm, when milled using Milling Programme 1a, 

produced a high H2 yield of 85 % in 10000 sec at ambient conditions due to the 

larger surface area. After reactive milling process, Al particles can still produce 

hydrogen with water at different initial temperatures. However, it was observed that 

larger particles, i.e. 105 µm, was unable to produce an appreciatable yield at 25 °C. 

It was also noted that hydrogen yield decreases with the increase of temperature. 

Furthermore, agitation is necessary for achieving higher yield and without agitation 

yield is only 34 %. Furthermore, pH of water has effect nevertheless the pH 7 

performed as good as extreme acid or alkali solutions due to the presence of CaO 

and CuO as additives.  Research work also presented the production of hydrogen 

gas when wastewater is used especially when urea water was employed. 

Table 5-1: Comparison of by-products and advantages 

 Product made KOH NaOH 

Hazardous 

material 
No Yes Yes 

By – products Al(OH)3   K[Al(OH)4]  NAAl(OH)4 

Usage in the 

industry 
Pharmaceutical  Dying agent  Water softener 

Corrosive Marginally Intensely Intensely 

Have to keep in 

inert gas 
Yes  Yes (solution) Yes (solution) 

Can it react with 

air 
Yes Yes  Yes 
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5.2 Future works 

• Fuel cell should be in-situ with the H2 reactor to analyse any device 

complications. 

 

• The hydrogen process capability should be conducted on a larger scale and 

if possible using a CSTR hydrogen reactor to observe if there are any 

adjustments required. 

 

• Implementation of process control for up-scaled hydrogen process to 

improve efficiency. 

• Milling larger quantities of activated particles should be investigated as 

planetary mills are not aimed at larger process scales 

• Development of a full kinetic model of the reaction which would support 

process design and process simulation. 

 

• Investigation of the exothermic heat generated from the reaction and if it 

can be harnessed and reused. 

• Recovering the Al from the Al(OH)3 product development so the metal 

can be used again. 

• More alternative available water sources should be investigated such as 

rainwater and seawater.  

• Lifetime analysis should be conducted for the particle processing it would 

help to better understand the economics of the process. 

 

5.3 Closing remarks  

From this research, it was established that Al particle size of 40 µm, when milled 

with two metal oxides, i.e. CaO and CuO and in-house at 260 rpm for 1.1 hrs, 

produces a high-quality synthesised powder. When this powder is reacted at 25 °C 

with water or urea solution, it produces hydrogen at high quality and at a study rate 

with a yield of hydrogen up to 85 % in 3 hrs of reaction time. This process of 

synthesising Al particles can further be applicable on the larger industrial scale as 

well.
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Appendix   

 

Errors and uncertainty  

In the course of this research work, the data were collected using instruments such 

as a digital gas flow meter and thermocouple were connected to a digital data 

collector (Pico Meter 2204). All these instruments have associated uncertainties in 

measurement. For example, the total uncertainty of the measurement from the 

GFM-17 can be as high as 2.5 % depending on the temperature of hydrogen gas.  

More specifically, it was observed that when inverted column produced 240 ml of 

hydrogen gas, the flowmeter was displaying 235 ml which indicate that a difference 

of ± 2 % should be expected when comparing the flow meter reading and the GFM-

17. In light of this fact, the measurements were repeated, where possible, in order 

to estimate the error. As an example, refer to Figure 4-19 in Chapter 4 (Section A), 

which shows the production of hydrogen gas against time from a sample (Al+MO). 

The measurement was repeated twice and the result is presented in Figure 6-1 

together with the error bars. 

 

Figure 6-5-1: Two different reaction runs showing error bars calculated standard 

deviation at every 1 sec interval. 

One can see in Figure 6-1 that uncertainty in measurements was relatively low at 

the beginning of the reaction. As the hydrogen reaction proceeds, the uncertainty 

grew in terms of measurements. However, the difference between the two 

experiments was marginal and is depicted by the error bars. Due to the high density 
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of data points (collected every second), the error bars forms a dark background.  In 

order to show the extent of deviation from the mean values, a few data points were 

selected and their errors calculated as tabulated in Table 6-1 and plotted in Figure 

6-2. The errors were calculated following the procedure presented by Pipes [156].  

The error bars were taken as the standard error of the mean as follows: 

s = 
𝜎

√𝑛
 

, where symbol σ is the sample standard deviation and n  is the number of trails. 

The standard deviation was calculated by using the following formula: 

 

σ = √
1

𝑛−1
∑ (𝑉𝑖

𝑛
𝑖=1 − 𝜇)2 

 

, where Vi is the volume produced, n is the total number of repeated measurements 

and 𝜇 is the mean of the sample given by: 

 

𝜇 =
1

𝑛
∑ 𝑛𝑖

𝑛

𝑖=1

 

 
 

Table 6-2: Interval reading of the full reaction. 

Time 

(1000 sec) 

Run 1 

(Hydro

gen 

volume 

ml) 

Run 2 (Hydrogen 

volume ml) 

Average of 

Run 1+2 

Standard 

Deviation 

1 7 8 7.5 0.71 

2 40 17 28.5 16.26 

3 9 67 38 41.01 

4 131 119 125 8.49 

5 165 162 163.5 2.12 

6 189 193 191 2.83 

7 207 214 210.5 4.95 

8 219 228 223.5 6.36 

9 227 239 233 8.49 

10 234 247 240.5 9.19 
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Figure 5-2: Error bars calculated standard deviation at every 1000 sec. 

 

  

 

Figure 5-3: Hydrogen pecks from the gas produced from deionised water while peaks 

of Nitrogen and Oxygen can be seen in the right-hand side box. 

 



Appendix                                                               P a g e  | 159         

 

 
 

 

Figure 5-4: Hydrogen pecks from the gas produced from ethanol while peaks of 

Nitrogen and Oxygen can be seen in the right-hand side box. 

 

 

Figure 5-5: Hydrogen pecks from the gas produced from ethanol while peaks of 

Nitrogen and Oxygen can be seen in the right-hand side box. 
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Figure 5-6: Hydrogen pecks from the gas produced from sucrose while peaks of 

Nitrogen and Oxygen can be seen in the right-hand side box.  

 

Figure 5-7: Hydrogen pecks from the gas produced from urea while peaks of 

Nitrogen and Oxygen can be seen in the right-hand side box. 
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