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Abstract: A digital volume correlation (DVC)-based optical coherence elastography (OCE)
method with inverse compositional Gauss-Newton (IC-GN) algorithm and second-order shape
function is presented in this study. The systematic measurement errors of displacement and strain
from our OCE method were less than 0.2 voxel and 4× 10−4, respectively. Second-order shape
function could better match complex deformation and decrease speckle rigidity-induced error.
Compared to conventional methods, our OCE method could track a larger strain range up to
0.095 and reduce relative error by 30-50%. This OCE method has the potential to become an
effective tool in characterising mechanical properties of biological tissue.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The mechanical properties of tissues are related to their physiological and pathological states. For
example, fibroadenoma and carcinomas breast tissue are four and eight times stiffer than normal
tissue, respectively [1,2]. Various elastographic technologies have been developed to supply
additional biomechanical contrast to morphological images for clinical diagnosis. Elastography
based on ultrasound and magnetic resonance imaging (MRI) were proposed by Ophir in 1991 [3]
and Muthupillai in 1995 [4], respectively. In 1998, Schmitt first reported the optical coherence
elastography (OCE), an elastography based on optical coherence tomography (OCT) [5]. Benefit
from OCT’s the ultra-high resolution, the OCE technology has been quickly developed in the
last decade, and can be applied for precisely evaluating the microscale mechanical properties of
tissue [6].

To date, two technique routes of OCE have been developed based on different principles, i.e.
speckle tracking and phase-sensitive OCE [6]. Thereinto, the phase-sensitive OCE captures
the interferometric phase from complex OCT signals. The sensitivity of the retrieved tissue
displacement is in nano-scale, which is expedient to extract nonlinear mechanical parameters
of tissue [7–9]. Nevertheless, phase-sensitive OCE measures the displacement along the OCT
scanning direction, which is often locked into the phase wrapping when tracking large deformation.
A robust phase unwrapping algorithm is required to unwrap the phase map [10]. The unwrapping
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algorithm is sensitive to the noises and artifacts in the raw OCT images, and the induced errors
hinder the translation of phase-sensitive OCE to clinical practice.

On the other hand, Schmidt firstly proposed the two-dimensional (2D) speckle tracking OCE
method in 1998 [5]. In this study, the resolution of displacement measurement was in pixel-level,
and subsequently produced amplified error in the differential-based strain mapping. Considering
anisotropic characteristics of biological tissue, 2D speckle tracking method is incapable of detect-
ing out-plane displacement and thus three-dimensional (3D) full-field deformation measurement
is essential in biomechanical research [11]. Fu et al. [12] firstly introduced digital volume
correlation (DVC) technology to OCE. They reconstructed the 3D deformation map of silicone
phantoms from OCT imaging by using a commercial DVC program (La Vision, Göttingen,
Germany). The performance of their protocol reached the best size of sub-volume as 36× 36× 36
voxels and the maximum applicable strain level as 0.0168. The DVC algorithm used in this study
was based on fast Fourier transform (FFT), which may generate artificial fringes in deformation
field and lead to confused interpretation of the calculation results. Meng et al. [13] put forward a
static 3D OCE method by integrating inverse compositional Gauss-Newton (IC-GN) DVC method
with swept source OCT system. This method enabled displacement measurement and strain
calculation at a higher precision of 2 µm and 0.003, respectively. Besides, speckle tracking OCE
method has been successfully applied to investigate the mechanical properties of porcine muscle,
rat heart, porcine aorta and cornea [13–16]. However, the key challenge of further translating the
speckle tracking based OCE technology into clinical practice is that the applicable strain range in
conventional methods is too small to meet the actual measurement demand [17]. Therefore, a
DVC algorithm that can measure a larger range of strain from OCT imaging is needed.

Since proposed, DVC algorithm has been optimized and improved in many aspects such as
shape function, subset optimization algorithm and interpolation method [18]. For example,
subset optimization algorithm evolved from gradient method, and Newton-Raphson (NR) method
into Gauss-Newton(GN) method to improve the accuracy and speed of calculation [19]. Shape
function was also developed from zero-order to second-order shape function. Zero-order shape
function only describes the constant translational motions of sub-volumes. First-order shape
function further takes the gradient components into account and meets the demand of describing
simplified sub-volume deformation. However, biological tissues have complex micro-structure,
which induces anisotropic and non-linear mechanical behavior [20]. The deformation in sub-
volume scale is too complicated to be tracked using conventional first-order shape function.
Besides, scattering particles in phantom, which are commonly used in OCT imaging as speckle
information carrier for the correlation matching are stiffer than phantom materials. The particles
are treated as non-deformable body and only rigid replacement(movement) are tracked to present
the sample’s deformation. This hypothesis induces a calculation error named speckle rigidity
induced error (SRI error). Theoretically, second-order shape function depicts high-order complex
deformation in sub-volume could reduce the SRI error. Lan et al. [21] proposed an improved
second-order shape function-based IC-GN DVC method and applied to confocal microscope
imaging data, which achieved a local error less than 0.1 voxels. However, the application of
second-order shape function-based IC-GN DVC method in OCE has not been reported and its
performance has not been investigated yet.

In this study, numerical simulation of pure translation, linear displacement and non-uniform
deformation were conducted with the IC-GN DVC method based on both first- and second-order
shape functions. Phantom compression experiments were processed to determine the limit
of strain range and assess the performance of using the DVC methods based on first- and
second-order shape functions. In the following context, IC-GN DVC method based on first- and
second-order shape functions are abbreviated as IC-GN1 and IC-GN2 for convenience.
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2. Methods

2.1. DVC method

DVC is a 3D speckle tracking method, which is the extension of 2D digital image correlation
(DIC). DVC tracks the point of interest (POI) between the reference volume and the deformed
volume and calculates their relative displacement. Before computation, the whole volume is
pre-divided into sub-volumes. The calculating process of DVC algorithm (Fig. 1) includes
two main steps: integer voxel search and sub-voxel iteration. The coarse integer voxel search
uses 3D fast Fourier transform-based cross-correlation (3D FFT-CC) to obtain the integer voxel
displacement of sub-volumes in all directions. The displacement map is subsequently inputted to
the Gauss-Newton sub-voxel iteration. In this study, the pipeline of DVC analysis was designed
in MATLAB (R2022a, MathWorks, Inc., Natick, MA, US) environment, based on a published
inverse compositional Gauss-Newton (IC-GN) algorithm [22], which could incorporate the shape
and location of both reference and target sub-volumes simultaneously and thus avoided redundant
computations.

Reference sub-volume

Searching region

Target sub-volume

Reference volume Deformed volume

Sub-volume before and after deformation

Coarse search based on 3D FFT-CC

Displacement field in  voxel

Fine search based on IC-GN method

Displacement field in sub-voxel

3D pointwise least square fitting

3D strain field

(a) (b)

Fig. 1. Principle illustration of DVC method: (a) schematic diagram and (b) flow charts.

Zero-mean normalized sum of squared difference (ZNSSD) criterion is used as correlation
coefficient in IC-GN to evaluate the similarity between the reference and the deformed volumes
because it is insensitive to the noise and the overall intensity fluctuation of sub-volume,

CZNSSD(∆p) =
∑︂
ξ

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f (x + ξ) − fm√︂∑︁
ξ [f (x + ξ) − fm]2

−
g(x′ + ξ) − gm√︂∑︁
ξ [g(x′ + ξ) − gm]2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
2

, (1)

where x and x′ denotes central coordinates of the reference and the deformed sub-volume
respectively; ξ = (∆x,∆y,∆z)T is the local coordinate in the sub-volumes; f (x) and g(x′) are gray
values function of point in the reference and the deformed sub-volumes, respectively; fm and gm
are the average grayscales of the reference and the deformed sub-volumes.

The relationship of voxels in the reference and the deformed sub-volumes are approximately
described by shape functions. Considering the point P(x, y, z) in the reference sub-volume and the
point P′(x′, y′, z′) in the deformed sub-volume. First-order shape function can be described as:

x′ = x + u + ux∆x + uy∆y + uz∆z,
y′ = y + v + vx∆x + vy∆y + vz∆z,
z′ = z + w + wx∆x + wy∆y + wz∆z,

(2)

where ∆x,∆y,∆z are the local coordinates of the point P(x, y, z) in the reference sub-volume (i.e.
the distance between the point P and the center point of sub-volume); u, v, w are the displacement
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components in three directions; and ux, uy, uz, vx, vy, vz, wx, wy, wz are the first-order gradient of
u, v, w.

However, linear deformation mapping in first-order shape function can only describe translation,
rotation, scaling. Comparatively, second-order shape function accounts for the effect of second-
order deformation parameters in sub-volume, therefore, could describe the complex deformation
fields more accurately:

x′ = x + u + ux∆x + uy∆y + uz∆z

+
1
2

uxx∆x2 +
1
2

uyy∆y2 +
1
2

uzz∆z2 + uxy∆x∆y + uyz∆y∆z + uxz∆x∆z,

y′ = y + v + vx∆x + vy∆y + vz∆z

+
1
2

vxx∆x2 +
1
2

vyy∆y2 +
1
2

vzz∆z2 + vxy∆x∆y + vyz∆y∆z + vxz∆x∆z,

z′ = z + w + wx∆x + wy∆y + wz∆z

+
1
2

wxx∆x2 +
1
2

wyy∆y2 +
1
2

wzz∆z2 + wxy∆x∆y + wyz∆y∆z + wxz∆x∆z,

(3)

where uxx, uyy, uzz, uxy, uyz, uxz, vxx, vyy, vzz, vxy, vyz, vxz, wxx, wyy, wzz, wxy, wyz, wxz are the second-
order gradient of u, v, w. Fig. S2 shows the examples of deformed shapes which can be described
by first- and second-order strain components. A broader range of deformation can be accurately
represented by using the combination of first and second-order deformation gradients than only
first-order gradients.

After obtaining the displacement components, strain can be subsequently calculated through
point-wise least square fitting (LSF) approach. A local displacement field centered at an
interrogated point is fitted using first-order polynomials:

u(x, y, z) = a0 + a1x + a2y + a3z,
v(x, y, z) = b0 + b1x + b2y + b3z,
w(x, y, z) = c0 + c1x + c2y + c3z .

(4)

The polynomial coefficients are determined by LSF, and each component in the strain tensor is
calculated by the Cauchy’s formulas as:

εx =
∂u
∂x
= a1, εxy =

1
2

(︃
∂v
∂x
+
∂u
∂y

)︃
=

1
2
(b1 + a2),

εy =
∂v
∂y
= b2, εyz =

1
2

(︃
∂w
∂y
+
∂v
∂z

)︃
=

1
2
(c2 + b3),

εz =
∂w
∂z
= c3, εzx =

1
2

(︃
∂u
∂z
+
∂w
∂x

)︃
=

1
2
(a3 + c1) .

(5)

A detailed procedure of LSF for calculating the strain tensor can be found in Supplement 1.

2.2. Simulated experiments

In order to eliminate potential errors from out-plane deformation, image acquisition quality and
volume distortion during loading process, the precision of IC-GN1 and IC-GN2 were preliminarily
investigated using simulated speckle patterns. The simulated speckle patterns were generated
using an in-house built MATLAB code. In this algorithm, a set of Gaussian-shaped speckles were
generated. The brightness and location of each speckle elements in the reference and deformed

https://doi.org/10.6084/m9.figshare.21211361
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volumetric image were numerically defined as:

fr(x, y, z) = int

{︄
s∑︂

k=1
Ik exp

[︃
−
(x − xk)

2 + (y − yk)
2 + (z − zk)

2

R2

]︃}︄
,

fd(x, y, z) = int

{︄
s∑︂

k=1
Ik exp

[︃
−
(x − xk − u)2 + (y − yk − v)2 + (z − zk − w)2

R2

]︃}︄
,

(6)

where fr and fd are the reference and deformed volumetric image, respectively; int is the integer
function; s is the total number of the speckle in the volumetric image; Ik is a random intensity
value of the center of kth speckle and it is set as 255 here; R is the radius of each speckle granule;
(xk, yk, zk) represents the central coordinate of the kth speckle; u, v, w are the displacement
components of kth deformed speckle against the reference speckle. In this study, s = 20 000,
speckle radius was set as 2 voxels.

Diverse deformation fields were imposed to generate deformed volume. Firstly, a 20-frame
series of volumetric images with sub-voxel translation were produced, ranging from 0 to 1 voxel
with an incremental step of 0.05 voxel in x direction by Eq. (6). To simulate the imaging noise in
reality, random Gaussian noise with the mean value of 0 and different standard variance of 0%,
3% and 5% of the full 8-bit grayscale were added to all of images. Then, each pair of the reference
and the deformed volumetric images were computed by the aforesaid two DVC methods. In the
calculation, the size of sub-volume was selected as 31 × 31 × 31 voxels and grid step between
the neighboring points was 4 voxels. Region of interest (ROI) was 500 × 500 × 216 voxels
which resulted in total 6.4×105 calculated points. After calculation, the difference between the
calculated displacement values and the prescribed displacement field was treated as computational
errors, presented as two components, i.e., mean bias error and standard deviation (SD) error. The
mean bias error of the displacement is defined as:

Eu =
1
N

N∑︂
m=1

(um − uimp), (7)

where um is computed displacement of the mth calculated points and uimp denotes the actual
imposed value of sub-pixel displacement; N is the total number of computation points. The SD
error, which indicates the mean displacement that a set of numbers deviates from their mean
variation of the measured displacement relative to the mean value, is defined as follows:

σu =

⌜⃓⎷
1

N − 1

N∑︂
i=1

(um − uimp)2 . (8)

In the second simulated experiment, a linear-changed displacement field in x direction was
applied in deformed images. It was defined as u = εx, where ε was the strain value. In this study,
a total of ten volumetric test images were produced with the strain values from 0.02 to 0.2 and an
incremental step of 0.02 voxel. Subsequently the process of the first test was repeated here, i.e.
adding noise and DVC calculation. Strain components were calculated from displacements by
Eq. (5). Mean bias error and SD error of calculated strain were analyzed by Eqs. (7),(8).

To further quantitatively compare the spatial resolution and limitations of the two DVC methods,
in the third part of simulated experiment, three superimposed nonuniform Gaussian-shaped
deformation fields with different widths were given as Equation S7. In addition, the performance
of IC-GN1 and IC-GN2 under different sub-volume sizes and noise levels were investigated.
Random Gaussian white noise with different standard variance of 0%, 3% and 5% of the full 8-bit
grayscale was added to the reference and deformed volumetric image. The root-mean-square-error
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(RMSE) is defined to represent the total error:

RMSE =
√︂

E2
u + σ

2
u . (9)

2.3. Mechanical experiment

2.3.1. OCT imaging system

The OCE experimental set-up in this study consisted of a Spectral Domain OCT system
(TEL220PS, Thorlabs Inc.), a mechanical clamp and a translation stage (Fig. 2). The OCT system
uses a broadband source with central wavelength of 1300 nm and the bandwidth of 100 nm. The
maximum scan rate of source is 76 kHz. The axial resolution of OCT imaging is 3.5 µm (in air).
Further illustration of OCT imaging principle is included in Supplemental Document.

Fiber Coupler

CCD Grating

Spectrometer

Reference arm

Scanning mirror

Objective

PDMS block

Broadband Source

Compress

Fig. 2. Schematic diagram of the OCT imaging system used in mechanical test.

2.3.2. Experimental procedure of OCE

The experimental flow chart of OCE is shown in Fig. 3. The Polydimethylsiloxane(PDMS)
phantom (The process of preparing PDMS phantom refers to Supplemental Document) was
given compression loading, while the OCT recorded the grayscale volumetric images of the
phantom before and after deformation. Before DVC calculation, the OCT volumetric images
were pre-processed using Gaussian filter to reduce the noise level. Then the aforementioned
DVC algorithm was employed to track the volumetric internal grayscale speckle pattern by
means of searching sub-volume in ROI of reference and deformed images. After getting the full
displacement field, strain components were mapped from displacement by LSF.

During the OCT imaging acquisition, a camera in-line mounted with OCT scanner simulta-
neously captured the top surface images of PDMS sample before and after compression. The
captured images were subsequently used for validation by using an open-source 2D DIC algorithm
Ncorr [23]. Theoretically, the captured displacement and strain on the parallel layer snipped from
3D OCT-DVC method should be equal to these captured from 2D photography-DIC method. As
the 2D photography-DIC technique has been well-developed and widely adopted in mechanical
experiment, the 2D DIC results were used as a baseline to assess the performance of IC-GN1 and
IC-GN2 methods.

2.3.3. System error evaluation

To evaluate the system errors of OCE system, the phantom was firstly captured OCT imaging
at its static status, two successive frames of volumetric images were captured at an interval of
5s. The phantom was applied a horizontally translation by 0.5 mm and two volumetric images
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Fig. 3. The schematic flow chart of OCE experiment.

of phantom were captured before and after translation. The cubic computation ROI in DVC
was 512 × 512 × 216 voxels in x, y, z directions with a calculation grid step of 5 voxels and a
sub-volume size of 41 × 41 × 41 voxels. After the displacement field was obtained from DVC
calculation, the point-wise LSF method with a window of 11 × 11 × 11 voxels were implemented
to calculate the internal strain field. In these two non-loading conditions, the displacement for
static test and strain for translation test were expected to be zero. The inherent measurement errors
of OCE system can be characterized by the calculated displacement and strain field, referred
as virtual translation error and virtual strain error. These two type of errors represented the
uncertainties of the developed OCE system, which indicated the measurable least displacement
and strain value.

2.3.4. Linear compression test

To quantify the upper bound of strain that our proposed OCE system can track effectively, a
series of compression experiments were conducted. The phantom was compressed on the clamp
by the strain range of 0∼0.1, with an interval of 0.01. Before test, an initial pre-compression
was applied to the phantom to eliminate the effect of residual strain and eccentric compression.
Followed the aforementioned protocol in Fig. 3, the OCT volumetric images were acquired and
the displacement field were tracked using DVC algorithm. When calculating the strain, the
displacement filed was cropped to avoid the boundary effect of the LSF. The 2D strain map
processed using 2D DIC algorithm from captured phantom surface images was treated as the
ground truth of applied strain and used for evaluating the 3D DVC strain calculated by IC-GN1

and IC-GN2. The relative mean errors were defined as the strain difference (accumulation of all
computation points) between DVC and DIC.
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2.3.5. Non-uniform deformation experiment

To investigate the performance of IC-GN1 and IC-GN2 on nonuniform deformation field, the
phantom prefabricated with a hole was uniaxially compressed. Before compression, an initial
pre-compression was also applied and then the phantom was compressed of 2.2mm. Two 3D
volumetric and 2D surface images were captured before and after compression. After experiment,
the 3D volumetric images were computed by the two DVC method and 2D surface images were
calculated by DIC as ground truth as previous experiments. Calculation points inside the hole of
volumetric images were discarded in computation. After computation, the relative displacement
errors (accumulation of all computation points) between DVC and DIC were obtained.

3. Results

3.1. Simulated experiment

The simulated imaging dataset was given translation, linear and nonlinear deformation successively.
Figure 4(b&c) presents the mean bias error of the computed displacement for IC-GN1 and
IC-GN2, compared to the preset translation. The curves of mean bias (y-axis) are all in the form
of a sinusoidal tendency against to the fractional voxel position (x-axis). This phenomenon is
attributed to positional intensity interpolation error from sub-voxel reconstruction. The mean
bias of IC-GN1 was lower than that of IC-GN2 by 10%-20%. Benefit by the IC-GN method’s
anti-noise feature, with noise level increasing, only a small increase of bias error was observed.
The maximum bias error of the two methods was less than 0.005 voxel. Figure 4(d&e) shows the
SD errors of two methods. The SD errors of each method increased slightly following the noise
level increasing and were nearly constant against different pre-assigned sub-voxel translations.
With the noise level increasing from 0% to 5%, the maximum SD errors of IC-GN1 raised from
0.0013 to 0.0017 while that of IC-GN2 raised from 0.0013 to 0.0035.

The simulated linear tension test is shown as Fig. 5. The error bar plot in Fig. 5(b) presents
the difference between the preset strain and computed strain using IC-GN1 and IC-GN2. The
rhombus denotes the average strain errors as in Eq. (7) and the range of bar denotes the SD as in
Eq. (8). With the preset strain increasing, the SD of errors between preset and computed strain
using IC-GN1 and IC-GN2 firstly constrained within 0.002 until the preset strain reached to 0.14.
Thereafter, the SD of errors in IC-GN1 significantly transcended that in IC-GN2. Similarly, the
average strain errors in IC-GN1 and IC-GN2 were initially close to each other, and after the preset
strain reached to 0.14, the IC-GN1 presented larger average strain errors.

The 3D maps of computed strain of IC-GN1 and IC-GN2 with prescribed strain of 0.02 and
0.2 are presented in Fig. 5(c). When the prescribed strain equaled to 0.02, the metrological
performance of IC-GN1 outperformed IC-GN2. It is noted that the maximum errors of IC-GN2

was 0.002 while that of IC-GN1 was only 0.001. However, with the prescribed strain as 0.2, a
large bias region, where error exceeded the prescribed strain by 0.01 was observed in IC-GN1.
On the contrary, the standard deviations of relative error of IC-GN2 were less than that of IC-GN1

when tracking this large strain.
Three analytical Gaussian-shaped non-uniform deformation field with different widths were

shown in Fig. 6(a). Deformation field with diverse spatial frequencies can effectively examine
the spatial resolution of IC-GN1 and IC-GN2-based DVC algorithms. Figure 6(b) is the plot of
calculated displacement from IC-GN1 and IC-GN2 along the dotted line in Fig. 6(a), comparing
with the prescribed analytical deformation field as reference. In all the three deformation fields,
IC-GN2 presented closer results to the analytical reference than IC-GN1. Another finding was
that both IC-GN methods underestimated the amplitude of the prescribed displacement, and
with the spatial frequency region getting smaller, the peak gap between the calculated and the
analytical curves was getting larger. In the worst condition, IC-GN1 obtained nearly 50% of
error of the peak strain compared to the prescribed counterpart at the spatial frequency region
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Fig. 4. Schematic diagram of translation numerical experiments. The computed mean bias
and standard deviation (SD) errors calculated in a 31 × 31 × 31 voxels sub-volume: (a) the
simulated volumetric image was given the translational movement ranging from 0 to 1 voxel
with an incremental step of 0.05 voxel; (b) Mean bias errors of IC-GN1; (c) Mean bias errors
of IC-GN2; (d) SD errors of IC-GN1; (e) SD errors of IC-GN2.

of 16 voxels. This was caused by the intrinsic low-pass smoothing feature of cross-correlation
operation as a sliding average window.

As shown in Fig. 6(c), the RMSE of IC-GN1 raised rapidly and continuously with the increasing
of sub-volume size, while that of IC-GN2 firstly dropped and then increased when sub-volume
size raised from 11 to 41. The performance of IC-GN2 was better than that of IC-GN1, and
its leading-edge enlarged with increasing of sub-volume size. Due to the noise robustness
characteristic of IC-GN method, no significant difference was observed between different noise
levels.

3.2. OCE experiment

The system error of the designed OCE system was evaluated by applying static status and
translational displacement field to the phantom. Figure 7 shows the box-plot of the error of
virtual displacement (captured displacement at static status) and virtual normal strain (calculated
strain when applying only translation) in three directions calculated by IC-GN1 and IC-GN2. The
range of virtual displacement and strain error from IC-GN2 was larger than that from IC-GN1 in
all three directions. Measurement error in axial direction (z axis) was slightly smaller than lateral
directions (x&y axis), due to the smaller resolution in axial direction which was determined by
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Fig. 5. (a) Schematic diagram of tension numerical experiments with the cube representing
the simulated volumetric image. (b) The error bar plots between computed and preset strain
with IC-GN1 (blue) and IC-GN2 (red). The rhombus denotes the average strain errors and
bar denotes the standard deviations. (c) The 3D maps of computed normal strain in tension
direction of IC-GN1 and IC-GN2 with prescribed strain of 0.02 and 0.2.
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OCT source bandwidth rather than focal length of objective lens in lateral direction. Correlation
coefficient of all computed points were above 0.9 in the ROI. The absolute value of virtual
displacement was less than 0.2 voxel and absolute value of virtual normal strain was less than
4 × 10−4.
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Fig. 7. The OCE system errors evaluation: (a) Virtual displacement error in the static
situation (no translation); and (b) virtual strain error with translation only (no strain).

When applying linear displacement onto PDMS phantom, the average correlation coefficient
and the mean strain error of all computed points compared with DIC (treated as ground truth)
were plotted in Fig. 8(b). With the increasing of compressed strain, the average correlation
coefficient dropped and the mean strain error increased. In our DVC algorithm, the accepted
minimum of correlation coefficient was 0.8, where the corresponding strain was 0.095. The
maximum mean strain error of all applied strain value was less than 15%, demonstrating the
robustness of the proposed DVC algorithm. In addition, IC-GN1 outperformed IC-GN2 when
the applied strain was less than 0.57; nevertheless, while prescribed strain increased to 0.57,
IC-GN2 presented better performance than IC-GN1, where the mean strain error can be reduced
by 30%-50%.

The computed normal strain of IC-GN1 and IC-GN2 with applied strain of 0.02 and 0.07 are
presented in Fig. 8(c). When a small prescribed strain (ε = 0.02) was applied, the maximum
and mean strain errors of IC-GN2 was 0.002 while that of IC-GN1 was only 0.0015. For the
prescribed strain equaled to 0.07, there was a corner region where the computed strain value was
underestimated to 0.04 in IC-GN1, which was a large gap to the applied strain 0.07. In contrast,
the calculated strain value of IC-GN2 was close to the applied value and its maximum absolute
error and relative error value were only 0.005 and 8%, respectively.

The phantom with a hole was used to generate the nonlinear strain field under the compression
loading (Fig. 9(a)). The displacement error with different sub-volume size between the DIC
ground truth and IC-GN1 (blue) and IC-GN2 (red) were plotted in Fig. 9(b). The rhombus
denotes the average displacement errors and the range of bar denotes the SD error. When the size
of sub-volume was less than 21, there was no adequate speckle information for IC-GN method to
converge in iteration. With the increasing of the sub-volume size, the average displacement error
of IC-GN2 oscillated and slowly increased while that of IC-GN1 increased rapidly. Additionally,
the displacement SD error of IC-GN2 also raised tardily with the increase of sub-volume size.
Nevertheless, displacement SD error of IC-GN1 kept increasing.
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4. Discussion

In this study, a robust OCT imaging and DVC algorithm-based OCE method was investigated.
This method integrated the algorithms of 3D-FFT coarse search, IC-GN fine iteration, second-
order shape function and point-wise least square fitting. The performance of IC-GN1 and IC-GN2

were analytically compared based on both numerical simulated dataset and OCT-imaged PDMS
phantom experiments.

4.1. Advantage of IC-GN algorithm

The IC-GN algorithm used in this study is approx. two times faster and approx. 60% more
accurate than the traditional NR method. Optimized by Pan et al. [24], the calculation procedure
of IC-GN became more simple benefiting from the Hessian matrix pre-calculation during iteration
and the elimination of the reconstruction of intensity gradients at sub-voxel locations within the
deformed volume image. Experimental results indicated that the optimized DVC method could
further reduce the iteration number by nearly 60%, consequently enhanced the computational
speed by approximately 45-50 times. Because IC-GN and LSF methods are both noise insensitive,
the integrated OCE method therefore remained to be noise robust when processing real OCT
images with noise. Combined with parallel computing acceleration, OCE method presented in
this study may be suitable for real-time clinical diagnosis, which adds additional biomechanical
contrast to the conventional morphological images.

4.2. IC-GN1 versus IC-GN2

Compared with first-order shape function, the second-order shape function bring into the
additional second-order displacement gradient terms. Thus, it is considered to have a higher
accuracy when dealing non-uniform deformation. However, redundant parameters in IC-GN2

may induce over-matched error between the low-order real displacement field and high-order
shape function in the scenario with simple displacements, such as rigid translation. In this study,
this phenomenon has been noticed in both the simulated and the mechanical experiments when
applying only translation.

Instead of using sample’s natural speckle, adulterated scatters particles are usually used as
deformation carriers to maintain the correlated characters of sub-volume in OCE method. Non-
deformable character of scatters tends to induce negligible SRI error in mechanical experiments.
In the simulated experiment, first-order shape function could correctly track particles of sub-
volume in the initial phase. But when strain exceeded 0.12, SRI errors increased significantly
and the mean errors and SD errors of strain of IC-GN1 became larger than that of IC-GN2.
Correspondingly, in the OCE experiment, another error source affecting the DVC accuracy was
speckle decorrelation, which was due to the blinking/boiling effect of speckle with an increase in
applied strain. On this occasion, IC-GN2 was found to have better performance than IC-GN1

when preset strain value exceeded 0.06, which was smaller than simulation. In addition, a high
correlation coefficient (0.8) was maintained until the prescribed strain increased to around 0.09.
In this study, the upper limit of strain in OCE method was found to be superior to the previous
results [12–14], which showed the robust performance of our proposed OCE method.

4.3. Application potentials

In general, nonuniform deformation is more common in practice. First-order shape function can
hardly match prominent nonuniform deformation field. On the contrary, second-order shape
function can describe complex displacement field with strain gradient. In vivo soft tissues have
complex non-linear deformation and its information carrier structure have disparate mechanical
properties in real world. Therefore, IC-GN2 will reveal its advantage in the application on the
biomechanical analysis of biological tissues. In addition, OCT is particularly suitable for aqueous
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translucent tissue and its micron-level resolution and millimeter penetration depth are beneficial
for imaging micro-structure of biological tissue and for consequent DVC calculation.

4.4. Limitations and future works

In the simulated experiments, the Gaussian speckle pattern only ideally simulated the location
and brightness of each speckle. The simulated speckle pattern has not been able to mimic the
real OCT imaging process, hence some of the characteristics of OCT imaging, such as evolution
of speckles during deformation, and the sub-wavelength speckle-induced multiplicative noise
could not be included in the simulation study yet. The simulation study focused on the speckle
pattern generated from OCT imaging simulation program will be studied in the future research.

To improve the performance of OCE method, the Gauss filtering was applied to reduce the
noise level of captured OCT images. While other imaging pre-processing methods, such as
polarization diversity, spatial compounding and frequency compounding [25], had not been
investigated in this study, which will be included in the following studies.

Practically, it is critical but difficult in DVC algorithm to determine the suitable size for
sub-volume to obtain precise displacement field. Although small sub-volume size brings low
RMSE in the simulated imaging data, excessively small sub-volume size is not recommended for
IC-GN2 because there is no adequate speckle information in real image to fit unknown parameters
of shape function. Otherwise, distribution and size of speckles may not be as uniform as the
idealized simulated images and the noise level of real OCT image could also be higher. Thus,
the subset size should be precisely overall considered based on image resolution, level of noise,
image quality and strain level. The development of self-adaptive sized sub-volume for DVC
method [26,27] is necessary for an accurate OCE measurement.

In addition, before it can be translated to clinical application, the proposed OCE technology
has to be further developed and validated on ex vivo biological tissue samples, which is planed as
future study.

5. Conclusion

In this paper, an OCE method based on IC-GN2 was presented to solve 3D deformation field of
OCT imaging of PDMS phantom. Noise-robustness characteristic of this proposed method was
analyzed numerically. Benefit from the inherent high resolution of DVC method, the resolutions
of this OCE method for displacement measurement were < 0.1 voxel and < 0.2 voxel in axial
and lateral direction, respectively. Corresponding resolutions for strain measurement were about
3× 10−4 and 4× 10−4 in axial and lateral direction, respectively. The DVC methods based on first
and second-order shape functions were compared in this study. According to the compression
experiment, the maximum measurable strain based on IC-GN2 method reached as high as 0.095.
And IC-GN2 could reduce the SRI error caused by the non-deformation of scatters. IC-GN2 had
better performance than IC-GN1 when strain exceeded 0.12 and 0.06 in theoretical simulation
and in real OCE experiment, respectively. The IC-GN2 was found to reduce relative error
by 30%-50% compared with IC-GN1. Under nonuniform deformation field, IC-GN2 method
performed its robustness in both simulated images and experimental dataset for tracking the
displacement with large strain gradient. Overall, the 3D OCE method based on IC-GN2 presented
a robust performance in the calculation of displacement and strain field. It has great potential
to be further developed and translated to the characterization of biomechanical properties of
biological tissue.
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