
Half-turns and Line Symmetric Motions

J.M. Selig
Faculty of Business, Computing and Info. Management,
London South Bank University, London SE1 0AA, U.K.

(e-mail: seligjm@lsbu.ac.uk)

and

M. Husty
Institute of Basic Sciences in Engineering

Unit Geometry and CAD,
Leopold-Franzens-Universität Innsbruck, Austria.

(e-mail: manfred.husty@uibk.ac.at)

Abstract

A line symmetric motion is the motion obtained by reflecting a rigid
body in the successive generator lines of a ruled surface. In this work
we review the dual quaternion approach to rigid body displacements, in
particular the representation of the group SE(3) by the Study quadric.
Then some classical work on reflections in lines or half-turns is reviewed.
Next two new characterisations of line symmetric motions are presented.
These are used to study a number of examples one of which is a novel
line symmetric motion given by a rational degree five curve in the Study
quadric. The rest of the paper investigates the connection between sets
of half-turns and linear subspaces of the Study quadric. Line symmetric
motions produced by some degenerate ruled surfaces are shown to be
restricted to certain 2-planes in the Study quadric. Reflections in the
lines of a linear line complex lie in the intersection of a the Study-quadric
with a 4-plane.

1 Introduction

In this work we revisit the classical idea of half-turns using modern mathematical
techniques. In particular we use the dual quaternion representation of rigid-body
motions.

We use these methods to study line symmetric motions, recovering and ex-
tending some of the classically known results. Line symmetric motions were
first studied by Krames in a series of papers [13] - [17] using mainly synthetic
methods. Line symmetric motions have become important once more as it been
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realised that some self motions of Stewart-Gough parallel manipulators are line
symmetric. This is not very surprising, because Krames had already noticed
that motions having spherical paths are almost always line symmetric. Motions
having spherical paths were studied by Emile Borel [2] and R. Bricard [4] in
two award winning papers (see also [7]). Another motivation to resume these
investigations is that most of the literature on this topic is in German. The
classical papers of Krames have been dealt with in Bottema and Roth [3], using
analytic methods. More recent papers like [8], [9], [19] or [23] and [24] have never
been translated to English. These papers generalise line symmetric motions to
Non-Euclidean settings or multidimensional spaces.

We give two characterisations of line symmetric motions which we believe
are novel. Some well know examples are briefly studied and a new example
is introduced. These demonstrate the use of dual quaternions in proving the
motions to be line symmetric and finding the base surface for the motions.

Next we introduce and solve a new problem concerning the reflections in the
space of lines in a linear line complex. This produces a 3-parameter family of
rigid-motions.

Finally we look at plane symmetric motions and find an interesting connec-
tion between these motions an the B-planes in the Study quadric.

The first section deals with a short review of the algebra of dual quaternions.

2 Dual Quaternions and The Study Quadric

The dual quaternions were invented by Clifford to describe the geometry of
space. This work seems to have appeared first in Clifford’s 1871 paper, “Pre-
liminary sketch of biquaternions” [5] but see also [20] for more details on the
history. In Clifford’s paper several different ‘biquaternions’ are considered, these
are characterised by the properties of the extra generator (ω), introduced. The
term ‘dual’ for the case where the generator squares to zero (ω2 = 0) seems to
have come later.

Study claims credit for associating the dual quaternions with a six dimen-
sional quadric, actually an open set in the quadric, [22]. This ‘Study quadric’
represents the group of rigid-body transformations using eight homogeneous
parameters. He introduced what he called “soma” which are orthogonal co-
ordinate frames, the dual quaternions were used to represent transformations
between the soma. It was also probably Study who first used ε for the dual
unit, rather than Clifford’s ω, and it is this convention that is followed below.

In the latter half of the 20th century mathematicians seems to forget about
dual quaternions, preferring matrix methods. However, they were kept alive in
Kinematics, notable by Dimentberg [6], Freudenstein and his student Yang, [25]
and [26].
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2.1 Quaternions

We begin however, with Hamilton’s quaternions and their connection with rota-
tions. A rotation of angle θ about a unit vector v = (vx, vy, vz)

T is represented
by the quaternion,

r = cos
θ

2
+ sin

θ

2
(vxi+ vyj + vzk).

The action of such a quaternion on a point p = xi + yj + zk in space is given
by the conjugation:

p′ = rpr−,

where the quaternion conjugate r−, is given by,

r− = cos
θ

2
− sin

θ

2
(vxi+ vyj + vzk).

Notice here that quaternions representing rotations satisfy rr− = 1 and also
that r and −r represent the same rotation. The set of unit quaternions, those
satisfying rr− = 1, comprise the group Spin(3), which is the double cover of
the group of rotations SO(3). A detailed treatment on the use of quaternions
in kinematics can be found in Blaschke [1] or Husty et.al.[10].

2.2 Dual Quaternions

Now to include translations the dual unit ε is introduced. This dual unit satisfies
the relation ε2 = 0 and commutes with the quaternion units i, j and k. A general
dual quaternion has the form,

h = q0 + εq1

where q0 and q1 are ordinary quaternions. A dual quaternion representing a
rigid transformation is given by,

g = r +
1

2
εtr,

where r is a quaternion representing a rotation as above and t is a pure quater-
nion representing the translational part of the transformation, that is t =
txi+ tyj + tzk.

In this description points in space are represented by dual quaternions of the
form,

p̂ = 1 + εp,

where p is a pure quaternion as above. The action of a rigid transformation on
a point is given by,

p̂′ = (r +
1

2
εtr)p̂(r− +

1

2
εr−t).
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That is,

p̂′ = (r +
1

2
εtr)(1 + εp)(r− +

1

2
εr−t)

= rr− + ε(rpr− +
1

2
rr−t+

1

2
trr−)

= 1 + ε(rpr− + t).

Notice that, as with the pure rotations, g and −g represent the same rigid
transformation.

2.3 Lines

Lines in space can also be represented by dual quaternions, the line joining the
points p and q will have Plücker coordinates,

p01 = px − qx, p23 = pyqz − pzqy,
p02 = py − qy, p31 = pzqx − pxqz ,
p03 = pz − qz, p12 = pxqy − pyqx,

the corresponding dual quaternion will be,

ℓ = (p01i+ p02j + p03k) + ε(p23i + p31j + p12k).

Notice that for dual quaternions of this form we have,

ℓℓ− = p201 + p202 + p203,

normally in line geometry, we take the Plücker coordinates to be homogeneous
coordinates in a 5-dimensional projective space. The Plücker coordinates then
satisfy the quadratic relation,

p01p23 + p02p31 + p03p12 = 0.

In the dual quaternion representation this is equivalent to the fact that the
product ℓℓ− has no dual part. In 5-dimensional projective space the points
satisfying the Plücker relation above form a 4-dimensional quadric known as
the Klein quadric (or Plücker quadric).

The effect of a rigid transformation g, on a line ℓ is given by,

ℓ′ = gℓg−.

This is easily verified from the transformation of the Plücker coordinates. Notice
that this action of the group on lines does not have the same form as the
action on points. That is, if g = r + (1/2)εtr then g− = r− − (1/2)εr−t not
r− + (1/2)εr−t the term which appears in the transformation of points.

Suppose v is a unit vector and p is a point in space, then a line in the
direction of v and passing through the point p can be written as,

ℓ = v + εp× v.
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A rotation of θ radians about such a line is given by the dual quaternion,

g = cos
θ

2
+ sin

θ

2
ℓ = (cos

θ

2
+ sin

θ

2
v) + ε sin

θ

2
p× v.

To see this, notice that the rotational part of this transformation is simply the
quaternion, r = cos(θ/2)+ sin(θ/2)(vxi+ vyj+ vzk) as above. If the line passes
through the origin, that is if p = 0 then we are done, otherwise we can produce
the rotation about the line by first translating it to the origin, rotating and then
translating back,

g = (1 +
1

2
εp)r(1 −

1

2
εp) = r +

1

2
ε(pr − rp),

finally a simple computation confirms that the quaternion 1

2
(pr−rp) corresponds

to the vector sin θ
2
p× v.

2.4 The Study Quadric

Notice that not all dual quaternions represent rigid transformations. In fact the
condition for a dual quaternion g, to be a rigid transformation is just,

gg− = 1.

This is easily checked using the form g = r + (1/2)εtr given above and remem-
bering that the rotation r satisfies rr− = 1 and since the translation t is a
pure quaternion t− = −t. It is a little harder to see that all dual quaternions
satisfying this equation are rigid transformations.

If we write a general dual quaternion as,

g = (a0 + a1i+ a2j + a3k) + ε(c0 + c1i+ c2j + c3k),

then the equation above can be separated into its dual and quaternion parts,

a2
0
+ a2

1
+ a2

2
+ a2

3
= 1,

a0c0 + a1c1 + a2c2 + a3c3 = 0.

Now suppose that the eight variables (a0, a1, a2, a3, c0, c1, c2, c3) are actually
homogeneous coordinates for a 7-dimensional projective space P7. This has the
effect of identifying g and −g so that points of this space correspond to elements
of the group of rigid transformations, not the double cover of the group. The
first equation above is no longer relevant, but the second is homogeneous and
so applies to homogeneous coordinates,

a0c0 + a1c1 + a2c2 + a3c3 = 0,

is the equation of a 6-dimensional quadric in P
7, this is the Study quadric. Every

rigid transformation corresponds to a single point on the quadric. On the other
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hand some points on the quadric do not correspond to rigid transformations.
There is a 3-plane of ‘ideal points’, the points satisfying a0 = a1 = a2 = a3 = 0
do not correspond to and rigid transformation.

Next we consider the possible 3-planes which lie entirely within the Study
quadric. To do this let us group the homogeneous coordinates together as 4-
vectors, a = (a0, a1, a2, a3)

T and c = (c0, c1, c2, c3)
T . The 3-planes in the Study

quadric are then given by the linear equations,

(I4 −M)a+ (I4 +M)c = 0,

where I4 is the 4× 4 identity matrix and M is a 4× 4 orthogonal matrix. This
works because if we change the variables to a = (x + y) and c = (x − y) the
equation for the Study quadric becomes,

a · c = x · x− y · y = 0

and the equations for the 3-planes are then,

x = My.

There are two kinds of 3-planes in the Study quadric, they are distinguished
by the sign of the determinant of M . If det(M) = 1 we call the 3-plane an
A-plane, while if det(M) = −1 the 3-plane is called a B-plane. Notice that
the 3-plane of ideal points a0 = a1 = a2 = a3 = 0, introduced above, is
determined by the orthogonal matrix M = −I4. Since det(−I4) = 1 this is
an A-plane, below it will be referred to as the A-plane at infinity. As another
example, consider the space of all translations, dual quaternions of the form,
1+ (1/2)ε(txi+ tyj+ tzk). That is, a = (1, 0, 0, 0)T and c = (0, tx, ty, tz)

T . It is
not difficult to see that these group elements lie on the 3-plane determined by
the diagonal matrix M = diag(1,−1,−1,−1), moreover the determinant of this
matrix is clearly −1, so this is a B-plane in the Study quadric.

The A and B-planes can be further classified according to how they meet the
A-plane at infinity. Notice that the A-plane at infinity is invariant with respect
to multiplication by dual quaternions. The intersection of an arbitrary A or
B-plane with the A-plane at infinity is given by the solutions to the following
system of eight homogeneous linear equations,

(

I4 −M I4 +M
I4 0

)(

a

c

)

= 0.

The dimension of the solution set is determined by the rank of the coefficient
matrix, this in turn is given by the determinant of the matrix. Clearly, the
determinant is proportional to det(I4 +M). Setting this equal to zero we see
that the dimension of the solution set is determined by the number of eigenvalues
of M equal to −1. That is, there are no solutions, the solution set is empty if
M has no −1 eigenvalues. If M has a −1 eigenvalue then the planes meet at a
point. If M has two −1 eigenvalues then the intersection is a line, and so forth.
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Now any element of SO(4) is conjugate to a matrix of the form,

M =







cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 cosφ − sinφ
0 0 sinφ cosφ






,

this is the maximal torus of SO(4). So, in general an A-plane will have no −1
eigenvalues and hence will not meet the A-plane at infinity. These A-planes will
be called A0-planes. Exceptionally, if θ or φ is ±π the matrix M will have two
−1 eigenvalues and hence will intersect the A-plane at infinity in a line. These
will be called A2-planes. There is only a single A-plane determined by a matrix
M with four −1 eigenvalues, this of course is the A-plane at infinity itself.

If M is a reflection in O(4), that is if M has determinant −1, then a conju-
gation can reduce the matrix to the general form,

M =







− cos θ sin θ 0 0
sin θ cos θ 0 0
0 0 cosφ − sinφ
0 0 sinφ cosφ






.

In general such a matrix has a single −1 eigenvalue, and hence these B1-planes
meet the A-plane at infinity at a single point. Exceptionally, M can have three
−1 eigenvalues, resulting in a B3-plane that intersects the A-plane at infinity in
a 2-plane.

To understand the geometry of these A and B-planes a little better it is useful
to look at examples where the planes pass through the identity element of the
group, the dual quaternion 1. Notice that any A or B-plane can be translated
to an A or B-plane through the identity by multiplying every element on the
left (or right) by the inverse of some dual quaternion in the plane. There is only
one exception to this; the A-plane at infinity.

The A0-planes through the identity are comprised of the rotations about a
single point. For example, rotations about the origin are given by dual quater-
nions of the form a + ε0, and these clearly lie in an A0-plane given by the
matrix M = I4. Any A0-plane containing the identity is isomorphic to the
rotation group SO(3).

The A2-planes through the identity consist of rotations about lines parallel
to a given line. For example, consider the rotations parallel to the z-axis, these
are represented by the dual quaternions of the form, (cos(θ/2) + sin(θ/2)k) +
ε(cx sin(θ/2)i + cy sin(θ/2)j). The matrix determining this A2-plane is given
by the diagonal matrix M = diag(1,−1,−1, 1). Notice that this A2-plane also
contains the translations perpendicular to the z-axis, these could be thought of
as rotations about lines at infinity. We see that any A2-plane containing the
identity is isomorphic to the group of planar motions SE(2).

The B1-planes through the identity are not isomorphic to any subgroup
of SE(3). Rather they consist of the set of rotations about axes lying in a
fixed plane. For example, consider the rotations about lines in the xy-plane.
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These consist of dual quaternions of the form, (cos(θ/2) + sin(θ/2) cosαi +
sin(θ/2) sinαj)− εd sin(θ/2)k. This plane is determined by the diagonal matrix
M = diag(1, 1, 1,−1). Notice that this B1-plane also contains translations par-
allel to the xy-plane, again these could be thought of as rotations about lines
at infinity.

There is only one B3-plane containing the identity. This is the B-plane
we met above, the set of all translations, determined by the matrix, M =
diag(1,−1,−1,−1). This B3-plane is clearly isomorphic to the group R

3.

2.5 Matrix Representations of Quaternions

Consider the product of two arbitrary quaternions, ab = c,

(a0 + a1i+ a2j + a3k)(b0 + b1i+ b2j + b3k) = (c0 + c1i+ c2j + c3k)

where,

c0 = a0b0 − a1b1 − a2b2 − a3b3,

c1 = a0b1 + a1b0 + a2b3 − a3b2,

c2 = a0b2 − a1b3 + a2b0 + a3b1,

c3 = a0b3 + a1b2 − a2b1 + a3b0.

This can be written as a vector-matrix equation in two ways, either as,







c0
c1
c2
c3






=







a0 −a1 −a2 −a3
a1 a0 −a3 a2
a2 a3 a0 −a1
a3 −a2 a1 a0













b0
b1
b2
b3






,

or as,






c0
c1
c2
c3






=







b0 −b1 −b2 −b3
b1 b0 b3 −b2
b2 −b3 b0 b1
b3 b2 −b1 b0













a0
a1
a2
a3






.

These relations give us two 4× 4 representations of the quaternion product.
These are the left multiplication,

L(a) =







a0 −a1 −a2 −a3
a1 a0 −a3 a2
a2 a3 a0 −a1
a3 −a2 a1 a0






,

and the right multiplication,

R(b) =







b0 −b1 −b2 −b3
b1 b0 b3 −b2
b2 −b3 b0 b1
b3 b2 −b1 b0






.
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These 4 × 4 representations extend to 8 × 8 representations of the dual
quaternions, let h = (p0 + εp1) and f = (q0 + εq1) be two arbitrary dual
quaternions, then the representations for left and right multiplication can be
written in partitioned form as,

L(h) =

(

L(p0) 0
L(p1) L(p0)

)

and R(f) =

(

R(q0) 0
R(q1) R(q0)

)

.

3 Half-turns

A half-turn is a rotation by π radians about some line. Half-turns can be
represented by dual quaternions of the form ℓ = (a1i+a2j+a3k)+ε(c1i+c2j+
c3k). They can be thought of as reflections in the line.

Clearly for each line in space there is exactly one possible half-turn, so
there is a correspondence between half-turns and lines. Intersecting the Study
quadric with the 5-plane a0 = 0, c0 = 0, gives a 4-dimensional quadric which is
essentially the Klein quadric,

a1c1 + a2c2 + a3c3 = 0.

The action of the group by conjugation, the adjoint action of the group,
preserves the set of half-turns. That is, for any group element h and half-turn
ℓ the conjugation hℓh− = ℓ′ is another half-turn. To see this notice that these
lines are the dual equivalent of the pure quaternions, that is ℓ− = −ℓ for half-
turns. Moreover, the half-turns are the only dual quaternions that satisfy this
relation. Now the quaternion conjugate of hℓh− = ℓ′ is,

(ℓ′)− = (hℓh−)− = (h−)−ℓ−h− = −hℓh− = −ℓ′.

So the 5-plane a0 = c0 = 0, is preserved by the adjoint action of SE(3).
A classical theorem states that any proper rigid motion can be written as

the product of two half-turns, see [3]. As an example, consider a finite screw
motion about the z-axis, this can be written as the dual quaternion,

g = (cos
θ

2
+ sin

θ

2
k) + ε(−

d

2
sin

θ

2
+

d

2
cos

θ

2
k).

It is easy to see that this can be decomposed as, g = ℓ1ℓ2 where the two half-
turns are,

ℓ1 = i and ℓ2 = (− cos
θ

2
i+ sin

θ

2
j) + ε(

d

2
sin

θ

2
i+

d

2
cos

θ

2
j)

There are many other possible solutions since if g0 is any transformation which
commutes with g, that is any other screw motion with the same axis as g, then
since gg0 = g0g,

g = ℓ′
1
ℓ′
2
, where ℓ′

1
= g0ℓ1g

−

0
, and ℓ′

2
= g0ℓ2g

−

0
.
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In fact this is enough to prove the theorem since any motion can be brought to
this standard form using the adjoint action of the group. Notice that the factors,
ℓ1 and ℓ2 are perpendicular to the axis of the original screw transformation, the
angle between the lines is half the rotation angle of the transformation and the
perpendicular distance between the lines is half the translation along the axis
of the screw.

4 Line Symmetric Motions

A rigid body motion can be thought of as a curve in the Study quadric. Bottema
and Roth [3], define several types of special rigid body motions. Among these
are the line symmetric motions.

Line symmetric motions are defined as follows: Take a ruled surface ℓ(µ)
and a fixed coordinate frame (or soma), now a line symmetric motion is given
by reflecting the fixed frame in consecutive generating lines of the ruled surface,
to give a 1-parameter family of frames.

This can be seen as a curve in the Study quadric by choosing a starting line
in the ruled surface, say ℓ0 = ℓ(0). Now the rigid motion from the frame given
by this line to any subsequent line will be,

g(µ) = ℓ(µ)ℓ−1

0
= ℓ(µ)ℓ0,

since half-turns are self-inverse.
It can be seen that such a curve will satisfy the relation:

g(µ)ℓ−
0
+ ℓ0g

−(µ) = 0, (1)

since any line satisfies ℓ− = −ℓ and ℓ2 is a real number. On the other hand,
suppose that g(µ) is a curve in the Study quadric which satisfies the above
equation for some line ℓ0, then

g(µ)ℓ0 = ℓ0g
−(µ),

and hence
(g(µ)ℓ0)

− = −ℓ0g
−(µ) = −(g(µ)ℓ0).

So (g(µ)ℓ0) is a line and the motion is line-symmetric.
Notice that the above assumes that the motion passes through the identity

in the group. In the Sudy quadric the identity is the point with coordinates
(1, 0, 0, 0, 0, 0, 0, 0), that is the dual quaternion 1. A motion which doesn’t pass
through the identity might still be line symmetric, the motion can always be
translated to a path through the identity, that is the motion may have the form
g(µ) = ℓ(µ)ℓ0g0 where g0 is some fixed group element. Such a path will clearly
satisfy the equation,

g(µ)γ−

0
+ γ0g

−(µ) = 0, (2)

where γ0 = ℓ0g0.
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These equations represent a set of homogeneous linear equations in the
coordinates for g, that is we can think of g as a 8-dimensional vector g =
(a0, a1, a2, a3, c0, c1, c2, c3)

T . Then we can use the 8 × 8 representation of the
dual quaternion product to write equation (1) as,

(

R(ℓ−
0
) + L(ℓ0)C

)

g = 0,

where C is the 8× 8 diagonal matrix representing dual quaternion conjugation,
C = diag(+1, −1, −1, −1, +1, −1, −1, −1). To see how many of these 8 ho-
mogeneous equations are independent we can look at a particular case, assume
here that the line ℓ0 is the z-axis, ℓ0 = k. In this case we can compute the
matrices,

(

R(−k) + L(k)C
)

=

(

X 0
0 X

)

,

where,

X =







0 0 0 2
0 0 0 0
0 0 0 0
0 0 0 0






.

So there are just two independent equations, 2a3 = 0 and 2c3 = 0 and hence
a curve representing a line symmetric motion will lie in the intersection of the
Study quadric with a 5-plane.

The line symmetric motions can be characterised in another way. If the
motion g(µ) can be factored into a product of two half-turns one of which is
fixed then the screw axis of g(µ) will meet the fixed line at right-angles. Hence
the set of all axes of the motion will lie in the congruence of lines meeting and
perpendicular to, a fixed line. In fact it can be seen that the ruled surface
formed by the screw axes of the motion will form a right conoid.

These two characterisations are, of course, equivalent. To see this first recall
that two lines ℓ1 and ℓ2 will be coincident and perpendicular if and only if they
satisfy ℓ1ℓ

−

2
+ ℓ2ℓ

−

1
= 0. Now a screw motion about a line ℓ can be written as,

g = (1 +
1

2
ε
θp

2π
ℓ)(cos

θ

2
+ ℓ sin

θ

2
) = (cos

θ

2
+ ℓ sin

θ

2
) +

θp

4π
ε(ℓ2 sin

θ

2
+ ℓ cos

θ

2
),

where p is the pitch of the screw motion. Hence after a little computation we
get that,

gℓ−
0
+ ℓ0g

− = (sin
θ

2
+

θp

4π
ε cos

θ

2
)(ℓℓ−

0
+ ℓ0ℓ

−).

Now if the axis of the motion ℓ is coincident and perpendicular to a line ℓ0
then clearly (1) is satisfied. On the other hand if (1) is satisfied the either the
lines are coincident and perpendicular or θ = 0, that is the motion is a pure
translation.

This second condition leads to a small but useful result, that a motion about
a fixed axis is always line symmetric1. This is easily seen since any line coincident
and perpendicular to the fixed axis of the motion can be taken as ℓ0.

1This result is also stated, but without proof, in Krames [13], p. 395.
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5 Examples

5.1 Vertical Darboux Motion

In [3] the, so called, vertical Darboux motion is given as an example of a line-
symmetric motion. Here this will be verified using the methods developed above.

Writing the vertical Darboux motion, given in [3], as a dual quaternion we
have,

g(φ) = (cos
φ

2
+ sin

φ

2
k) + ε(β sinφ+ γ(1− cosφ))(− sin

φ

2
+ cos

φ

2
k).

The axis of this motion is always the z-axis, and so by the ‘small but useful’
result at the end of section 4 this must be a line symmetric motion. Also we
can see that any line perpendicular to the z-axis, for example,

ℓ0 = (cos δ i+ sin δ j) + ελ(− sin δ i+ cos δ j)

where δ and λ are arbitrary constants, will satisfy (1).
We can also derive the ruled surface which produces this motion. For sim-

plicity choose the constants δ = 0 and λ = 0 so that ℓ0 = i, this gives a
parameterisation of the ruled surface as,

ℓ(φ) = g(φ)i = −(cos
φ

2
i+ sin

φ

2
j) + ε(β sinφ+ γ(1− cosφ))(sin

φ

2
i+ cos

φ

2
j).

The points p, on a line are given by p = (v × ω)/|ω|2 + νω, where ω is the
direction and v the moment of the line and ν is an arbitrary parameter, see [21,
§6.5.2]. So the points on the surface can be parameterised as,

x = −ν cos
φ

2
,

y = −ν sin
φ

2
,

z = β sinφ+ γ(1− cosφ),

= 2β cos
φ

2
sin

φ

2
+ 2γ sin2

φ

2
.

The last relation here is found by using the half-angle formulas for sinφ and
(1 − cosφ). Finally eliminating the parameters φ and ν gives the equation of
the surface,

(x2 + y2)z = 2βxy + 2γy2.

This can be recognised as a cylindroid in agreement with the results in [3].

5.2 The Borel-Bricard Motion

This special motion is also given in Bottema and Roth [3] but see also [12] for the
relevance of this motion for self motions of Griffis-Duffy parallel manipulators.
As a dual quaternion the motion is given by,

g(φ) = (cosφ+ sinφk)− ε(sinφ
√

ρ2 − d2 sinφ− cosφ
√

ρ2 − d2 sinφk),
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where ρ and d are constants. This curve is in fact an elliptic quartic curve.
Certainly we can easily see that it lies in the 3-plane a1 = a2 = c1 = c2 = 0.
Also we see that if 0 ≤ (d2/ρ2) ≤ 1 then we can setm2 = d2/ρ2 and parameterise
the curve in terms of Jacobi elliptic functions with parameter m, and amplitude
φ = am(u),

g(u) = (cn(u) + sn(u) k)− ερ(sn(u) dn(u)− cn(u) dn(u)k).

Such curves are generally given as the intersection of a pair of quadric surfaces,
and that is indeed the case here. One of the quadrics is the restriction of the
Study quadric to the 3-plane, a0c0 + a3c3 = 0, and the other is given by,

ρ2a20 + (ρ2 − d2)a23 − c20 − c23 = 0.

Again this motion is clearly line symmetric by the ‘small but useful’ result
at the end of section 4. Any line of the form,

ℓ0 = cosα i+ sinα j

can be taken to satisfy (1). For definiteness let’s take ℓ0 = j so that the ruled
surface defining the motion is,

ℓ(φ) = g(φ)ℓ0 =

(− sinφ i + cosφ j)− ε(cosφ
√

ρ2 − d2 sinφ i+ sinφ
√

ρ2 − d2 sinφ j),

This surface is well known to be a spherical coniod, that is the set of lines
meeting a central axis at right-angles and tangent to a given sphere. In this
case the central axis is the z-axis and the sphere has radius ρ and its centre is
located at the point (0, d, 0). Treating this ruled surface in the same way as for
the vertical Darboux motions we get the equation of the surface as,

(x2 + y2)z2 = (ρ2 − d2)x2 + ρ2y2.

5.3 The Bennett Motion

It is well known that the motion of the coupler bar of a Bennett mechanism is a
conic in the Study quadric. This led to the definition of a generalised Bennett
motion as any motion determined by a conic in the Study quadric, [3]. Any
such motion will necessarily lie in the intersection of a 2-plane with the Study
quadric. Here we show that any such motion is line symmetric. Without loss of
generality we may assume that the plane containing the motion passes through
the identity, and let g1 and g2 be two other points on the curve defining the
motion, we require that 1, g1 and g2 be linearly independent. Then a general
point on the 2-plane containing the motion, not necessarily lying in the Study
quadric, can be written as a dual quaternion, g(α, β, γ) = α+ βg1 + γg2, where
α, β and γ are arbitrary real parameters. Now as we saw above, any element
of the group can be written as a pair of half-turns with axes perpendicular and
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Figure 1: A degree 5 rational ruled surface generating a line symmetric motion.

coincident with the axis of the displacement. So let g1 = ℓ1ℓ0 and g2 = ℓ2ℓ0
where ℓ0 is the common perpendicular to the axes of g1 and g2. Any point on
the 2-plane g(α, β, γ) satisfies the equation,

g(α, β, γ)ℓ−
0
+ ℓ0g

−(α, β, γ) = α(ℓ0 − ℓ0) + β(ℓ1 − ℓ1)(ℓ0)
2 + γ(ℓ2 − ℓ2)(ℓ0)

2 = 0,

and hence any conic is a line symmetric motion.
The ruled surface generating such a motion can be found by multiplying

g(α, β, γ) by ℓ−
0

on the right. The conic of group elements of the form g = ℓℓ0
will be transformed to lines but general points in the 2-plane containing the
curve will be transformed to points of the form −αℓ0 + βℓ1 + γℓ2. The lines
in the generating surface will be the intersection of this new 2-plane with the
Klein quadric. That is a conic in the Klein quadric. Such a conic of lines is well
known to represent a regulus of a hyperboloid, see for example[21]. This result
is in agreement with the original results of Krames, [17].

5.4 Rational Motions of Degree Five

A rational normal curve is a rational curve of degree n lying in an n-plane. Such
curves lie on several quadric varieties. Hence the results of the previous sections
suggest that it should be possible to find a rational normal curve of degree five
in the study quadric representing a line symmetric motion.

Such a motion can be produced by combining a vertical Darboux motion as
above with a rotation about a line perpendicular to the axis of the Darboux
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motion. Let us write c = cos(φ/2) and s = sin(φ/2), then a vertical Darboux
motion about the x-axis can be written,

gD(φ) =
(

c(c2 + s2) + s(c2 + s2)i
)

+ ε
(

(2βsc+ 2γs2)(−s+ ci)
)

.

The rotation is simply a rotation about the z-axis; gk(φ) = (c + sk). The
combination is a conjugation,

gk(φ)gD(φ)g−k (φ) = (c2 + s2)(c(c2 + s2) + s(c2 − s2)i + 2s2cj)

+ε(2βsc+ 2γs2)(−s(cs + s2) + c(c2 − s2)i+ 2sc2j).

This is clearly a rational curve of degree 5 and by construction it lies on the
Study quadric. As we saw above in section 4, the fact that is lies on the 5-plane
a3 = c3 = 0 ensures that it is a line symmetric motion. All that remains is
to check that the curve doesn’t lie in a smaller linear subspace, this is easily
done by checking that the six coefficients of the dual quaternion generators are
linearly independent polynomial. This involves computing a 6× 6 determinant,
the result is proportional to γ(β2 − γ2). This shows that the curve lies in a
5-plane and not in any 4-plane unless γ = 0 or γ = ±β. This motion is believed
to be novel, a diagram of the ruled surface producing this motion is shown in
Figure 1, in the case illustrated the parameters have been set to β = 0 and
γ = 1. Of course there may be other such motions, for example we could have
used gk(φ) = (c+ sk) + ε(−ds+ dck) where d is a constant.

6 Some Degenerate Cases

In this section we study some cases where the ruled surface that we are reflecting
in simplifies in some way. These simplifications place more constraints on the
possible motions that can be generated from such a surface.

6.1 Cones

Suppose that the ruled surface is a cone. That is a set of lines all passing
through a common point, the apex of the cone. If, as usual, we take one line to
be our fixed line ℓ0 then reflecting in this line and any other line of the surface
will produce a rotation, since the lines meet at the apex of the cone. The axes
of these rotations will all be perpendicular to ℓ0 and will pass through the apex
of the cone. The set of all possible rotations about a point in space form a
A0-plane in the Study quadric as mention in section 2. Also all rotations about
axes which lie in a plane form a B1-plane in the Study quadric. So the possible
displacements generated by a line symmetric motion based on the lines of a
cone must lie in the intersection of an A0-plane and a B1-plane which must be
a 2-plane lying in the Study quadric.
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6.2 Cylinders

Here suppose that the ruled surface is a cylinder with all generating lines par-
allel. Reflecting in a fixed line and any parallel line will produce a translation
in a direction perpendicular to the axis of the cylinder. The set of rigid body
displacements in a plane form a subgroup of SE(3) namely the planar mo-
tion group SE(2). These subgroups are represented by A2-planes in the Study
quadric. A planar motion group will also contain the set of rotations about axes
perpendicular to the plane under consideration. On the other hand the set of
all possible translations in space form another subgroup R

3 represented by a
particular B3-plane in the Study quadric. Clearly the displacements generated
by a line symmetric motion based on a cylindrical ruled surface lie in the inter-
section of an A2-plane and the B3-plane. This will necessarily be a 2-plane in
the Study Quadric.

6.3 Developables of Plane Curves

There do not seem to be any algebraic constraints giving the possible motions
generated by line symmetric motions based on torsal surfaces. A torsal surface,
or torse, is the developable surface of a curve, that is the surface formed from
the tangent lines to a curve. There will however, be differential constraints on
such motions.

If we restrict our attention to plane curves, then a developable of a plane
curve will generate planar motions; translations from reflections in parallel lines
and rotations about perpendicular lines from reflections in lines that meet. How-
ever, fixing one tangent line to the curve we can see that all possible displace-
ments in such a motion will be either rotations about axes intersecting the fixed
line and perpendicular to the plane or translations in the plane perpendicular
to the fixed line. Again the set of possible displacements forms a 2-plane in
the Study quadric, this time the intersection of the A2-plane of planar displace-
ments with the B1-plane of rotations in the plane containing the fixed line and
the perpendicular to the original plane.

6.4 Conoids

Above, in section 4, we saw that the screw axes of the displacements comprising
a line symmetric motion will generally form a conoid. Here we consider the
case where the surface we are reflecting in is a conoid. Notice that the vertical
Darboux motion and the Borel-Bricard motion studied in examples 5.1 and 5.2
are examples of this type of motion. Let ℓ0 be a fixed line in the conoid and
ℓ some other line in the conoid. The common perpendicular for such a pair
of lines will be the axis of the conoid, since by definition the lines in a conoid
meet and are perpendicular to a fixed line. Reflecting in ℓ0 and then ℓ will
produce a finite screw motion whose screw axis is the axis of the conoid. Hence
the displacements comprising such a line symmetric motion will all be screw
motions about a fixed axis. In fact such a set of motions, the screw motions
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of arbitrary pitch and angle about a fixed axis form a subgroup of the group
of rigid-body displacements, namely cylinder group SO(2)×R. As subvarieties
of the Study quadric, it is known that these subgroups are the intersection of
Study quadric with a 3-plane, see [21, p. 255].

7 Reflections in a Line Complex

Suppose we take a coordinate frame or soma and reflect it in every line in a
line complex. The result will be a 3-parameter family of soma and hence a
3-dimensional subspace of the Study quadric.

As a subspace of P7 a general line complex can be viewed as the intersection
of a hyperplane with the two hyperplanes a0 = 0 and c0 = 0, and the Study
quadric.

These hyperplanes can be written in the form vTh = 0, where h is an
arbitrary point in the space, hT = (a0, a1, a2, a3, c0, c1, c2, c3) and we have three
different vs,

vT
c = (0, γ1, γ2, γ3, 0, α1, α2, α3),

vT
1 = (1, 0, 0, 0, 0, 0, 0),

vT
ε = (0, 0, 0, 0, 1, 0, 0, 0),

where vc produces the standard equation of a line complex and v1, vε and the
Study quadric give the Klein quadric of lines as above.

Now fix one line in the complex, say ℓ0. Then any rigid motion in the
subspace is given, by a reflection in ℓ0 followed by a reflection in any other line
ℓ in the complex. As we saw above, we can represent this quaternion product
as a matrix product, g = R(ℓ0)ℓ. Notice that R(ℓ0) is self-inverse since ℓ0 is a
line. The elements of this form now clearly satisfy the three linear equations,

vT
c R(ℓ0)g = 0, vT

1 R(ℓ0)g = 0, vT
ε R(ℓ0)g = 0.

This defines a 4-plane in P
7 and so the 3-dimensional subspace of these motions

are given by the intersection of this 4-plane with the Study quadric.
If the line complex in question is a singular line complex then the situation

is only a little different. The linear space defining the complex is tangent to
the Klein quadric, and clearly this extends to the linear space determined by vc

above. So the set of displacements is still the intersection of the Study quadric
with a 4-plane. There is another way to look at this subspace of the Study
quadric though. A singular line complex consists of all lines that meet (or are
parallel to) a given line. So fix the home frame as the image of the given frame
in the central line of the complex. The rigid motions that transform this home
frame to the other frames in the subspace will be given by a reflection in the
central line followed by a reflection in some other line of the complex. Since
these lines meet the motion will be a rotation, moreover the axis of rotation will
be perpendicular to the central line in the complex. This will be true for any
line in the complex that meets the central line, hence the subspace in the Study
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quadric will contain the space of all rotations about axes that are perpendicular
to, and meet the central axis of the complex. The subspace will also contain
translations perpendicular to the central line resulting from the lines parallel to
the central line in the complex.

It is easy to see that this space of displacements can be generated by a
linkage consisting of a cylinder joint in series with a revolute joint where the
axes of the two joints meet and are perpendicular.

Notice that these ideas extend easily to spaces of lines. For example, the
set of displacements generated by reflection in all the lines of a quadratic line
complex. A quadratic line complexes is the 3-parameter space of lines deter-
mined by the intersection of the Klein quadric with a another 4-dimensional
quadric. The set of displacements generated by reflection in all the lines of a
quadratic line complex clearly lies in the intersection of the Study quadric with
a 4-dimensional quadric.

Another example would be the displacements generated by all reflections in
a linear line congruence. A linear line congruence consists of the lines in the
intersection of a 3-plane with the Klien quadric. So the 2-parameter family of
displacements generated by reflections in all the lines of a linear line congruence
will lie in the intersection of the Study quadric with a 3-plane. These will include
the motions generated by a cylindrical joint mentioned in section 6.4 above, since
this set is generated by all reflections in the linear congruence of lines meeting
and perpendicular to a fixed line. However, there are sets of rigid displacements
which are given by the intersection of the Study quadric and a 3-plane which are
not the result of reflecting in the lines of a linear line congruence. For example
the set of possible displacements generated by an R-R linkage is of this form,
[21, p.256].

8 Point and Plane Symmetric Motions

Finally here we look briefly at plane symmetric and point symmetric motions
which have very similar definitions to line symmetric motions. Just as a rigid
body motion can be specified by reflections in a sequence of lines we can also
specify a rigid motion by reflecting in a sequence of points or planes, the dif-
ference is that these reflections are not simply rotations by π but orientation
reversing reflections.

Suppose we have a one parameter sequence of planes, take a left-handed
soma and reflect in the successive planes of the sequence, this will give a one
parameter sequence of right-handed somas. As usual, one plane in the sequence
can be fixed and the right-handed soma associated with this plane can be taken
as the fixed coordinate frame. Now the rigid motions in the sequence can be
described as a reflection in the fixed plane followed by a reflection in a plane in
the sequence. Such a motion is clearly a rotation about the line of intersection of
the two planes. That is these plane symmetric motions are rotations about lines
lying in a fixed plane. Since the set of all rotations about lines lying in some
fixed plane form a B1-plane in the Study quadric, a plane symmetric motion
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can be thought of as a curve in a B1-plane of the Study quadric.
It is easy to see that a pair of successive reflections in two different points

will produce a translation. Point-symmetric motions, that is motion given by
reflections in successive points along a curve, thus gives only translations. That
is, the set of possible rigid displacements produced by a point symmetric motion
lie in a B3-plane.

9 Conclusions

It is clear from the above that reflections are closely related to linear subspaces
of the Study quadric.
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